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A. Proof of Lemma 4

Proof. (The first equation) Let Z = [21 2z2...zn] €
RPN and Z = UXV' " be the singular value decompo-
sition of Z. Regarding the Gramian matrix, we can obtain
the singular value decomposition of G as follows.

G=2"Z7
=vxyx'v'uxv’ (37)
=Vvxv’.

Hence, we have ||G||, = Tr(X?). Therefore, we have that

G|, = Tr(%?)
—T(xTsVvV )

(38)

N
=5 (Aw0 (0, 2.))°,

which completes the proof of the first equation.

(The second equation) For any ¢, j € [N], we have that

[G]i,j = ziTZj
< [zl 111,
2 2
< max {1213, 1213}
< max ||zn||2 (39)
n€[N]
= max [G], ,
n€[N] ?
< max (Arn (0, z, 2,
< max (Aro(0,2,))
where the first inequality holds from the
Cauchy Schwartz inequality. Hence, we have
max; je(n] [G]; ; < maxuen [G],,,.  Conversely,
obviously, max; je[n] [G]M > maX,e[n] [G]nm is
valid. Therefore, we have that max; jcin | i

max,e(n] [G],, ,,- Since the left hand side equals |G|

max’

and right hand side equals max,,c;n) (Agp (0, zn))2, we
have that |G| .. = max,en] (Arn (0, z,))%, which
completes the proof of the second equation.

O

B. Proof of Lemma 6
Proof. Define
wo=min {A*(4,5)|i # j},

o _ATGI)
¢ '=min { ’1 A*(i’,j’)

(i,9), (I",5") €
i# 5,1 #5,(4,

€ [N] x [N],
NECGYRIE
(40)

We assume that pu,& > 0 holds as in the discussion in
Section 2.1. Let € := %f . Let v, nmax be the constants
determined on the weighted graph defined by (Sarkar,

"(Lte) , l%ﬁ} Then by the

(1 + €)-distortion algorithm, we can obtain representations
z1,22,...,2N € L? such that

2011). Let 7 := max {nmaxv

(1+e)TA*(4,7),

(4D
for any 4,5 € [N]. Here, the following is valid for
i,5,4, " € [N]: if A*(i, ) > A*(i', j), then

(1—e)TA*(4,5) < Ar2(z4,25) <

A]LQ (Zi,Zj) - A]L2 (qu/,z]")
> (1 — )A*(4,5) — (1 4+ )A* (i, ')

> 78 (i) (10 - L+ 3]

> 78| (1-3¢) - (14 3¢)u-0] @

> TA(i,f) €

3
> TUHE
> 1.
O
C. Proof of Lemma 7

Proof. Let c be the center of the 6-star subgraph and
ni,MNa,...,Ne be its neighborhood. Define A} =
A*(e,nyy). Let Ba(2) be an open ball of radius A centered
at z in R2. Assume that z., z,,,, ..., 2n, € R? satisfies
(2) and define A,,, == Ag2(2., zpn,,). For m, m’ such that
AY < AFLL zZ,, € BAm (2¢) and z,,,, & Ba, ,(zn,,)

m’?
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are necessary. Hence, £z, 2.2y, , > 60°. Thus, seg-
MeNts 2¢2n,, ZcZny; - - -, ZcZng partition 360° into 6 an-
gles larger than 60°, which is contradiction. O

D. Proof of Proposition 8
Proof. 1f a,b, ¢ > 0 and assume x > 0, then we have that

ar’ +br <ce0<z < —b+ Vb2 + dac. (43)
We are going to find S that satisfies

NInN NN In 2
O| Ly(exp R)* | 4/ ;1 + ;l Jr\/%

R2
< 20 min7
71
44)
where L, = 1. This corresponds to x = %
@ = O(NIaN), b = O(VNIN +/n2), ¢ =

O(%) We can formulate the condition as fol-

lows:
1
< —= < =b+ Vb? +4ac
VS
1 (45)
& 85>

(—b 4+ vb% + 4ac)2 .
Here, we have that
1

(~b+ VB + dac)’
(b4 VP +dac)’
B (4ac)®
(b+b(1+ 2‘“))2
(4ac)

(46)

2
1
+ )
VNInN + 4/In %
which completes the proof. Here, the first inequality holds
since\/l—&—ygl—i—%y. O

E. Proof of Lemma 9

Proof. The statement (iv) follows from (ii) and (iii). There-
fore, we prove (i)-(iii) in the following.

(Sufficiency) (i) Assume that (z,)" L € (]LD)N is valid.
Ford = 0,1,...,Dandn = 1,2,..., N, we denote the
d-th element of z,, € L. by Zd,n» and for n=12,...,N,
we define z,, € R! and 2} by

z, = [zo,n],zj = [zl)n Zon zp,n]T. (47)
Also, we define Z~ € RMN and ZT € RP—1N by
Z" =2y =z, - zZy|s 48)
ZT = [z;r zg zm,

respectively. Define L™, LT ¢ RNMY by L™ =
(Z*)TZ* and LT = (Z*)TZ+, respectively. For all
reRN, 2TL x = (Lfa:)TLfar: > 0. Therefore, we
have L™ = O. Likewise, LT = O is valid, and thus we
obtain (a). Because Z~ € RVY and ZT € RP-LN we
have rank L~ = 1 and rank LT < D, respectively. As
z, € LD, 2, > 1is valid, rank L™ # 0, and therefore
rank L™ = 1. Thus, we have (b). If 4,5 € [N], then the
following inequality holds:

9
— (=) 2 1 (=) D+ (DT (=)
) 1@

2

(49)

where the inequality comes from the Cauchy Schwarz in-
equality, and the equality holds if ¢ = j. These imply (c)
and (d), which completes the proof of the sufficiency in (i).

(ii) Assume (zn)fy:l € Bg, that is, for all n € [N],
App(z9,2z,) < R is valid. Since Bg C LP, condi-
tions (a)-(d) holds true from the above discussion. Since
Ao (2o, 2n) = arcosh (— (2o, 2n)yy) = arcosh (zo.,) =

arcosh 1+ (2 )Tzﬁ , the followings are valid:
(= T _ 2 _ 2
zn) z, = (20,n)” = cosh® Apo (29, 2n),
(z:[)TzZ =1+ cosh? App (20, 2,) = sinh? Ap b (20, 2n).

(50)
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Therefore, we have

[Lf]n o= (z;)Tz; <cosh® R
7 61V
[L*], = (z}) 2} <snb*R.
For all 4, j € [N],
- T =
[L L] = (Zi ) Zj
< [l=7llall=5 1l
NT =
< }lrf}ﬁ {(Zn) Zn } (52)
NT -
< (=) =2
< cosh’R

is valid, where the first inequality is from the Cauchy
Schwarz inequality. Thus, we have HL7 HmaX < cosh® R,
and likewise, we also have ||L+||max < sinh? R, which
imply condition (e). We have proved the sufficiency in (ii).
(i) If (z,)"

- P i
ne1 € Bp, since B, C Bg, conditions

(a)-(e) follows from the above discussion. Let Z= =
U >~ (V_)T be the singular value decomposition of
Z~, where U € RYV € RM are orthogonal and
X~ € RYYN is diagonal. The singular decomposition of
L~ is given by

(53)

where the diagonal elements of (Z'_)TZ'_ indicate the

singular values of L™ . Hence, || L~ ||* = Tr((ZJ*)TE*).

As V is orthogonal, we have

T((z7) =) =m((=) = (v) V)

~Tr(vo(z7) = (v)") 69

= Tr(L_).
Hence, we get
L7, =T (L7)
ol T
= Z,) Zn
7;1 (=) (55)

Likewise, we have

IE1,

Tr(L")

(56)
N
= Z sinh? Ay o (20, 2n)-

By the definition of B%, we have HL+H* < Nsinh?p
and | L™ ||, < N cosh® p, which imply condition (f). This
completes the proof of the sufficiency in (iii).

(Necessity) (i) Assume that conditions (a)-(d) are satisfied.
- o N\NT
Noting that L~ = O, let L~ = V T~ (V ) be a
singular value decomposition of L™, where V RNV
orthogonal and T~ is diagonal, that s, [T~ ] ., = 0if £ 7.
Since rank L~ = 1 and L~ > O, we can assume that

[T7],, >0and [T7], =0forall N =23,...,N.
Therefore, [L™); ; = [‘7_] (T~ 1,1 [‘7_] 1 fori,j €

i1
2

[N]. In particular, [L™];1 = ([V ]11> [T_L,r As

Ltis positive semi-definite, its diagonal entries are all non-

negative. In particular, [Lﬂl , = 0. Since [LT]i1 —

[L7]1,1 = —1 from (c), we have [L™], , > 1. Hence, we

have {‘7_] . # 0. Define V'~ by

Vo= if[v} <o

N Vo
1,

Then [V™],, >0and L™ = VT~ (V") is valid. Let
LT =v*irt(vt) " be a singular value decomposition of

L*, where V' € RNV is orthogonal and T is diagonal.
Since rank LT < D and L™ = O, we can assume that

[Tjnn =0foralln =D+ 1,D+2,...,N. Define
z, € Rl and 2 € RP by
z, = [ZO,n},
i T (58)
Z, = [Zlm 22.n ZD7’I’L] ,
respectively, where
2 [Ti] 1,1 [Vi}n,l ifd= 0,
d,n —
/ [T+]dd[v+]nd ifd=1,2,...,D.
(59)
respectively, and define Z~ € RMY and Z+ € RPN by
Z = \z7 z5 z2x/,
[ 1 2 N] (60)

Zt=[zf =25 - z}]
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respectively. Now, for n € [N], we define z,, € R'*? by

=
zZn= 1| "1.
! [ZA

The Lorentz Gramian of (zn)fj:l is given by

(61)

(z%)' 2+ -
=Lt - L.
(62

In the following, we prove z,, € L for all n € [N]. Since
(zn,Zn)y = [L],, = [LT—L7] = = —1,itis suf-

ficient to prove that 2y, > 0. From [Vf} > 0 and

1,1
o = [Tﬁ}l,l[
n € [N], the following is valid:

Vf]ni, we have 291 > 0. For general

|z0,11[20,n| — 20,120,n > ||ZTH2||zIH2 — 20,1%20,n

> (ZT)TZ:{ — 20,1%0,n
= - <z1’z">M

= [L]
oL

(63)

1,n

Therefore, 20,1 and 2y , must have the same sign. Hence,
z0,n > 0, which completes the proof of the necessity in (i).

(i) Assume that conditions (a)-(e) are satisfied. Define
(zn)g=1 as in (58). Then, since (a)-(d) are satisfied,
(z))_, € (LD)N and its Lorentz Gramian is L =
L™ — L™ Thus, it suffices to show that condition (e) im-
plies that Ay b (29, zx) < Ris valid for all n € N. Since
L7], = (20m)° = cosh® Ay b (20, zn), condition (e)
implies cosh? App (2o, zx) < cosh? R, which is equiva-
lent to Ap o (20, 2n5) < R. Hence, we have (zn)nN:1 € Bg.

(iii) Assume that conditions (a)-(f) are satisfied. Define
(zn)g:1 as in (58). Then, since (a)-(e) are satisfied,
(z”)ﬁf:l € Bg and its Lorentz Gramianis L = LT — L™
Also, condition (f) implies % ZnN:1 cosh? Ap o (20, 2n) <
cosh? p, since the left hand side is given by & ||L||,. O

Remark 3. The statement of Lemma 9 (i) is equivalent to
that of Proposition 1 in (Tabaghi & Dokmanic, 2020). How-
ever, the proof there does not consider the case where the
representations given by the decomposition of the Lorentz
Gramian are all in —IL” instead of L”. The above construc-
tion of representations solves this problem by forcing z ,,
to be positive.

(z) 'z =viTt(v) v T (V)

F. Rademacher Complexity and Proof of
Theorem 1

First, we define Rademacher complexity (Koltchinskii,
2001; Koltchinskii & Panchenko, 2000; Bartlett et al.,
2002), the key tool to obtain HOE’s generalization er-
ror bound. Let 7 be our input space and H C
T{hlh: T — R} be our hypothesis space. Let S € Zxg
be the number of data points, and suppose that data points
(t1,11), (t2,92),. .., (ts,ys) € T x {—1,+1} are inde-
pendently distributed according to some unknown fixed
distribution p. The Rademacher complexity of & is defined
as follows:

Definition 3. Let 0q,09,...,05 be random values such
that o1, 09,...,08, (t1,y1), (t2,y2), - - ., (ts, ys) are mu-
tually independent and each of o1, 09, . .., og takes values
{—1,+1} with equal probability. The Rademacher com-
plexity R (H) is defined by

S
1
Rs(H) =K E. — su osh(ts)|. (64)
s(M) =Eq s (S)E‘Ilsh@%;ﬂ: ( )]

We use the following theorem provided by Bartlett &
Mendelson (2002) and arranged by Kakade et al. (2008).

Theorem 10 ((Bartlett & Mendelson, 2002; Kakade et al.,
2008)). Let ¢ : T x {—1.+ 1} — R be a loss function.
Define the empirical risk function ﬁg(h) and expected risk
Sfunction R(h) by

S
Re(h) = ¢ S ol(h(t),52))

R(h) = Et,yé(h(t)a y))

Assume that ¢(-,—1) and ¢(-,+1) are Ly-Lipschitz and
bounded. Define

(65)

Cg = Sup qﬁ(h(t), y) — inf ¢(h(t), y) (66)
teT, teT,
- —1,+1},
vel Ly, ey

Then for any § € R and with probability at least 1 — §
simultaneously for all h € H we have that

(67)

R(h) — Rs(h) < 2Rs(H) + ¢4 In (215{5) .

From this theorem, we can easily derive an upper bound for
the excess risk of the empirical risk minimizer as follows.

Corollary 11. Define the empirical risk minimizer heH

and expected loss minimizer by h* € H by

h := argmin R (h),
hEH

h* == argmin R(h),

heH (68)
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and we call R(ﬁ) — R(h*) the excess risk of h. Then for

any § € R and with probability at least 1 — § we have
that

R(h) —R(W*) < 2Rs(H) + 24 % (69)
Proof. We have that

R(h) ~R(hY)

- (R0) -l » (s o)

+ (Rs(h) = R(0"))

< (R(h) R (h)) + (ﬁs(h*) - R(h*)),

where the last inequality holds from the definition of h. We
complete the proof by evaluating the first and second term by
Theorem 10 and Hoeffding’s inequality, respectively.  [J

Therefore, it suffices to obtain the upper bound of HOE
model’s Rademacher complexity, which is given below. Let
B C LP. We define a hypothesis function class h(-; 3) by

h(;B) = {h('§ (zn)nNzl) ’(zn)nNzl € B}'

We evaluate the Rademacher complexity of the hypothesis
function class h(-; B”) defined by

Rs(h(-B”))

=E¢,jmEs

(71)

sup
(zn )val EBP

(72)

The following evaluates the complexity.

Lemma 12. The Rademacher complexity of the hypothesis
function class h(-; B?) satisfies the following inequality:

Rs(h(;B"))
73
- (Cosh2p+sinh2p)< /2N;nN . Nér;N) (73)

Proof. Define g;gg,@},?; C
gr = {L+ -
G’ = {LJr -

SNN by

L™|L™,L" € S satisty (a)-(d), ().},
L*‘L* e QNesh®s It ¢ QNSi“th.},
(74)

where (a)-(f) are the conditions defined in Lemma 9, and
for A € R>o, Q" is defined by

M={LeSYN|L=0O,|L|, <A} (75

s
Z (sts, (zn)gzl)].

Note that G € G”. Let oy, 09, . . . , 0's be i.i.d Rademacher

random variables and o = [01 02 Us]T. The
Rademacher complexity is calculated as follows:

R (h(-;B7))

= E(i’j’k)Ea sup

Zas (%7.757 S,(Zn)n 1)]
(zn )n 163”

1
sup o Os L7T’£q.4s,ks
TS O WAL WA

=E¢ij0Ee

s
< E(Z7],/€)EU sup 4 Z 0.9 TiS7jsvks>F ?
egp s=1
(76)
where the last inequality results from G7, C G”. We can

decompose the integrand of the above expectation operator
as follows:

S

1
Z os (L, Ty, j, k.)p

sup
Leg” s

= sup

- N sinh?
L eQNsnbh?s,
+€QNuosth

S
1
ED DL A
s=1
(77)

< sup
LtecQNsinh2p

209
Zos

97]57k >F

+ sup ia Garks >F

L€ QN cos}12
Hence, we have

Rs(h(:;B7))

<o({0")) ([,

(78)

where RY ((Q*,-),,) is defined as

E
(1.3, 0) B Lseué 5

Zos Ti.j.k §>F]- (79)

We can bound 9%(5} (<QA, >F) by the following lemma.

Lemma 13.
A 2(N+1)InN NInN
RS (2% )p) < N< g BTT )

(80)
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We prove Lemma 13 later. By Lemma 13, we obtain

Rs(h(-5B”))

2(N+1)InN NInN
S(cosh2p+sinh2p)( (N +1)In - )

S VTS
(81)

which completes the proof. O

Proof of Lemma 13. For \ € Rx, define Q7 by
{Muuju e R, |ul, =1.}. (82)

Since Q? is the convex hull of @* and the Rademacher
complexity of a function class equals that of its convex hull
(Bartlett & Mendelson, 2002, Theorem 12-2), we have that

9%3 (<Q>\’ >F)
= RG((Q)r)

= EgijmEs H Sﬁlp ZO‘S wu ', T, jb)k§>F1
<19
=E¢jrEes| sup ZJS)\Tr wu' Ty, ik k)
[l ||2<1
A [ S

= GE(ijk)Ee | sup
S [lull, <1 2=

r S
A
— *]E 1.7.k ]Eo' sup TI' UT O-sTi§7 js,ks u
S (4,3,k) _||u\|2§1 ( ; e
[ s

A
= glinEs

o Tr(uTTis’jsvksu)]

T, . k.

op,2

(83)

where ||-[| ., , denotes the operator norm with respect to the
2-norm defined by

e [|Aul|, (84)

To evaluate this, we can apply the following the matrix
Bernstein inequality.

||A||0p72 =

Theorem 14 ((Tropp, 2015) Theorem 6.6.1). Let

A, As, ..., Ag € SNV be independent random matri-
ces that satisfies
EA, =0, |A; Hop 5 < (85)
Then
s
E|) A, < 2v<ZA>lnN+ ocln N, (86)
s=1 op,2

where v is the matrix variance statistics defined by

v(A) = |EA?| (87)

op,2°

Note that v (Zle As) = H 2 EA2 is valid since
op,2

A, Ay, ..., As € SVV are independent. We apply The-
orem 14 to the right hand side of (83) by substituting A
by 0T, ;. r,. Here, Eo,T;_; r. = O is valid because
Eos, = 0. The singular values of o,T';_ ;, . is equal to
those of JST, where

o
\

+
0
0

N|—=
N~

(88)

[MIEENIE
o O

Since
+ 0 0

(03)' = (1) (o) = |0

and its eigenvalues are 0, +§,+%, the singular val-

N[

+

» (89)

NPT
| s =

ues of T are 0,4+ \/5,4— f Hence, we have that

05T oo llops < % Lastly, we evaluate
s 2

|2 BT ) H = S|ETZ ;4. In

general, since ||- Hop 5 18 a convex function, we have that
2 2 1

HET s:Js:ks llop,2 = EHT ssdsiksllop,2 = 2

The diagonal elements and off d1ag0na1 elements of
IE)TZ2 ek, are all L ~ and all — 2 m respectively, be-
cause the sum of the diagonal elements and that of the
off-diagonal elements in T';_ ;_ . are always 1 and —%,
respectively, and from the symmetricity among the N diago-
nal elements and V(N — 1) off-diagonal elements. Hence,

_ (1 1 1 1 1 T
we have]ET% ek = <N + §N(N,1))I_§N(N—1)11 :

whose eigenvalues (singular values) are -+ 5 m (mul-

tiplicity N — 1) and % (multiplicity 1). Thus, we have

S
(Do) = slE
s=1

gL 11
- <N+2N(N—1))
:5<1+1> (90)

op,2

2\N—-1 N
S 1 N2
=—— N
v (o)
S
<= (N+1)
. Therefore we have
EijmEa Ti, j.k. ]
op,2 on
2S(N+1)InN + L i In N
3 V2 ’
which completes the proof. O
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Proof of Theorem 1. We complete the proof by applying
Corollary 11 to Lemma 12. O



