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Abstract

Ratio maximization has applications in areas as
diverse as finance, reward shaping for reinforce-
ment learning (RL), and the development of safe
artificial intelligence, yet there has been very little
exploration of RL algorithms for ratio maximiza-
tion. This paper addresses this deficiency by in-
troducing two new, model-free RL algorithms for
solving cost-aware Markov decision processes,
where the goal is to maximize the ratio of long-
run average reward to long-run average cost. The
first algorithm is a two-timescale scheme based
on relative value iteration (RVI) Q-learning and
the second is an actor-critic scheme. The paper
proves almost sure convergence of the former to
the globally optimal solution in the tabular case
and almost sure convergence of the latter under
linear function approximation for the critic. Un-
like previous methods, the two algorithms prov-
ably converge for general reward and cost func-
tions under suitable conditions. The paper also
provides empirical results demonstrating promis-
ing performance and lending strong support to the
theoretical results.

1. Introduction
Many reinforcement learning (RL) algorithms have been
advocated in the literature for solving Markov decision pro-
cesses (MDPs) and related sequential decision-making prob-
lems. The classic objective functions, including expected
discounted reward, total reward, and long-run average re-
ward, form the basis for most RL algorithms and are fre-
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quently used in practice. Nevertheless, alternative objectives
have seen increasing interest, as researchers seek to extend
RL techniques to larger classes of problems and incorporate
a priori knowledge to accelerate learning. In particular, a
great deal of effort has gone into extending RL techniques
to constrained MDPs (Altman, 1999), where safety and risk
considerations impose limits on agent behavior, and vari-
ous schemes have been proposed for reward shaping, such
as including entropy regularization to improve exploration
(Geist et al., 2019; Grill et al., 2019; Vieillard et al., 2020)
and general methods for incorporating domain knowledge
(Mataric, 1994; Ng et al., 1999).

One area where little progress has been made, however, is in
the application of RL techniques to ratio maximization. In
finance, a wide range of portfolio optimization problems are
explicitly formulated via ratio maximization, for example
when maximizing the Sharpe, Calmar, Sortino, and Omega
ratios (Sharpe, 1966; Young, 1991; Sortino & Price, 1994;
Keating & Shadwick, 2002) of a financial portfolio. The
subfield of reward shaping in RL studies methods for incor-
porating domain knowledge and expert guidance into the
rewards an agent receives. Such techniques can be used to
accelerate learning and improve solution quality (Mataric,
1994; Ng et al., 1999). Though currently unexploited in
the reward shaping literature, the ability to simultaneously
specify both rewards and costs has clear potential as a pow-
erful tool for the reward shaping toolkit. Finally, safe RL, a
subfield of safe AI, has seen a dramatic surge of interest in
recent years (Garcı́a et al., 2015; Berkenkamp et al., 2017;
Cheng et al., 2019; Yu et al., 2019; Ding et al., 2020), driven
by safety-critical applications such as autonomous vehicles
(Kiran et al., 2021); incorporating ratio maximization tech-
niques would complement and enhance existing methods
for safe RL, and potentially have a significant impact on the
development of safe AI.

Contribution. Our primary contribution is to propose two
tractable new algorithms with theoretical guarantees and
lay sound theoretical foundations for future study of this
previously under-studied type of problem. Our experiments
validate and supplement our theoretical contributions.

First, motivated by the lack of RL methods for solving ratio
maximization problems, we develop two new, model-free
reinforcement learning algorithms for provably solving cost-
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aware MDPs, where the goal is to maximize the ratio of
long-run average reward to long-run average cost. The first,
cost-aware relative value iteration (CARVI) Q-learning, is
a two-timescale algorithm with a novel structure: a run-
ning estimate of the optimal ratio is updated at the slower
timescale, while RVI Q-learning is used to solve certain
auxiliary MDPs, to be defined later, at the faster timescale.
The second, cost-aware actor-critic (CAAC), is based on a
policy gradient theorem for the cost-aware setting.

We subsequently provide theoretical convergence guaran-
tees for our algorithms. Difficulties arising from the prob-
lem structure, described in detail in Section 4, prevent a
standard convergence analysis for CARVI Q-learning. We
nonetheless prove almost sure (a.s.) convergence to the
globally optimal solution in the tabular case by leverag-
ing certain properties of the algorithm and innovating the
standard two-timescale analysis. This result may be of inde-
pendent interest for the theory of two-timescale stochastic
approximation. We furthermore provide a cost-aware policy
gradient theorem and prove a.s. convergence of CAAC un-
der linear function approximation for the critic. Finally, we
present numerical results illustrating and supporting our the-
ory, demonstrating promising empirical performance, and
motivating future empirical exploration of our algorithms.

Related Work. RL has a rich literature stretching back
several decades; see (Sutton & Barto, 1998) for a com-
prehensive introduction. Among value iteration-inspired
techniques are Q-learning for the discounted reward setting
(Watkins & Dayan, 1992) and RVI Q-learning (Abounadi
et al., 2001) for the average reward setting, for which conver-
gence is established in the tabular case. Another mainstream
class of RL algorithms optimizes the policy directly (Sut-
ton et al., 2000). Typical examples include the actor-critic
(Konda & Tsitsiklis, 2000) and natural actor-critic algo-
rithms (Peters & Schaal, 2008; Bhatnagar et al., 2009), for
which convergence has been shown with linear function
approximation for the critic.

The literature concerning RL methods for ratio maximiza-
tion problems is sparse. The theory of MDPs with frac-
tional cost is first proposed in (Ren & Krogh, 2005), which
provided an alternative but equivalent formulation of the
cost-aware MDPs considered in our work. (Ren & Krogh,
2005) rigorously analyzed algorithms for the fractional cost
problem, but they are either model-based, computation- and
memory-intensive, or do not readily admit the use of func-
tion approximation. In contrast, our algorithms are model-
free, have natural function approximation versions, and are
of the same per-timestep computational and memory com-
plexity as standard actor-critic and Q-learning algorithms.
More recently, (Tanaka, 2017; 2019) elaborated notions of
optimality and duality for extensions of MDPs with frac-
tional rewards. There is also some empirical work apply-

ing RL to ratio maximization problems in finance, such as
(Moody & Saffell, 2001), which studied RL-based methods
for optimizing the Sharpe ratio of a financial portfolio.

Related to (but distinct from) the ratio maximization set-
ting, constrained MDPs (CMDPs) introduce constraints on
long-term reward (Altman, 1999). It is important to note
that RL methods for solving CMDPs typically assume a
priori knowledge of the constraints, while the cost-aware
formulation makes no such assumptions. It is also dif-
ficult to formulate ratio maximization within the CMDP
framework. A well-known model-free approach to solv-
ing CMDPs with convergence guarantees is the Lagrangian
method (Altman, 1998; Borkar, 2005; Bhatnagar, 2010).
Risk-sensitive MDPs that consider variance-related con-
straints have also been addressed by actor-critic algorithms
(Prashanth & Ghavamzadeh, 2016; Chow et al., 2017) under
the Lagrangian formulation.

As an initial step towards the development of a robust theory
of RL for ratio optimization problems, in this paper we focus
on the asymptotic convergence analysis and leave finite-time
convergence analysis as an important future work. Existing
finite-time works, such as (Gupta et al., 2019; Hong et al.,
2020; Wu et al., 2020; Li et al., 2020), do not apply, since
our algorithms are either too structurally dissimilar from
the algorithms these works consider or do not satisfy the
necessary assumptions imposed in these works. See the
supplementary material for a more detailed review of the
two-timescale finite-time literature.

2. Background and Model
In this section, we first introduce the relevant RL back-
ground, and then discuss cost-aware MDPs. In this paper
we restrict our attention to finite state and action spaces.

Reinforcement Learning. The goal in RL is to learn
an optimal decision rule via interacting with the environ-
ment. The environment is modeled by an MDP, denoted by
(S,A, p, r), where S is a finite set of states, A is a finite
set of actions, p : S × A → P(S) is the Markov transi-
tion kernel, where P(S) denotes the set of all probability
distributions over S , and r : S ×A → R is the reward func-
tion. At each time step n ≥ 0, the agent finds itself in state
sn ∈ S, chooses an action an ∈ A, obtains an immediate
reward r(sn, an), and the environment transitions into a
new state sn+1 ∈ S according to distribution p( · | sn, an).

A policy π : S → P(A) maps states s ∈ S to distribu-
tions π( · | s) ∈ P(A), so that, at a given state s ∈ S, the
probability of selecting action a ∈ A is given by π(a | s).
Note that deterministic policies can be recovered from this
definition by assigning probability one to the desired action.

We focus on the average reward setting, where the goal
of the agent is to find a policy π maximizing the long-run
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average reward, defined as

J(π) = lim
N→∞

1

N
Eπ

[
N−1∑
n=0

r(sn, an)

]
,

where an ∼ π( · | sn) for all n ≥ 0. Note that π in-
duces a Markov chain on S. Assuming this Markov
chain has a stationary distribution dπ, then it holds that
J(π) = Es∼dπEa∼π( · | s)[r(s, a)]. In addition, the relative
state and action value functions of policy π are defined as

V π(s) = Eπ

[
∞∑
n=0

[rn − J(π)] | s0 = s

]
,

Qπ(s, a) = Eπ

[
∞∑
n=0

[rn − J(π)] | s0 = s, a0 = a

]
,

respectively. We hereafter omit the word “relative” when
referring to value functions. Moreover, V π satisfies the
Poisson equation (Puterman, 2014)

V π(s) + J(π) = Eπ
[
r(s, a) + V π(s′)

]
, (1)

for any (s, a) ∈ S×A, where s′ is the next state given (s, a).
An optimal policy π∗ satisfies V ∗ = V π

∗
, where V ∗ is the

unique solution modulo an additive constant (Abounadi
et al., 2001) to the dynamic programming equation

V ∗(s) + J(π∗) = max
a
{r(s, a) + Eπ∗ [V ∗(s′)]},

for any s ∈ S. The action-value functions Qπ and Q∗ =
Qπ
∗

also satisfy similar Poisson and dynamic programming
equations, respectively. Note that in the theory of average-
reward MDPs, which is subtler than the discounted setting,
optimality of value functions is typically modulo an additive
constant; this does not affect the recovery of optimal policies
from the family of optimal value functions, since, for any
scalar β, argmaxaQ(s, a) = argmaxa(Q(s, a) + β), for
all s. See (Puterman, 2014; Abounadi et al., 2001; Bertsekas,
2012) for details. When there is no risk of confusion, we will
often refer to the optimal value function when the optimal
value function modulo an additive constant is meant.

Q-learning-based RL methods can be used to learn the op-
timal action value function Q∗. From this function, an
optimal policy π∗(s) = argmaxaQ

∗(s, a) can be imme-
diately extracted. The policy gradient approach to RL
instead focuses on a parametrized policy class {πθ}θ∈Θ

and attempts to maximize J(πθ) over the parameter space
Θ ⊂ Rm via stochastic gradient methods. Such approaches
are typically based on the classic policy gradient theo-
rem (Sutton et al., 2000), which states that ∇θJ(πθ) =
E
[
∇θ log πθ(a | s) ·Aθ(s, a)

]
, where s ∼ dθ(·), the sta-

tionary distribution induced on S by πθ, a ∼ πθ( · | s), and
Aθ(s, a) = Qπθ (s, a)− V πθ (s) is the advantage function.

Cost-Aware MDP. Motivated by the task of extending
RL methods to ratio maximization problems, we define the
cost-aware MDP as follows.

Definition 1 (Cost-aware MDP). A cost-aware Markov de-
cision process (CAMDP) is a sequential decision-making
problem specified by the tuple (S,A, p, r, c), where S de-
notes the state space, A denotes the action space, p :
S × A → P(S) denotes the Markov transition kernel,
r : S × A → R is the reward function, c : S × A → R is
the cost function, and the goal of the agent is to find a policy
π maximizing

ρ(π) :=
limN→∞

1
N
Eπ[
∑N−1
n=0 r(sn, an)]

limN→∞
1
N
Eπ[
∑N−1
n=0 c(sn, an)]

. (2)

The CAMDP extends the MDP in the previous section by
augmenting it with a cost function: at each step, the agent
receives both a reward and cost associated with its current
state and action and must learn to maximize long-run aver-
age reward over long-run average cost. As noted above, we
assume throughout that S and A are finite.

Following the definitions for MDPs, we denote by Jr(π) and
Jc(π) the long-term average reward and cost, respectively,
under policy π. We assume throughout that these limits
exist, which is reasonable given the standard ergodicity
conditions on the induced Markov chains. We also assume
r(s, a) and c(s, a) are always strictly positive. Note that this
implies Jr(π) > 0 and Jc(π) > 0, for all policies π. This
mild assumption stipulates that some non-negligible reward
and cost are incurred at each step. Moreover, we denote
by V πr , V πc , Qπr , Qπc , A

π
r , and Aπc , the value, action-value,

and advantage functions of policy π based on the reward
r and cost c, respectively. We also write ρ as shorthand
for ρ(π). It is interesting to note that if the cost function
is some positive constant, solving (S,A, p, r, c) also solves
the MDP (S,A, p, r).

For an interesting example of how the CAMDP model can
be applied to maximizing the Omega ratio of a financial
portfolio, see the supplementary material.

3. Algorithms
In this section, we propose two RL algorithms for CAMDPs,
based on the RVI Q-learning and actor-critic algorithms,
respectively.

Cost-Aware RVI Q-learning. Our cost-aware RVI Q-
learning algorithm follows a two-timescale stochastic ap-
proximation scheme. An estimate ρ of the optimal ratio
ρ∗ is iteratively updated on the slower timescale, while an
auxiliary MDP, whose objective function depends on the cur-
rent value of ρ, is solved using RVI Q-learning on the faster
timescale. In what follows we provide a derivation of the al-
gorithm that starts with the CAMDP we wish to solve, then
proceeds by looking at a related bi-level optimization prob-
lem. The bi-level program we consider suggests a tractable,
provably effective solution approach, namely, CARVI Q-
learning. We conclude by giving a concrete formulation of
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this algorithm.

To see where the bi-level program and two-timescale al-
gorithm originate, consider the CAMDP (S,A, p, r, c) as
split into two parts: an outer estimate ρ of the opti-
mal ratio, and an inner, auxiliary MDP which depends
on ρ and is defined as (S,A, p, ηρ), with reward func-
tion ηρ(s, a) = r(s, a) − ρc(s, a). Then, Jηρ(π) is the
long-run average reward of policy π for (S,A, p, ηρ), and
Jηρ(π) = Jr(π)−ρJc(π). Splitting the CAMDP into outer
and inner parts in this way is useful for the following reason:
Lemma 1. Given the optimal ratio ρ∗ of the CAMDP
(S,A, p, r, c), any optimal policy for (S,A, p, ηρ∗) is an
optimal policy for (S,A, p, r, c).

We next develop a search procedure for finding the optimal
(ρ∗, π∗). Consider the bi-level program:

minimize
ρ, π

[Jr(π)− ρJc(π)]2 (3)

subject to π ∈ argmax
π′

{Jr(π′)− ρJc(π′)},

where argmaxπ′{Jr(π′) − ρJc(π
′)} = {π | Jr(π) −

ρJc(π) = maxπ′{Jr(π′) − ρJc(π′)}}. This problem has
the following useful property:
Lemma 2. Solving (3) yields the optimal ratio and an opti-
mal policy for CAMDP (S,A, p, r, c).

See supplementary material for proofs of Lemmas 1 and 2.
Lemmas 1 and 2 present a new way to solve ratio-
maximization problems as bi-level optimization problems
that is potentially promising beyond the CAMDP setting.

Assume that, for a given ρ, we can efficiently obtain the
value Jr(πρ) − ρJc(π

ρ) corresponding to some optimal
policy πρ ∈ argmaxπ{Jr(π) − ρJc(π)}. Then, in this
situation (3) reduces to an unconstrained problem, which
we can solve using gradient-based methods. In particular,
we can update ρ via update steps of the form ρ ← ρ +
β [Jr(π

ρ)− ρJc(πρ)] , with learning rate β. To see why
this update scheme is justified, consider the following:
Lemma 3. If ρ > ρ∗, then Jr(π

ρ) − ρJc(π
ρ) < 0. If

ρ < ρ∗, then Jr(π
ρ) − ρJc(π

ρ) > 0. If ρ = ρ∗, then
Jr(π

ρ)− ρJc(πρ) = 0.

With the above in mind, our search procedure for finding
(ρ∗, π∗) is within reach. The overall goal is to perform
gradient-descent-type updates in ρ on the objective in (3)
on the slower timescale, while using RVI Q-learning at the
faster timescale to solve the inner optimization problem in
π, given the current ρ. Once we have solved (3), Lemmas 1
and 2 apply to show that we have in fact solved the original
CAMDP.

To perform the ρ updates, our algorithm must approximately
find the optimal action-value function, Qρ, for the auxiliary
MDP corresponding to the current ρ, from which an estimate
of Jr(πρ)− ρJc(πρ) can be obtained. Given ρ, the RVI Q-

learning update is as follows:

Qn+1(sn, an) = Qn(sn, an) + αn
[
r(sn, an)− ρc(sn, an)

+ max
a

Qn(sn+1, a)− Vn(sref)−Qn(sn, an)
]
,

(4)

where Vn(sref) = maxaQn(sref , a) for a fixed reference
state sref .

Assuming at each step that the faster timescale update has
converged to the optimal Qρn for the current ρn, we want
to perform updates of the form

ρn+1 = ρn + βn[Jr(π
ρn)− ρnJc(πρn)],

where πρn(s) = argmaxaQ
ρn(s, a), with ties broken arbi-

trarily. For a given ρ, we can obtain an optimal policy πρ

directly from Qρ, so, with a slight abuse of notation, the
above update can be rewritten as

ρn+1 = ρn + βn[Jr(Q
ρn)− ρnJc(Qρn)].

We do not have direct access to the quantity Jr(Qρn) −
ρnJc(Q

ρn), however, so we must find an approximation.
Given that the faster timescale update has approximately
converged at time n, we have Qn ≈ Qρn . As demon-
strated in (Abounadi et al., 2001), under standard ergodic-
ity conditions discussed in Chapter 5 of (Bertsekas, 2012),
limn→∞ Vn(sref) = κρ, where κρ is the optimal average
cost for the auxiliary MDP (S,A, p, ηρ). This implies that
Vn(sref) provides an estimate of Jr(Qρn) − ρnJc(Q

ρn).
Since Vn(sref) = maxaQn(sref , a), we can thus use our
current estimate Qn to approximate Jr(Qρn)− ρnJc(Qρn)
at each timestep n.

Putting all these pieces together, we can finally write our
CARVI Q-learning algorithm for solving the CAMDP:

Qn+1(sn, an) = Qn(sn, an) + αn[r(sn, an)− ρn c(sn, an)

+ Vn(sn+1)− Vn(sref)−Qn(sn, an)], (5)
ρn+1 = ρn + βnVn(sref). (6)

To handle large state and action spaces, it is often neces-
sary to use a function approximator Qω parameterized by
a vector ω, such as a neural network, in place of the true
Q-function. In this setting the gradient update (4) is carried
out with respect to the parameter ω rather than the entire
Q-table. This more general form of the algorithm is summa-
rized in Algorithm 1. It should be noted that the theoretical
analysis in this paper is for the tabular case.

Cost-Aware Actor-Critic. We next develop the cost-
aware actor-critic algorithm. Let {πθ}θ∈Θ be a family of
parametrized policies. To simplify the notation, we denote
Jr(πθ) and Jc(πθ) by Jr(θ) and Jc(θ), respectively. As
the limits in (2) exist, the limiting ratio can be written as
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Algorithm 1 CARVI Q-learning

Initialization: Randomly generate ω0 and ρ0; fix an ar-
bitrary start state s0; specify learning rates {αn, βn}; set
n← 0.
repeat
an ∼ ε-greedy[Qωn(sn, ·)], observe rn, cn, sn+1

δηn = rn − ρn · cn + maxaQωn(sn+1, a)− Vωn(sref)
−Qωn(sn, an)

ωn+1 = ωn + αn · δηn · ∇Qωn(sn, an)
ρn+1 = ρn + βn · Vωn(sref)

until convergence

L(θ) = Jr(θ)/Jc(θ). The policy gradient theorem in (Sut-
ton et al., 2000) yields

∇θL(θ) =
Jr(θ)

Jc(θ)
·

(
E
[
∇θ log πθ(a | s) ·Aθr(s, a)

]
Jr(θ)

−
E
[
∇θ log πθ(a | s) ·Aθc(s, a)

]
Jc(θ)

)
. (7)

By the Poisson equation (1), one can estimate the value func-
tions, and thus the advantage function, via (Sutton, 1988;
Tsitsiklis & Van Roy, 1999). Specifically, let {Vν : S →
R}ν∈Ω be a parametrized function class, where Ω is the
parameter space. We use Vνr and Vνc to estimate the value
functions V θr and V θc , respectively. In addition, we use
the sequence {µrn} and {µcn} to track the values of Jr(θ)
and Jc(θ). Then, in the n-th iteration, given the observa-
tion (sn, an, rn, cn, sn+1), the agent updates the sequences
{µrn} and {µcn} via

µrn+1 = µrn+αn · (rn−µrn), µcn+1 = µcn+αn · (cn−µcn).

As a result, the TD-errors of value functions, denoted by δrn
and δcn, can be calculated as

δrn = rn + Vνrn(sn+1)− µrn − Vνrn(sn),

δcn = cn + Vνcn(sn+1)− µcn − Vνcn(sn),

where νrn and νcn are the values of parameters νr and νc at
iteration n. The TD-learning updates for the critic are then
given by

νrn+1 = νrn + αn · δrn · ∇Vνrn(sn),

νcn+1 = νcn + αn · δcn · ∇Vνcn(sn),

where αn > 0 is the stepsize for the critic.

Hence, from (7), the actor update can be written as

θn+1 = θn + βn ·
µrn
µcn
· ∇θ log πθn(an | sn) ·

(
δrn
µrn
− δcn
µcn

)
,

where βn > 0 is the stepsize and the TD-errors δrn, δ
c
n are

used to estimate the advantage functions Aθnr , A
θn
c , respec-

tively. Notice that, so long as we initialize µr0, µ
c
0 > 0, the

fact that rewards and costs are always strictly positive en-
sures µrn, µ

c
n > 0, for all n. The details of the algorithm are

summarized in Algorithm 2.

Algorithm 2 Cost-Aware Actor-Critic (CAAC)

Initialization: Randomly generate µc0 > 0 and µr0 > 0,
as well as νc0, νr0 , and θ0; fix an arbitrary start state s0;
specify learning rates {αn, βn}; set n← 0.
repeat
an ∼ πθn(· | sn), observe rn, cn, sn+1

Critic step:
µrn+1 ← µrn + αn · (rn − µrn)
µcn+1 ← µcn + αn · (cn − µcn)
δrn ← rn + Vνrn(sn+1)− µrn − Vνrn(sn)
δcn ← cn + Vνcn(sn+1)− µcn − Vνcn(sn)
νrn+1 ← νrn + αn · δrn · ∇Vνrn(sn)
νcn+1 ← νcn + αn · δcn · ∇Vνcn(sn)
Actor step:
ψn =

µrn
µcn

(
δrn
µrn
− δcn

µcn

)
θn+1 = θn + βn · ψn · ∇θ log πθn(an | sn)

until convergence

Remark. The CAAC algorithm and the actor-critic algo-
rithm for optimizing the Sharpe ratio given in (Prashanth
& Ghavamzadeh, 2016) share similarities in that they both
seek to maximize a ratio. The Sharpe ratio maximization
scheme can also likely be extended to accommodate more
general objectives. CAAC uses general rewards, however,
while the other algorithm is specific to the Sharpe ratio;
furthermore, the Sharpe ratio denominator is the square root
of an expectation, while CAAC’s is an expectation, so the
gradient expressions used are different.

4. Convergence Analysis
In this section, we provide theoretical convergence guaran-
tees for the algorithms developed in the last section. All
proofs are given in the supplementary material.

CARVI Q-learning Convergence. We prove almost sure
convergence of Algorithm 1 in the tabular setting to the
globally optimal action value function and corresponding
maximal ratio, (Q∗, ρ∗), by leveraging the RVI Q-learning
convergence results in (Abounadi et al., 2001) and gener-
alizing the classic machinery of two timescale stochastic
approximation (Borkar, 2008). The central result of this
section is Theorem 2. For ease of presentation, our analysis
is given for the synchronous case, where every entry of the
Q function is updated at each timestep. Extension to the
asynchronous case, where only one state-action pair entry
is updated at each timestep, follows exactly as in (Abounadi
et al., 2001).

Given ρ, let Qρ be the optimal action-value function for
the auxiliary MDP (S,A, p, ηρ) obtained by applying the
RVI Q-learning algorithm. See Appendix A.2 of the sup-
plementary materials for details on this Qρ. Let Fn =
σ(ρk, Qk, sk, ak; k ≤ n) be the σ-field generated by the
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iterates and trajectory up to time n. Our goal is to rewrite
the updates (5) and (6) as

Qn+1 = Qn + αn[h(Qn, ρn) +Mn+1], (8)

ρn+1 = ρn + βn[g(Qn, ρn) + εn+1], (9)

where {Mn} is an appropriate martingale difference se-
quence conditioned onFn, {εn} is a suitable error sequence,
h and g are appropriate Lipschitz functions that satisfy the
conditions needed for our ordinary differential equation
(ODE) analysis, and the stepsizes αn, βn satisfy Assump-
tion 2 below. We will proceed by first identifying the terms
in (8) and studying the corresponding ODEs

ρ̇(t) = 0, (10)

Q̇(t) = h(Q(t), ρ(t)), (11)

using the analysis of RVI Q-learning given in (Abounadi
et al., 2001) to simultaneously obtain a.s. convergence of
(8) and (9) to the set {(Qρ, ρ) | ρ ∈ R} and show that the
function λ(ρ) := Qρ is the unique globally asymptotically
stable equilibrium point of (10) and (11) for each ρ ∈ R.
Finally, we will study the slower timescale ODE

ρ̇(t) = g(λ(ρ(t)), ρ(t)), (12)

and use our analysis of it to prove a.s. convergence of
our algorithm to the globally optimal pair (Q∗, ρ∗), where
Q∗ = Qρ

∗
. In what follows we will occasionally use λ(ρ)

instead of Qρ to emphasize the fact that Qρ is a function of
ρ. We make the following assumptions.
Assumption 1. The action value function Q and state
value functions V provide tabular representation, i.e., Q ∈
R|S|·|A| and V ∈ R|S|.
Assumption 2. The stepsizes αn and βn satisfy

∑
n αn =∑

n βn =∞,
∑
n α

2
n + β2

n <∞, limn
βn
αn

= 0.

Assumption 3. For any policy π, the Markov chain it in-
duces on S is ergodic.

Assumption 1 is key in the analysis of RVI Q-learning
(Abounadi et al., 2001) and is needed in Theorem 1. As-
sumption 2 is standard in the stochastic approximation liter-
ature (Borkar, 2008) and is needed in Lemma 5 and Theo-
rems 1 and 2. Assumption 3, adapted from (Abounadi et al.,
2001; Bertsekas, 2012), helps ensure that (2) is well-defined
and that, for fixed ρ, Vn(sref) converges to κρ, the optimal
average reward for the auxiliary MDP (S,A, p, ηρ); it is
essential for Theorems 1 and 2.

We begin our two-timescale analysis with convergence of
the faster timescale. Define g : R|S|·|A| × R → R by
g(Q, ρ) = maxaQ(sref , a) = V (sref), and let εn+1 =
Vn+1(sref)− Vn(sref), where {εn} is the error sequence in
(9). These definitions will be important throughout. Note
that, since the dependence of g on ρ is vacuous and the max
operator over a vector is Lipschitz, we have by Assumption 1
that g is Lipschitz in bothQ and ρ. We need two preliminary
lemmas for Theorem 1.

Lemma 4. The function ĝ(ρ) := g(λ(ρ), ρ) = g(Qρ, ρ) =
V ρ(sref) is strictly decreasing and piecewise linear (and
thus Lipschitz) in ρ.

For the next lemma, the following remarks on notation
will be needed. Each vector Q ∈ R|S|·|A|, regarded as an
action value function, induces at least one deterministic
policy πQ(s) = argmaxaQ(s, a) for the auxiliary MDP
(S,A, p, ηρ). There may be multiple maximizing actions
and thus multiple distinct policies, however, so πQ may
not be well-defined. Nonetheless, all policies induced by a
given Q will have identical long-run average rewards and
costs. We will therefore slightly abuse notation in what
follows by writing Jr(Q) and Jc(Q) to denote the long-run
average reward and cost, respectively, of any policy induced
byQ. As in the previous lemma, we write ĝ(ρ) as shorthand
for g(λ(ρ), ρ).
Lemma 5. {ρn} is a.s. bounded.

With Lemmas 4 and 5, we can show convergence of the
faster timescale:
Theorem 1. (Qn, ρn)→ {(Qρ, ρ) | ρ ∈ R} a.s. as n→∞.

To complete our analysis of CARVI Q-learning, the follow-
ing corollary and lemma are needed. Theorem 1 implies
that ‖Qn − Qρn‖ → 0 a.s., and, as a consequence, we
immediately have the following:
Corollary 1. |g(Qn, ρn) − g(Qρn , ρn)| = |Vn(sref) −
V ρn(sref)| → 0 a.s. as n→∞.

This corollary allows us to bound the noise introduced by
using Vn(sref) to estimate Jr(Qρn) − ρnJc(Q

ρn). The
next lemma shows that the ODE (12), which the ρ updates
(6) asymptotically track as shown in Theorem 2, has an
important limit point.
Lemma 6. ρ∗ is the unique globally asymptotically stable
equilibrium point of (12).

The next theorem is the main result of this subsection and
provides a.s. convergence of CARVI Q-learning to the glob-
ally optimal (Q∗, ρ∗) = (λ(ρ∗), ρ∗). Its proof relies on
Theorem 1, Corollary 1, Lemma 6, and the two-timescale
stochastic approximation results in (Borkar, 2008), but re-
quires a key modification of the latter that exploits the spe-
cial structure of g to accommodate the fact that λ(ρ) is
potentially not Lipschitz or even continuous in ρ.
Theorem 2. (Qn, ρn)→ (λ(ρ∗), ρ∗) a.s. as n→∞.

In other words, CARVI Q-learning a.s. solves the bi-level
optimization problem (3), and, by Lemmas 1 and 2, it there-
fore solves the CAMDP (S,A, p, r, c).
Remark. Due to the special structure of g and ĝ described
in Lemma 4 and Corollary 1, the proof of Theorem 2 did not
require λ(ρ) to be Lipschitz. This contrasts with the stan-
dard conditions assumed when proving a.s. convergence
of a two-timescale stochastic approximation scheme. In
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the standard setting, the limit point of the faster timescale
ODE is assumed to be Lipschitz in the slower timescale
variable, viewed as a quasi-static external parameter. The
aforementioned special structure is important in our case,
as λ(ρ) = Qρ may not in general be continuous, let alone
Lipschitz. Interestingly, the fact that we can relax the Lips-
chitz condition on λ in our case suggests the possibility of
potentially useful generalizations of the classic convergence
conditions for two-timescale stochastic approximation. We
leave this as future work.

CAAC Convergence. This subsection provides conver-
gence guarantees for Algorithm 2. For these results we
make Assumption 2 above, as well as the following:
Assumption 4. The value functions in Algorithm 2 are
parameterized as Vν(s) = ν>φ(s), where φ(s) =
[φ1(s) · · · φK(s)]> ∈ RK is the feature vector asso-
ciated with s ∈ S. The feature vectors φ(s) are uni-
formly bounded for any s ∈ S, and the feature matrix
Φ = [φ(s)]>s∈S ∈ R|S|×K has full column rank. For any
u ∈ RK , Φu 6= 1, where 1 is the vector of all ones.
Assumption 5. The update of the policy parameter θn in-
cludes a projection operator, Γ : Rd → Θ ⊂ Rd, that
projects any θn onto a compact set Θ.
Assumption 6. For any θ ∈ Θ, πθ is continuously differen-
tiable with respect to θ, and the Markov chain under πθ is
ergodic.

Assumptions 4 and 5 are standard in convergence analy-
ses for two-timescale actor-critic algorithms (Tsitsiklis &
Van Roy, 1999; Bhatnagar et al., 2009). Assumption 4 is
needed to guarantee convergence of the critic in Lemma 7,
while Assumption 5 is needed to ensure boundedness of the
actor parameters. Note that the projection in Assumption 5
is merely for technical reasons, and is usually not required
in practice. Furthermore, so long as Θ is taken to be large
enough, it will contain at least one local optimum of L(θ).
Finally, Assumption 6 is required to ensure the existence
of the gradients in Lemma 8 and guarantee that the ODEs
considered in Theorem 3 are well-posed.

Now we are ready to establish the convergence of Al-
gorithm 2, again using the machinery of two-timescale
stochastic approximation. For notational convenience, let
Dθ = diag{dπθ} ∈ R|S|×|S|, where dπθ is the sta-
tionary distribution of the Markov chain induced by pol-
icy πθ, and rθ = [rθ(s)]>s∈S ∈ R|S|, where rθ(s) =∑
a∈A πθ(a | s)r(s, a). Moreover, let P θ ∈ R|S|×|S| be the

transition probability matrix of states under policy πθ, i.e.,
P θ(s′ | s) =

∑
a∈A πθ(a | s)p(s′ | s, a) for any s, s′ ∈ S.

We first show the convergence of the critic.
Lemma 7. For a given policy πθ and for both i = r, c, with
{µin} and {νin} generated from the critic step in Algorithm
2, we have limn→∞ µin = Ji(θ) and limn→∞ νin = νiθ a.s.,

where νrθ and νcθ are the unique solutions to

Φ>Dθ[rθ − Jr(θ) · 1+ P θ(Φνrθ )− Φνrθ
]

= 0,

Φ>Dθ[cθ − Jc(θ) · 1+ P θ(Φνcθ)− Φνcθ
]

= 0.

Lemma 7 shows that the sequences {νrn} and {νcn} both
converge to the limiting point of the TD(0) algorithm with
linear function approximation, i.e., νrθ and νcθ . We note that
the resulting νrθ and νcθ , and thus the estimates Vνrθ and Vνcθ ,
do not provide an unbiased estimate of the policy gradient
given by (7), in general. However, the bias of policy gradient
estimates based on the critic step can be characterized as
follows, which is an analog of Lemma 4 in (Bhatnagar et al.,
2009).
Lemma 8. For any θ ∈ Θ, let

δθ,rn = rn − Jr(θ) + [φ(sn+1)]>νrθ − [φ(sn)]>νrθ ,

δθ,cn = cn − Jc(θ) + [φ(sn+1)]>νcθ − [φ(sn)]>νcθ ,

denote the stationary estimates of the TD-errors, let

V̄ θr (s) = E
{
r(s, a)− Jr(θ) + [φ(s′)]>νrθ

}
,

V̄ θc (s) = E
{
c(s, a)− Jc(θ) + [φ(s′)]>νcθ

}
,

where the expectation is taken over a ∼ πθ(· | s) and
s′ ∼ p(· | s, a), and let eθi =

∑
s∈S d

πθ (s)
[
∇θV̄ θi (s) −

[φ(s)]>∇θνiθ
]

for i = r, c. Then,

E
[
Jr(θ)

Jc(θ)
· ∇θ log πθ(an | sn) ·

(
δθ,rn
Jr(θ)

− δθ,cn
Jc(θ)

) ∣∣∣θ]
= ∇θL(θ) +

Jr(θ)

Jc(θ)
·
[

eθr
Jr(θ)

− eθc
Jc(θ)

]
.

Alternatively, it may be possible to use compatible features
to obtain unbiased gradient estimates (Sutton et al., 2000;
Bhatnagar et al., 2009).

Now we are ready to establish the convergence of the actor
step, and thus the actor-critic algorithm. Given any continu-
ous function f : Θ→ Rd, we define the function Γ̂(·) using
the projection operator Γ in Assumption 5 to be

Γ̂(f(θ)) = lim
η→0+

[Γ(θ + η · f(θ))− θ]
/
η.

Define eθ =
[
Jr(θ)/Jc(θ)

]
·
[
eθr/Jr(θ) − eθc/Jc(θ)

]
, and

consider the ODE

θ̇ = Γ̂(−∇θL(θ)− eθ),

with the set of asymptotically stable equilibria Z . In addi-
tion, define the ε-neighborhood ofZ asZε = {x | ‖x−z‖ ≤
ε, z ∈ Z}. We then have the following theorem.
Theorem 3. Under Assumptions 2 and 4–6, given any ε >
0, there exists δ > 0 such that, for {θn} obtained from
Algorithm 2, if supθn ‖e

θn‖ < δ, then θn → Zε a.s. as
n→∞.
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Theorem 3 establishes the almost sure convergence of the
actor-critic algorithm to a neighborhood of an equilibrium
point when linear function approximation is used for the
critic. Note that if the linear function class is expressive
enough, i.e., both the error terms eθr and eθc are small, then
the neighborhood will also be small.

5. Empirical Evaluation
In this section, we present numerical experiments that il-
lustrate the convergence results obtained in the preceding.
In addition to providing strong support for our theory, our
simulations suggest both CARVI Q-learning and CAAC
enjoy promising performance and merit further study. We
evaluate tabular CARVI Q-learning and linear critic CAAC
on eight discrete domains. These experiments are provided
to illustrate our theoretical results.

Experiment Setup. We considered two different sizes
of CAMDP for our experiments: |S| = |A| = 5 and
|S| = |A| = 10. For simplicity, we set S = {0, 1, . . . , |S|−
1},A = {0, 1, . . . , |A| − 1}. We chose four different re-
ward and cost function combinations of varying complexity,
which can be found at the top of Figure 1. Our choice
of reward and cost functions was ultimately arbitrary, but
led to experiments that exhibited instructive behavior. For
each size and reward/cost combination, we randomly gener-
ated a transition kernel P (·|s, a) that satisfies Assumption 3,
completing the specification of the corresponding CAMDP.

We implemented the algorithms almost exactly as in Algo-
rithms 1 and 2, with two key differences: we used fixed
stepsizes αt = α, βt = β, with β ≤ α, and we also intro-
duced an additional fixed learning rate µlr for the µr, µc
updates in Algorithm 2. Though this violates Assumption
2 and has the potential to lead to instability around optima,
constant stepsizes are widely adopted in practice and did
not greatly affect average performance in our experiments.
The Q function for Algorithm 1 contained an entry for each
state-action pair, providing a tabular representation satisfy-
ing Assumption 1. The policy for Algorithm 2 was chosen
to be the softmax function

πθ(ai|s) =
exp(θTψ(s, ai))∑
j exp(θTψ(s, aj))

,

where θ ∈ R|S|·|A| and ψ : S × A → R|S|·|A| maps each
state-action pair to a unique standard basis vector ek ∈
R|S|·|A|, where ek has a 1 in its kth entry and 0 everywhere
else. Note that this choice of policy satisfies Assumption 6.
We did not use a projection operation to satisfy Assumption
5, but this is also common in practice and, in any case,
the CAAC algorithm’s policy parameter iterates converged
in all our tests. Finally, since S = {0, 1, . . . , |S| − 1},
we used simple linear function approximators of the form
Vν(s) = νTφ(s) = ν0s + ν1 for the value functions in
Algorithm 2, satisfying Assumption 4. To produce the data
used in the figures below, we ran 15 independent replications

of each algorithm on each of the eight synthetic CAMDPs.
Hyperparameters were determined through experimentation
and are included in the supplementary material.

Discussion. The empirical results presented in Figure 1
demonstrate clear convergence of Algorithms 1 and 2 on
a variety of different CAMDP environments and illustrate
important features of our theoretical analysis. Recall from
the convergence results of Section 4 that Algorithm 1 is
guaranteed to converge to the globally optimal (ρ∗, Q∗),
while Algorithm 2 converges to a neighborhood of a local
optimum. This implies that the optimal ratio obtained by the
RVI Q-learning algorithm should always provide an upper
bound on the ratio obtained by the actor-critic algorithm.
This relationship clearly holds in Figure 1, as Algorithm
1 does as well as or better than Algorithm 2 in all cases.
Interestingly, our implementation of Algorithm 2 manages
to achieve performance comparable to that of Algorithm 1
on several problems, indicating that our actor-critic algo-
rithm is capable of achieving near-optimal and even optimal
performance.

Deep CARVI Q-learning. For this paper we also imple-
mented a version of CARVI Q-learning using neural net-
works for the Q function approximators and tested it on a
cost-aware modification of the classic MountainCar control
environment (Moore, 1990) provided by OpenAI’s Gym RL
testbed (Brockman et al., 2016). In these experiments we
augmented the Gym environment’s reward with a cost func-
tion providing additional information about the state space.
In the best trials, our CARVI Q-learning agent successfully
learned to solve the problem after training for only a small
number of episodes. A more detailed discussion of these
experiments can be found in the supplementary material.

The empirical results in the supplementary materials moti-
vate that deep RL algorithms based on our theory are worth
further study by showing promising performance on a novel,
cost-aware version of the familiar MountainCar problem.
The results are not intended to show that CARVI Q-learning
outperforms existing state-of-the-art algorithms on standard
benchmarks like MountainCar, which do not take costs into
account. To our knowledge, benchmark problems do not
exist for our cost-aware setting. Due to the presence of costs,
the cost-aware MountainCar environment that we developed
is distinct from classic MountainCar, and solving the cost-
aware version does not guarantee a solution to the original
MountainCar. As described in the supplementary material,
including costs alters the problem, since the agent’s objec-
tive is now to maximize expected average reward divided
by expected average cost. Figure 4 of the supplementary
materials shows that CARVI Q-learning succeeds in improv-
ing this objective. Nonetheless, Figure 3 also motivates
further study of applying our algorithms to reward shaping:
though it is solving a cost-aware problem, deep CARVI
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Figure 1. Comparison of tabular CARVI Q-learning and CAAC with a linear critic on an array of synthetic CAMDP environments. Ratios
are computed by taking the average over a moving window of 1000 timesteps. Learning curves show the mean and 90% confidence
intervals over 15 independent replications.

Q-learning demonstrates significant learning on the original
MountainCar, nearly solving it in the best trials.

6. Conclusion
In this paper, we have developed and studied two new RL
algorithms with convergence guarantees for CAMDPs. We
have also presented numerical results supporting our theory
and indicating promising performance. Important future
directions include finite-time analysis and practical applica-
tions of our algorithms.
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