
Model-Targeted Poisoning Attacks with Provable Convergence

A. Proofs
In this section, we provide the proofs of the main theorems shown in this paper. For convenience, we restate all the theorems
below while also referencing to the main paper.

Before proving the main theorem, we introduce two new definitions and several lemmas to assist with the proof.

Lemma 1. Let θ1 be a CR-attainable parameter for some CR > 0 such that R(θ1) > R(θ2). Then,

sup
x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
/
(
R(θ1)−R(θ2)

)
> CR.

Proof. Consider an attainable model θ1 and any model θ2 such that R(θ1) > R(θ2) and let D1 to be the training set that
leads the training algorithm to produce θ1. Namely,

θ1 = arg min
θ

1

|D1|
· L(θ;D1) + CR ·R(θ)

Since θ1 minimizes the total loss on D1 uniquely, we have

1

|D1|
L(θ2;D1) + CR ·R(θ2) >

1

|D1|
L(θ1;D1) + CR ·R(θ1)

By rearranging the above inequality and by an averaging argument, we have

sup
x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
≥ 1

|D1|
L(θ2;D1)− 1

|D1|
L(θ1;D1) > CR ·

(
R(θ1)−R(θ2)

)
.

Now since R(θ1) > R(θ2) we have

sup
x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
/
(
R(θ1)−R(θ2)

)
> CR.

Lemma 2. For δ > 0, let F be the family of all (CR(1 + δ))-attainable models. For any θ1 ∈ F and for all θ2 we have

sup
x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
+ CR(R(θ2)−R(θ1)) >

δ

1 + δ
· sup
x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
.

Proof. By Lemma 1 we have

sup
x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
+ CR(1 + δ)(R(θ2)−R(θ1)) > 0.

Now by adding δ supx,y
(
l(θ2;x, y)− l(θ1;x, y)

)
to both sides we have

(1 + δ)
(

sup
x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
+ CR(R(θ2)−R(θ1))

)
> δ sup

x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
which implies(

sup
x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
+ CR(R(θ2)−R(θ1))

)
>

δ

1 + δ
sup
x,y

(
l(θ2;x, y)− l(θ1;x, y)

)
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With Definition 1 and the lemmas, we are ready to prove Theorem 4.1 (restating Theorem 1, from Section 4.2):

Theorem 1. For δ > 0, if θp is a CR(1 + δ)-attainable model, after at most T steps Algorithm 1 will produce the poisoning
setDp so that the classifier trained onDc∪Dp using Eq. (1) is ε-close to θp, with respect to loss-based distance, Dl,X ,Y , for

ε =
α(T ) + L(θp;Dc)− L(θc;Dc)

T · δ/1+δ

where α(T ) is the regret of the Follow the Leader algorithm for a series of loss functions `i(·) = `(·, xi, yi) + CR · R(·)
and (xi, yi) is the ith poisoning point.

The goal of the adversary is to get ε-close to θp (in terms of the loss-based distance) by injecting (potentially few) number of
poisoned training data. The algorithm is in essence an online learning problem and we transform Algorithm 1 into the form
of standard online learning problem. Specifically, we adopt the follow the leader (FTL) framework to describe Algorithm 1
in the language of standard online learning problem. We first describe the online learning setting considered in this paper
and the notion of the regret.

Definition 3. Let L be a class of loss functions, Θ set of possible models, A : (Θ × L)∗ → Θ an online learner and
S : (Θ× L)∗ ×Θ→ L a strategy for picking loss functions in different rounds of online learning (adversarial environment
in the context of online convex optimization). We use Regret(A,S, T ) to denote the regret of A against S, in T rounds.
Namely,

Regret(A,S, T ) =

T∑
j=0

lj(θj)−min
θ∈Θ

T∑
j=0

lj(θ)

where

θi = A
(
(θ0, l0), . . . , (θi−1, li−1)

)
and li = S

(
(θ0, l0), . . . , (θi−1, li−1), θi

)
.

With the online learning problem set up, we proceed to the main proof which first describes Algorithm 1 in the FTL
framework.

Proof of Theorem 1. The FTL framework proceeds by solving all the functions incurred during the previous online opti-
mization steps, namely, AFTL((θ0, l0), . . . , (θi, li)) = arg minθ∈Θ

∑i
j=0 li(θ).

Next, we describe how we design the ith loss function li in each round of the online optimization. For the first choice, AFTL

chooses a random model θ0 ∈ Θ. In the first round (round 0), Sθp uses the clean training set Dc and the loss is set as

Sθp(θ0) = l0(θ) = L(θ;Dc) +N · CR ·R(θ).

According to the FTL framework,AFTL returns model that minimizes the loss on the clean training setDc using the structural
empirical risk minimization. For the subsequent iterations (i ≥ 1), the loss functions is defined as, given the latest model θi,
Sθp first finds (x∗i , y

∗
i ) that maximizes the loss difference between θi and a target model θp. Namely,

(x∗i , y
∗
i ) = arg max

(x,y)

l(θi;x, y)− l(θp;x, y)

and then chooses the ith loss function as follows:

Sθp
(
(θ0, l0), . . . , (θi−1, li−1), θi

)
= li(θ) = l(θ;x∗i , y

∗
i ) + CR ·R(θ).

Now we will see how FTL framework behaves when working on these loss functions at different iterations. We use Di
p to

denote the set {(x∗1, y∗1), . . . , (x∗i , y
∗
i )}. We have
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θi = AFTL((θ0, l0), . . . , (θi−1, li−1)) = arg min
θ∈Θ

i−1∑
j=0

lj(θ)

= arg min
θ∈Θ

L(θ;Dc) +N · CR ·R(θ)

+

i−1∑
j=1

l(θ;x∗i , y
∗
i ) + CR ·R(θ)

= arg min
θ∈Θ

L(θ;Dc ∪ Di−1
p ) + (N + i− 1) · CR ·R(θ)

= arg min
θ∈Θ

1

|Dc ∪ Di−1
p |

L(θ;Dc ∪ Di−1
p ) + CR ·R(θ)

This means that AFTL algorithm, at each step, trains a new model over the combination of clean data and poison data so far
(i − 1 number of poisons). Now we want to see what is the translation of the Regret(AFTL, Sθp , T ). If we can prove an
upper bound on regret, namely if we show Regret(AFTL, Sθp , T ) ≤ α(T ) for some function α, then we have

T∑
j=0

lj(θj)−
T∑
j=0

lj(θp) ≤
T∑
j=0

lj(θj)−min
θ∈Θ

T∑
j=0

lj(θ) ≤ α(T )

which implies

T∑
j=0

lj(θj)−
T∑
j=0

lj(θp) = L(θc;Dc)− L(θp;Dc) +N · CR · (R(θc)−R(θp))

+

T∑
j=1

lj(θj)−
T∑
j=1

lj(θp)

= L(θc;Dc)− L(θp;Dc) +N · CR · (R(θc)−R(θp))

+

T∑
j=1

[
max
x,y

(
l(θj ;x, y)− l(θp;x, y)

)
+ CR · (R(θj)−R(θp))

]
≤ α(T )

Therefore we have

T∑
j=1

[
max
x,y

(
l(θj ;x, y)− l(θp;x, y)

)
+ CR · (R(θj)−R(θp))

]
≤ α(T ) + L(θp;Dc)− L(θc;Dc)

+N · CR · (R(θp)−R(θc))

Based on Lemma 2, we further have

T∑
j=1

δ

1 + δ
·
(

max
x,y

l(θj ;x, y)− l(θp;x, y)
)
≤ α(T ) + L(θp;Dc)− L(θc;Dc) +N · CR · (R(θp)−R(θc))

Above inequality states that average of the maximum loss difference in all previous rounds is bounded from above. Therefore,
we know that among the T iterations, there exist an iteration j∗ ∈ [T ] (with lowest maximum loss difference) such that the
maximum loss difference of θj∗ is ε-close to θp with respect to the loss-based distance where
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ε =
α(T ) + L(θp;Dc)− L(θc;Dc) +N · CR · (R(θp)−R(θc))

T · δ/1+δ
.

Theorem 1 characterizes the dependencies of ε on α(T ) and the constant term L(θp;Dc)− L(θc;Dc) +N ·CR · (R(θp)−
R(θc)). To show the convergence of Algorithm 1, we need to ensure ε → 0 when T → +∞, which implies we need to
show α(T ) ≤ o(T ). Following remark (restating Remark 1 in Section 4.2) and its proof shows the desired convergence.

Remark 1. Sublinear regret bounds for FTL can be applied to show the convergence. Here, we adopt the regret analysis
from McMahan (2017). Specifically, α(T ) is in the order of O(log T )) and we have ε ≤ O( log T

T ) when the loss function is
Lipschitz continuous and the regularizer R(θ) is strongly convex, and ε→ 0 when T → +∞. α(T ) is also in the order of
O(log T ) when the loss function used for training is strongly convex and the regularizer is convex.

Our FTL framework formulation can utilize the existing logarithmic regret bound of adaptive FTL algorithm when the
objective functions are strongly convex with respect to some norm ‖ · ‖, as illustrated in Section 3.6 in McMahan (2017).
For clarity in presentation, we first restate their related results below.

Setting 1 (Setting 1 in McMahan (2017)). Given a sequence of objective loss functions f1, f2, ..., fi and a sequence of
incremental regularization functions r0, r1, ..., ri we consider an algorithm that selects the response point based on

θ1 = arg min
θ∈Rd

r0(θ)

θi+1 = arg min
θ∈Rd

i∑
j=1

fj(θ) + rj(θ) + r0(θ), for i = 1, 2, ...

We simplify the summation notation with f1:i(θ) =
∑i
j=1 fj(θ). Assume that ri is a convex function and satisfy

ri(θ) ≥ 0 for i ∈ {0, 1, 2, ...}, against a sequence of convex loss functions fi : Rd → R ∪ {∞}. Further, letting
h0:i = r0:i + f1:i we assume dom h0:i is non-empty. Recalling θi = arg minθ h0:i−1(θ), we further assume ∂fi(θi) is
non-empty. We denote the dual norm of a norm ‖ · ‖ as ‖ · ‖∗.
Theorem 3 (Restatement of Theorem 1 in McMahan (2017)). Consider Setting 1, and suppose the ri are chosen such that
r0:i + f1:i+1 is 1-strongly-convex w.r.t. some norm ‖ · ‖(i)·. If we define the regret of the algorithm with respect to a selected
point θ∗ as

RegretT (θ∗, fi) ≡
T∑
i=1

fi(θi)−
T∑
i=1

fi(θ
∗).

Then, for any θ∗ ∈ Rd and for any T > 0, with gi ∈ ∂fi(θi), we have

RegretT (θ∗, fi) ≤ r0:T−1(θ∗) +
1

2
‖gi‖2(i−1),∗

Corollary 2 (Formalization of FTL result in Section 3.6 in McMahan (2017)). In the FTL framework (no individual
regularizer is used in the optimization procedure), suppose each loss function fi is 1-strongly convex w.r.t. a norm ‖ · ‖, then
we have

RegretT (θ∗, fi) ≤
1

2

T∑
i=1

1

i
‖gi‖2∗ ≤

G2

2
(1 + log T )

with ‖gi‖∗ ≤ G.

Proof. The following proof is a restatement of the proof in Section 3.6 in McMahan (2017). The proof follows from
Theorem 3. Since we are considering the FTL framework, let ri(θ) = 0 for all i and define ‖θ‖(i) =

√
i‖θ‖. Observe that
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h0:i (i.e., f1:i) is 1-strongly convex with respect to ‖θ‖(i) (Lemma 3 in McMahan (2017)), and we have ‖θ‖(i),∗ = 1√
i
‖θ‖∗.

Then by applying Theorem 3, we have

RegretT (θ∗, fi) ≤
1

2

T∑
i=1

‖gi‖2(i),∗ =
1

2

T∑
i=1

1

i
‖gi‖2∗

Based on the inequality of
∑T
i=1 1/i ≤ 1 + log T and if we further assume ‖gi‖∗ ≤ G, then we can have

1

2

T∑
i=1

1

i
‖gi‖2∗ ≤

G2

2
(1 + log T )

Proof of Remark 1. We will prove the logarithmic regret bound in Remark 1 utilizing Corollary 2. First of all, our online
learning process fits into Setting 1. Specifically, we set ri(θ) = 0 for all i. For fi(θ), when 1 ≤ i ≤ N , we set
fi(θ) = 1

NL(θ;Dc) + CR · R(θ) (evenly distributing the term L(θ;Dc) + N · CR · R(θ) across N iterations) and when
i ≥ N + 1, we set fi(θ) = li−N (θ). Details of li can be referred from the proof of Theorem 1. Therefore, fi is 1-strongly
convex with respect to a norm ‖ · ‖ (the norm is determined by the regularizer R(θ) and CR). Further, l0:i(θ) = f1:N+i(θ).
In addition, the assumption that dom h0:i is non-empty in Setting 1 means when if we train a classifier on the poisoned data
set, we can always return a model and hence the assumption is satisfied. The assumption of the existence of subgradient
∂fi(θi) in Setting 1 is also satisfied by the poisoning attack scenario.

The logarithmic regret of Regret(AFTL, Sθp , T ) of our algorithm then follows from the result of RegretT (θ∗, fi) in Corol-
lary 2. Specifically, l0:i(θ) = f1:N+i(θ) is 1-strongly convex to norm ‖ · ‖i =

√
N + i‖ · ‖ and since we assume the loss

function is G-Lipschitz, we have ‖gi‖∗ ≤ G. Therefore, we have the logarithmic regret bound as:

Regret(AFTL, Sθp , T ) ≤ α(T ) =
1

2

T∑
i=1

1

i+N
‖gi‖2∗ ≤

1

2

T∑
i=1

1

i
‖gi‖2∗ ≤

G2

2
(1 + log T ) ≤ O(log T ).

We next provide the proof of the certified lower bound (restating Theorem 2 from Section 4.3):

Theorem 2. Given a target classifier θp, to reproduce θp by adding the poisoning set Dp into Dc, the number of poisoning
points |Dp| cannot be lower than

sup
θ
z(θ) =

L(θp;Dc)− L(θ;Dc) +NCR(R(θp)−R(θ))

supx,y
(
l(θ;x, y)− l(θp;x, y)

)
+ CR(R(θ)−R(θp))

.

The main intuition behind the theorem is, when the the number of poisoning points added to the clean training set is lower
than the certified lower bound, for structural empirical risk minimization problem (shown in equation 1 in the main paper),
then target classifier will always have higher loss than another classifier and hence cannot be achieved.

Proof. We first show that for all models θ, we can derive a lower bound on the number of poison points required to get θp.
Then since these lower bounds all hold, we can take the maximum over all of them and get a valid lower bound. We first
show that for any model θ, the minimum number of poisoning points cannot be lower than

z(θ) =
L(θp;Dc)− L(θ;Dc) +NCR(R(θp)−R(θ))

supx,y
(
l(θ;x, y)− l(θp;x, y)

)
+ CR(R(θ)−R(θp))

.

Let us denote the point corresponding to the infimum of the loss difference between θ and θp as (x∗, y∗) 3 Namely,
l(θ;x∗, y∗) − l(θp;x

∗, y∗) = supx,y
(
l(θ;x, y) − l(θp;x, y)

)
. Now suppose we can obtain θp with lower number of

3In practice, the data space X is a closed convex set and hence, we can find (x∗, y∗) using convex optimization. In other words, as we
saw in experiments, calculating the lower bound is possible in practical scenarios.
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poisoning points z < z(θ). Assume there is a poisoning set Dp with size z such that when added to Dc would result in θp.
We have

sup
x,y

(
l(θ;x, y)− l(θp;x, y)

)
≥ 1

|Dc ∪ Dp|
L(θ;Dc ∪ Dp)−

1

|Dc ∪ Dp|
L(θp;Dc ∪ Dp)

> CR ·
(
R(θp)−R(θ)

)
,

implying supx,y
(
l(θ;x, y)− l(θp;x, y)

)
+CR · (R(θ)−R(θp)) > 0. Based on the assumption that z < z(θ), and the fact

that supx,y
(
l(θ;x, y)− l(θp;x, y)

)
+ CR · (R(θ)−R(θp)) > 0, we have

z ·
(
l(θ;x∗, y∗)− l(θp;x∗, y∗) + CR(R(θ)−R(θp))

)
< z(θ) ·

(
l(θ;x∗, y∗)− l(θp;x∗, y∗) + CR(R(θ)−R(θp))

)
= L(θp;Dc)− L(θ;Dc) +NCR(R(θp)−R(θ)).

where the equality is based on the definition of z(θ). On the other hand, by definition of (x∗, y∗) for any Dp of size z, we
have

L(θ;Dp)− L(θp, Dp) + z · (CR ·R(θ)− CR ·R(θp)) ≤ z ·
(
l(θ;x∗, y∗)− l(θp;x∗, y∗) + CR(R(θ)−R(θp))

)
.

The above two inequalities imply that for any set Dp with size z we have

1

|Dc ∪ Dp|
L(θ;Dc ∪ Dp) + CR ·R(θ) <

1

|Dc ∪ Dp|
L(θp;Dc ∪ Dp) + CR ·R(θp).

which indicates that adding Dp poisoning points into the training set Dc, the model θ has lower loss compared to θp, which
is a contradiction to the assumption that θp has lowest loss on Dc ∪ Dp and can be achieved. Now, since θp needs to have
lower loss on Dc ∪Dp compared to any classifier θ ∈ Θ, the best lower bound is the supremum over all models in the model
space Θ.

Corollary 1. If we further assume bi-directional closeness in the loss-based distance, we can also derive the lower bound
on number of poisoning points needed to induce models that are ε-close to the target model. More precisely, if θ1 being
ε-close to θ2 implies that θ2 is also k · ε close to θ1, then we have,

sup
θ
z′(θ) =

L(θp;Dc)− L(θ;Dc)−NCR ·R∗ −Nkε
supx,y

(
l(θ;x, y)− l(θp;x, y)

)
+ CR ·R∗ + kε

.

where R∗ is an upper bound on the nonnegative regularizer R(θ).

Proof of Corollary 4.2.1. The lower bound for all ε-close models to the target classifier is given exactly as follows:

inf
‖θ′−θp‖Dl,X ,Y≤ε

sup
θ

(
z(θ, θ′) =

L(θ
′
;Dc)− L(θ;Dc) +NCR(R(θ

′
)−R(θ))

supx,y
(
l(θ;x, y)− l(θ′ ;x, y)

)
+ CR(R(θ)−R(θ′))

)
,

where inf‖θ′−θp‖Dl,X ,Y≤ε
denotes θ

′
is ε-close to θp in the loss-based distance. However, the formulation above is a

min-max optimization problem and hard to analytically compute the lower bound by plugging the lower bound formula into
Algorithm 1. Therefore, we need to make several relaxations such that the lower bound is computable. For any model θ

′

that is ε-close to θp, based on the bi-directional assumption, then θp is kε-close to θ
′
. Therefore we have,

L(θ
′
;Dc)− L(θ;Dc) = L(θ

′
;Dc)− L(θp;Dc) + L(θp;Dc)− L(θ;Dc) ≥ −Nkε+ L(θp;Dc)− L(θ;Dc)

and

sup
x,y

(
l(θ;x, y)− l(θ

′
, x, y)

)
≤ sup

x,y

(
l(θ;x, y)− l(θp, x, y)

)
+ sup

x,y

(
l(θp, x, y)− l(θ

′
;x, y)

)
≤ sup

x,y

(
l(θ;x, y)− l(θp, x, y) + kε
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and the inequalities are all based on θp being kε-close to θ
′
.

Plugging the above inequalities into the formula of supθ z(θ, θ
′) for model θ

′
, and with the assumption that 0 ≤ R(θ) ≤

R∗,∀θ ∈ Θ, we immediately have

sup
θ
z(θ, θ′) ≥ sup

θ

L(θp;Dc)− L(θ;Dc)−Nkε+NCR(R(θ
′
)−R(θ))

supx,y
(
l(θ;x, y)− l(θp;x, y)

)
− kε+ CR(R(θ)−R(θ′))

≥ sup
θ

(
L(θp;Dc)− L(θ;Dc)−Nkε−NCR ·R∗

supx,y
(
l(θ;x, y)− l(θp;x, y)

)
− kε+ CR ·R∗

= z′(θ)

)
.

Since the inequality holds for any θ
′
, we have

inf
‖θ′−θp‖Dl,X ,Y≤ε

sup
θ
z(θ, θ

′
) ≥ sup

θ
z′(θ)

and hence supθ z
′(θ) is a valid lower bound.

Remark 2 (Improving Results in Corollary 1). Assuming 0 ≤ R(θ) ≤ R∗ is not a strong assumption and actually can
be satisfied by many common convex models. For example, for SVM model with `2-regularizer (in fact, applies to any
regularizer R(θ) with R(0) = 0), we have R(θ) ≤ 1

CR
and hence R∗ ≤ 1

CR
. Moreover, we can further tighten the lower

bound by better bounding the term R(θ′)−R(θ). Specifically, R(θ′)−R(θ) = R(θ′)−R(θp)+R(θp)−R(θ) and we only
need to have a tighter upper and lower bounds on R(θ′)−R(θp) utilizing some special properties of the loss functions. For
the constant k in the bi-directional closeness, we can also compute its value for some specific loss functions. For example,
for Hinge loss, we can compute the value based on Corollary 3 in Appendix B.

B. Relating Closeness of Loss-based Distance to Closeness of Parameters
In theorem below, we show how one can relate the notion of ε-closeness in Definition 2 in the main paper to closeness of
parameters in the specific setting of hinge loss. We use this just as an example to show that our notion of ε-closeness can be
tightly related to the closeness of the models.

Theorem 4. Consider the hinge loss function l(θ;x, y) = max(1− y · 〈x, θ〉, 0) for θ ∈ Rd and x ∈ Rd and y ∈ {−1,+1}.
For θ, θ′ ∈ Rd such that ‖θ‖1 ≤ r and ‖θ′‖1 ≤ r, if θ is ε-close to θ′ in the loss-based distance, then, ‖θ − θ′‖1 ≤ r · ε.
Remark 3. In Theorem 4 above with `2-regularizer, an upper bound on the `1-norm of θ and θ′ is

√
d/CR. however, the

models that we care about in practice usually have smaller norms.

Remark 3 can be obtained by plugging 0 ∈ Rd and compare the resulting (regularized) optimization loss to the model θ∗

that minimizes the model loss.

Proof of Theorem 4. We construct a point x∗ as follows:

x∗i =

{
− 1
r , if θi > θ′i, i ∈ [d]

+ 1
r if θi ≤ θ′i, i ∈ [d]

Then we have
〈θ − θ′, x∗〉 =

1

r
· ‖θ − θ′‖1 (2)

Since ‖θ‖1 ≤ r we have
〈x∗, θ〉 ≥ −1 (3)

and similarly since ‖θ′‖1 ≤ r we have
〈x∗, θ′〉 ≥ −1. (4)
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Therefore by Inequalities equation 3 and equation 4 we have

l(θ;x∗,−1)− l(θ′;x∗,−1) = max(1 + 〈x∗, θ〉, 0)−max(1 + 〈x∗, θ′〉, 0) = 〈θ − θ′, x∗〉

which by equation 2 implies

l(θ;x∗,−1)− l(θ′;x∗,−1) =
1

r
· ‖θ − θ′‖1. (5)

Now since we know that, ∀x ∈ Rd, the loss difference between θ and θ′ is bounded by ε, the bound should also hold for the
point (x∗,−1), meaning that

1

r
· ‖θ − θ′‖1 ≤ ε.

which completes the proof.

Theorem 5. Consider the hinge loss function l(θ;x, y) = max(1− y · 〈x, θ〉, 0) for θ ∈ Rd and x ∈ Rd and y ∈ {−1,+1}.
For X = {x ∈ Rd : ‖x‖1 ≤ q} and Y = {−1,+1}, For any two models θ, θ

′
if ‖θ − θ′‖1 ≤ ε, then θ is q · ε-close to θ

′
in

the loss-based distance. Namely,
D`,X ,Y(θ, θ′) ≤ q · ε.

Proof. For any given θ and θ
′
, by triangle inequality for maximum, we have

l(θ;x, y)− l(θ
′
, x, y) = max(1− y · 〈x, θ〉, 0)−max(1− y · 〈x, θ

′
〉, 0) ≤ max(0, 〈yx, θ

′
− θ〉).

Therefore, we have
max

(x,y)∈X×Y
l(θ;x, y)− l(θ

′
;x, y) ≤ max

(x,y)∈X×Y
max(0, 〈yx, θ

′
− θ〉).

Our goal is then to obtain an upper bound of O(ε) for max(x,y)∈X×Y〈yx, θ
′ − θ〉 when ‖θ − θ′‖1 ≤ ε. To maximize

〈yx, θ′−θ〉 by choosing x and y, we only need to ensure that sign yxi = sign θi, i ∈ [d]. Therefore, based on the assumption
that 1

q‖x‖ ≤ 1 (i.e., 1
q |xi| ≤ 1, i ∈ [d]) we have

max
(x,y)∈X×Y

1

q
〈yx, θ

′
− θ〉 =

d∑
i=1

1

q
|x|i|θi − θ

′

i| ≤
d∑
i=1

|θi − θ
′

i| = ‖θ − θ
′
‖1 ≤ ε,

which concludes the proof.

Corollary 3. For Hinge loss, with Theorem 4 and Theorem 5, if θ is ε-close to θ
′
, then θ

′
is r · q · ε-close to θ.

C. Additional Experimental Results
In this section, we provide more results in addition to the results in the main paper. In Section C.1, we show the additional
results on SVM model and more results on logistic regression model are given in Section C.2. In Section C.3, we show
results on improved target model generation process, which helps to validate the implications we made (below Theorem 1)
in the main paper.

C.1. More Results on SVM model

In this section, we first compare our attack to the KKT attack regarding the convergence to the target model. Then compare
their attack success in achieving the attacker goals. Last, we provide the lower bound for inducing the model that are induced
by our attack and the KKT attack. We use the exact same setup in Section 5 in the main paper regarding the datasets and
related models.

Convergence. We show the convergence of Algorithm 1 by reporting the maximum loss difference and Euclidean distance
between the classifier induced by the attack and the target classifier. Figures 2 summarizes the results on MNIST 1–7
dataset for the target classifier of 10% error rate. The maximum number of poisoning points in the figure is obtained when
the classifier from Algorithm 1 is 0.1-close to the target classifier in the loss-based distance. Figure 3 shows the results
on Dogfish dataset with the target classifier of 10% error rate and the maximum number of poisoning points is obtained
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(a) Max Loss Difference (b) Euclidean Distance

Figure 2. SVM on MNIST 1–7 dataset: attack convergence (results shown are for the target classifier of error rate 10%). The maximum
number of poisons is set using the 0.1-close threshold to target classifier

(a) Max Loss Difference (b) Euclidean Distance

Figure 3. SVM on Dogfish dataset: attack convergence (results shown are for the target classifier of error rate 10%). The maximum
number of poisons is set using the 2.0-close threshold to target classifier

(a) Cluster 0 (b) Cluster 1 (c) Cluster 2

Figure 4. SVM on Adult dataset: test accuracy for each target model of given error rate with classifiers induced by poisoning points
obtained from our attack and the KKT attack.

when the induced classifier is 2.0-close to the target classifier. From the two figures, we observe that classifiers induced by
our algorithm steadily converge to the target classifier both in the maximum loss difference and Euclidean distance, while
the classifier induced by the KKT attack either cannot converge reliably (Figure 2) or converges slower than our attack
(Figure 3). We observe similar observations for other indiscriminate attack settings, and omitted those results here for clarity
in presentation.
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(a) 5% Error Rate (b) 10% Error Rate (c) 15% Error Rate

Figure 5. SVM on MNIST 1–7 dataset: test accuracy for each target model of given error rate with classifiers induced by poisoning points
obtained from our attack and the KKT attack.

(a) 10% Error Rate (b) 20% Error Rate (c) 30% Error Rate

Figure 6. SVM on Dogfish dataset: test accuracy of each target model of given error rate with classifiers induced by poisoning points
obtained from our attack and the KKT attack.

(a) 5% Error Rate (b) 5% Error Rate (c) 15% Error Rate

Figure 7. SVM on MNIST 1–7: lower bound computed in each iteration of running algorithm 1. The target classifier of the algorithm is
the classifier induced from our Attack. The maximum number of poisons is obtained when the induced classifier is 0.1-close to the target
classifier.

Attack Success. In Figure 4 - Figure 6, we show the attack success of our attack as the number of poisoning points gradually
increases. These figures present Table 1 and Table 2 (in the main paper) in the form of figures. The main purpose of these
figures is to highlight the online nature of our attack – in contrast to the KKT attack, our attack does not require the number
of poisoning points in advance and the attack performance in each iteration can be easily tracked. Besides the online and
incremental property, the conclusion from the figures is the same as the conclusion for SVM model in Table 1 and Table 2 –
our attack has better attack success than the KKT attack in subpopulation setting and has comparable performance in the
indiscriminate setting.
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(a) 10% Error Rate (b) 20% Error Rate (c) 30% Error Rate

Figure 8. SVM on Dogfish: lower bound computed in each iteration when running algorithm 1. The target classifier of for the algorithm is
the classifier induced from our Attack. The maximum number of poisons is obtained when the induced classifier is 2.0-close to the target
classifier.

5% Error 10% Error 15% Error

# of Poisons 1737 5458 6192
Lower Bound 856 4058.4±1.4 5031.4±4.8

Table 3. SVM on MNIST 1–7: poisoning points needed to achieve target classifiers induced from the KKT attack. Top row means number
of poisoning points used by the KKT attack. Bottom row means the lower bound computed from Theorem 2 for the target classifier, which
is the model induced by the KKT attack. All results are averaged over 4 runs, integer value in the cell means we get exactly same value
for 4 runs and others are shown with the average and standard error.

Lower Bound on Number of Poisons. The lower bounds for SVM in Table 1 and Table 2 in the main paper is obtained by
running Algorithm 1 and using the intermediate classifier θt to compute the lower bound (with Theorem 2) in each iteration,
and returning the highest lower bound computed across all iterations. In this section, we directly plot the computed lower
bound in each iteration to show the trend of the lower bound as more number of poisoning points are added. Figure 7 and
Figure 8 shows the results on MNIST 1–7 and Dogfish datasets. From the figures, we can easily observe that the peak value
of the lower bound is obtained in the middle of the attack process. Therefore, it might be the case that the computed lower
bound is already very tight, as we cannot improve the highest lower bound by running the attack for more iterations. This
implies that, it is more likely that our attack is not very optimal on these two datasets and we should seek for more efficient
data poisoning attacks. We did not show the curves for Adult dataset because the gap between the lower bound and the
number of poisoning points used by our attack is small, indicating our attack is nearly optimal.

For completeness, we also repeat the same experiment, but now with the model induced from the KKT attack as the target
model for our attack to compute its lower bound. In Table 3 and Figure 9, we report the lower bound results on MNIST 1–7
dataset. Table 3 shows the highest computed lower bound and Figure 9 plots the lower bound computed in each iteration.
The conclusion is still the same as our attack – there still exists a large gap between the lower bound and the number of
poisoning points used by the KKT attack, which indicates that the KKT attack is also not very efficient. We have similar
observations on the Dogfish dataset using the KKT attack.

C.2. More Results on Logistic Regression

In this section, we provide additional results on the logistic regression model. The experiment setup is as the same as in
Section C.1. Compared to SVM, we do not report the lower bound results for logistic regression because the maximum loss
difference found for logistic regression is an approximate solution and hence the lower bound can be invalid. In what follows,
we first discuss the impact of approximate maximum loss difference and then show results on the attack convergence and
attack success.

Approximate Maximum Loss Difference. The convergence guarantee in the paper also holds for logistic regression model
(more generally, holds for any Lipschitz and convex function with strongly convex regularizer). However, for logistic
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(a) 5% Error Rate (b) 5% Error Rate (c) 15% Error Rate

Figure 9. SVM on MNIST 1–7: lower bound computed in each iteration of running algorithm 1 when the target classifier of the algorithm
is the classifier induced from the KKT Attack. The maximum number of poisons is set using the 0.1-close threshold to KKT induced
classifier.

(a) Max Loss Difference (b) Euclidean Distance

Figure 10. Logistic regression model on Adult: attack convergence (results shown are for the first subpopulation, Cluster 0). The maximum
number of poisons is set using the 0.05-close threshold to target classifier.

regression, we may not be able to efficiently search for the globally optimal point with maximum loss difference (Line
4 in Algorithm 1) because the difference of two logistic losses is not concave. Therefore, we adopt gradient descent
strategy, using the Adam optimizer (Kingma & Ba, 2014) to search for the point that (approximately) maximizes the loss
difference. This is in contrast to the SVM model, where the difference of Hinge loss is piece-wise linear and we can
deploy general (convex) solvers to search for the globally optimal point in each linear segment (Diamond & Boyd, 2016;
Gurobi Optimization, Inc., 2020). However, as will be demonstrated next, poisoning points with approximate maximum
loss difference can still be very effective. More formally, if the approximate maximum loss difference l̂ found from local
optimization techniques is within a constant factor from the globally optimal value l∗ (i.e., l̂ ≥ αl∗, 0 < α < 1), then we
still enjoy similar convergence guarantees. A similar issue of global optimality also applies to the KKT attack (Koh et al.,
2018), where the attack objective function is no longer convex for logistic regression models, and therefore, we also utilize
gradient based technique to (approximately) solve the optimization problem and present the results below.

Convergence. The results results for logistic regression on Adult, MNIST 1–7 and Dogfish datasets are show in Figure 10,
Figure 11 and Figure 12 respectively. For the Adult dataset, we show the convergence on the first subpopulation (cluster 0).
For MNIST 1–7 and Dogfish, similar to Section C.1, we show the convergence on the target models of 10% error rates. All
results show that, our attack steadily converges to the target model while the KKT attack fails to have a reliable convergence.
Similar observations are also found in other settings (i.e., different clusters for the subpopulation setting and different target
models in the indiscriminate settings).

Attack Success. The attack success results on Adult, MNIST 1–7 and Dogfish datasets are show in Figure 13, Figure 14
and Figure 15 respectively. These figures present the logistic regression results in Table 1 and Table 2 (in the main paper) in
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(a) Max Loss Difference (b) Euclidean Distance

Figure 11. Logistic regression model on MNIST 1–7 dataset: attack convergence (results shown are for the target classifier of error rate
10%). The maximum number of poisons is set using the 0.1-close threshold to target classifier.

(a) Max Loss Difference (b) Euclidean Distance

Figure 12. Logistic regression model on Dogfish: attack convergence (results shown are for the target classifier of error rate 10%). The
maximum number of poisons is set using the 1.0-close threshold to target classifier.

the form of figures. All the results show that our attack is much more effective than the KKT attack on logistic regression
models, and in fact, the KKT attack cannot effectively poison the models in most cases. In addition, our attack runs in an
online fashion and we can easily track the attack performance in each iteration.

(a) Cluster 0 (b) Cluster 1 (c) Cluster 2

Figure 13. Logistic regression model on Adult: test accuracy for each subpopulation with classifiers induced by poisoning points obtained
from our attack and the KKT attack.
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(a) 5% Error Rate (b) 10% Error Rate (c) 15% Error Rate

Figure 14. Logistic regression model on MNIST 1–7: test accuracy for each target model of given error rate with classifiers induced by
poisoning points obtained from our attack and the KKT attack.

(a) 10% Error Rate (b) 20% Error Rate (c) 30% Error Rate

Figure 15. Logistic regression model on Dogfish: test accuracy of each target model of given error rate with classifiers induced by
poisoning points obtained from our attack and the KKT attack.

C.3. Improved Target Generation Process

The original heuristic approach in Koh et al. (2018) works by finding different quantiles of training points that have higher
loss on the clean model, flipping their labels, repeating those points for multiple copies, and adding them to the clean training
set. We find that, in the process of trying different quantiles and copies of high loss points, if we also adaptively update the
model where the high loss points are found (instead of just always fixing it to be the clean model), we can generate a target
classifier that still satisfies the attack objective but with much lower loss on the clean training. Such an improved generation
process can significantly reduce the number of poisoning points needed to reach the same ε-closeness (with respect to the
loss-based distance) to the target classifier, consistent with the claims in Theorem 1 in the main paper. In addition, we find
that, if we compare our attack with improved generation process to the KKT attack with the original generation process (Koh
et al., 2018), we can also reach the desired target error rate much faster using our attack.

Target Models Test Acc (%) Loss on Clean Set # of Poisons
Original Improved Original Improved Original Improved

5% Error 94.0 94.9 2254.6 1767.1 2170 1340
10% Error 88.8 88.9 4941.0 3233.1 5810 2432
15% Error 83.3 84.5 5428.4 4641.6 6762 3206

Table 4. SVM on MNIST 1–7: comparison of two target generation methods on number of poisoning points used to reach 0.1-closeness
to the target. Original indicates the original target generation process from Koh et al. (2018). Improved denotes our improved target
generation process with adaptive model updating.
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(a) 5% Error Rate (b) 10% Error Rate (c) 15% Error Rate

Figure 16. SVM on MNIST 1–7: test accuracy with classifiers obtained from our attack and KKT attack. Target model for KKT attack
is generated from the original generation process and target model for our attack is generated from the improved generation process.
Maximum number of poisoning points is obtained by running our attack with target model generated from the original process and
resultant classifier is 0.1-close to the target.

Implication of Theorem 1. We first empirically validate the implication of Theorem 1 in the main paper: to obtain the same
ε-closeness in loss-based distance, a target classifier with lower loss on the clean training set Dc requires fewer poisoning
points. Therefore, when adversaries have multiple target classifiers that satisfy the attack goal, the one with lower loss on
clean training set is preferred.

We run experiments on the SVM and the MNIST 1–7 dataset. For both the original and improved target generation methods,
we generate three target classifiers with error rates of 5%, 10% and 15%. The original target classifier generation method
returns classifiers with test accuracy of 94.0%, 88.8% and 82.3% respectively (also used in the previous experiments on
indiscriminate attack). The improved target generation process returns target classifiers with approximately the same test
accuracy (94.9%, 88.9% and 84.5%). However, for classifiers of same error rate returned from the two target generation
processes, the improved generation method produces classifiers with significantly lower loss compared to the original one.

Table 4 compares the two target generation approaches by showing the number of poisoning points needed to get 0.1-close
to the corresponding target model of same error rate. For example, for target models of 15% error rate, the model from the
original approach has a total clean loss of 5428.4 while our improved method reduces it to 4641.6. With the reduced clean
loss, getting 0.1-close to the target model generated from our improved process only requires 3206 poisoning points, while
reaching the same distance from the target model produced by the original method would require 6762 poisoning points, a
more than 50% reduction.

End-to-End Comparison. Figure 16 compares the two attacks in an end-to-end manner in terms of their attack success
(show as the overall test accuracy after poisoning). With the improved target generation process, our attack can achieve the
desired error rate much faster than the KKT attack with the original process. For the KKT attack with target model generated
from the original process, we determine the target number of poisoning points by running our attack with 0.1-closeness
as the stopping criteria and the model generated from the original process as the target classifier. To run our attack with
improved generation process, we terminate the algorithm when the size of the poisoning points is same as the number of
poisoning points used by the KKT attack with original process. Such a termination criteria helps us to ensure that both
attacks use same number of poisoning points and can be compared easily. We also evaluate the KKT attack on fractions of
the maximum target number of poisoning points (0.2, 0.4, 0.6, and 0.8), as in the previous experiments. The accuracy plot
shows that our attack (with improved target model) can achieve the desired error rate (e.g., 10% and 15%) much faster than
the KKT attack (with original target model). For example, for the attacker objective of having 15% error rate, with target
classifier of error rate of 15% error, our attack can achieve the attacker goal much faster than the KKT attack.

D. Comparison of Model-Targeted and Objective-Driven Attacks
Although model-targeted attacks work to induce the given target classifiers by generating poisoning points, the end goal
is still to achieve the attacker objectives encoded in the target models. In terms of the comparison to the objective-driven
attacks, we first demonstrate that objective-driven attacks can generate a target model, which can then be used as the target
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Attacker Objectives 5% Error 10% Error 15% Error

Label-Flipping Attack 6,510 8,648 10,825
Our Attack 1,737 5,458 6,192

Table 5. Generate target classifiers using objective-driven label-flipping attacks and achieve similar attacker objectives using our attack
with fewer poisoning points. The attacker objectives are to increase the test error to certain amounts (i.e., 5%, 10% and 15%). The target
classifiers to our attack are generated by running the label-flipping attacks with given attacker objectives.

for a model-targeted attack,. This results in an attack that achieves the desired attacker objective with fewer poisoning points.
Then, we show that to have competitive performance against state-of-the-art objective-driven attacks (e.g., the min-max
attack (Steinhardt et al., 2017)), the target classifiers should be generated carefully. The attacker objectives of the target
classifiers can be achieved efficiently with model-targeted attacks using fewer poisoning points. Although the investigation
of a systematic approach to generate such “desired” classifiers is out of this paper’s scope, we have some empirical evidence
in the indiscriminate setting. Specifically, we find that target classifiers with a lower loss on the clean training set and higher
error rates (higher than what are desired in the attacker objectives) often require fewer poisoning points to achieve the
attacker objectives. We conduct the following experiments on the MNIST 1–7 dataset.

Target Models Generated from Objective-driven Label-Flipping Attacks. In our experiments, we generate the target
classifiers from the label-flipping based objective-driven attacks. Although these label-flipping attacks are effective, they
need too many poisoning points to achieve their objective. Then, we deploy our attacks to achieve the same objective with
fewer poisoning points. Table 5 shows the number of poisoning points used by the label-flipping attack described in Koh
et al. (2018) and our model-targeted attack to achieve desired attack objectives of increasing the test error to a certain amount.
We can see that using our attack, the number of poisoning points used by label-flipping attacks can be saved up to 73%.

Comparison to Objective-driven Attacks. Still using target classifiers generated from label-flipping attacks, we show that
our attack can outperform existing objective-driven attacks (including the state-of-the-art min-max attack (Steinhardt et al.,
2017)) at reducing the overall test accuracy, under the same amount of poisoning points. We still experiment on the SVM
model and the MNIST 1–7 dataset. Since we aim to produce target classifiers with lower loss on clean training set and
higher error rates, we adopt the improved target model generation process described in Section C.3. This process helps to
reduce the loss on clean training set. Using this method, we generate a classifier of 15% error rate. With the target model,
we terminate our attack when a fixed number of poisoning points are generated, and then compare the attack effectiveness to
existing objective-driven attacks using same number of poisoning points. We compare the test accuracies of all attacks at
poisoning ratios of 5%, 15%, and 30%. We also modified the baseline objective-driven attacks slightly for a fair comparison:

1. The min-max attack (Steinhardt et al., 2017) and the gradient attack (Koh & Liang, 2017) consider evading defenses
during the attack process, which degrades their effectiveness. We remove those defenses in our evaluation.

2. Since the generated poisoning points should be valid normalized images in [0,1] range (need not be semantically
meaningful), we clip their generated poisoning points into the [0,1] range.

3. The attacks by Biggio et al. (2011); Demontis et al. (2019) use validation data to compute gradients. However, our
splits only contain training and testing data. To avoid leaking test-data information or using gradients from data already
used to train the model, we create a 70:30 train-validation split using the original training data. The adversary uses this
new 70% of the training data to train its models, while the remaining 30% is reserved for gradient computations. The
victim then trains the model on the mixture of the original (100%) training data and the generated poisoning points.

We note that the gradient attacks in Biggio et al. (2011); Demontis et al. (2019) are extremely slow to run on
MNIST 1–7 dataset (when we use the full training set) because the poisoning points are generated sequentially, and
the computational cost in each step of generation is very high. Therefore, we choose to improve the attack efficiency by
repeating each generated poisoning point N times and produce the desired number of poisoning points faster. We set
N = 10 for the attack on Logistic regression by Demontis et al. (2019) and N = 100 for the attack on SVM by Biggio
et al. (2011) (still took 3 days to finish for the linear SVM model). For the attack by Demontis et al. (2019), we compared
the setting of N = 10 to the default setting of N = 1 for poisoning ratios of 5% and 10% 4, and did not find a significant

4We did not compare N = 1 and N = 10 for larger poisoning ratios because the N = 1 case will take too long to finish.
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Attack/Model 5% Poison Ratio 15% Poison Ratio 30% Poison Ratio

Min-Max Attack (Steinhardt et al., 2017)/SVM 97.0% 93.9% 92.9%
Biggio et al. (2011)/SVM 98.7% 98.2% 96.8%
Koh & Liang (2017)/SVM 98.7% 98.0% 97.2%

Our Attack/SVM 96.2% 88.6% 84.3%

Demontis et al. (2019)/LR 98.2% 97.6% 95.7%
Our Attack /LR 96.5% 89.1% 83.1%

Table 6. Comparison of our attack to objective-driven attacks with different poisoning ratios. The target model of our attack is of 15%
error rate. The poisoning ratio is with respect to the full training set size of 13,007. Each cell in the table denotes the test accuracy of the
classifier after poisoning. The clean test accuracies of SVM and LR models are 98.9% and 99.1% respectively.

SVM Logistic Regression
Cluster 0 Cluster 1 Cluster 2 Cluster 0 Cluster 1 Cluster 2

Our Attack 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Label-Fipping 31.4% 2.8% 15.5% 15.9% 14.0% 19.1%

Table 7. Comparison of our attack to the label-flipping based subpopulation attack. The table compares the test accuracy on subpoplation
of Adult dataset under same number of poisning points. The number of poisons are determined when our attack achieves 0% test accuracy
on the subpopulation. Cluster 0-3 in the logistic regression and SVM models denote different clusters. For logistic regression, number of
poisoning points for Cluster 0-3 are 1,575, 1,336 and 1,649 respectively. For SVM, number of poisoning points for Cluster 0-3 are 1,252,
1,268 and 1,179 respectively.

degradation in the attack effectiveness when N = 10 (the attack effectiveness drops by 0.3% at most). The size of the
training dataset might explain this: the impact of just one data point in nearly 13,000 (and even more, once the poison data
generation starts) might not vary significantly across iterations. Thus, adding multiple copies of the same poison data is
a fair approximation, giving a significant speedup in the runtime. We did not repeat this comparison for the attack from
Biggio et al. (2011) because running it for the case of N = 1 is simply infeasible.

The results are summarized in Table 6. From the table, we observe that, compared to the existing objective-driven attacks,
our attack reduces more on the test accuracy under the same poisoning budget, and the gap becomes larger when the
poisoning ratio increases. At 5% of poisoning ratio, our attack outperforms all baseline attacks by at least 0.8% in terms of
the reduced test accuracy. This gap increases to at least 8.6% at 30% of poisoning ratio.

Comparison to the Label-Flipping Subpopulation Attack. We also compare our attack to the label-flipping subpopulation
attack from Jagielski et al. (2019). This attack works by randomly sampling a fixed number (constrained by the poisoning
budget) of instances from the training data of the subpopulation, flipping their labels, and then injecting them into the
original training set. Although this attack is very simple, it shows relatively high attack success when the goal is to cause
misclassification on the selected subpopulation (Jagielski et al., 2019).

To be consistent with our experiments in Section 5, we assume the attacker objectives are still to induce a model that has 0%
accuracy on a selected subpopulation. We selected the three subpopulations with the highest test accuracy for each of the
SVM and logistic regression models (all end up having 100% accuracy). In indiscriminate setting, we already observed
that models with lower loss on clean training set and larger overall error rates can achieve attacker objectives of smaller
error rates faster. However, to leverage this observation into our subpopulation experiments, one challenge is the attacker
objective is to have 100% test error on the subpopulation, but no classifiers can have test errors larger than 100%. To tackle
this, we select models with larger loss on training samples from the subpopulation, hoping that this process is “equivalent”
to selecting target models with larger error rates (on subpopulation) than 100%. To this end, we heuristically select targeted
models that 1) satisfy the attacker objective, 2) have larger loss on the training data from the subpopulation, and 3) have
relatively low loss on the entire clean training set. Empirically, this selection strategy works better than the original target
generation process (as done in Section 5) in achieving the attacker objectives. A more detailed and systematic investigation
of the target model search process is left as future work.

To check the effectiveness of achieving the attacker objectives, we first run our attack and terminate when our attack achieves
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the attacker objective to have 0% accuracy on the selected subpopulation, and record the number of poisoning points used.
Then, we run the random label-flipping attack with the same number of poisoning points. For both attacks, we report the
final test accuracies of the resulting models on the subpopulations.

The attack comparisons on different subpopulation clusters and models are given in Table 7. Results in the table compare our
attack and the label-flipping attack over the three distinct subpopulation clusters for the SVM and logistic regression models.
Across all settings, our attack is considerably more successful. The number of poisoning points needed to reach the 0%
accuracy goal is small compared to the entire training set size (e.g., the maximum poisoning ratio is only 10.5%). Thus, the
gap between our attack and the label-flipping attack is relatively small. For example, for Cluster 1 in the SVM experiment,
the label-flipping attack is also quite successful and reduces the test accuracy to 2.8% (our attack achieves 0% accuracy).
We believe the success of label-flipping attack is due to the following two reasons. First, label-flipping in the subpopulation
setting can be successful because smaller subpopulations show some degree of locality. Hence, injecting points (from the
subpopulation) with flipped labels can strongly impact the selected subpopulation. This is confirmed by empirical evidence
that increasing the subpopulation size (i.e., reducing its locality) gradually reduces the label-flipping effectiveness. The
attack becomes much less effective in the indiscriminate setting (i.e., subpopulation is the entire population). Second, the
Adult dataset only contains 57 features, where 53 of them are binary features with additional constraints. Therefore, the
benefit from optimizing the feature values is less significant as the optimization search space of our attack is fairly limited.

E. Attacks on Deep Neural Networks
The theoretical guarantees of our proposed algorithm require convexity of the model loss. They do not hold for non-convex
models such as deep neural networks (DNN). However, we hypothesize that our method of picking poisoning points
incrementally might still perform well on non-convex models. Here, we report some preliminary results attacking DNNs.

Several poisoning attacks have been proposed for DNNs. However, all attacks with publicly available source code focus on
causing misclassification for a given single instance (Shafahi et al., 2018; Zhu et al., 2019; Huang et al., 2020; Geiping
et al., 2021), while we are more interested in the practical sub-population setting. Therefore, we use a random label-flipping
attack as our baseline in the sub-population setting. The label-flipping attack selects a random image from the dataset in the
targeted sub-population class without replacement and changes its label.

For these experiments, we use the MNIST 1–7 dataset and conduct sub-population poisoning attacks where the targeted
sub-population is the class 1 (so, the adversary’s goal is to have test images that would be correctly classified as 1 digits,
classified as 7s). We compare the poisoning effectiveness in reducing the classification accuracy for the 1 class of our
algorithm to the random label-flipping attack. We implement our attack for DNNs with the cross-entropy loss as our loss
function. We conduct experiments poisoning a non-convex three-layer neural network with non-linear activation functions, a
multilayer perceptron (MLP).5

We observe that direct implementations of these poisoning attacks do not work. Via experiments to understand the kind of
randomness introduced by varying hyper-parameters like batch-size and weight-initialization, we take steps to remove these
sources of variation (Section E.1). Then, we describe modifications to our attack to make it work on DNNs (Section E.2).
Finally, we show results with the modified attack and how it performs well when one of these assumptions is relaxed
(Section E.3), giving us some hope for the possibility of relaxing other assumptions as well.

E.1. Simplifying the Setting

Both our attack and the label-flipping attack on DNNs are observed to be highly sensitive to hyper-parameters like batch-size,
weight-initialization, and even randomness induced by the ordering of batches across epochs. As shown in Figure 17a, for
the same initialization for model weights and batch-size, different runs of the label-flipping attack with the same poisoning
ratio lead to wildly varying error rates. Figure 17b shows that, even when we only vary the model weight-initialization and
keep other hyper-parameters fixed, attack effectiveness fluctuates significantly across different random weight initializations.

To better compare our attack with the label-flipping baseline reliably, we design our experiments by not batching the
data (i.e. batch-size is the same as dataset size). The target model θp is trained with the label-flipping attack with fixed

5We also tested our attack on convolutional neural networks with all modifications to our attack (described below) that work well on
the MLP models. However, its performance is unstable and exhibits erratic accuracy curves despite the smooth loss convergence. We
leave exploring loss functions and tuning the attack to make it work for convolutional neural networks as part of future work.
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(a) Fixed Model Initialization, Varying Batch-sizes. (b) Fixed Batch-size, Varying Model Initialization.

Figure 17. Variance of Poisoning Attacks. Each figure shows the test accuracy on sub-population for the label-flipping attack (same
poisoning ratio: 0.5) on MNIST 1–7, with varying hyper-parameters of batch-size and model-weight initializations. Each setting is
repeated four times, and each dot shows the result for one run. The attack is highly unstable, with large variations even when everything
other than either the batch size or the weight initializations is changed.

(a) Maximum Loss Difference (b) Test Accuracy on Target Sub-population

Figure 18. Maximum loss difference and test accuracy on target sub-population across iterations for our algorithm. Data is not batched,
and same weight-initializations for θt, θp are used. The loss drops sharply within the first few iterations, but the accuracy fluctuates within
a very small window, even when |Dp| ∼ 0.5|Dc| is added.

weight-initialization and no batching. Additionally, we ensure that the weight-initialization used to generate the intermediate
model θt in each iteration of our attack is the same as the weight-initialization to train the target model θp. Using a different
weight initialization in each round of retraining interferes with model convergence and leads to unstable results. This way,
we can substantially eliminate randomness introduced by batching data and different model weight initializations.

E.2. Modifying Attack for DNNs

Despite removing batching and setting the weight-initialization for θp and θt to be the same, we observe that our attack still
fails. Even though the loss difference seems to converge, the model preserves its accuracy on the target sub-population;
dropping by less than 2% across the iterations even up to a poisoning rate of 0.55 (Figure 18). Although we do not understand
what causes this behavior, we speculate that it is due to a disconnect in the attacker’s objective and the loss-function used.

To mitigate this problem, we modify the algorithm to constrain the search space of possible poisoning points to a predefined
set of candidates. By iterating over all the candidate points, the algorithm picks the most promising poisoning point (i.e.,
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(a) Maximum Loss Difference (b) Euclidean Distance (c) Test Accuracy on Target Sub-population

Figure 19. Maximum loss difference and test accuracy on target sub-population across iterations for our algorithm. The optimization
process is constrained to select points from the candidate set. As visible, both the loss and Euclidean distance converges to zero smoothly.
Additionally, our attack outperforms label-flip attack by a significant margin. We observed consistent results across several seeds.

Figure 20. Poisoning attack effectiveness when the adversary does not know the victim’s weight initializations (ten different seeds tried
per experiment). The error bars show 68% confidence intervals (standard error).

with maximum loss difference between θt and θp) from this candidate set. To define the candidate set, we construct two
non-overlapping, equal-sized stratified splits of the dataset. The first one is used for training purposes (Dc), while the second
one is used as the candidate set for (x∗, y∗) optimization. We add an additional constraint on the candidate set that enforces
the selection of points from the target sub-population but are assigned an incorrect label (i.e., the candidate set consists of
digit 7, and the assigned labels are 1.).

E.3. Results

We start with the case where the weight-initialization used by the victim to train its models is known to the adversary. This
setting is unrealistic, but shows how effective the attack could be when the adversary has full knowledge of everything about
the victim’s training process, including the random seeds used. With the constraints described in Section E.2, our attack
consistently outperforms the label-flip attack by a large margin, as shown in Figure 19. For these experiments, we observe
similar convergence and attack success rates between adding just one copy of (x∗, y∗) per iteration and adding as many as
ten copies, and with at most ten copies, we can reduce attack execution time by nearly 90%.

Next, we evaluate the attack in a more realistic setting where the adversary does not know the weight-initializations used in
training the victim model. As shown in Figure 20, we observe a large variation in the performance of trained models across
different initial model weights, and the attack is not as effective as it can be when the initialization is known. The variance
in attack performance is because these models are unstable to varying weight-initializations (Figure 17b) — some initial
weights are biased towards having larger errors on the target sub-population, making it possible to poison these models with
fewer points. Even in this setting, our model-targeted poisoning attack consistently outperforms the label-flipping attack.


