Reinforcement Learning for Cost-Aware Markov Decision Processes

Literature Review: Finite-Time Results for Two-Timescale Stochastic Approximation

Our main contribution is to propose two new RL algorithms with theoretical guarantees for solving the ratio maximization
problem. Though desirable, finite-time analysis of our algorithms is a challenging problem that we do not address. Existing
finite-time works, such as (Gupta et al., 2019; Hong et al., 2020; Wu et al., 2020), do not apply, since our algorithms are
either too structurally dissimilar from the algorithms these works consider or do not satisfy the necessary assumptions
imposed in these works. We leave the important and challenging problem of providing finite-time analysis of our algorithms
to future work. Nonetheless, we provide a review of the literature on finite-time results for two-timescale stochastic
approximation for completeness.

Both of the algorithms proposed in this paper follow two-timescale stochastic approximation (2TSA) schemes, which
are well-studied in the RL literature (Borkar and Konda, 1997; Konda and Tsitsiklis, 2000; Bhatnagar et al., 2009). The
standard technique for analyzing 2TSA is via the ODE method, which can be used to prove asymptotic convergence and
rate results (Borkar, 2008). Building off the importance of asymptotic results, there has been great recent interest in
non-asymptotic, finite-time results for 2TSA. Contributions to the linear setting include the finite-sample analysis (Gupta
et al., 2019), which treats constant stepsizes, as well as (Doan and Romberg, 2019; Doan, 2019), which provide refined
methods for selecting stepsizes. Another work in a specialized setting is (Yang et al., 2019), which provides non-asymptotic
global convergence for actor-critic applied to the linear-quadratic regulator. Recasting actor-critic as a bi-level optimization
problem, (Qiu et al., 2019; Hong et al., 2020) provide non-asymptotic results for certain actor-critic variants. In addition,
(Kumar et al., 2019) gives convergence rates for an actor-critic scheme that uses Monte Carlo rollouts to estimate the policy
gradient. More recently, (Wu et al., 2020) provides finite-time convergence for fairly general forms of actor-critic with a
linear critic, while (Khodadadian et al., 2021) gives global convergence rates of natural actor-critic in the tabular setting.

Though desirable, finite-time analysis of our algorithms is a challenging problem that we do not address. Existing finite-
time works, such as (Gupta et al., 2019; Doan and Romberg, 2019; Doan, 2019; Hong et al., 2020; Wu et al., 2020), do not
apply, since our algorithms are either too structurally dissimilar from the algorithms these works consider or do not satisfy
the necessary assumptions imposed in these works. On the one hand, the limit point of the faster timescale of our RVI Q-
learning-based algorithm may fail to satisfy even the basic conditions needed to prove asymptotic results (Borkar, 2008),
let alone the more nuanced conditions needed to prove existing finite-time results, such as those in (Gupta et al., 2019;
Doan and Romberg, 2019; Doan, 2019; Hong et al., 2020). The policy gradient for our actor-critic algorithm, on the other
hand, is of such a form that existing results such as (Qiu et al., 2019; Kumar et al., 2019; Wu et al., 2020; Khodadadian
et al., 2021) do not apply.

Maximizing the Omega Ratio of a Financial Portfolio as a CAMDP

One of the principal areas where cost-aware ideas are already well developed is in financial applications, where the notion
of risk-sensitivity is widely studied and applied. For the purposes of this paper, we consider the multistage portfolio
optimization problem without transaction costs; see (Mulvey and Shetty, 2004; Calafiore, 2008; Dantzig and Infanger,
1993) for an overview and historical perspective on this problem. There are K assets with given initial prices Sék) for each

k=1,..., K, whose prices S,Sk) evolve according to the stochastic difference equations
S — 80 =y SPAL + oSPWP), (13)

where the Wék) ~ N(0, At) are iid normal random variables with mean 0 and variance A¢. From a principal portfolio

value P, the manager selects, at discrete time periods t = 0, 1,2, ..., weights w,, € [0,1]% such that Zszl w7(,,k) =1to

invest in the available assets. The asset prices evolve, the new portfolio value P, ;1 = P, Zszl w%k)S,(lk) is realized, and
the process repeats. The return on the portfolio R, 11 is given by R,+1 = Pp41/P, — 1. The formulation of multistage
portfolio optimization problems is naturally expressed in the language of MDPs, but a general question in this field concerns
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the choice of total performance measure against which optimization is performed.

A pervasive trend in the financial literature is to formulate measures of total performance for multistage problems as ratios
of some measures of risk and reward functions; see (Glen and Jorion, 1993; Chekhlov et al., 2004) for examples in the
literature. Let 7 € R be a given real number. One useful such example is the Sharpe ratio, defined by

Sh(Ri7) = BT (14)

VVar(R—71)’

which is a classical case of a measure of risk-adjusted returns. Here, 7 is a target return, and the ratio rewards returns that
exceed the target but punishes high-variation returns. A potential weakness of the Sharpe ratio is its emphasis on the first
and second moments of the distribution of portfolio returns. This is suitable when the distribution is roughly normal, but
suffers against skewed or multi-modal distributions.

Letting the cumulative distribution function for the portfolio return R be denoted F'r, a useful performance measure that
captures both risk and reward is the Omega ratio (Keating and Shadwick, 2002), given by

[ L= Fr(r)] dr
[T Fr(r)dr

This expression indicates that the Omega ratio is the ratio of the expected excess (i.e., above threshold 7) returns to the
expected shortfall (i.e., below threshold 7) returns of the portfolio. A distinct advantage of the Omega ratio over financial
measures such as the Sharpe ratio is that the Omega ratio incorporates information about all moments of the the distribution
of R.

Given a portfolio, a policy 7, the returns distribution R of the portfolio induced by 7, and a threshold 7, we can explicitly
formulate the Omega ratio Q( R; 7) as an instance of (2). To see that this is true, assume (for simplicity) that fr(r) = Fg(r)
exists, and perform a simple integration by parts to obtain

Q(R;T) = (15)

/TOO r(=f(r)dr =1l = Fa(r)]|” - /Toou — Fr(r)ldr

= —rlt = Fa(e)) = [ 1= Feldr = [T r(=pwar = [ 1= Fa(rin

which can be rearranged to get
/ [1 — Fgr(r)]dr = / (r —7)f(r)dr = Emax(0, R — 7)].

Similar reasoning applies to obtain [*__ Fg(r)dr = E[max(0,7 — R)]. Thus, assuming that each state s, contains
the information necessary to calculate the one-step return R,, of the portfolio over the previous state s,_1, we can take
7(8n, an) = max(0, R, — 7) and ¢(8y, a,) = max(0,7 — R,). Using these simple reward and cost functions, we can
perform online maximization of Q(R; 7) using the algorithms described in this paper.

Proofs of Theoretical Results

We repeat all the theoretical statements here and provide their proofs.

Lemma 1. Given the optimal ratio p* of the CAMDP (S, A, p,r, ¢), any optimal policy for (S, A, p,n?") is an optimal
policy for (S, A, p,r,c).

Proof. Let p* denote the optimal ratio and 7* an optimal policy for the original CAMDP. Since p* is optimal, we know
that J,.(m)/J.(m) < p* and thus J,.(7) < p*J.(7), for any policy m. Furthermore, J, .+ (1) = Jo(7) — p*Jo(7) < 0, for
any 7. The long-run average reward of any policy for the auxiliary MDP (S, A, p, np*) is therefore no more than zero.
Moreover, since J,.(7*)/J.(7*) = p* and thus J,.(7*) — p*J.(7*) = 0, this upper bound is achieved by 7*, so 7* is
optimal for (S, A, p,n”" ). By the optimality of 7* for the auxiliary MDP and the fact that Jyo= (%) = 0, any alternative
optimal policy 7** must satisfy J, .« (7**) = J.(7**) — p*J.(7**) = 0. This implies that J,.(7**)/J.(7**) = p*, and
therefore any policy 7** that is optimal for (S, A, p, 7]”*) must also be optimal for the original CAMDP. O
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Lemma 2. Solving (3) yields the optimal ratio and an optimal policy for CAMDP (S, A, p,r, ¢).

Proof. Let p* denote the optimal ratio for the CAMDP and let 7* be a policy satisfying p* = J,.(7*)/J.(7*). We first
show that (p*, 7*) is feasible to (3). Notice that J,.(7*) — p*J.(7*) = 0. Assume that there exists a policy & such that
Jr (%) = p*Je(7) > Jp(7*) — p*J.(7*) = 0. This implies that p := J.(7)/J.(7) > p*, contradicting the optimality of p*
for the CAMDP. Thus 7* € argmax,.. {J,(7") — p*J.(7')}, so (p*, 7*) is feasible for (3).

Since (p*, m*) is feasible and [J,.(7*) — p*J.(7*)]? = 0, the optimal objective function value for (3) is 0. Let (p**, 7**)
be an optimal solution to (3). We show that p** = p* and that 7** is optimal for the original CAMDP. By feasibility,
7% € argmax, {J,(7') — p**J.(7')}. We also know that [J,.(7**) — p**J.(7**)]> = 0 by optimality, which implies
that p** = J,.(7**)/J.(7**). Notice that p** > p* contradicts the fact that p* is optimal for the CAMDP, so p** < p*.
If p** < p*, however, we have that J,.(7*) — p™*J.(7*) > J.(7*) — p*J.(7*) = 0 = J.(7**) — p**J.(7**), since
Je(m*) > 0 by §2.2. But this contradicts the fact that 7** € argmax_ {J.(7') — p**J.(7")}, so it must be true that
p** = p*. Finally, p* = J,.(7**)/J.(7**), so #** is an optimal policy for (S, A, p,r, c). O

Lemma 3. If p > p*, then J.(n) — pJo(n?) < 0. If p < p*, then J.(7wP) — pJ.(nP) > 0. If p = p*, then J,.(n") —
pJe(mP) = 0.

Proof. Recall that 7° € argmax_{J,(7) — pJ.(m)} and J,.(7) > 0 and J () > 0, for all 7. Since p* = J,.(7*)/J.(7*),
we know that p = p* implies J.(7?) — pJ.(7P) = J.(7*) — p*Je(x*) = 0. If p > p*, clearly J.(7") — pJe(7P) <
Jp(mP) — p*Jo(wP) < J(m*) — p*Je(n*) = 0. If p < p*, then J,.(7”) — pJ(nP) > J.(7P) — p*Jo(wP) > 0, where the
last inequality holds since J,.(7°) — p*J.(7”) < 0 implies p* < J,.(7?)/J.(7”), contradicting the optimality of p*. [

Lemma 4. The function §(p) := g(A(p), p) = g(QP, p) = VP(syer) is strictly decreasing and piecewise linear (and thus
Lipschitz) in p.

Proof. By Assumption 3 and Lemma A.1.1, V?(sef) = k, = max,[J,(m) — pJc(m)], the optimal long-run average
reward for the auxiliary MDP (S, A, p,n”). Since RVI Q-learning generates only deterministic policies, we may assume
without loss of generality that the maximum is taken over the set of all deterministic polices. There are only finitely many
deterministic policies, so the functions J,.(7) and J.(7) each take only finitely many values as functions of 7. Since
Je(m) > 0 for all policies 7, we thus have that §(p) is simply the maximum of finitely many strictly decreasing linear
functions of p. O

Lemma 5. {p,} is a.s. bounded.

Proof. Consider Lemma A.5.1 in the appendix, where in our case

ga(p) = 20L _ TG 3. (16)

Since there are only finitely many policies, there exist p~ < 0 and p™ > 0 such that

oo me ifpspT,
? T+ ifp > pt.

If there exist multiple such policies, make an arbitrary choice so that the slight abuses of notation J.(,+ ) and J.(m,- ) are

well-defined. Let
—pJe(m,- if p <0,
goo(p) = (o) :
—pde(mpr) if p>0.

Notice that, since §(p) is Lipschitz in p, g4(p) is Lipschitz in p, for all 0 < d < oo. To see that g4 — goo uniformly
on compact subsets of R as d — oo, fix ¢ > 0. Let M = max, J.(A(p)), m = min, J.(A(p)). Fix d; > 0 such that
Jr(A(dp))/d < e/2forall p € R and d > d;. Now notice that

|J-(Adp))|

L = pI A @0) — gee(p)] a7

194(p) — goo(p)| <
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Let 6 = ¢/2|M — m|. Choose da > dj such that dad > max{|p~|,pT}. Then, for p > § and d > da, goo(p) =
—pJ.(A(dp)) and thus the right-hand side of (17) is less than €/2. When p < §, on the other hand, we have

| = pJe(Adp)) = goc(p)| < lp| - M —m| < O|M —m|=e/2,
and the right-hand side of (17) is less than or equal to ¢, proving uniform convergence on compacts. Finally, the ODE

p(t) = goo(p(1)) (18)

clearly has p = 0 as its unique globally asymptotically stable equilibrium point. Since § is Lipschitz, given Assumption 2,
and since the noise {¢,, } is asymptotically negligible, we can apply Lemma A.5.1 in the appendix to obtain that sup,, |p| <
00 a.s.

Theorem 1. (Q.., p.) — {(Q”,p) | p € R} a.s. asn — co.
Proof. Rewrite (5) as, for each (s,,a,) € S X A as follows:

QnJrl(Sna an) = Qn(snv an) + Qp, {[Tann](Sna an) - Vn(sref)]]- - Qn(5n7 an) + Mn+1(5717 an):|7 (19)

where

7,Q)0) = 39l 15:0)[r(5:0) = )+ mgx Q')

M1 (sn, an) = 7($n, an) = puc(sn, an) + max Qn(snt1,a) = [Tp, Qn](sn, an).

Consider the equation
Zp "I's,a [ s,a) — pc(s,a) + max Q(s', a’)| — kp, (20)

where, as in Lemma A.2.1, Q” denotes the unique solution to (20) satisfying max, Q(swf, @) = k,. Letting h(Q, p) =
T,Q — Q, where T, = T,Q — V (srer) 1, we see (19) is just a rewriting of (8). Now / is clearly Lipschitz in both () and p,
so we can invoke Lemmas A.2.1 and A.2.2 to obtain that ()” is the unique globally asymptotically stable equilibrium point
of the ODE _

Qt) = T,(Q(t)) — Q) @D
which is just a rewriting of (11). Finally, {M,, 11} is clearly a F,,-martingale difference sequence, and there exists K > 0
such that E[||My,41|? | Fn] < K(1+ ||Qnl|? + |pn]?)- To see that the latter holds, note that

E[|Mn+1(5n: an)|2 | ]:n} = E“T(Snvan) - pnc(s'man) + mC?XQn(Sr%Haan)

- Zp(3/|5man)[7"(5man) — PnC(Sn, an) + max Qn(s',a")]]* | Ful

= Fl|max Qn(sn+1,an) — Zp(s/\s,a) max Qn (s, )| Ful,

and that the latter term can be expanded and bounded by K (1 + ||@.,||?), for some K > 0. Since this holds for each entry,
we can simply revise K so that E[||M,,1]|? | F] < K(1 + |Qnl?) < K(1+ [|Qnll® + |pn|?)-

With Lemma 5 in hand, and viewing the sequence of p,, as quasi-static, the sequence {@,} is a.s. bounded by Lemma
A.2.3. We can now apply Lemma A.4.1 to complete the proof. This application relies on the additional facts that {e,, 11}
from (9) is a.s. bounded, which follows from the a.s. boundedness of {Q,}, and that g(Q,, p») is a.s. bounded since
{(Qn; pn)} remains a.s. bounded. These facts combine with the rewriting of (6) as

Br
Pn+1 = Pn + (077 79(Q7upn) + €n+1:|

to show that, at the faster timescale, the p,, updates asymptotically track (10), since B ~ — 0 by Assumption 2. Thus, (5)
and (6) can be viewed as asymptotically tracking (10) and (11), completing the proof O
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Corollary 1. |g(Qn, pn) — 9(Q"™, pn)| = |Va(Sret) — VP (Sret)| = 0 a.s. as n — oo.

Proof. The claim follows immediately from Theorem 1. O

Lemma 6. p* is the unique globally asymptotically stable equilibrium point of (12).

Proof. Recall that p* = J,.(7*)/J.(7*), where 7* = argmax_ J,(m)/J (7). Clearly g(A(p*), p*) = 0, and we know that
g(A(p), p) is continuous and strictly decreasing in p by Lemma 4. p* is thus the unique globally asymptotically stable
equilibrium of (12) via a straightforward Lyapunov function argument: notice that V (p) = (p — p*)? satisfies

_vp

Tet) =5 5 =

2(p(t) — p™)p(t) = 2(p(t) — p")g(A(p(t)), p(t)) < 0O (22)

with equality only when p(t) = p*. O
Theorem 2. (Q,,, pn) — (A(p*), p*) a.s. as n — .

Proof. Letting €41 = Va1 (Sref) — 9(Qns pn) = Var1(Sret) — Vi(Sref ), We see that updates (6) and (9) are the same,
ie.,

Pn+1 = Pn + 6n[g(Qn7 pn) + En—&-l} = Pn + ﬁ?LVn+1(3ref)~
Following a combination of the proof strategies in Theorem 1.1 in (Borkar, 1997) and Theorem 6.2 in (Borkar, 2008),
we show that the function obtained by a suitable linear interpolation of the {p,,} iterates generated in this way is a.s. a
(T, §)-perturbation of the ODE (12), and thus, given Lemma 6, p,, — p* a.s. (see the appendix A.3 for the definition of
(T, §)-perturbation). Coupled with Theorem 1, this will imply that (Q,,, pr) — (A(p*), p*).

Let s(0) = 0 and s(n) = Z:L:_ol Bi, n > 1. Define the continuous, piecewise linear function

- Pn ift = 5(”)7
p(t) = { t—s(n)

Pn + (,On+1 - pn)m otherwise.

Let ¢, = S04 Brnémt, forn > 1. Letting [t] = max{s(n) | s(n) < t}, for t > 0, we have, for any n,m > 0,

s(n+m)

A(s(n +m)) = p(s(n) + / OO

s(n+m)

w D) A ~ 950, 7))

+ z_: Bn+k (g(Qn+k> pn+k) - g()‘(pn+k)7 anrk))
k=1

+ (wn+'m+1 - wvz)-
For s > 0, let p*(t), t > 0, denote the solution of (12) with initial condition p®(s) = j(s). Notice that we can write
s(n+m)
P (s(m -+ ) = ps(m) + [ LSO e
s(n

which means that

s(n+m)
ps(n+m)) = p") (s(n +m)) = /( : (g(A(a([t]), p([t])) — g(A(A(t)), A(t)))dt
+ 3 Btk (Q(Qn+k> pn+k) - g()‘(pn+k)7 PnJrk))
k=1

+ (¢n+m+1 - w'n)
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Exactly the same argument as in Lemma 2.1 of (Borkar, 2008) applies to allow us to bound the first term in this expression.
The third term can be a.s. bounded since, for given m € N, {¢,4,+1 — ¥, } is a.s. bounded and converges a.s. to 0 due
to the facts that 3, | 0 by Assumption 2 and ¢,, | 0 by Theorem 1. Thus, for any 7" > 0 and s(n +m) € [s(n), s(n) + T,
there exists a nonnegative sequence { K1, } such that Kp,, — 0 a.s. as n — oo and

m—1

5(s(n +m)) = pC D (s(n+m))| < Ko+ D Butrlg(@nis prsr) = N ntr)s pusn)l, (23)
k=1

for each n > 0. But we know by Corollary 1 that the remaining right-hand side term converges to 0 a.s. as n — oo.
Following the same arguments as in the proof of Lemma 2.1 in (Borkar, 2008), we have that, for any 7" > 0,

lim sup |p(t) — p°(t)| =0 as.
S0 te[s,s4+T)

The same arguments as in the proof Theorem 6.2 in (Borkar, 2008) now apply to complete the proof. L

Lemma 7. For a given policy g and for both i = r, ¢, with {u’} and {v:} generated from the critic step in Algorithm 2,
we have lim,, _, oo ply, = J;(0) and lim,,_, oo v}, = v}, a.s., where v}, and v§ are the unique solutions to

o' D[r? — J.(0) - 1+ P°(®vf) — vy] =0,
o' D[ — J.(0) - 1+ P (Qv§) — Dv§| = 0.

Proof. The same arguments as in the proof of Lemma 5 in (Bhatnagar et al., 2009) apply to obtain the result. O

Now that we have access to vy, vg by the preceding lemma, we will use them to estimate the following policy gradient:

Lemma 8. Forany 0 € O, let

" =1 — Jp(0) + [@(sn41)] v — [0(s0)] T,
¢ = cp = Jo(0) + [(sn1)] VG — [D(sn)] v,

denote the stationary estimates of the TD-errors, let
VY () = B{r(s.a) = J,(0) + [6(s)] v }
V() = Efe(s,0) = Jo(60) + [0(5)) v },

where the expectation is taken over a ~ wg(- | s) and s' ~ p(-|s,a), and lete! =" _sd™ (s)[VoV{(s)—[6(s)]T Vorj]
fori =r, c. Then,

Jr(0) s 50.e B Jr(0) el el
7.0 Volosmolansn)- <J(9) - J(9)> ’9] = Vel O)+ 77y [JT(Q) - Jc(e)} :

Proof. From Lemma 4 in (Bhatnagar et al., 2009), we have that for any § € © and i = r, ¢,
]E[(SZ’Z?/JO (Sna an) ‘ 9} = Vod; (9) + ef,

where e/ = > _od™(s){VaV?(s) — [¢(s)]T Verj}. Hence, given the limit points v}, v§ obtained by Lemma 7, we
further have

Jr(0)

E17.00)

_ . ee
R0 e Ve red
Jr(6) . el B e?

Jo(0) LJ.(0)  Je(6))

Jr(0)  Je(0)

o (5, ) - < gor gt ) H _ [Ver () + 0] T, (6)

= VoL(0) +

which completes the proof. O
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Theorem 3. Under Assumptions 2 and 4-6, given any € > 0, there exists 6 > 0 such that, for {6,} obtained from
Algorithm 2, if supy, ||’ || < 6, then 6,, — Z€ a.s. as n — .

Proof. The proof proceeds along the same lines as that of Theorem 1 in (Bhatnagar et al., 2009). From Lemma 8, we
obtain that 6 — 3% and p¢, — J;(6,,) forboth i = r,cast — oo. Let

E JT(G) ’d}@(sn:an) < 679177« 62’6 ) ‘9 = 9nj| = -

Je(0) B

7.0 70) Il

JT(9n)2 - hy(6,) =: —h(6),

1
Je(0,) [Je(0.))2

where
h(0) = ~E(va(s,a) - {r(s,0) = J(60) + [0(s)] T3 }),
ha(0) = E(vi(s,a) - {c(s,0) — Jo(8) + [6(5)] Tv5} ).

and the expectation is taken over ' ~ p(-|s,a), s ~ d™(-), and a ~ my(-|s). It has been shown in the proof of
Theorem 1 in (Bhatnagar et al., 2009) that both h4 (#) and ho(6) are Lipschitz continuous, as are J..(6) and J,.(6). Also, by
Assumption 6, 1/.J.(9) is upper-bounded by 1/K.., which by definition shows that 1/.J.(6) is also Lipschitz continuous.
Furthermore, 1/[J.(6)]? is Lipschitz continuous since 1/.J,(8) is Lipschitz continuous and bounded. On the other hand,
since both hq(#) and hs(6) are continuous over the compact O, they are bounded. Therefore, both —hq(6,,)/J.(6,,) and
J(0,) - h2(0,,)/[Je(6,,)]? are Lipschitz continuous since they are products of Lipschitz continuous and bounded functions.
This establishes the Lipschitz continuity of —h(6). The rest of the proof is identical to that of Theorem 1 in (Bhatnagar
et al., 2009), which completes the proof. O

Experimental Results

Rewards, Costs, and Hyperparameters for Synthetic CAMDP Experiments

r(s,a) 53 s+a (s-a) mod 2 52 + a?
c(s,a) max{l,s-a} max{l,s-a}”! max{l,s+a} max{l,(s—a)?}

Table 1. Reward/cost function combinations.

Problem 1 Problem 2 Problem 3 Problem 4
r(s,a) 53 s+a (s-a) mod 2 52 4 a?
c(s,a) max{1,s-a} max{1,s-a}"! max{1,s+a} max{1, (s — a)?}

CARVI Q-learning

S| |A| o Jé] € « Jé] € @ Jé] € @ Jé] €
5 5 0.01 0.005 0.001 0.1 0.1 0.01 0.01 0.001 0.001 0.0001  0.0001  0.005
10 10 0.01 0.005 0.001 0.1 0.1 0.01 0.001 0.0005 0.001 0.005 0.001 0.001
CAAC
IS| A ! B i ! B i a B i «a B Hir
5 5 0.01 0.005 0.005 0.01 0.01 0.01 0.01 0.005 0.005 0.01 0.01 0.005
10 10 0.01  0.005 0.05 0.01 0.01 0.005 0.01 0.01 0.1 0.01 0.01 0.005

Table 2. Experiment hyperparameters. Columns correspond to reward/cost function combinations, while rows correspond to problem
sizes.
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Deep CARVI Q-learning Experiments

We implemented CARVI Q-learning using deep neural

networks for the Q function approximators and tested

it on a cost-aware modification of the classic mountain

car control environment (Moore, 1990) provided in Ope-

nAI’s Gym RL testbed (OpenAl, 2021a; Brockman et al.,

2016). The goal of the agent is to drive the car up the

hill to reach the flag in Figure 2. The car does not have

enough power to directly accelerate up the hill, however,

so the agent must learn to build momentum driving up »
and down the sides of the valley. In the OpenAl imple-
mentation of this environment, the state s consists of two
values, s = (p,v): the car’s position p on the interval [-
1.2, 0.6], representing its horizontal position in Figure 2,
and its current velocity v. The action space contains three actions: accelerate to the left, do not accelerate, and accelerate
to the right. The reward is -1 for each timestep that the agent has not successfully reached the flag at position 0.5. Each
episode lasts until either the agent reaches the flag or 500 timesteps have elapsed, whichever comes first. According to
OpenAT’s MountainCar-v0 leaderboard at the time of writing (OpenAl, 2021b), this problem is considered “solved” when
the agent consistently achieves an episode reward of -110 or greater.

Figure 2. OpenAl Gym’s MountainCar-v0

To test out our implementation of deep CARVI Q-learning, we augmented the original MountainCar-v0 environment by
imposing a cost of the form

c(s,a) = c(p,v,a) = min{1 — 0.99 - Ijg5.0.6/(p), 1 —0.9-I5.20.6(D)}

at each timestep, where [ 4 is the indicator function on the set 4, i.e., [4a(a) =1ifa € A and 0if a ¢ A. This simple cost
function, which outputs 1 when p < 0.2, 0.1 when 0.2 < p < 0.5, and 0.01 when p > 0.5, penalizes the agent less as it
gets closer to the goal. To complete the conversion of MountainCar-v0 into a proper cost-aware environment, the original
reward is multiplied by -1, so that the agent receives a reward of 1 at each timestep. The resulting goal of the agent in our
cost-aware mountain car environment is to maximize the long-run average reward divided by the long-run average cost.

Our batch learning implementation in PyTorch (PyTorch, 2021) of Algorithm 1 uses a fully connected neural network with
two hidden layers of 256 neurons each and ReL.U activation functions for the Q network. We determined hyperparameters
through trial and error, eventually settling on: a replay buffer of length 1,000, 000; batch sizes of 256 sampled with
replacement from the replay buffer; a () function learning rate of 0.0001; a p learning rate of 0.00001; an initial greedy
€ = 0.5, with a per-timestep exponential decay rate of 0.999; and the Adam optimizer with gradient clipping of radius 1.

We ran 15 independent replications of our algorithm on the cost-aware mountain car environment for 100 episodes each.
The results can be seen in Figures 3 and 4. In order to demonstrate how incorporating a priori knowledge to shape rewards
can improve performance on the original problem, Figure 3 plots the agents’ scores using the original reward function in
OpenAT’'s MountainCar-v0. As can be seen from Figure 3a, the five best runs achieved solid performance, nearly solving
the problem after only 100 episodes. Figure 3b, which represents rewards from all 15 runs, also demonstrates a clear
upward trend. Figure 4 illustrates improvement in the ratio of sample average reward to sample average cost for each
episode. It is interesting to note that the mean ratios across all 15 runs in Figure 4b appear to be somewhat better than
those of the five agents who performed best in Figure 3a. This highlights the fact that, though reward shaping in this way
can indeed be used to improve performance on the original MountainCar-v0, CARVI Q-learning is nonetheless solving a
distinct ratio maximization problem.

A. Appendix

Some important definitions and results from the literature that we have used above are reproduced here for easy reference.
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(a) Top five runs of CARVI Q-learning on original MountainCar.
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(b) All runs of CARVI Q-learning on original MountainCar.

Figure 3. Deep CARVI Q-learning rewards per episode using the original MountainCar-v0 reward function of -1 per timestep. The solid
blue line represents the mean across agents, while the light blue shading gives a 95% confidence interval. The solid red line shows
episode reward at which the original OpenAl Gym environment is considered “solved”.
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(a) Top five runs on cost-aware MountainCar.
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(b) All runs on cost-aware MountainCar.

Figure 4. Deep CARVI Q-learning sample average reward over sample average cost per episode. The solid blue line represents the mean

across agents, while the light blue shading gives a 95% confidence interval.

A.l. Relative Value Iteration

Fix an average reward MDP (S, A, p, r) and a reference state s,.¢. Consider the relative value iteration (RVI) update

Vat1(s) = max Zp(s’ |s,a)[r(s,a) + Vo (s')] — Vi (Sret) 24)

adapted from §2.2 of (Abounadi et al., 2001). Under Assumption 3, we then have the following simplified version of

Proposition 5.3.2 of (Bertsekas, 2012):

Lemma A.1.1. The sequence {V,,} converges to a vector V' such that V (s,et) = &k, where k is the optimal long-run
average reward for (S, A, p, ).
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A.2. RVI Q-learning

Fix an average reward MDP (S, A, p, r) and a reference state s, and let  denote the optimal average reward of the MDP.
Consider the equation

Zp "I s, a) [ sa)+maxQ(s a)| — &, (25)
and the synchronous RVI Q-learning updates
Qn-‘rl(s'm an) = Qn(sna an) + Qo |:7'(Sna an) + mé),X Qn(3n+17 CL) - Vn(sref) - Qn(s'm an) ) (26)

where V,,(s) := max, Q. (s,a). Define T"(Q) = T(Q) — k1, where T is define entry-wise by
T@l(s,0) =3 ol 5,0) [7(s,0) + max Q(s', )],

and consider the ODE .
Q) =T'(Q(t)) —Q(t). (27

We have the following versions of Lemma 3.2, Theorem 3.4, and Lemma 3.7, respectively, from (Abounadi et al., 2001):

Lemma A.2.1. Equation (27) has a unique equilibrium at Q*, which is the unique solution to (25) such that
maxg Q* (Syef, a) = K.

Lemma A.2.2. Q* is the global asymptotically stable equilibrium point for (27).
Lemma A.2.3. The sequence {Q,} generated by (26) is a.s. bounded.
A.3. (T, §)-perturbations
Let f : RY — RY be Lipschitz and consider the ODE
(t) = f(2(t)) (28)
with globally asymptotically stable attractor A.

Definition A.3.1. For T, 6 > 0, a bounded, Borel-measurable function w : Rt — R is a (T, §)-perturbation of (28)
if there exists a sequence {T,} in [0,00) with Ty = 0 such that T,y — T,, > T, for all n > 1, and solutions 2 (t),
t € [Tj, Tj+1] of (28) such that, for j > 0,

sup |27 () —w(t)|] <.

te[T},Tj+1]
A.4. Faster Timescale Convergence
Consider the scheme
Tpi1 = Tp + an[h(mnv yn) + My(itzﬁ (29)
Yntl = Yn + by [Q(Inv yn) + M(-H + 6nJrl] (30)

where h : R¥TF 5 Re g : RIHE 5 RE, {M,(f)} 1 = 1, 2 are martingale difference sequences with respect to the o-fields

Frn = 0(Timy Ym, Mq(T} ), M,(n2 ); m < n), {€,} is an error sequence, and the a,, b, form decreasing stepsize sequences.
Consider the ODE

y(t) =0, (€2))
#(t) = h(z(t), y(1)). (32)

We make the following assumptions:
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Assumption A.4.1. For each y € R*, the ODE i(t) = h(xz(t),y) corresponding to (31), (32) has a unique globally
asymptotically stable equilibrium \(y).

Assumption A.4.2. Y a, = > b, = 00, (a2 + V%) < o0, and b, = o(ay,).

Assumption A.4.3. There exists some K > 0 such that E|| Mflﬂ)rlﬂz | Fol < K+ [|zn]]? + lynll?), fori = 1,2 and
n > 0, and {€,} is asymptotically negligible, i.e., ||, || = o(1).

Assumption A.4.4. There exists a bounded set Q C R? x R¥ such that {(z,,,y,)} C Q with probability one.
Assumption A.4.5. h is Lipschitz, and g is bounded on Q).

We have the following result, which appears as Lemma 6.1 in (Borkar, 2008):

Lemma A4.1. (2,,,v,) = {(A(v),y) |y € R*} a.s. asn — oo.

Note that the noise terms {e,, } are accommodated by the third extension discussed in §2.2 of (Borkar, 2008). Also note
that Lemma A.4.1 does not rely on A(y) being Lipschitz in y, which is important given that the limit point Q* of the faster
timescale of CARVI Q-learning is not guaranteed to be Lipschitz in p.

A.5. Stability Criterion

Consider the stochastic approximation scheme in RY given by
Zn4+1 = Zn +ay [Q(Zn) + Mn+1 + En—b—l] s (33)

with the following assumptions:

Assumption A.5.1. g : RY — RY is Lipschitz.

Assumption A.5.2. The sequence {a,} C R satisfies Y., a,, = o0, >, a2 < oc.

Assumption A.5.3. {M,,} is a martingale difference sequence with respect to the filtration F,, = 0(zm, My, m < n),
there exists K > 0 such that E[||Mp 1| | Fn] < K(1 + ||20||?) a.s., and {e,,} is o(1), i.e., is asymptotically negligible.
Assumption A.5.4. The functions gq4(z) = g(dz)/d, d > 1 satisfy ga(z) — goo(2) as d — oo uniformly on compacts for
some continuous function go : RN — RN In addition, the ODE

£(t) = goo(2(1)) (34)
has the origin as its globally asymptotically stable equilibrium.
We then have

Lemma A.5.1. sup,, ||z,|| < oo a.s.

See §2.2 and §3.2 in (Borkar, 2008) for the proof. Since the stability proofs in §3.2 of (Borkar, 2008) are path-wise, the
comments at the end of §2.2 in (Borkar, 2008) regarding how to handle noise terms apply to accommodate the asymptoti-
cally negligible noise terms {e,, } in (33).
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