
Reinforcement Learning for Cost-Aware Markov Decision Processes

Literature Review: Finite-Time Results for Two-Timescale Stochastic Approximation

Our main contribution is to propose two new RL algorithms with theoretical guarantees for solving the ratio maximization

problem. Though desirable, finite-time analysis of our algorithms is a challenging problem that we do not address. Existing

finite-time works, such as (Gupta et al., 2019; Hong et al., 2020; Wu et al., 2020), do not apply, since our algorithms are

either too structurally dissimilar from the algorithms these works consider or do not satisfy the necessary assumptions

imposed in these works. We leave the important and challenging problem of providing finite-time analysis of our algorithms

to future work. Nonetheless, we provide a review of the literature on finite-time results for two-timescale stochastic

approximation for completeness.

Both of the algorithms proposed in this paper follow two-timescale stochastic approximation (2TSA) schemes, which

are well-studied in the RL literature (Borkar and Konda, 1997; Konda and Tsitsiklis, 2000; Bhatnagar et al., 2009). The

standard technique for analyzing 2TSA is via the ODE method, which can be used to prove asymptotic convergence and

rate results (Borkar, 2008). Building off the importance of asymptotic results, there has been great recent interest in

non-asymptotic, finite-time results for 2TSA. Contributions to the linear setting include the finite-sample analysis (Gupta

et al., 2019), which treats constant stepsizes, as well as (Doan and Romberg, 2019; Doan, 2019), which provide refined

methods for selecting stepsizes. Another work in a specialized setting is (Yang et al., 2019), which provides non-asymptotic

global convergence for actor-critic applied to the linear-quadratic regulator. Recasting actor-critic as a bi-level optimization

problem, (Qiu et al., 2019; Hong et al., 2020) provide non-asymptotic results for certain actor-critic variants. In addition,

(Kumar et al., 2019) gives convergence rates for an actor-critic scheme that uses Monte Carlo rollouts to estimate the policy

gradient. More recently, (Wu et al., 2020) provides finite-time convergence for fairly general forms of actor-critic with a

linear critic, while (Khodadadian et al., 2021) gives global convergence rates of natural actor-critic in the tabular setting.

Though desirable, finite-time analysis of our algorithms is a challenging problem that we do not address. Existing finite-

time works, such as (Gupta et al., 2019; Doan and Romberg, 2019; Doan, 2019; Hong et al., 2020; Wu et al., 2020), do not

apply, since our algorithms are either too structurally dissimilar from the algorithms these works consider or do not satisfy

the necessary assumptions imposed in these works. On the one hand, the limit point of the faster timescale of our RVI Q-

learning-based algorithm may fail to satisfy even the basic conditions needed to prove asymptotic results (Borkar, 2008),

let alone the more nuanced conditions needed to prove existing finite-time results, such as those in (Gupta et al., 2019;

Doan and Romberg, 2019; Doan, 2019; Hong et al., 2020). The policy gradient for our actor-critic algorithm, on the other

hand, is of such a form that existing results such as (Qiu et al., 2019; Kumar et al., 2019; Wu et al., 2020; Khodadadian

et al., 2021) do not apply.

Maximizing the Omega Ratio of a Financial Portfolio as a CAMDP

One of the principal areas where cost-aware ideas are already well developed is in financial applications, where the notion

of risk-sensitivity is widely studied and applied. For the purposes of this paper, we consider the multistage portfolio

optimization problem without transaction costs; see (Mulvey and Shetty, 2004; Calafiore, 2008; Dantzig and Infanger,

1993) for an overview and historical perspective on this problem. There are K assets with given initial prices S
(k)
0 for each

k = 1, . . . ,K, whose prices S
(k)
n evolve according to the stochastic difference equations

S
(k)
n+1 − S(k)

n = µ(k)S(k)
n ∆t+ σS(k)

n W (k)
n , (13)

where the W
(k)
n ∼ N(0,∆t) are iid normal random variables with mean 0 and variance ∆t. From a principal portfolio

value P0 the manager selects, at discrete time periods t = 0, 1, 2, . . . , weights ωn ∈ [0, 1]K such that
∑K

k=1 ω
(k)
n = 1 to

invest in the available assets. The asset prices evolve, the new portfolio value Pn+1 = Pn

∑K
k=1 ω

(k)
n S

(k)
n is realized, and

the process repeats. The return on the portfolio Rn+1 is given by Rn+1 = Pn+1/Pn − 1. The formulation of multistage

portfolio optimization problems is naturally expressed in the language of MDPs, but a general question in this field concerns
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the choice of total performance measure against which optimization is performed.

A pervasive trend in the financial literature is to formulate measures of total performance for multistage problems as ratios

of some measures of risk and reward functions; see (Glen and Jorion, 1993; Chekhlov et al., 2004) for examples in the

literature. Let τ ∈ R be a given real number. One useful such example is the Sharpe ratio, defined by

Sh(R; τ) =
E[R− τ ]

√

Var(R− τ)
, (14)

which is a classical case of a measure of risk-adjusted returns. Here, τ is a target return, and the ratio rewards returns that

exceed the target but punishes high-variation returns. A potential weakness of the Sharpe ratio is its emphasis on the first

and second moments of the distribution of portfolio returns. This is suitable when the distribution is roughly normal, but

suffers against skewed or multi-modal distributions.

Letting the cumulative distribution function for the portfolio return R be denoted FR, a useful performance measure that

captures both risk and reward is the Omega ratio (Keating and Shadwick, 2002), given by

Ω(R; τ) =

∫∞

τ
[1− FR(r)] dr

∫ τ

−∞
FR(r) dr

. (15)

This expression indicates that the Omega ratio is the ratio of the expected excess (i.e., above threshold τ ) returns to the

expected shortfall (i.e., below threshold τ ) returns of the portfolio. A distinct advantage of the Omega ratio over financial

measures such as the Sharpe ratio is that the Omega ratio incorporates information about all moments of the the distribution

of R.

Given a portfolio, a policy π, the returns distribution R of the portfolio induced by π, and a threshold τ , we can explicitly
formulate the Omega ratio Ω(R; τ) as an instance of (2). To see that this is true, assume (for simplicity) that fR(r) = F ′

R(r)
exists, and perform a simple integration by parts to obtain

∫

∞

τ

r(−f(r))dr = r[1− FR(r)]
∣

∣

∣

∞

τ

−

∫

∞

τ

[1− FR(r)]dr

= −τ [1− FR(τ)]−

∫

∞

τ

[1− FR(r)]dr =

∫

∞

τ

τ(−f(r))dr −

∫

∞

τ

[1− FR(r)]dr,

which can be rearranged to get

∫ ∞

τ

[1− FR(r)]dr =

∫ ∞

τ

(r − τ)f(r)dr = E[max(0, R− τ)].

Similar reasoning applies to obtain
∫ τ

−∞
FR(r)dr = E[max(0, τ − R)]. Thus, assuming that each state sn contains

the information necessary to calculate the one-step return Rn of the portfolio over the previous state sn−1, we can take

r(sn, an) = max(0, Rn − τ) and c(sn, an) = max(0, τ − Rn). Using these simple reward and cost functions, we can

perform online maximization of Ω(R; τ) using the algorithms described in this paper.

Proofs of Theoretical Results

We repeat all the theoretical statements here and provide their proofs.

Lemma 1. Given the optimal ratio ρ∗ of the CAMDP (S,A, p, r, c), any optimal policy for (S,A, p, ηρ
∗

) is an optimal

policy for (S,A, p, r, c).

Proof. Let ρ∗ denote the optimal ratio and π∗ an optimal policy for the original CAMDP. Since ρ∗ is optimal, we know

that Jr(π)/Jc(π) ≤ ρ∗ and thus Jr(π) ≤ ρ∗Jc(π), for any policy π. Furthermore, Jηρ∗ (π) = Jc(π) − ρ∗Jc(π) ≤ 0, for

any π. The long-run average reward of any policy for the auxiliary MDP (S,A, p, ηρ
∗

) is therefore no more than zero.

Moreover, since Jr(π
∗)/Jc(π

∗) = ρ∗ and thus Jr(π
∗) − ρ∗Jc(π

∗) = 0, this upper bound is achieved by π∗, so π∗ is

optimal for (S,A, p, ηρ
∗

). By the optimality of π∗ for the auxiliary MDP and the fact that Jηρ∗ (π∗) = 0, any alternative

optimal policy π∗∗ must satisfy Jηρ∗ (π∗∗) = Jr(π
∗∗) − ρ∗Jc(π

∗∗) = 0. This implies that Jr(π
∗∗)/Jc(π

∗∗) = ρ∗, and

therefore any policy π∗∗ that is optimal for (S,A, p, ηρ
∗

) must also be optimal for the original CAMDP.
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Lemma 2. Solving (3) yields the optimal ratio and an optimal policy for CAMDP (S,A, p, r, c).

Proof. Let ρ∗ denote the optimal ratio for the CAMDP and let π∗ be a policy satisfying ρ∗ = Jr(π
∗)/Jc(π

∗). We first

show that (ρ∗, π∗) is feasible to (3). Notice that Jr(π
∗) − ρ∗Jc(π

∗) = 0. Assume that there exists a policy π̂ such that

Jr(π̂)− ρ∗Jc(π̂) > Jr(π
∗)− ρ∗Jc(π

∗) = 0. This implies that ρ̂ := Jc(π̂)/Jc(π̂) > ρ∗, contradicting the optimality of ρ∗

for the CAMDP. Thus π∗ ∈ argmaxπ′{Jr(π
′)− ρ∗Jc(π

′)}, so (ρ∗, π∗) is feasible for (3).

Since (ρ∗, π∗) is feasible and [Jr(π
∗) − ρ∗Jc(π

∗)]2 = 0, the optimal objective function value for (3) is 0. Let (ρ∗∗, π∗∗)
be an optimal solution to (3). We show that ρ∗∗ = ρ∗ and that π∗∗ is optimal for the original CAMDP. By feasibility,

π∗∗ ∈ argmaxπ′{Jr(π
′) − ρ∗∗Jc(π

′)}. We also know that [Jr(π
∗∗) − ρ∗∗Jc(π

∗∗)]2 = 0 by optimality, which implies

that ρ∗∗ = Jr(π
∗∗)/Jc(π

∗∗). Notice that ρ∗∗ > ρ∗ contradicts the fact that ρ∗ is optimal for the CAMDP, so ρ∗∗ ≤ ρ∗.

If ρ∗∗ < ρ∗, however, we have that Jr(π
∗) − ρ∗∗Jc(π

∗) > Jr(π
∗) − ρ∗Jc(π

∗) = 0 = Jr(π
∗∗) − ρ∗∗Jc(π

∗∗), since

Jc(π
∗) > 0 by §2.2. But this contradicts the fact that π∗∗ ∈ argmaxπ′{Jr(π

′) − ρ∗∗Jc(π
′)}, so it must be true that

ρ∗∗ = ρ∗. Finally, ρ∗ = Jr(π
∗∗)/Jc(π

∗∗), so π∗∗ is an optimal policy for (S,A, p, r, c).

Lemma 3. If ρ > ρ∗, then Jr(π
ρ) − ρJc(π

ρ) < 0. If ρ < ρ∗, then Jr(π
ρ) − ρJc(π

ρ) > 0. If ρ = ρ∗, then Jr(π
ρ) −

ρJc(π
ρ) = 0.

Proof. Recall that πρ ∈ argmaxπ{Jr(π)− ρJc(π)} and Jr(π) ≥ 0 and Jc(π) > 0, for all π. Since ρ∗ = Jr(π
∗)/Jc(π

∗),
we know that ρ = ρ∗ implies Jr(π

ρ) − ρJc(π
ρ) = Jr(π

∗) − ρ∗Jc(π
∗) = 0. If ρ > ρ∗, clearly Jr(π

ρ) − ρJc(π
ρ) <

Jr(π
ρ)− ρ∗Jc(π

ρ) ≤ Jr(π
∗)− ρ∗Jc(π

∗) = 0. If ρ < ρ∗, then Jr(π
ρ)− ρJc(π

ρ) > Jr(π
ρ)− ρ∗Jc(π

ρ) ≥ 0, where the

last inequality holds since Jr(π
ρ)− ρ∗Jc(π

ρ) < 0 implies ρ∗ < Jr(π
ρ)/Jc(π

ρ), contradicting the optimality of ρ∗.

Lemma 4. The function ĝ(ρ) := g(λ(ρ), ρ) = g(Qρ, ρ) = V ρ(sref) is strictly decreasing and piecewise linear (and thus

Lipschitz) in ρ.

Proof. By Assumption 3 and Lemma A.1.1, V ρ(sref) = κρ = maxπ[Jr(π) − ρJc(π)], the optimal long-run average

reward for the auxiliary MDP (S,A, p, ηρ). Since RVI Q-learning generates only deterministic policies, we may assume

without loss of generality that the maximum is taken over the set of all deterministic polices. There are only finitely many

deterministic policies, so the functions Jr(π) and Jc(π) each take only finitely many values as functions of π. Since

Jc(π) > 0 for all policies π, we thus have that ĝ(ρ) is simply the maximum of finitely many strictly decreasing linear

functions of ρ.

Lemma 5. {ρn} is a.s. bounded.

Proof. Consider Lemma A.5.1 in the appendix, where in our case

gd(ρ) =
ĝ(dρ)

d
=
Jr(λ(dρ))

d
− ρJc(λ(dρ)). (16)

Since there are only finitely many policies, there exist ρ− < 0 and ρ+ > 0 such that

πρ =

{

πρ− if ρ ≤ ρ−,

πρ+ if ρ ≥ ρ+.

If there exist multiple such policies, make an arbitrary choice so that the slight abuses of notation Jc(πρ+) and Jc(πρ−) are

well-defined. Let

g∞(ρ) =

{

−ρJc(πρ−) if ρ ≤ 0,

−ρJc(πρ+) if ρ > 0.

Notice that, since ĝ(ρ) is Lipschitz in ρ, gd(ρ) is Lipschitz in ρ, for all 0 < d ≤ ∞. To see that gd → g∞ uniformly

on compact subsets of R as d → ∞, fix ε > 0. Let M = maxρ Jc(λ(ρ)),m = minρ Jc(λ(ρ)). Fix d1 > 0 such that

Jr(λ(dρ))/d < ε/2 for all ρ ∈ R and d > d1. Now notice that

|gd(ρ)− g∞(ρ)| ≤
|Jr(λ(dρ))|

d
+ | − ρJc(λ(dρ))− g∞(ρ)|. (17)
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Let δ = ε/2|M − m|. Choose d2 > d1 such that d2δ > max{|ρ−|, ρ+}. Then, for ρ ≥ δ and d > d2, g∞(ρ) =
−ρJc(λ(dρ)) and thus the right-hand side of (17) is less than ε/2. When ρ < δ, on the other hand, we have

| − ρJc(λ(dρ))− g∞(ρ)| ≤ |ρ| · |M −m| < δ|M −m| = ε/2,

and the right-hand side of (17) is less than or equal to ε, proving uniform convergence on compacts. Finally, the ODE

ρ̇(t) = g∞(ρ(t)) (18)

clearly has ρ = 0 as its unique globally asymptotically stable equilibrium point. Since ĝ is Lipschitz, given Assumption 2,

and since the noise {ǫn} is asymptotically negligible, we can apply Lemma A.5.1 in the appendix to obtain that supn |ρn| <
∞ a.s.

Theorem 1. (Qn, ρn) → {(Qρ, ρ) | ρ ∈ R} a.s. as n→ ∞.

Proof. Rewrite (5) as, for each (sn, an) ∈ S ×A as follows:

Qn+1(sn, an) = Qn(sn, an) + αn

[

[Tρn
Qn](sn, an)− Vn(sref)✶−Qn(sn, an) +Mn+1(sn, an)

]

, (19)

where

[TρQ](s, a) =
∑

s′

p(s′|s, a)[r(s, a)− ρc(s, a) + max
a′

Q(s′, a′)],

Mn+1(sn, an) = r(sn, an)− ρnc(sn, an) + max
a

Qn(sn+1, a)− [Tρn
Qn](sn, an).

Consider the equation

Q(s, a) =
∑

s′

p(s′ | s, a)
[

r(s, a)− ρc(s, a) + max
a′

Q(s′, a′)
]

− κρ, (20)

where, as in Lemma A.2.1, Qρ denotes the unique solution to (20) satisfying maxaQ(sref, a) = κρ. Letting h(Q, ρ) =
T ′
ρQ−Q, where T ′

ρ = TρQ− V (sref)✶, we see (19) is just a rewriting of (8). Now h is clearly Lipschitz in both Q and ρ,

so we can invoke Lemmas A.2.1 and A.2.2 to obtain that Qρ is the unique globally asymptotically stable equilibrium point

of the ODE

Q̇(t) = T ′
ρ(Q(t))−Q(t) (21)

which is just a rewriting of (11). Finally, {Mn+1} is clearly a Fn-martingale difference sequence, and there exists K > 0
such that E[‖Mn+1‖

2 | Fn] ≤ K(1 + ‖Qn‖
2 + |ρn|

2). To see that the latter holds, note that

E[|Mn+1(sn, an)|
2 | Fn] = E[|r(sn, an)− ρnc(sn, an) + max

a
Qn(sn+1, an)

−
∑

s′

p(s′|sn, an)[r(sn, an)− ρnc(sn, an) + max
a′

Qn(s
′, a′)]|2 | Fn]

= E[|max
a

Qn(sn+1, an)−
∑

s′

p(s′|s, a)max
a′

Qn(s
′, a′)|2 | Fn],

and that the latter term can be expanded and bounded by K(1 + ‖Qn‖
2), for some K > 0. Since this holds for each entry,

we can simply revise K so that E[‖Mn+1‖
2 | Fn] ≤ K(1 + ‖Qn‖

2) ≤ K(1 + ‖Qn‖
2 + |ρn|

2).

With Lemma 5 in hand, and viewing the sequence of ρn as quasi-static, the sequence {Qn} is a.s. bounded by Lemma

A.2.3. We can now apply Lemma A.4.1 to complete the proof. This application relies on the additional facts that {ǫn+1}
from (9) is a.s. bounded, which follows from the a.s. boundedness of {Qn}, and that g(Qn, ρn) is a.s. bounded since

{(Qn, ρn)} remains a.s. bounded. These facts combine with the rewriting of (6) as

ρn+1 = ρn + αn

[βn
αn

g(Qn, ρn) +
βn
αn

ǫn+1

]

to show that, at the faster timescale, the ρn updates asymptotically track (10), since βn

αn
→ 0 by Assumption 2. Thus, (5)

and (6) can be viewed as asymptotically tracking (10) and (11), completing the proof.
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Corollary 1. |g(Qn, ρn)− g(Qρn , ρn)| = |Vn(sref)− V ρn(sref)| → 0 a.s. as n→ ∞.

Proof. The claim follows immediately from Theorem 1.

Lemma 6. ρ∗ is the unique globally asymptotically stable equilibrium point of (12).

Proof. Recall that ρ∗ = Jr(π
∗)/Jc(π

∗), where π∗ = argmaxπJr(π)/Jc(π). Clearly g(λ(ρ∗), ρ∗) = 0, and we know that

g(λ(ρ), ρ) is continuous and strictly decreasing in ρ by Lemma 4. ρ∗ is thus the unique globally asymptotically stable

equilibrium of (12) via a straightforward Lyapunov function argument: notice that V (ρ) = (ρ− ρ∗)2 satisfies

V̇ (ρ(t)) =
∂V

∂ρ

∂ρ

∂t
= 2(ρ(t)− ρ∗)ρ̇(t) = 2(ρ(t)− ρ∗)g(λ(ρ(t)), ρ(t)) ≤ 0 (22)

with equality only when ρ(t) = ρ∗.

Theorem 2. (Qn, ρn) → (λ(ρ∗), ρ∗) a.s. as n→ ∞.

Proof. Letting ǫn+1 = Vn+1(sref) − g(Qn, ρn) = Vn+1(sref) − Vn(sref), we see that updates (6) and (9) are the same,

i.e.,

ρn+1 = ρn + βn[g(Qn, ρn) + ǫn+1] = ρn + βnVn+1(sref).

Following a combination of the proof strategies in Theorem 1.1 in (Borkar, 1997) and Theorem 6.2 in (Borkar, 2008),

we show that the function obtained by a suitable linear interpolation of the {ρn} iterates generated in this way is a.s. a

(T, δ)-perturbation of the ODE (12), and thus, given Lemma 6, ρn → ρ∗ a.s. (see the appendix A.3 for the definition of

(T, δ)-perturbation). Coupled with Theorem 1, this will imply that (Qn, ρn) → (λ(ρ∗), ρ∗).

Let s(0) = 0 and s(n) =
∑n−1

i=0 βi, n ≥ 1. Define the continuous, piecewise linear function

ρ̃(t) =

{

ρn if t = s(n),

ρn + (ρn+1 − ρn)
t−s(n)

s(n+1)−s(n) otherwise.

Let ψn =
∑n−1

m=0 βmǫm+1, for n ≥ 1. Letting [t] = max{s(n) | s(n) ≤ t}, for t ≥ 0, we have, for any n,m ≥ 0,

ρ̃(s(n+m)) = ρ̃(s(n)) +

∫ s(n+m)

s(n)

g(λ(ρ̃(t)), ρ̃(t))dt

+

∫ s(n+m)

s(n)

[g(λ(ρ̃([t])), ρ̃([t]))− g(λ(ρ̃(t)), ρ̃(t))]dt

+
m−1
∑

k=1

βn+k(g(Qn+k, ρn+k)− g(λ(ρn+k), ρn+k))

+ (ψn+m+1 − ψn).

For s ≥ 0, let ρs(t), t ≥ 0, denote the solution of (12) with initial condition ρs(s) = ρ̃(s). Notice that we can write

ρs(n)(s(m+ n)) = ρ̃(s(n)) +

∫ s(n+m)

s(n)

g(λ(ρ̃(t)), ρ̃(t))dt,

which means that

ρ̃(s(n+m))− ρ(s(n))(s(n+m)) =

∫ s(n+m)

s(n)

(g(λ(ρ̃([t])), ρ̃([t]))− g(λ(ρ̃(t)), ρ̃(t)))dt

+

m−1
∑

k=1

βn+k(g(Qn+k, ρn+k)− g(λ(ρn+k), ρn+k))

+ (ψn+m+1 − ψn).
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Exactly the same argument as in Lemma 2.1 of (Borkar, 2008) applies to allow us to bound the first term in this expression.

The third term can be a.s. bounded since, for given m ∈ N, {ψn+m+1 − ψn} is a.s. bounded and converges a.s. to 0 due

to the facts that βn ↓ 0 by Assumption 2 and ǫn ↓ 0 by Theorem 1. Thus, for any T > 0 and s(n+m) ∈ [s(n), s(n) + T ],
there exists a nonnegative sequence {KT,n} such that KT,n → 0 a.s. as n→ ∞ and

|ρ̃(s(n+m))− ρ(s(n))(s(n+m))| ≤ KT,n +
m−1
∑

k=1

βn+k|g(Qn+k, ρn+k)− g(λ(ρn+k), ρn+k)|, (23)

for each n ≥ 0. But we know by Corollary 1 that the remaining right-hand side term converges to 0 a.s. as n → ∞.

Following the same arguments as in the proof of Lemma 2.1 in (Borkar, 2008), we have that, for any T > 0,

lim
s→∞

sup
t∈[s,s+T ]

|ρ̃(t)− ρs(t)| = 0 a.s.

The same arguments as in the proof Theorem 6.2 in (Borkar, 2008) now apply to complete the proof.

Lemma 7. For a given policy πθ and for both i = r, c, with {µi
n} and {νin} generated from the critic step in Algorithm 2,

we have limn→∞ µi
n = Ji(θ) and limn→∞ νin = νiθ a.s., where νrθ and νcθ are the unique solutions to

Φ⊤Dθ
[

rθ − Jr(θ) · ✶+ P θ(Φνrθ )− Φνrθ
]

= 0,

Φ⊤Dθ
[

cθ − Jc(θ) · ✶+ P θ(Φνcθ)− Φνcθ
]

= 0.

Proof. The same arguments as in the proof of Lemma 5 in (Bhatnagar et al., 2009) apply to obtain the result.

Now that we have access to vrθ , v
c
θ by the preceding lemma, we will use them to estimate the following policy gradient:

Lemma 8. For any θ ∈ Θ, let

δθ,rn = rn − Jr(θ) + [φ(sn+1)]
⊤νrθ − [φ(sn)]

⊤νrθ ,

δθ,cn = cn − Jc(θ) + [φ(sn+1)]
⊤νcθ − [φ(sn)]

⊤νcθ ,

denote the stationary estimates of the TD-errors, let

V̄ θ
r (s) = E

{

r(s, a)− Jr(θ) + [φ(s′)]⊤νrθ

}

,

V̄ θ
c (s) = E

{

c(s, a)− Jc(θ) + [φ(s′)]⊤νcθ

}

,

where the expectation is taken over a ∼ πθ(· | s) and s′ ∼ p(· | s, a), and let eθi =
∑

s∈S
dπθ (s)

[

∇θV̄
θ
i (s)− [φ(s)]⊤∇θν

i
θ

]

for i = r, c. Then,

E

[

Jr(θ)

Jc(θ)
· ∇θ log πθ(an | sn) ·

(

δθ,rn

Jr(θ)
−

δθ,cn

Jc(θ)

)

∣

∣

∣
θ

]

= ∇θL(θ) +
Jr(θ)

Jc(θ)
·

[

eθr
Jr(θ)

−
eθc

Jc(θ)

]

.

Proof. From Lemma 4 in (Bhatnagar et al., 2009), we have that for any θ ∈ Θ and i = r, c,

E[δθ,in ψθ(sn, an) | θ] = ∇θJi(θ) + eθi ,

where eθi =
∑

s∈S
dπθ (s)

{

∇θV̄
θ
i (s) − [φ(s)]⊤∇θν

i
θ

}

. Hence, given the limit points vrθ , v
c
θ obtained by Lemma 7, we

further have

E

[

Jr(θ)

Jc(θ)
· ψθ(sn, an) ·

(

δθ,rn

Jr(θ)
−

δθ,cn

Jc(θ)

)

∣

∣

∣
θ

]

=
[∇θJr(θ) + eθr]

Jc(θ)
−

Jr(θ)

[Jc(θ)]2
· [∇θJc(θ) + eθc ]

= ∇θL(θ) +
Jr(θ)

Jc(θ)
·
[ eθr
Jr(θ)

−
eθc

Jc(θ)

]

,

which completes the proof.
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Theorem 3. Under Assumptions 2 and 4–6, given any ǫ > 0, there exists δ > 0 such that, for {θn} obtained from

Algorithm 2, if supθn ‖eθn‖ < δ, then θn → Zǫ a.s. as n→ ∞.

Proof. The proof proceeds along the same lines as that of Theorem 1 in (Bhatnagar et al., 2009). From Lemma 8, we

obtain that δin → δθn,in and µi
n → Ji(θn) for both i = r, c as t→ ∞. Let

E

[

Jr(θ) · ψθ(sn, an)

Jc(θ)

(

δθ,rn

Jr(θ)
−

δθ,cn

Jc(θ)

)

∣

∣

∣
θ = θn

]

= −
1

Jc(θn)
· h1(θn)−

Jr(θn)

[Jc(θn)]2
· h2(θn) =: −h(θ),

where

h1(θ) = −E

(

ψθ(s, a) ·
{

r(s, a)− Jr(θ) + [φ(s′)]⊤νrθ
}

)

,

h2(θ) = E

(

ψθ(s, a) ·
{

c(s, a)− Jc(θ) + [φ(s′)]⊤νcθ
}

)

,

and the expectation is taken over s′ ∼ p(· | s, a), s ∼ dπθ (·), and a ∼ πθ(· | s). It has been shown in the proof of

Theorem 1 in (Bhatnagar et al., 2009) that both h1(θ) and h2(θ) are Lipschitz continuous, as are Jc(θ) and Jr(θ). Also, by

Assumption 6, 1/Jc(θ) is upper-bounded by 1/Kc, which by definition shows that 1/Jc(θ) is also Lipschitz continuous.

Furthermore, 1/[Jc(θ)]
2 is Lipschitz continuous since 1/Jc(θ) is Lipschitz continuous and bounded. On the other hand,

since both h1(θ) and h2(θ) are continuous over the compact Θ, they are bounded. Therefore, both −h1(θn)/Jc(θn) and

Jr(θn) · h2(θn)/[Jc(θn)]
2 are Lipschitz continuous since they are products of Lipschitz continuous and bounded functions.

This establishes the Lipschitz continuity of −h(θ). The rest of the proof is identical to that of Theorem 1 in (Bhatnagar

et al., 2009), which completes the proof.

Experimental Results

Rewards, Costs, and Hyperparameters for Synthetic CAMDP Experiments

r(s, a) s3 s+ a (s · a) mod 2 s2 + a2

c(s, a) max{1, s · a} max{1, s · a}−1 max{1, s+ a} max{1, (s− a)2}

Table 1. Reward/cost function combinations.

Problem 1 Problem 2 Problem 3 Problem 4

r(s, a) s3 s+ a (s · a) mod 2 s2 + a2

c(s, a) max{1, s · a} max{1, s · a}−1 max{1, s+ a} max{1, (s− a)2}

CARVI Q-learning
|S| |A| α β ε α β ε α β ε α β ε
5 5 0.01 0.005 0.001 0.1 0.1 0.01 0.01 0.001 0.001 0.0001 0.0001 0.005

10 10 0.01 0.005 0.001 0.1 0.1 0.01 0.001 0.0005 0.001 0.005 0.001 0.001

CAAC
|S| |A| α β µlr α β µlr α β µlr α β µlr

5 5 0.01 0.005 0.005 0.01 0.01 0.01 0.01 0.005 0.005 0.01 0.01 0.005
10 10 0.01 0.005 0.05 0.01 0.01 0.005 0.01 0.01 0.1 0.01 0.01 0.005

Table 2. Experiment hyperparameters. Columns correspond to reward/cost function combinations, while rows correspond to problem

sizes.
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A.2. RVI Q-learning

Fix an average reward MDP (S,A, p, r) and a reference state sref , and let κ denote the optimal average reward of the MDP.

Consider the equation

Q(s, a) =
∑

s′

p(s′ | s, a)
[

r(s, a) + max
a′

Q(s′, a′)
]

− κ, (25)

and the synchronous RVI Q-learning updates

Qn+1(sn, an) = Qn(sn, an) + αn

[

r(sn, an) + max
a

Qn(sn+1, a)− Vn(sref)−Qn(sn, an)
]

, (26)

where Vn(s) := maxaQn(s, a). Define T ′(Q) = T (Q)− κ✶, where T is define entry-wise by

[T (Q)](s, a) =
∑

s′

p(s′ | s, a)
[

r(s, a) + max
a′

Q(s′, a′)
]

,

and consider the ODE

Q̇(t) = T ′(Q(t))−Q(t). (27)

We have the following versions of Lemma 3.2, Theorem 3.4, and Lemma 3.7, respectively, from (Abounadi et al., 2001):

Lemma A.2.1. Equation (27) has a unique equilibrium at Q∗, which is the unique solution to (25) such that

maxaQ
∗(sref , a) = κ.

Lemma A.2.2. Q∗ is the global asymptotically stable equilibrium point for (27).

Lemma A.2.3. The sequence {Qn} generated by (26) is a.s. bounded.

A.3. (T, δ)-perturbations

Let f : RN → R
N be Lipschitz and consider the ODE

ż(t) = f(z(t)) (28)

with globally asymptotically stable attractor A.

Definition A.3.1. For T, δ > 0, a bounded, Borel-measurable function w : R+ → R
N is a (T, δ)-perturbation of (28)

if there exists a sequence {Tn} in [0,∞) with T0 = 0 such that Tn+1 − Tn ≥ T , for all n ≥ 1, and solutions zj(t),
t ∈ [Tj , Tj+1] of (28) such that, for j ≥ 0,

sup
t∈[Tj ,Tj+1]

‖zj(t)− w(t)‖ < δ.

A.4. Faster Timescale Convergence

Consider the scheme

xn+1 = xn + an[h(xn, yn) +M
(1)
n+1], (29)

yn+1 = yn + bn[g(xn, yn) +M
(2)
n+1 + ǫn+1], (30)

where h : Rd+k → R
d, g : Rd+k → R

k, {M
(i)
n }, i = 1, 2 are martingale difference sequences with respect to the σ-fields

Fn = σ(xm, ym,M
(1)
m ,M

(2)
m ;m ≤ n), {ǫn} is an error sequence, and the an, bn form decreasing stepsize sequences.

Consider the ODE

ẏ(t) = 0, (31)

ẋ(t) = h(x(t), y(t)). (32)

We make the following assumptions:
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Assumption A.4.1. For each y ∈ R
k, the ODE ẋ(t) = h(x(t), y) corresponding to (31), (32) has a unique globally

asymptotically stable equilibrium λ(y).

Assumption A.4.2.
∑

an =
∑

bn = ∞,
∑

(a2n + b2n) <∞, and bn = o(an).

Assumption A.4.3. There exists some K > 0 such that E[‖M
(i)
n+1‖

2 | Fn] ≤ K(1 + ‖xn‖
2 + ‖yn‖

2), for i = 1, 2 and

n ≥ 0, and {ǫn} is asymptotically negligible, i.e., ‖ǫn‖ = o(1).

Assumption A.4.4. There exists a bounded set Q ⊂ R
d × R

k such that {(xn, yn)} ⊂ Q with probability one.

Assumption A.4.5. h is Lipschitz, and g is bounded on Q.

We have the following result, which appears as Lemma 6.1 in (Borkar, 2008):

Lemma A.4.1. (xn, yn) → {(λ(y), y) | y ∈ ❘k} a.s. as n→ ∞.

Note that the noise terms {ǫn} are accommodated by the third extension discussed in §2.2 of (Borkar, 2008). Also note

that Lemma A.4.1 does not rely on λ(y) being Lipschitz in y, which is important given that the limit point Qρ of the faster

timescale of CARVI Q-learning is not guaranteed to be Lipschitz in ρ.

A.5. Stability Criterion

Consider the stochastic approximation scheme in R
N given by

zn+1 = zn + an [g(zn) +Mn+1 + ǫn+1] , (33)

with the following assumptions:

Assumption A.5.1. g : RN → R
N is Lipschitz.

Assumption A.5.2. The sequence {an} ⊂ R satisfies
∑

n an = ∞,
∑

n a
2
n <∞.

Assumption A.5.3. {Mn} is a martingale difference sequence with respect to the filtration Fn = σ(zm,Mm,m ≤ n),
there exists K > 0 such that E[‖Mn+1‖

2 | Fn] ≤ K(1 + ‖zn‖
2) a.s., and {ǫn} is o(1), i.e., is asymptotically negligible.

Assumption A.5.4. The functions gd(z) = g(dz)/d, d ≥ 1 satisfy gd(z) → g∞(z) as d→ ∞ uniformly on compacts for

some continuous function g∞ : RN → R
N . In addition, the ODE

ż(t) = g∞(z(t)) (34)

has the origin as its globally asymptotically stable equilibrium.

We then have

Lemma A.5.1. supn ‖zn‖ <∞ a.s.

See §2.2 and §3.2 in (Borkar, 2008) for the proof. Since the stability proofs in §3.2 of (Borkar, 2008) are path-wise, the

comments at the end of §2.2 in (Borkar, 2008) regarding how to handle noise terms apply to accommodate the asymptoti-

cally negligible noise terms {ǫn} in (33).
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