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A. Proof of Lemma 4
Proof. (The first equation) Let Z :=

[
z1 z2 . . . zN

]
∈

RD,N , and Z = UΣV > be the singular value decompo-
sition of Z. Regarding the Gramian matrix, we can obtain
the singular value decomposition ofG as follows.

G = Z>Z

= V Σ>U>UΣV >

= V Σ2V >.

(37)

Hence, we have ‖G‖∗ = Tr
(
Σ2
)
. Therefore, we have that

‖G‖∗ = Tr
(
Σ2
)

= Tr
(
Σ>ΣV >V

)
= Tr

(
V ΣU>UΣV >

)
= Tr

(
Z>Z

)
= Tr(G)

=

N∑
n=1

[G]n,n

=

N∑
n=1

z>n zn

=

N∑
n=1

(∆RD (0, zn))
2
,

(38)

which completes the proof of the first equation.

(The second equation) For any i, j ∈ [N ], we have that

[G]i,j = z>i zj

≤ ‖zi‖2‖zj‖2
≤ max

{
‖zi‖22, ‖zj‖

2
2

}
≤ max
n∈[N ]

‖zn‖22

= max
n∈[N ]

[G]n,n

≤ max
n∈[N ]

(∆RD (0, zn))
2
,

(39)

where the first inequality holds from the
Cauchy Schwartz inequality. Hence, we have
maxi,j∈[N ] [G]i,j ≤ maxn∈[N ] [G]n,n. Conversely,
obviously, maxi,j∈[N ] [G]i,j ≥ maxn∈[N ] [G]n,n is
valid. Therefore, we have that maxi,j∈[N ] [G]i,j =
maxn∈[N ] [G]n,n. Since the left hand side equals ‖G‖max,

and right hand side equals maxn∈[N ] (∆RD (0, zn))
2, we

have that ‖G‖max = maxn∈[N ] (∆RD (0, zn))
2, which

completes the proof of the second equation.

B. Proof of Lemma 6
Proof. Define

µ := min {∆∗(i, j)|i 6= j},

ξ := min

{∣∣∣∣1− ∆∗(i, j)

∆∗(i′, j′)

∣∣∣∣
∣∣∣∣∣(i, j), (i′, j′) ∈ [N ]× [N ],

i 6= j, i′ 6= j′, (i, j) 6= (i′, j′)

}
.

(40)

We assume that µ, ξ > 0 holds as in the discussion in
Section 2.1. Let ε := 1

3ξ. Let ν, ηmax be the constants
determined on the weighted graph defined by (Sarkar,
2011). Let τ := max

{
ηmax,

ν(1+ε)
µε , 1

µε

}
. Then by the

(1 + ε)-distortion algorithm, we can obtain representations
z1, z2, . . . ,zN ∈ L2 such that

(1− ε)τ∆∗(i, j) < ∆L2(zi, zj) ≤ (1 + ε)τ∆∗(i, j),
(41)

for any i, j ∈ [N ]. Here, the following is valid for
i, j, i′, j′ ∈ [N ]: if ∆∗(i, j) > ∆∗(i′, j′), then

∆L2(zi, zj)−∆L2(zi′ , zj′)

≥ τ(1− ε)∆∗(i, j)− (1 + ε)∆∗(i′, j′)

≥ τ∆∗(i, j)

[
(1− ε)− (1 + ε)

∆∗(i′, j′)

∆∗(i, j)

]
≥ τ∆∗(i, j)

[(
1− 1

3
ξ

)
−
(

1 +
1

3
ξ

)
(1− ξ)

]
> τ∆∗(i, j)

1

3
ξ

≥ τµε
≥ 1.

(42)

C. Proof of Lemma 7
Proof. Let c be the center of the 6-star subgraph and
n1, n2, . . . , n6 be its neighborhood. Define ∆∗m :=
∆∗(c, nm). LetB∆(z) be an open ball of radius ∆ centered
at z in R2. Assume that zc, zn1

, . . . ,zn6
∈ R2 satisfies

(2) and define ∆m := ∆R2(zc, znm). For m,m′ such that
∆∗m < ∆∗m′ , znm ∈ B∆m′ (zc) and znm /∈ B∆m′ (znm′ )
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are necessary. Hence, ∠znmzcznm′ > 60◦. Thus, seg-
ments zczn1 , zczn2 , . . . ,zczn6 partition 360◦ into 6 an-
gles larger than 60◦, which is contradiction.

D. Proof of Proposition 8
Proof. If a, b, c > 0 and assume x > 0, then we have that

ax2 + bx < c⇔ 0 < x < −b+
√
b2 + 4ac. (43)

We are going to find S that satisfies

O

Lφ(expR)
2

√N lnN

S
+
N lnN

S
+

√
ln 2

δ

S


< 2α

V R2

min

|T |
,

(44)

where Lφ = 1. This corresponds to x = 1√
S

,

a = O(N lnN), b = O
(√

N lnN +
√

ln 2
δ

)
, c =

O

(
2αV R2

min

(expR)2|T |

)
. We can formulate the condition as fol-

lows:

0 <
1√
S
< −b+

√
b2 + 4ac

⇔ S >
1(

−b+
√
b2 + 4ac

)2 . (45)

Here, we have that
1(

−b+
√
b2 + 4ac

)2
=

(
b+
√
b2 + 4ac

)2
(4ac)

2

≤
(
b+ b

(
1 + 2ac

b2

))2
(4ac)

2

=

(
b
(
2 + 2ac

b2

)
4ac

)2

=

(
b

2ac
+

1

2b

)2

.

≤
(

b

2ac
+

1

2b

)2

.

= O

(
(expR)

2|T |
αV R2

minN lnN

(
√
N lnN +

√
ln

2

δ

)

+
1

√
N lnN +

√
ln 2

δ

)2

,

(46)

which completes the proof. Here, the first inequality holds
since

√
1 + y ≤ 1 + 1

2y.

E. Proof of Lemma 9
Proof. The statement (iv) follows from (ii) and (iii). There-
fore, we prove (i)-(iii) in the following.

(Sufficiency) (i) Assume that (zn)
N
n=1 ∈

(
LD
)N

is valid.
For d = 0, 1, . . . , D and n = 1, 2, . . . , N , we denote the
d-th element of zn ∈ LD by zd,n, and for n = 1, 2, . . . , N ,
we define z−n ∈ R1 and z+

n by

z−n :=
[
z0,n

]
, z+
n :=

[
z1,n z2,n · · · zD,n

]>
. (47)

Also, we define Z− ∈ R1,N and Z+ ∈ RD−1,N by

Z− :=
[
z−1 z−2 · · · z−N

]
,

Z+ :=
[
z+

1 z+
2 · · · z+

N

]
,

(48)

respectively. Define L−,L+ ∈ RN,N by L− :=(
Z−
)>
Z− and L+ :=

(
Z+
)>
Z+, respectively. For all

x ∈ RN , x>L−x =
(
L−x

)>
L−x ≥ 0. Therefore, we

have L− � O. Likewise, L+ � O is valid, and thus we
obtain (a). Because Z− ∈ R1,N and Z+ ∈ RD−1,N , we
have rankL− = 1 and rankL+ ≤ D, respectively. As
zn ∈ LD, z0,n ≥ 1 is valid, rankL− 6= 0, and therefore
rankL− = 1. Thus, we have (b). If i, j ∈ [N ], then the
following inequality holds:[
L+ −L−

]
i,j

=
(
z+
i

)>
z+
j −

(
z−i
)>
z−j

=
(
z+
i

)>
z+
j −

√
1 +

(
z+
i

)>(
z+
i

)√
1 +

(
z+
j

)>(
z+
j

)
=
(
z+
i

)>
z+
j −

∥∥∥∥[1 (
z+
i

)>]>∥∥∥∥
2

∥∥∥∥[1 (
z+
j

)>]>∥∥∥∥
2

≤
(
z+
i

)>
z+
j −

[
1
(
z+
i

)>][
1
(
z+
i

)>]>
= 1,

(49)

where the inequality comes from the Cauchy Schwarz in-
equality, and the equality holds if i = j. These imply (c)
and (d), which completes the proof of the sufficiency in (i).

(ii) Assume (zn)
N
n=1 ∈ BR, that is, for all n ∈ [N ],

∆LD (z0, zn) ≤ R is valid. Since BR ⊂ LD, condi-
tions (a)-(d) holds true from the above discussion. Since
∆LD (z0, zn) = arcosh (−〈z0, zn〉M) = arcosh (z0,n) =

arcosh

(√
1 +

(
z+
n

)>
z+
n

)
, the followings are valid:

(
z−n
)>
z−n = (z0,n)

2
= cosh2 ∆LD (z0, zn),(

z+
n

)>
z+
n = 1 + cosh2 ∆LD (z0, zn) = sinh2 ∆LD (z0, zn).

(50)
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Therefore, we have

[
L−
]
n,n

=
(
z−n
)>
z−n ≤ cosh2R[

L+
]
n,n
, =

(
z+
n

)>
z+
n ≤ sinh2R.

(51)

For all i, j ∈ [N ],

[
L−
]
i,j

=
(
z−i
)>
z−j

≤
∥∥z−i ∥∥2

∥∥z−j ∥∥2

≤ max
n=i,j

{(
z−n
)>
z−n

}
≤ max
n∈[N ]

{(
z−n
)>
z−n

}
≤ cosh2R

(52)

is valid, where the first inequality is from the Cauchy
Schwarz inequality. Thus, we have

∥∥L−∥∥
max
≤ cosh2R,

and likewise, we also have
∥∥L+

∥∥
max
≤ sinh2R, which

imply condition (e). We have proved the sufficiency in (ii).

(iii) If (zn)
N
n=1 ∈ B

ρ
R, since BρR ⊂ BR, conditions

(a)-(e) follows from the above discussion. Let Z− =

U−Σ−
(
V −

)>
be the singular value decomposition of

Z−, where U ∈ R1,1,V ∈ RN,N are orthogonal and
Σ− ∈ R1,N is diagonal. The singular decomposition of
L− is given by

L− = V −
(
Σ−

)>(
U−

)>
U−Σ−

(
V −

)>
= V −

(
Σ−

)>
Σ−

(
V −

)>
,

(53)

where the diagonal elements of
(
Σ−

)>
Σ− indicate the

singular values ofL−. Hence,
∥∥L−∥∥∗ = Tr

((
Σ−

)>
Σ−

)
.

As V is orthogonal, we have

Tr
((
Σ−

)>
Σ−

)
= Tr

((
Σ−

)>
Σ−

(
V −

)>
V −

)
= Tr

(
V −

(
Σ−

)>
Σ−

(
V −

)>)
= Tr

(
L−
)
.

(54)

Hence, we get∥∥L−∥∥∗ = Tr
(
L−
)

=

N∑
n=1

(
z−n
)>
z−n

=

N∑
n=1

cosh2 ∆LD (z0, zn).

(55)

Likewise, we have∥∥L+
∥∥
∗ = Tr

(
L+
)

=

N∑
n=1

(
z+
n

)>
z+
n

=

N∑
n=1

sinh2 ∆LD (z0, zn).

(56)

By the definition of BρR, we have
∥∥L+

∥∥
∗ ≤ N sinh2 ρ

and
∥∥L−∥∥∗ ≤ N cosh2 ρ, which imply condition (f). This

completes the proof of the sufficiency in (iii).

(Necessity) (i) Assume that conditions (a)-(d) are satisfied.

Noting that L− � O, let L− = Ṽ
−
T−
(
Ṽ
−)>

be a

singular value decomposition of L−, where Ṽ
−
∈ RN.N is

orthogonal and T− is diagonal, that is,
[
T−
]
i,j

= 0 if i 6= j.

Since rankL− = 1 and L− � O, we can assume that[
T−
]
1,1

> 0 and
[
T−
]
n,n

= 0 for all N = 2, 3, . . . , N .

Therefore, [L−]i,j =
[
Ṽ
−]

i,1

[
T−
]
1,1

[
Ṽ
−]

i,1
, for i, j ∈

[N ]. In particular, [L−]1,1 =

([
Ṽ
−]

1,1

)2[
T−
]
1,1

. As

L+ is positive semi-definite, its diagonal entries are all non-
negative. In particular,

[
L+
]
1,1
≥ 0. Since [L+]1,1 −

[L−]1,1 = −1 from (c), we have
[
L−
]
1,1
≥ 1. Hence, we

have
[
Ṽ
−]

1,1
6= 0. Define V − by

V − :=

V
− if

[
Ṽ
−]

1,1
> 0,

−V − if
[
Ṽ
−]

1,1
< 0.

(57)

Then
[
V −

]
1,1

> 0 and L− = V −T−
(
V −

)>
is valid. Let

L+ = V +T+
(
V +

)>
be a singular value decomposition of

L+, where Ṽ
+
∈ RN.N is orthogonal and T+ is diagonal.

Since rankL+ ≤ D and L+ � O, we can assume that[
T−
]
n,n

= 0 for all n = D + 1, D + 2, . . . , N . Define
z−n ∈ R1 and z+

n ∈ RD by

z−n :=
[
z0,n

]
,

z+
n :=

[
z1,n z2,n · · · zD,n

]>
,

(58)

respectively, where

zd,n =


√[
T−
]
1,1

[
V −

]
n,1

if d = 0,√[
T+
]
d,d

[
V +

]
n,d

if d = 1, 2, . . . , D.

(59)

respectively, and define Z− ∈ R1,N and Z+ ∈ RD,N by

Z− =
[
z−1 z−2 · · · z−N

]
,

Z+ =
[
z+

1 z+
2 · · · z+

N

]
,

(60)
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respectively. Now, for n ∈ [N ], we define zn ∈ R1+D by

zn =

[
z−n
z+
n

]
. (61)

The Lorentz Gramian of (zn)
N
n=1 is given by

(
Z+
)>
Z+ −

(
Z−
)>
Z− = V +T+

(
V +

)> − V −T−(V −)>
= L+ −L−.

(62)

In the following, we prove zn ∈ LD for all n ∈ [N ]. Since
〈zn, zn〉M = [L]n,n =

[
L+ −L−

]
n,n

= −1, it is suf-

ficient to prove that z0.n > 0. From
[
V −

]
1,1

> 0 and

z0,n =
√[
T−
]
1,1

[
V −

]
n,1

, we have z0,1 > 0. For general

n ∈ [N ], the following is valid:

|z0,1||z0,n| − z0,1z0,n >
∥∥z+

1

∥∥
2

∥∥z+
n

∥∥
2
− z0,1z0,n

≥
(
z+

1

)>
z+
n − z0,1z0,n

= −〈z1, zn〉M
= [L]1,n

=
[
L+ −L−

]
1,n

≥ 1

> 0.

(63)

Therefore, z0,1 and z0,n must have the same sign. Hence,
z0,n > 0, which completes the proof of the necessity in (i).

(ii) Assume that conditions (a)-(e) are satisfied. Define
(zn)

N
n=1 as in (58). Then, since (a)-(d) are satisfied,

(zn)
N
n=1 ∈

(
LD
)N

and its Lorentz Gramian is L =

L+ − L−. Thus, it suffices to show that condition (e) im-
plies that ∆LD (z0, zN ) ≤ R is valid for all n ∈ N . Since[
L−
]
n,n

= (z0,n)
2

= cosh2 ∆LD (z0, zN ), condition (e)
implies cosh2 ∆LD (z0, zN ) ≤ cosh2R, which is equiva-
lent to ∆LD (z0, zN ) ≤ R. Hence, we have (zn)

N
n=1 ∈ BR.

(iii) Assume that conditions (a)-(f) are satisfied. Define
(zn)

N
n=1 as in (58). Then, since (a)-(e) are satisfied,

(zn)
N
n=1 ∈ BR and its Lorentz Gramian is L = L+ −L−.

Also, condition (f) implies 1
N

∑N
n=1 cosh2 ∆LD (z0, zn) ≤

cosh2 ρ, since the left hand side is given by 1
N

∥∥L−∥∥∗.
Remark 3. The statement of Lemma 9 (i) is equivalent to
that of Proposition 1 in (Tabaghi & Dokmanic, 2020). How-
ever, the proof there does not consider the case where the
representations given by the decomposition of the Lorentz
Gramian are all in−LD instead of LD. The above construc-
tion of representations solves this problem by forcing z0,n

to be positive.

F. Rademacher Complexity and Proof of
Theorem 1

First, we define Rademacher complexity (Koltchinskii,
2001; Koltchinskii & Panchenko, 2000; Bartlett et al.,
2002), the key tool to obtain HOE’s generalization er-
ror bound. Let T be our input space and H ⊂
{h|h : T → R} be our hypothesis space. Let S ∈ Z≥0

be the number of data points, and suppose that data points
(t1, y1), (t2, y2), . . . , (tS , yS) ∈ T × {−1,+1} are inde-
pendently distributed according to some unknown fixed
distribution µ. The Rademacher complexity of h is defined
as follows:

Definition 3. Let σ1, σ2, . . . , σS be random values such
that σ1, σ2, . . . , σS , (t1, y1), (t2, y2), . . . , (tS , yS) are mu-
tually independent and each of σ1, σ2, . . . , σS takes values
{−1,+1} with equal probability. The Rademacher com-
plexity RS(H) is defined by

RS(H) := E(ts)
S
s=1

E(σs)
S
s=1

[
1

S
sup
h∈H

S∑
s=1

σsh(ts)

]
. (64)

We use the following theorem provided by Bartlett &
Mendelson (2002) and arranged by Kakade et al. (2008).

Theorem 10 ((Bartlett & Mendelson, 2002; Kakade et al.,
2008)). Let φ : T × {−1.+ 1} → R be a loss function.
Define the empirical risk function R̂S(h) and expected risk
functionR(h) by

R̂S(h) :=
1

S

S∑
s=1

φ((h(ts), ys)),

R(h) := Et,yφ(h(t), y)).

(65)

Assume that φ(·,−1) and φ(·,+1) are Lφ-Lipschitz and
bounded. Define

cφ := sup
t∈T ,

y∈{−1,+1},
h∈H

φ(h(t), y)− inf
t∈T ,

y∈{−1,+1},
h∈H

φ(h(t), y). (66)

Then for any δ ∈ R>0 and with probability at least 1 − δ
simultaneously for all h ∈ H we have that

R(h)− R̂S(h) ≤ 2RS(H) + cφ

√
ln (1/δ)

2S
. (67)

From this theorem, we can easily derive an upper bound for
the excess risk of the empirical risk minimizer as follows.

Corollary 11. Define the empirical risk minimizer ĥ ∈ H
and expected loss minimizer by h∗ ∈ H by

ĥ := argmin
h∈H

R̂S(h), h∗ := argmin
h∈H

R(h), (68)
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and we callR
(
ĥ
)
−R(h∗) the excess risk of ĥ. Then for

any δ ∈ R>0 and with probability at least 1 − δ we have
that

R
(
ĥ
)
−R(h∗) ≤ 2RS(H) + 2cφ

√
ln (2/δ)

2S
. (69)

Proof. We have that

R
(
ĥ
)
−R(h∗)

=
(
R
(
ĥ
)
− R̂S

(
ĥ
))

+
(
R̂S
(
ĥ
)
− R̂S(h∗)

)
+
(
R̂S(h∗)−R(h∗)

)
≤
(
R
(
ĥ
)
− R̂S

(
ĥ
))

+
(
R̂S(h∗)−R(h∗)

)
,

(70)

where the last inequality holds from the definition of ĥ. We
complete the proof by evaluating the first and second term by
Theorem 10 and Hoeffding’s inequality, respectively.

Therefore, it suffices to obtain the upper bound of HOE
model’s Rademacher complexity, which is given below. Let
B ⊂ LD. We define a hypothesis function class h(·;B) by

h(·;B) :=
{
h
(
·; (zn)

N
n=1

)∣∣∣(zn)
N
n=1 ∈ B

}
. (71)

We evaluate the Rademacher complexity of the hypothesis
function class h(·;Bρ) defined by

RS(h(·;Bρ))

:= E(i,j,k)Eσ

[
sup

(zn)Nn=1∈Bρ

1

S

S∑
s=1

σsh
(
is, js, ks; (zn)

N
n=1

)]
.

(72)

The following evaluates the complexity.

Lemma 12. The Rademacher complexity of the hypothesis
function class h(·;Bρ) satisfies the following inequality:

RS(h(·;Bρ))

≤
(
cosh2 ρ+ sinh2 ρ

)(√2N lnN

S
+
N lnN

6S

)
.

(73)

Proof. Define G−R ,G
+
R ,G

−
R,G

+

R ⊂ SN,N by

Gρ :=
{
L+ −L−

∣∣L−,L+ ∈ SN,N satisfy (a)-(d), (f).
}
,

Gρ :=
{
L+ −L−

∣∣∣L− ∈ QN cosh2 ρ,L+ ∈ QN sinh2 ρ.
}
,

(74)

where (a)-(f) are the conditions defined in Lemma 9, and
for λ ∈ R≥0, Qλ is defined by

Qλ :=
{
L ∈ SN,N

∣∣L � O, ‖L‖∗ ≤ λ.
}
. (75)

Note that GρR ⊂ G
ρ
. Let σ1, σ2, . . . , σS be i.i.d Rademacher

random variables and σ =
[
σ1 σ2 . . . σS

]>
. The

Rademacher complexity is calculated as follows:

RS(h(·;Bρ))

:= E(i,j,k)Eσ

[
sup

(zn)Nn=1∈Bρ

1

S

S∑
s=1

σsh
(
is, js, ks; (zn)

N
n=1

)]

= E(i,j,k)Eσ

[
sup
L∈Gρ

1

S

S∑
s=1

σs 〈L,T is,js,ks〉F

]

≤ E(i,j,k)Eσ

[
sup
L∈Gρ

1

S

S∑
s=1

σs 〈L,T is,js,ks〉F

]
,

(76)

where the last inequality results from GρR ⊂ G
ρ
. We can

decompose the integrand of the above expectation operator
as follows:

sup
L∈Gρ

1

S

S∑
s=1

σs 〈L,T is,js,ks〉F

= sup
L−∈QN sinh2 ρ,

L+∈QN cosh2 ρ

1

S

S∑
s=1

σs
〈
L+ −L−,T is,js,ks

〉
F

≤ sup
L+∈QN sinh2 ρ

1

S

S∑
s=1

σs
〈
L+,T is,js,ks

〉
F

+ sup
L−∈QN cosh2 ρ

1

S

S∑
s=1

σs
〈
L−,T is,js,ks

〉
F
.

(77)

Hence, we have

RS(h(·;Bρ))

≤ RG
S

(〈
QN sinh2 ρ, ·

〉
F

)
+ RG

S

(〈
QN cosh2 ρ, ·

〉
F

)
,

(78)

where RG
S

(〈
Qλ, ·

〉
F

)
is defined as

E(i,j,k)Eσ

[
sup
L∈Qλ

1

S

S∑
s=1

σs 〈L,T is,js,ks〉F

]
. (79)

We can bound RG
S

(〈
Qλ, ·

〉
F

)
by the following lemma.

Lemma 13.

RG
S

(〈
Qλ, ·

〉
F

)
≤ λ

N

(√
2(N + 1) lnN

S
+ ·N lnN√

12S

)
.

(80)
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We prove Lemma 13 later. By Lemma 13, we obtain

RS(h(·;Bρ))

≤
(
cosh2 ρ+ sinh2 ρ

)(√2(N + 1) lnN

S
+ ·N lnN√

12S

)
,

(81)

which completes the proof.

Proof of Lemma 13. For λ ∈ R≥0, define Qλ1 by{
λuu>

∣∣u ∈ RN , ‖u‖2 = 1.
}
. (82)

Since Qλ1 is the convex hull of Qλ and the Rademacher
complexity of a function class equals that of its convex hull
(Bartlett & Mendelson, 2002, Theorem 12-2), we have that

RG
S

(〈
Qλ, ·

〉
F

)
= RG

S

(〈
Qλ1 , ·

〉
F

)
= E(i,j,k)Eσ

[
sup
‖u‖2≤1

1

S

S∑
s=1

σs
〈
λuu>,T is,js,ks

〉
F

]

= E(i,j,k)Eσ

[
sup
‖u‖2≤1

1

S

S∑
s=1

σsλTr
(
uu>T is,js,ks

)]

=
λ

S
E(i,j,k)Eσ

[
sup
‖u‖2≤1

S∑
s=1

σs Tr
(
u>T is,js,ksu

)]

=
λ

S
E(i,j,k)Eσ

[
sup
‖u‖2≤1

Tr

(
u>

(
S∑
s=1

σsT is,js,ks

)
u

)]

=
λ

S
E(i,j,k)Eσ

∥∥∥∥∥
S∑
s=1

σsT is,js,ks

∥∥∥∥∥
op,2

,
(83)

where ‖·‖op,2 denotes the operator norm with respect to the
2-norm defined by

‖A‖op,2 := max
‖u‖2≤1

‖Au‖2 (84)

To evaluate this, we can apply the following the matrix
Bernstein inequality.

Theorem 14 ((Tropp, 2015) Theorem 6.6.1). Let
A1,A2, . . . ,AS ∈ SN,N be independent random matri-
ces that satisfies

EAs = O, ‖As‖op,2 ≤ σ. (85)

Then

E

∥∥∥∥∥
S∑
s=1

As

∥∥∥∥∥
op,2

≤

√√√√2v

(
S∑
s=1

As

)
lnN+

1

3
σ lnN, (86)

where v is the matrix variance statistics defined by

v(A) :=
∥∥EA2

∥∥
op,2

. (87)

Note that v
(∑S

s=1As

)
=
∥∥∥∑S

s=1 EA
2
s

∥∥∥
op,2

is valid since

A1,A2, . . . ,AS ∈ SN,N are independent. We apply The-
orem 14 to the right hand side of (83) by substituting As

by σsT is,js,ks . Here, EσsT is,js,ks = O is valid because
Eσs = 0. The singular values of σsT is,js,ks is equal to
those of σsT̃ , where

T̃ :=

 0 − 1
2 + 1

2
− 1

2 0 0
+ 1

2 0 0

. (88)

Since(
σsT̃

)2

=
(
σsT̃

)>(
σsT̃

)
=

+ 1
2 0 0

0 + 1
4 − 1

4
0 − 1

4 + 1
4

, (89)

and its eigenvalues are 0,+ 1
2 ,+

1
2 , the singular val-

ues of T̃ are 0,+ 1√
2
,+ 1√

2
. Hence, we have that

‖σsT is,js,ks‖op,2 ≤ 1√
2

. Lastly, we evaluate∥∥∥∑S
s=1 E(σsT is,js,ks)

2
∥∥∥

op,2
= S

∥∥ET 2
is,js,ks

∥∥
op,2

. In

general, since ‖·‖op,2 is a convex function, we have that∥∥ET 2
is,js,ks

∥∥
op,2
≤ E

∥∥T 2
is,js,ks

∥∥
op,2

= 1
2 .

The diagonal elements and off-diagonal elements of
ET 2

is,js,ks are all 1
N and all − 1

2
1

N(N−1) , respectively, be-
cause the sum of the diagonal elements and that of the
off-diagonal elements in T is,js,ks are always 1 and − 1

2 ,
respectively, and from the symmetricity among the N diago-
nal elements and N(N − 1) off-diagonal elements. Hence,
we have ET 2

is,js,ks =
(

1
N + 1

2
1

N(N−1)

)
I− 1

2
1

N(N−1)11
>.

whose eigenvalues (singular values) are 1
N + 1

2
1

N(N−1) (mul-
tiplicity N − 1) and 1

N (multiplicity 1). Thus, we have

v

(
S∑
s=1

σsT is,js,ks

)
= S

∥∥ET 2
is,js,ks

∥∥
op,2

= S

(
1

N
+

1

2

1

N(N − 1)

)
=
S

2

(
1

N − 1
+

1

N

)
=
S

2

1

N2

(
N2

N − 1
+N

)
≤ S

N2
(N + 1)

(90)

. Therefore we have

E(i,j,k)Eσ

∥∥∥∥∥
S∑
s=1

σsT is,js,ks

∥∥∥∥∥
op,2


≤ 1

N

√
2S(N + 1) lnN +

1

3
· 1√

2
lnN,

(91)

which completes the proof.
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Proof of Theorem 1. We complete the proof by applying
Corollary 11 to Lemma 12.


