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Abstract

The study of strategic or adversarial manipula-
tion of testing data to fool a classifier has attracted
much recent attention. Most previous works have
focused on two extreme situations where any test-
ing data point either is completely adversarial or
always equally prefers the positive label. In this
paper, we generalize both of these through a uni-
fied framework for strategic classification, and
introduce the notion of strategic VC-dimension
(SVCO) to capture the PAC-learnability in our gen-
eral strategic setup. SVC provably generalizes
the recent concept of adversarial VC-dimension
(AVC) introduced by Cullina et al. (2018). We
instantiate our framework for the fundamental
strategic linear classification problem. We fully
characterize: (1) the statistical learnability of lin-
ear classifiers by pinning down its SVC; (2) its
computational tractability by pinning down the
complexity of the empirical risk minimization
problem. Interestingly, the SVC of linear clas-
sifiers is always upper bounded by its standard
VC-dimension. This characterization also strictly
generalizes the AVC bound for linear classifiers
in (Cullina et al., 2018).

1. Introduction

In today’s increasingly connected world, it is rare that an al-
gorithm will act alone. When a machine learning algorithm
is used to make predictions or decisions about others who
have their own preferences over the learning outcomes, it is
well known (e.g., Goodhart’s law) that gaming behaviors
may arise—these have been observed in a variety of do-
mains such as finance (Tearsheet), online retailing (Hannak
et al., 2014), education (Hardt et al., 2016) as well as during
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the ongoing COVID-19 pandemic (Bryan & Crossroads;
Williams & Haire). In the early months of the pandemic,
simple decision rules were designed for COVID-19 testing
(COVID) by the CDC. However, people had different pref-
erences for getting tested. Those with work-from-home jobs
and leave benefits preferred to get tested in order to know
their true health status whereas some of the people with
lower income, and without leave benefits preferred not to
get tested (with fears of losing their income) (Williams &
Haire). Policy makers sometimes prefer to make classifica-
tion rules confidential (Citron & Pasquale, 2014) to mitigate
such gaming. However, this is not fool-proof in general
since the methods may be reverse engineered in some cases,
and transparency of ML methods is sometimes mandated by
law, e.g., (Goodman & Flaxman, 2016). Such concerns have
led to a lot of interest in designing learning algorithms that
are robust to strategic gaming behaviors of the data sources
(Perote & Perote-Pefia, 2004; Dekel et al., 2010; Hardt et al.,
2016; Chen et al., 2018; Dong et al., 2018; Cullina et al.,
2018; Awasthi et al., 2019); the present work subscribes to
this literature.

This paper focuses on the ubiquitous binary classification
problem, and we look to design classification algorithms
that are robust to gaming behaviors during the test phase.
We study a strict generalization of the canonical classifi-
cation setup that naturally incorporates data points’ prefer-
ences over classification outcomes (which leads to strategic
behaviors as we will describe later). In particular, each
data point is denoted as a tuple (x,y, ) where € X’ and
y € {—1,+1} are the feature and label, respectively (as
in classic classification problems), and additionally, r € R
is a real number that describes how much this data point
prefers label +1 over —1. Importantly, we allow r to be
negative, meaning that the data point may prefer label —1.
For instance, in the decision rules for COVID-19 testing,
individuals who prefer to get tested have r > 0, while those
who prefer not to be tested have » < 0. The magnitude
|r| captures how strong their preferences are. For exam-
ple, in the school choice matching market, students have
heterogeneous preferences over universities (Pathak, 2017;
Roth, 2008) and may manipulate their application materials
during the admission process. Let set R C R denote the set
of all possible values that the preference value r» may take.
Obviously, the trivial singleton set R = {0} corresponds to
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the classic classification setup without any preferences. An-
other special case of R = {1} corresponds to the situation
where all data points prefer label +1 equally. This is the
strategic classification settings studied in several previous
works (Hardt et al., 2016; Hu et al., 2019b; Miller et al.,
2019). A third special case is R = {—1,1}. This corre-
sponds to classification under evasion attacks (Biggio et al.,
2013; Goodfellow et al., 2015; Li & Vorobeychik, 2014;
Cullina et al., 2018; Awasthi et al., 2019), where any test
data point (, y) prefers the opposite of its true label y, i.e.,
the “adversarial” assumption.

Our model considers any general preference set R. As we
will show, this much richer set of preferences may some-
times make learning more difficult, both statistically and
computationally, but not always. Like (Hardt et al., 2016;
Dong et al., 2018; Goodfellow et al., 2015; Cullina et al.,
2018), our model assumes that manipulation is only pos-
sible to the data features and happens only during the fest
phase. Specifically, the true feature of the test data may be
altered by the strategic data point. The cost of masking a
true feature @ to appear as a different feature z is captured
by a cost function ¢(z; x). Therefore, the test data point’s
decision needs to balance the cost of altering feature and
the reward of inducing its preferred label captured by r. As
is standard in game-theoretic analysis, the test data point
is assumed a rational decision maker and will choose to
alter to the feature z that maximizes its quasi-linear util-
ity [r - I(h(2) = 1) — ¢(z;x)]. This naturally gives rise
to a Stackelberg game (Von Stackelberg, 2010). We aim
to learn, from i.i.d. drawn (unaltered) training data, the
optimal classifier A* that minimizes the 0-1 classification
loss, assuming any randomly drawn test data point (from
the same distribution as testing data) will respond to h*
strategically. Notably, the data point’s strategic behaviors
will not change its true label. Such behavior is referred to as
strategic gaming, which crucially differs from strategic im-
provement studied recently (Kleinberg & Raghavan, 2019;
Miller et al., 2019).

1.1. Overview of Our Results

The Strategic VC-Dimension. We introduce the novel no-
tion of strategic VC-dimension SVC(H, R, c) which cap-
tures the learnability of any hypothesis class 7 when test
data points’ strategic behaviors are induced by cost function
c and preference values from any set R C R.

e We prove that any strategic classification problem is
agnostic PAC learnable by the empirical risk minimiza-
tion paradigm with O (e=2[d + log(%))]) samples, where
d =SVC(H, R, c). Conceptually, this result illustrates that
SVC correctly characterizes the learnability of the hypothe-
sis class H in our strategic setup.

e Our SVC notion generalizes the adversarial VC-dimension

(AVC) introduced in (Cullina et al., 2018) for adversarial
learning with evasion attacks. Formally, we prove that AVC
equals precisely SVC(H, R, ¢) for R = {—1,1} when data
points are allowed to move within region {z; c(z;z) < 1}
in the corresponding adversarial learning setup. However,
for general preference set R, SVC can be arbitrarily larger
than both AVC and the standard VC dimension. Thus, com-
plex strategic behaviors may indeed make the learning statis-
tically more difficult. Interestingly, to our knowledge, this is
the first time that adversarial learning and strategic learning
are unified under the same PAC-learning framework.

e We prove SVC(H, R, ¢)< 2 for any H and R when cis any
separable cost function (introduced by (Hardt et al., 2016)).
Invoking our sample complexity results above, this also
recovers a main learnability result of (2016) and, moreover,
generalizes their result to arbitrary agent preferences.

Strategic Linear Classification. As a case study, we
instantiate our strategic classification framework in perhaps
one of the most fundamental classification problems, linear
classification. Here, features are in R? linear space. We
assume the cost function ¢(z; ) for any x is induced by
arbitrary seminorms of the difference z —a. We distinguish
between two crucial situations: (1) instance-invariant cost
function which means the cost of altering the feature = to
x + A is the same for any «; (2) instance-wise cost function
which allows the cost from x to  + A to be different for
different . Our results show that the more general instance-
wise costs impose significantly more difficulties in terms of
both statistical learnability and computational tractability.

o Statistical Learnability. We prove that the SVC of linear
classifiers is oo for instance-wise cost functions even when
features are in R2; in contrast, the SVC is at most d + 1 for
any instance-independent cost functions and any R when
features are in R?. This later result also strictly generalizes
the AVC bound for linear classifiers proved in (Cullina et al.,
2018), and illustrates an interesting conceptual message:
though SVC can be significantly larger than AVC in general,
extending from R = {—1,1} (the adversarial setting) to
an arbitrary strategic preference set R does not affect the
statistical learnability of strategic linear classification.

o Computational Tractability. We show that the empirical
risk minimization problem for linear classifier can be solved
in polynomial time only when the strategic classification
problem exhibits certain adversarial nature. Specifically,
an instance is said to have adversarial preferences if all
negative test points prefer label +1 (but possibly to different
extents) and all positive test points prefer label —1. A strictly
more relaxed situation has essentially adversarial references
— i.e., any negative test point prefers label +1 more than any
positive test point. We show that for instance-invariant cost
functions, any essentially adversarial instance can be solved
in polynomial time whereas for instance-wise cost functions,
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only adversarial instances can be solved in polynomial time.
These positive results are essentially the best one can hope
for. Indeed, we prove that the following situations, which
goes slightly beyond the tractable cases above, are both
NP-hard: (1) instance-invariant cost functions but general
preferences; (2) instance-wise cost functions but essentially
adversarial preferences.

1.2. Related Work and Comparison

Most relevant to ours is perhaps the strategic classifica-
tion model studied by (Hardt et al., 2016) and (Zhang &
Conitzer, 2021), where Hardt et al. (2016) formally for-
mulated the strategic classification problem as a repeated
Stackelberg game and Zhang & Conitzer (2021) studied the
PAC-learning problem and tightly characterized the sam-
ple complexity via “incentive-aware ERM”. However, their
model and results all assume homogeneous agent prefer-
ences, i.e., all agents equally prefer label +1. Our model
strictly generalizes the model of (Hardt et al., 2016; Zhang
& Conitzer, 2021) by allowing agents’ heterogeneous pref-
erences over classification outcomes. Besides the modeling
differences, the research questions we study are also quite
different from, and not comparable to, (Hardt et al., 2016).
Their positive results are derived under the assumption of
separable cost functions or its variants. While our charac-
terization of SVC equaling at most 2 under separable cost
functions implies a PAC-learnability result of (Hardt et al.,
2016), this characterization serves more as our case study
and our main contribution here is the study of the novel
concept of SVC, which does not appear in previous works.
Moreover, we study the efficient learnability of linear classi-
fiers with cost functions induced by semi-norms. This broad
and natural class of cost functions is not separable, and thus
the results of Hardt et al. (2016) does not apply to this case.

Our model also generalizes the setup of adversarial clas-
sification with evasion attacks, which has been studied in
numerous applications, particularly deep learning models
(Biggio et al., 2013; 2012; Li & Vorobeychik, 2014; Carlini
& Wagner, 2017; Goodfellow et al., 2015; Jagielski et al.,
2018; Moosavi-Dezfooli et al., 2017; Mozaffari-Kermani
et al., 2015; Rubinstein et al., 2009); however, most of these
works do not yield theoretical guarantees. Our work extends
and strictly generalizes the recent work of (Cullina et al.,
2018) through our more general concept of SVC and results
on computational efficiency. In a different work, (Awasthi
et al., 2019) studied computationally efficient learning of
linear classifiers in adversarial classification with [,-norm-
induced §-ball for allowable adversarial moves. Our compu-
tational tractability results generalize their results to §-ball
induced by arbitrary semi-norms.'

'(Awasthi et al., 2019) also studied computational tractability
of learning other classes of classifiers, e.g., degree-2 polynomial

Strategic classification has been studied in other different
settings or domains or for different purposes, including spam
filtering (Briickner & Scheffer, 2011), classification un-
der incentive-compatibility constraints (Zhang & Conitzer,
2021), online learning (Dong et al., 2018; Chen et al., 2020),
and understanding the social implications (Akyol et al.,
2016; Milli et al., 2019; Hu et al., 2019b). A relevant but
quite different line of recent works study strategic improve-
ments (Kleinberg & Raghavan, 2019; Miller et al., 2019;
Ustun et al., 2019; Bechavod et al., 2020; Shavit et al., 2020).
Finally, going beyond classification, strategic behaviors in
machine learning has received significant recent attentions,
including in regression problems (Perote & Perote-Pefia,
2004; Dekel et al., 2010; Chen et al., 2018), distinguish-
ing distributions (Zhang et al., 2019a;b), and learning for
pricing (Amin et al., 2013; Mohri & Munoz, 2015; Vanunts
& Drutsa, 2019). Due to space limit, we refer the curious
reader to Appendix A for detailed discussions.

2. Model

Basic Setup. We consider binary classification, where each
data point is characterized by a tuple (x,y,r). Like clas-
sic classification setups, € € X is the feature vector and
y € {+1,—1} is its label. The only difference of our
setup from classic classification problems is the additional
r € R C R, which is the data point’s (positive or negative)
preference/reward of being labeled as +1. The data point’s
reward for label —1 is, without loss of generality, normal-
ized to be 0. A classifier is a mapping h : X — {+1, —1}.
Our model is essentially the same as that of (Hardt et al.,
2016; Miller et al., 2019), except that the r in our model
can be any real value from set R whereas the aforemen-
tioned works assume r = 1 for all data points. Notably, we
also allow r to be negative, which means some data points
prefer to be classified as label —1. This generalization is
natural and very useful because it allows much richer agent
preferences. For instance, it casts the adversarial/robust clas-
sification problem as a special case of our model as well (see
discussions later). Intuitively, the set R captures the rich-
ness of agents’ preferences. As we will prove, how rich it is
will affect both the statistical learnability and computational
tractability of the learning problem.

The Strategic Manipulation of 7est Data. We consider
strategic behaviors during the test phase and assume that the
training data is unaltered/uncontaminated. An illustration
of the setup can be found in Figure 1. A generic fest data
point is denoted as (x, y, r). The test data point is strategic
and may shift its feature to vector z with cost ¢(z; x) where
c: Xx X — R>q. In general, function c can be an arbitrary
non-negative cost function. In our study of strategic linear
classification, we assume the cost functions are induced by

threshold classifiers, which we do not consider.
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Figure 1. Example illustration of our setup. The line is a linear
classifier. Points @3, x4 have incentive to cross the boundary
whereas @1, 2 do not. The dotted cycles contain all manipulated
features which have moving cost exactly 1 and they can be different
for different points (i.e., instance-wise costs).

seminorms. We will consider the following two types of
cost functions, with increasing generality.

1. Instance-invariant cost functions: A cost function ¢
is instance-invariant if there is a common function [
such that ¢(z; ) = l[(z — «) for any point (x, y, ).

2. Instance-wise cost functions: A cost function c is
instance-wise if for each data point (x, y, r), there is
a function I, such that ¢(z; ) = I (z — ). Notably,
I may be different for different data point (x, y, r).

Both cases have been considered in previous works. For
instance, the separable cost function studied in (Hardt et al.,
2016) is instance-wise, and the cost function induced by a
seminorm as assumed by the main theorem of (Cullina et al.,
2018) is instance-invariant. We shall prove later that the
choice among these two types of cost functions will largely
affect the efficient learnability of the problem.

Given a classifier h, the strategic test data point (x,y,r)
may shift its feature vector to z and would like to pick the
best such z by solving the following optimization problem:

Data Point Best Response:
Ac(zx,r;h) = arg max [[(h(z) =1) -7 — c(z;2)]. M
zE

where 1(S) is the indicator function and [I(h(z) = 1) -
r — ¢(z;x)] is the quasi-linear urility function of data
point (x,y,r). We call A.(x,r;h) the manipulated fea-
ture. When there are multiple best responses, we assume the
data point may choose any best response and thus will adopt
the standard worst-case analysis. Note that the test data’s
strategic behaviors do not change its true label. Such strate-
gic gaming behaviors differs from strategic improvements
(see (2019) for more discussions on their differences).

2.1. The Strategic Classification (STRAC) Problem

A STRAC problem is described by a hypothesis class H,
the set of preferences R and a manipulation cost func-
tion ¢. We thus denote it as STRAC(H, R,c). Adopt-
ing the standard statistical learning framework, the input

to our learning task are n uncontaminated training data
points (x1,y1,71), " , (€n, Yn, ™) drawn independently
and identically (i.i.d.) from distribution D. Given these
training data, we look to learn a classifier h € H which
minimizes the basic 0-1 loss, defined as follows:

Strategic 0-1 Loss of classifier h :
2
L(hiD)= Pr [h(Ad@.rih) £y). @

(,y,m)~
Notably, the classifier & in the above loss definition takes the
manipulated feature A.(x,r; h)) as input and, nevertheless,
looks to correctly predict the true label y. For notational
convenience, we sometimes omit ¢ when it is clear from the
context and simply write A(x, r; h) and L(h; D).

2.2. Notable Special Cases

Our strategic classification model generalizes several mod-
els studied in previous literature, which we now sketch.
Non-strategic classification. When R = {0} and
c(z;x) > 0 for any © # z, our model degenerates to
the standard non-strategic setting.

Strategic classification with homogeneous preference.
When R = {1}, our model degenerates to the strategic clas-
sification model studied in prior work (Hardt et al., 2016;
Hu et al., 2019b; Milli et al., 2019)—here all data points
have the same incentive of being classified as +1.
Adversarial Classification. =~ When R = {1,—1} (or
{9, —0},6 # 0), our model becomes the adversarial classi-
fication problem (2018; 2019), where each data point can
adversarially move to induce the opposite of its true label —
within the ball of radius 1 induced by cost function c. Our
Proposition 1 provides formal evidence for this connection.
Generalized Adversarial Classification. An interesting
generalization of the above adversarial classification setting
is that r < O for all data points with true label +1 and > 0
for all data points with true label —1. This captures the situa-
tion where each point has different “power” (decided by |r|)
to play against the classifier. To our knowledge, this gener-
alized setting has not been considered before. Our results
yield new efficient statistical learnability and computational
tractability for this setting.

3. VC-Dimension for Strategic Classification

In this section, we introduce the notion of strategic VC-
dimension (SVC) and show that it properly captures the
behaviors of a hypothesis class in the strategic setup intro-
duced above. We then show the connection of SVC with
previous studies on both strategic and adversarial learning.
Before formally introducing SVC, we first define the shat-
tering coefficients in strategic setups.

Definition 1 (Strategic Shattering Coefficients). The n’th
shattering coefficient of any strategic classification problem
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STRAC(H, R, c) is defined as

on(H,R,c) =

max
(z,r)eX™ X R"

{(h(Ac(@1,m15R)), -+ W(Ac(@n, mn; h)) b € HE,

where A.(x;,r;; h) defined in Eq. (1) is a best response of
data point (x;,y;,7;) to classifier h under cost function c.

That is, 0, (H, R, ¢) captures the maximum number of clas-
sification behaviors/outcomes (among all choices of data
points) that classifiers in H can possibly induce by using
manipulated features as input. Like classic definition of
shattering coefficient, the o,,(H, R, ¢) here does not involve
the labels of the data points at all. In contrast, in the shat-
tering coefficient definition for adversarial VC-dimension
of (Cullina et al., 2018), the “max” is allowed to be over
data labels as well. This is an important difference from us.
Given the definition of the strategic shattering coefficients,
the definition of strategic VC-dimension is standard.

Definition 2. The Strategic VC-dimension (SVC) for strate-
gic classification problem STRAC(H, R, ¢) is defined as

SVC(H,R,c) =sup{n € N:o,(H,R,c) =2"}. (3)

We show that the SVC defined above correctly character-
izes the learnability of any strategic classification problem
STRAC(H, R, ¢). We consider the standard Empirical risk
minimization (ERM) paradigm for strategic classification,
but take into account training data’s manipulation behav-
iors. Specifically, given any cost function ¢, any n uncon-
taminated training data points (X1, y1,71),* * 5 (Xns Yn, Tn)
drawn independently and identically (i.i.d.) from the same
distribution D, the strategic empirical risk minimization
(SERM) problem computes a classifier h € H that mini-
mizes the empirical strategic 0-1 loss in Eq. (2). Formally,
the SERM for STRAC(H, R, c) is defined as follows:

SERM :  argminy, oy, Le(h, {(i,yi,74) }ie1)

= Z]I[h(Ac(ggi,ri;h)) £ yi] 4)

where L.(h, {(x;, v, 7:)}7—1) is the empirical loss (com-
pared to the expected loss L.(h,D) defined in Equation
(2)). Unlike the standard (non-strategic) ERM problem and
similar in spirit to the “incentive-aware ERM” in (Zhang &
Conitzer, 2021), classifiers in the SERM problem take each
data point’s strategic response A.. (x;,7;; h) as input, while
not the original feature vector ;.

Given the definition of strategic VC-dimension and the
SERM framework, we state the sample complexity result
for PAC-learning in our strategic setup:

Definition 3 (PAC-Learnability). In a strategic classifica-
tion problem STRAC(H, R, c), the hypothesis class H C

(X — {+41,—1}) is Probably Approximately Correctly
(PAC) learnable by an algorithm A if there is a function
maur.e : (0,1)% = N such that V(5,¢) € (0,1)?, for any
n > myy, r.c(6, €) and any distribution D for (x,y, ), with
at least probability 1 — 0, we have L.(h*,D) < e where
h* is the output of the algorithm A with n i.i.d. samples
from D as input. The problem is agnostic PAC learnable if
L.(h*,D) —infpey Lo(h, D) < e

Theorem 1. Any strategic classification instance
STRAC(H, R, ¢} is agnostic PAC learnable with sample
complexity myy g,c(6,€) < Ce2[d+log(})] by the SERM
in Eq. (4), where d = SVC(H,R,c) is the strategic
VC-dimension and C'is an absolute constant.

Proof Sketch. The key idea of the proof is to convert our
new strategic learning setup to a standard PAC learning
setup, so that the Rademacher complexity argument can be
applied. This is done by viewing the preference r € R as
an additional dimension in the augmented feature vector
space. Formally, we consider the new binary hypothesis
class H = {k.(h) : h € H}, where classifier . satisfies
ke(h) @ (z,7) = h(Ac(z,7; h)),¥(2,7) € X x R. It turns
out that the SVC defined above captures the VC-dimension
for this new hypothesis class H. Formally proof can be
found in Appendix B.1. O

Due to space limit, we defer all formal proofs to the ap-
pendix. Proof sketches are provided for some of the results.
Next, we illustrate how SVC connects to previous literature,
particularly the two most relevant works by Cullina et al.
(Cullina et al., 2018) and Hardt et al. (Hardt et al., 2016).

3.1. SVC generalizes Adversarial VC-Dimension (AVC)

We show that SVC generalizes the adversarial VC dimen-
sion (AVC) introduced by (Cullina et al., 2018). We give
an intuitive description of AVC here, and refer the curious
reader to Appendix 1 for its formal definition. At a high
level, AVC captures the behaviors of binary classifiers under
adversarial manipulations. Such adversarial manipulations
are described by a binary nearness relation B C X x X and
(z;x) € Bif and only if data point with feature & can ma-
nipulate its feature to z. Note that there is no direct notion
of agents’ utilities or costs in adversarial classification since
each data point simply tries to ruin the classifier by moving
within the allowed manipulation region (usually an J-ball
around the data point). Nevertheless, our next result shows
that AVC with binary nearness relation 3 always equals to
SVC as long as the set of strategic manipulations induced
by the data points’ incentives is the same as B. To formalize
our statement, we need the following consistency definition.

Definition 4. Given any binary relation B and any cost
function ¢, we say B, c are r-consistent if B = {(z;x) :
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c(z;x) < r}. In this case, we also say B [resp. c] is
r-consistent with c [resp. B].

By definition any cost function c is r-consistent with the
natural binary nearness relation it induces B, = {(z;x) :
c(z;x) < r}. Conversely, any binary relation B is r-
consistent (for any r > 0) with a natural cost function
that is simply an indicator function of B defined as follows

es(z ) = {oo, if (z;2) € B 5)

0, if(z;z)¢gB’
Note that, B and ¢ may be r-consistent for infinitely many
different r, as shown in the above example with B and cp.

Proposition 1. For any hypothesis class H and any binary
nearness relation B, let AVC(H, B) denote the adversarial
VC-dimension defined in (Cullina et al., 2018). Suppose
B and c are r-consistent for some v > 0, then we have
AVC(H,B) =SVC(H, {+r,—r},c).

As a corollary of Proposition 1, we know that SVC is in
general larger than or at least equal to AVC when the strate-
gic behaviors it induces include B. This is formalized in the
following statement.

Corollary 1.1. Suppose a cost function c is r-consistent
with binary nearness relation B and +r € R, then we have

SVC(H, R,c) > AVC(H, B).

Corollary 1.1 illustrates that for any cost function ¢, the
SVC with a rich preference set R is generally no less than
the corresponding AVC under the natural binary nearness
relation that ¢ induces. One might wonder how large their
gap can be. Our next result shows that for a general R
the gap between SVC and AVC can be arbitrarily large
even in natural setups. The intrinsic reason is that a general
preference set R will lead to different extents of preferences
(i-e., some data points strongly prefers label 1 whereas some
slightly prefers it). Such variety of preferences gives rise
to more strategic classification outcomes and renders the
SVC larger than AVC, and sometimes significantly larger,
as shown in the following proposition.

Proposition 2. For any integer n > 0, there exists a hypoth-
esis class H with point classifiers, an instance-invariant
cost function c¢(z;x) = l(z — x) for some metric ¢
and preference set R such that SVC(H,R,c) = n but
VC(H) = AVC(H,B.(r)) = 1 for any r € R where
B.(r) = {(x,2) : c(z;x) < r} is the natural nearness
relation induced by c and r > 0.

3.2. SVC under Separable Cost Functions

Not only restricting the set R of preference values can re-
duce the SVC. This subsection shows that restricting to spe-
cial classes of cost functions can also lead to a small SVC.

One special class of cost functions studied in many previous
works is the separable cost functions (Hardt et al., 2016;
Milli et al., 2019; Hu et al., 2019a). Formally, a cost function
¢(z; x) is separable if there exists function ¢j, ¢ : X = R
such that ¢(z; @) = max {c2(2) — c1(x),0}.

The following Proposition 3 shows that when the cost func-
tion is separable, SVC is at most 2 for any hypothesis class
H and any class of preference set R.> Therefore, separable
cost function essentially reduces any classification problem
to a problem in lower dimension. Together with Theorem
1, Proposition 3 also recovers the PAC-learnability result of
(Hardt et al., 2016) in their strategic-robust learning model
(specifically, Theorem 1.8 of (2016)) and, moreover, general-
izes their learnability from homogeneous agent preferences
to the case with arbitrary agent preference values.

Proposition 3. For any hypothesis class H, any preference
set R satisfying 0 € R, and any separable cost function
c(z;x), we have SVC(H, R, c) < 2.

The assumption 0 ¢ R means each agent must strictly prefer
either label 41 or —1. This assumption is necessary since
if 0 € R, SVC will be at least the classic VC dimension of
‘H and thus Proposition 3 cannot hold. We remark that the
above SVC upper bound 2 holds for any hypothesis class H.
This bound 2 is tight for some classes of hypothesis, e.g.,
linear classifiers.

4. Strategic Linear Classification

This section instantiates our previous general framework
in one of the most fundamental special cases, i.e., linear
classification. We will study both the statistical and com-
putational efficiency in strategic linear classification. Nat-
urally, we will restrict X C R< in this section. Moreover,
the cost functions are always assumed to be induced by
semi-norms.? A linear classifier is defined by a hyperplane
w - x + b = 0; feature vector x is classified as +1 if and
only if w - + b > 0. With slight abuse of notation, we
sometimes also call (w, b) a hyperplane or a linear classi-
fier. Let H4 denote the hypothesis set of all d-dimensional
linear classifiers. For linear classifier (w, b), the data point’s
best response can be more explicit expressed as:

Ac(z,r;w,b) = argmax [[(w-z+b > 0) -7 —c(z;x)].

2The model of (Hardt et al., 2016) corresponds to the case
R = {1} in our model. For that restricted situation, the proof of
Proposition 3 can be simplified to prove SVC = 1 when R = {1}.
It turns out that arbitrary preference set I only increases the SVC
by at most 1.

A function | : X — Rsq is a seminorm if it satisfies: (1)
triangle inequality: I(x + z) < I(z) + () for any ¢,z € X
and (2) homogeneity: [(Az) = |A|l(z) forany € X, )\ € R.
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4.1. Strategic VC-Dimension of Linear Classifiers

We first study the statistical learnability by examining the
strategic VC-dimension (SVC). Our first result is a negative
one, showing that SVC can be unbounded in general even
for linear classifiers with features in R? (i.e., ¥ C R?) and
with simple preference set R = {+1, —1}.

Theorem 2. Consider strategic linear classification
STRAC(Hg, R, ¢). There is an instance-wise cost function
c(z;x) = lp(z — @) where each ly, is a norm, such that
SVCO(Hg, R, c) = 0o even when X C R? and R = {1}.

Proof Sketch. We consider a set of data points {x;} ; in
R? whose features are close but with cost functions induced
by different norms. The cost functions are designed such
that each point x; is allowed to strategically alter its feature
within a carefully designed polygon GG; centered at the ori-
gin. Specifically, for any label pattern £ € {+1,—1}", it
has a corresponding node s, on a unit cycle. The polygon
G; for x; is the convex hull of all s, whose label pattern
L classifies ¢ as +1. Figure 2 illustrates a high-level idea

Figure 2. G; is the polygon associated with &;’s cost function.
Given any label pattern £ € {+1, —1}", the linear classifier h. is
carefully chosen to induce exactly the label pattern £ on {@; }i—;.

of our construction. Under such cost functions, we prove
that H can induce all 2" possible label patterns. The formal
construction and proof can be found in Appendix C. O

In the study of adversarial VC-dimension (AVC) by (Cullina
et al., 2018), the feature manipulation region of each data
point is assumed to be instance-invariant. As a corollary,
Theorem (2) implies that AVC also becomes oo for linear
classifiers in R? if each data point’s manipulation region is
allowed to be different.

It turns out that the co-large SVC above is mainly due to
the instance-wise cost functions. Our next result shows
that under instance-invariant cost functions, the SVC will
behave nicely and, in fact, equal to the AVC for linear classi-
fiers despite the much richer data point manipulation behav-
iors. This result also strictly generalizes the characterization
of AVC by (Cullina et al., 2018) for linear classifiers and
shows that linear classifiers will be no harder to learn sta-
tistically even allowing richer manipulation preferences of
data points.

Theorem 3. Consider strategic linear classification
STRAC(Hg4, R, c). For any instance-invariant cost func-
tion ¢(z;x) = l(z — x) where | is a semi-norm, we have
SVC(Hq4,R,c) = d + 1 — dim(V}) for any bounded R,
where V) is the largest linear space contained in the ball
B={x:l(z) <1}

In particular, if l is a norm (i.e., l(x) = 0iff x = 0), then
dim(V;) = 0 and SVC(H,R,c) = d + 1.

Proof Sketch. The key idea of the proof relies on a careful
construction of a linear mapping which, given any set of
samples {(z;, y;, ;) }_;, maps the class of linear classifiers
to the vector space of points’ utilities and moreover, the sign
of each data point’s utility will correspond exactly to the
label of the data point after its strategic manipulation. Using
the structure of this construction, we can identify the rela-
tionship between the dimension of the linear mapping and
the strategic VC-dimension. By bounding the dimension
of the space of signed agent utilities, we are able to derive
the SVC though with some involved algebraic argument to
exactly pin down the dimension of the linear mapping due
to possible degeneracy of V; ball. O

4.2. The Complexity of Strategic Linear Classification

In this subsection, we turn our attention to the computational
efficiency of learning. The standard ERM problem for linear
classification to minimize the 0-1 loss is already known to be
NP-hard in the general agnostic learning setting (Feldman
et al., 2012). This implies that agnostic PAC learning by
SERM is also NP-hard in our strategic setup. Therefore,
our computational study will focus on the more interesting
PAC-learning case, that is, assuming there exists a strategic
linear classifier that perfectly separates all the data points.
In the non-strategic case, the ERM problem can be solved
easily by a linear feasibility problem.

It turns out that the presence of gaming behaviors does make
the resultant SERM problem significantly more challeng-
ing. We prove essentially tight computational tractability
results in this subsection. Specifically, any strategic linear
classification instance can be efficiently PAC-learnable by
the SERM when the problem exhibits some “adversarial na-
ture”. However, the SERM problem immediately becomes
NP-hard even when we go slightly beyond such adversarial
situations. We start by defining what we mean by “adversar-
ial nature” of the problem.

Definition S (Essentially Adversarial Instances). For any
strategic classification problem STRAC(H, R, c), let
min~ = min{r : (x,y,r) withy = —1} and
maxt = max{r : (z,y,r) withy = +1}

be the minimum reward among all —1 points and the max-
imum reward among all +1 points, respectively. We say
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the instance is “adversarial” if min~ > 0 > max" and is
“essentially adversarial” if min~ > max™.

In other words, an instance is “adversarial” if each data
point would like to move to the opposite side of its label
though with different magnitudes of preferences, and is
“essentially adversarial” if any negative data point has a
stronger preference to move to the positive side than any
positive data point. Many natural settings are essentially
adversarial, e.g., all the four examples in Subsection 2.2.

Our first main result of this subsection (Theorem 4) shows
that when the strategic classification problem exhibits the
above adversarial nature, linear strategic classification can
be efficiently PAC-learnable by SERM. The second main
result Theorem 5 shows that the SERM problem becomes
NP-hard once we go slightly beyond the adversarial setups
identified in Theorem 4. These results show that the com-
putational tractability of strategic classification is primarily
governed by the preference set R. Interestingly, this is in
contrast to the statistical learnability results in Theorem 2
and 3 where the preference set R did not play much role.

Theorem 4. Any separable strategic linear classification
instance STRAC(H 4, R, ¢) is efficiently PAC-learnable by
the SERM in polynomial time in the following two situations:

1. The problem is essentially adversarial (min~ >
max™) and cost function c(z;x) = l(z — x) is
instance-invariant and induced by seminorm l.

2. The problem is adversarial (min~ > 0 > max™) and
the instance-wise cost function c(z; ) = lo(z — x) is
induced by seminorms l .

Proof Sketch. For situation 1, we can formulate the SERM
problem as the following feasibility problem:

find w,b,e>0

st. w-x; +b>—r;,
’LU'.’B1'+bS7(TZ‘+€)7
Flw)=1

|
=

fory, =
fory; = —1.

where [* is the dual norm of {.

This unfortunately is not a convex program due to the non-
convex constraint [* (w) = 1 — indeed we prove later that
this program is NP-hard to solve in general. Therefore,
instead, we solve a relaxation of the above program, by
relaxing constraint {*(w) = 1 to I*(w) < 1 to obtain a
convex program. The crucial step of our proof is to show
that this relaxation is tight under the essentially adversarial
assumption. This is proved by converting any optimal solu-
tion of the relax convex program to a feasible and optimal
solution to the original problem. This is the crucial and
also difficult step since the solution to the relaxed convex
program may not satisfy {*(w) = 1 — in fact, it will satisfy

I*(w) < 1 generally which is why the original program
is NP-hard in general. Fortunately, using the essentially
adversarial assumption, we are able to employ a carefully
crafted construction to generate an optimal solution the the
above non-convex program.

For situation 2, we can formulate it as another non-convex
program with parameter w, €:

find w,b,e >0
st. w-x; +b>(—r) -1, (w), for r; < 0.
—(w-m; +b) > (r;+e€) 15 (w), forr; >0.

Fortunately, for any fixed ¢ > 0, the above program is
convex in variable w. Moreover, if the system is feasible for
€o > 0 then it is feasible for any 0 < € < €. This allows
us to determine the feasibility problem above for any € via
binary search, which overall is in polynomial time. O

Our next result shows that the positive claim in Theorem (4)
are essentially the best one can hope for. Indeed, the SERM
immediately becomes NP-hard if one goes slightly beyond
the two tractable situations in Theorem (4). Note that our
results did not rule out the possibility of other computation-
ally efficient learning algorithms other than the SERM. We
leave this as an intriguing open problem for future works.

Theorem 5. Suppose the strategic classification problem
is linearly separable, then the SERM Problem for linear
classifiers is NP-hard in the following two situations:

1. Preferences are arbitrary and the cost function is
instant-invariant and induced by the standard lo norm,
; C) 2
ie, c(z;x) = ||l — z||5.

2. The problem is essentially adversarial (min~ >
max™) and the cost function is instance-wise and in-
duced by norms.

Remark 1. Theorem 3, Theorem 4 and Theorem 5 together
imply that for strategic linear classification:

(1) the problem is efficiently PAC-learnable (both statis-
tically and computationally) when the cost function is
instance-invariant and preferences are essentially adver-
sarial;

(2) SERM can be solved efficiently but SVC is infinitely large
when the cost function is instance-wise and preferences are
adversarial;

(3) the problem is efficiently PAC learnable in statistical
sense, but SERM is NP-hard when the cost function is
instance-invariant and preferences are arbitrary.

5. Summary

In this work, we propose and study a general strategic clas-
sification setting where data points have different prefer-
ences over classification outcomes and different manipula-
tion costs. We establish the PAC-learning framework for this
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strategic learning setting and characterize both the statistical
and computational learnability result for linear classifiers.
En route, we generalize the recent characterization of ad-
versarial VC-dimension (Cullina et al., 2018) as well as
computational tractability for learning linear classifiers by
(Awasthi et al., 2019). Our conclusion reveals two impor-
tant insights. First, the additional intricacy of having differ-
ent preferences harms the statistical learnability of general
hypothesis classes, but not for linear classifiers. Second,
learning strategic linear classifiers can be done efficiently
only when the setup exhibits some adversarial nature and
becomes NP-hard in general.

Our learnability result for linear classifiers applies to cost
functions induced by semi-norms. A future direction is
to generalize the theory to cost function induced by asym-
metric semi-norms or even any metrics. We also note that
the strategic classification model we consider is under the
full-information assumption, i.e., the cost function and the
strategic preferences are transparent. This is analogous
to the evasion attack in the adversarial machine learning
literature, where the training data is supposed to be uncon-
taminated and the manipulation only happens during testing.
What if we cannot observe the strategic preferences during
training or do not know the adversaries’ cost function? This
can be reformulated as online learning through repeated
Stackelberg games and has been studied in (Dong et al.,
2018), but it does not apply to classifiers with 0-1 loss.
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