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Abstract
Hyperbolic ordinal embedding (HOE) represents
entities as points in hyperbolic space so that they
agree as well as possible with given constraints
in the form of entity i is more similar to entity
j than to entity k. It has been experimentally
shown that HOE can obtain representations of hi-
erarchical data such as a knowledge base and a
citation network effectively, owing to hyperbolic
space’s exponential growth property. However,
its theoretical analysis has been limited to ideal
noiseless settings, and its generalization error in
compensation for hyperbolic space’s exponential
representation ability has not been guaranteed.
The difficulty is that existing generalization error
bound derivations for ordinal embedding based
on the Gramian matrix are not applicable in HOE,
since hyperbolic space is not inner-product space.
In this paper, through our novel characterization
of HOE with decomposed Lorentz Gramian ma-
trices, we provide a generalization error bound of
HOE for the first time, which is at most exponen-
tial with respect to the embedding space’s radius.
Our comparison between the bounds of HOE and
Euclidean ordinal embedding shows that HOE’s
generalization error comes at a reasonable cost
considering its exponential representation ability.

1. Introduction
Ordinal embedding, also known as a non-metric multidi-
mensional scaling (Shepard, 1962a;b; Kruskal, 1964a;b),
aims to represent entities as points in a metric space so that
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they are as consistent as possible with given ordinal data in
the form of “entity i is more similar to entity j than to entity
k.” Many ordinal embedding methods have been proposed
to obtain representations in Euclidean space, which we call
Euclidean ordinal embedding (EOE) in this paper, and their
effectiveness has been shown in a variety of machine learn-
ing areas such as embedding image data and artist dataset
(Agarwal et al., 2007; Tamuz et al., 2011; van der Maaten &
Weinberger, 2012). However, Euclidean space has a limita-
tion in embedding data with a hierarchical tree-like structure
(Lamping & Rao, 1994; Ritter, 1999; Nickel & Kiela, 2017)
such as knowledge bases and complex networks. This limita-
tion is due to Euclidean space’s polynomial growth property,
which means that the volume or surface of a ball in Eu-
clidean space grows polynomially with respect to its radius.
This Euclidean space’s growth speed is significantly slower
than what embedding hierarchical data such as an r-ary
tree (r ≥ 2) requires, which is exponential. To overcome
this limitation, a few recent papers (Suzuki et al., 2019;
Tabaghi & Dokmanic, 2020) have proposed ordinal embed-
ding methods using hyperbolic space for hierarchical data,
which we call hyperbolic ordinal embedding (HOE) in this
paper. In contrast to Euclidean space’s polynomial growth
property, hyperbolic space has the exponential growth prop-
erty, that is, the volume of any ball in hyperbolic space
grows exponentially with respect to its radius (Lamping &
Rao, 1994; Ritter, 1999; Nickel & Kiela, 2017). As a result,
we can embed any tree to hyperbolic space with arbitrarily
low distortion (Sarkar, 2011), and conversely, hyperbolic
space’s distance structure is well-approximated by a tree.
By leveraging this hyperbolic space’s advantage, Suzuki
et al. (2019) have proposed an HOE method based on Rie-
mannian stochastic gradient descent and achieved effective
embedding of hierarchical tree-like data in low-dimensional
space. Recently, Tabaghi & Dokmanic (2020) have solved
the hyperbolic distance geometry problem, which includes
HOE as a special case, by semi-definite relaxation of the
problem and projection operation from Minkowski space
to a hyperboloid. These two papers have experimentally
shown HOE’s potential ability to obtain low-dimensional
representations effectively for hierarchical tree-like data
such as a knowledge base and a citation network. However,
the theoretical guarantee of HOE’s performance is limited
to ideal noiseless settings (Suzuki et al., 2019), and HOE’s
generalization performance in general noisy settings has not
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been theoretically guaranteed, although HOE could have
much worse generalization error than EOE in compensa-
tion for hyperbolic space’s exponential growth property and
cause overfitting for real data, which are often noisy.

In this paper, we derive the generalization error bound of
HOE in general noisy settings under direct conditions on
the radius of the embedding space. To the best of our knowl-
edge, this is the first work that derives a generalization error
bound for HOE. Whereas the generalization error of a learn-
ing model reflects the volume of its hypothesis space, owing
to hyperbolic space’s exponential growth property, we can-
not expect HOE to have linear or polynomial generalization
error with respect to the embedding space’s radius, although
it is proved for EOE by Jain et al. (2016) reflecting Eu-
clidean space’s polynomial growth property. Hence, our
objective is to clarify the dependency of the error bound
on the embedding space’s radius as well as the number of
entities and the size of ordinal data. In this paper, we show
that HOE’s generalization error is at most exponential with
respect to the embedding space’s radius. Also, the bound’s
dependency on the number of entities and the size of ordi-
nal data is the same up to constant factors as that of EOE.
Comparing our bound and that of EOE, we see that we can
formally obtain HOE’s bound by replacing a linear term in
EOE’s bound with respect to the embedding space’s radius
by an exponential term. This means that the generalization
error bounds of HOE and EOE reflect the volume of their
embedding space, and our HOE bound is reasonable as a
cost for HOE’s exponential representation ability.

The difficulty of deriving HOE’s generalization error bound
is that the technique for EOE’s bound of formulating EOE’s
model and the restriction on its embedding space by the
Gramian matrix (Jain et al., 2016) does not work for HOE.
This is because hyperbolic space is not inner-product space
and the Gramian matrix does not reflect its metric structure
on which the HOE model is constructed. We solve this prob-
lem by our novel characterization of HOE model and the re-
striction on its embedding space by the decomposed Lorentz
Gramian matrices. By our approach, we can formulate HOE
model as a linear prediction model where the decomposed
Lorentz Gramian matrices work as parameters and the re-
striction on its embedding space as conditions on the norms
of these matrices. The resulting formulation enables us to
calculate the Rademacher complexity (Koltchinskii, 2001;
Koltchinskii & Panchenko, 2000; Bartlett et al., 2002) of
the HOE model, which gives us a tight generalization error
bound for linear prediction models (Kakade et al., 2008).
Combining our Rademacher complexity calculation with
existing standard statistical learning theory method (Bartlett
& Mendelson, 2002), we obtain our HOE’s generalization
error bound.

1.1. Our Contributions

We derive the generalization error bound for HOE for the
first time. Our bound is valid under intuitive conditions
on the embedding space’s radius and the simple uniform
distribution assumption on ordinal data. Our results show
that HOE’s generalization error is at most exponential with
respect to embedding space’s radius. The bound’s depen-
dency on the number of entities and the size of ordinal data
is the same as that of EOE up to constant factors.

1.2. Related Work

By leveraging hyperbolic space’s exponential growth prop-
erty, many papers have proposed embedding models using
hyperbolic space in a variety of areas such as interactive vi-
sualization (Lamping & Rao, 1994; Walter & Ritter, 2002),
Internet graph representations (Shavitt & Tankel, 2008; Bo-
guná et al., 2010), routing problems in geographic communi-
cation networks (Kleinberg, 2007), and modeling complex
networks (Krioukov et al., 2010). Recently, hyperbolic
space has also attracted attention in many areas of machine
learning such as graph embedding (Nickel & Kiela, 2017;
Ganea et al., 2018a), metric multi-dimensional scaling (Sala
et al., 2018), neural networks (e.g., Ganea et al., 2018b;
Chami et al., 2019; Gülçehre et al., 2019) (See also Peng
et al., 2021), word embedding (Tifrea et al., 2019), and
multi-relational graph embedding (Suzuki et al., 2018; Bal-
azevic et al., 2019), whereas machine learning methods for
data in hyperbolic space have also been proposed (Cho et al.,
2019; Chami et al., 2020). Ordinal embedding using hyper-
bolic space has also been proposed recently (Suzuki et al.,
2019; Tabaghi & Dokmanic, 2020), whereas ordinal embed-
ding has been originally studied intensively in Euclidean
settings (Agarwal et al., 2007; Tamuz et al., 2011; van der
Maaten & Weinberger, 2012; Terada & von Luxburg, 2014;
Hashimoto et al., 2015; Cucuringu & Woodworth, 2015;
Ma et al., 2018; Anderton & Aslam, 2019; Ma et al., 2019).
From a theoretical perspective, the low distortion property
of hyperbolic space for embedding a tree has been discussed
in (Sarkar, 2011; Sala et al., 2018; Suzuki et al., 2019) under
noiseless conditions. However, to the best of our knowl-
edge, the generalization error in noisy settings of a machine
learning model using hyperbolic space as embedding space
has not been analyzed.

Rademacher complexity (Koltchinskii, 2001; Koltchinskii
& Panchenko, 2000; Bartlett et al., 2002) is one of the key
tools to derive an upper bound for the generalization error
of a learning model. The upper bound derivation using
Rademacher complexity has been studied in e.g., (Koltchin-
skii & Panchenko, 2002; Bartlett & Mendelson, 2002). The
Rademacher complexity of a linear prediction model under
norm restrictions has intensively been studied in (Kakade
et al., 2008). Recently, Jain et al. (2016) calculated an upper
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bound of the Rademacher complexity of an EOE model.
However, the Rademacher complexity of an HOE model
has not been evaluated, and this paper contains a first pre-
sentation of such an evaluation.

2. Preliminaries
Notation In this paper, the symbol := is used to state that
its left hand side is defined by its right hand side. We denote
by Z,Z>0,R,R≥0 the set of integers, the set of positive
integers, the set of real numbers, and the set of non-negative
real numbers, respectively. Suppose that D,N ∈ Z>0. We
denote by ,RD,RD,N ,SN,N the set of D-dimensional real
vectors, the set of real matrices with the size of D × N ,
and the set of N ×N symmetric matrices, respectively. For
N ∈ Z, [N ] denotes the set {1, 2, . . . , N} of integers. For
a matrix A ∈ RD,N , we denote by [A]d,n the element in
the d-row and the n-th column and by Tr(A) the trace ofA.
For a vector x ∈ RD, we denote by ‖x‖2 the `2-norm of
x, defined by ‖x‖2 =

√
x>x. For matricesA,B ∈ RD,N ,

we denote by 〈A,B〉F the Frobenius inner-product of A

and B, defined by Tr
(
A>B

)
. For symmetric matrices

A,B ∈ SN,N , we write A � B if A − B is positive
semi-definite.

2.1. Ordinal Embedding

First, we formulate the ordinal embedding, which is of
interest in this paper. Let N be the number of entities and
we identify the set [N ] with the N entities. We assume
that there exists a true dissimilarity measure ∆∗ : [N ] ×
[N ]→ R≥0, where ∆∗(i, j) indicates the true dissimilarity
between entity i and entity j. Ordinal data is a set of ordinal
comparisons in the form of entity i is more similar to entity
j than to entity k, which indicates ∆∗(i, j) < ∆∗(i, k) if
there is no noise in the comparison. In the following, we
formulate ordinal comparisons according to the formulation
by Jain et al. (2016). The s-th comparison consists of a
pair of a triplet (is, js, ks) ∈ T and a label ys ∈ {−1,+1},
where

T := {(i, j, k)|i, j, k ∈ [N ], j < k, k 6= i 6= j}. (1)

In (1), we impose the constraint j < k to keep
the uniqueness of the formulation. Note that |T | =
1
2N(N − 1)(N − 2). The label indicates the result of the
ordinal comparison. Specifically, ys = −1 indicates is is
closer to js than to ks, and ys = +1 indicates the converse.
If there is no noise in the comparison, ys = −1 and ys = +1
means ∆∗(i, j) < ∆∗(i, k) and ∆∗(i, j) > ∆∗(i, k), re-
spectively. Note that we also consider noisy comparison
cases in this paper. Also, we assume that ∆∗(i, j) 6=
∆∗(i′, j′) holds for any two different pairs (i, j), (i′, j′) of
different entities, to avoid ambiguity in comparison, as im-
plicitly assumed also in (Jain et al., 2016). Let (Z,∆Z) be

a metric space, where Z is a set ∆Z : Z × Z → R≥0 is a
distance function on Z . The objective of ordinal embedding
in Z is to get representations z1, z2, . . . , zN in some low-
dimensional metric space Z , such that the representations
are consistent to the true dissimilarity measure ∆∗, where
zi ∈ Z is the representation of entity i ∈ [N ]. Specifically,
ideal representations should satisfy the following:

∆∗(i, j) ≶ ∆∗(i, k)⇔ ∆Z(zi, zj) ≶ ∆Z(zi, zk), (2)

for a new triplet (i, j, k) ∈ T , which may be unseen in
the training data. We call the metric space (Z,∆Z) used
in ordinal embedding the embedding space. As ordinal
embedding represents the dissimilarity between two entities
by the distance between the two representations, embedding
space selection is essential. In the next section, we introduce
hyperbolic space, which HOE use as the embedding space.

2.2. Hyperbolic Space

Hyperbolic space is a metric space, which has been widely
used to represent hierarchical data in machine learning areas,
owing to its exponential growth property. In this section,
we give a formal definition of hyperbolic space. There exist
many well-known models of hyperbolic space, such as the
hyperboloid model, the Beltrami-Klein model, Poincaré ball
model, and Poincaré half-space model (see, e.g., Lee, 2018,
Chapter 3), which are isometrically isomorphic to each other.
In this paper, we mainly work on the hyperboloid model,
which formulates hyperbolic space as a submanifold of
Minkowski space. The advantage of the hyperboloid model
is that we can use the inner product function of Minkowski
space for discussion, which plays key role in our novel
characterization of HOE. See e.g., (Lee, 2018, Chapter 3)
for details.

The (1 +D)-dimensional Minkowski space M1,D =(
RD, 〈·, ·〉M

)
, where 〈·, ·〉M : M1,D ×M1,D → R is the

Lorentz inner-product function defined by〈[
x0 x1 . . . xD

]>
,
[
x′0 x′1 . . . x′D

]>〉
M

:= −x0x
′
0 +

D∑
d=1

xdx
′
d,

(3)

is the pseudo Euclidean vector space with signature (1, D),
that is, the (1 +D)-dimensional vector space equipped
with the non-positive-definite bilinear function 〈·, ·〉M. The
hyperboloid model of D-dimensional hyperbolic space is
a Riemannian manifold

(
LD, gx

)
embedded in (1 +D)-

dimensional Minkowski space M1,D, where

LD :=
{
x ∈ R1+D

∣∣〈x,x〉M = −1, x0 > 0.
}
, (4)

and gx is induced by the inclusion ι : LD →M1,D : x 7→ x.
The distance function ∆LD : LD × LD → R≥0 is given by

∆LD (x,x′) := arcosh(−〈x,x′〉M), (5)
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where arcosh is the area hyperbolic cosine function, which
is the inverse function of the hyperbolic cosine function.
Hyperbolic space has the exponential growth property in
that the volume and surface area of any ball in hyper-
bolic space exponentially grows with respect to its radius.
For example, the circumference of any ball with a ra-
dius of R in two-dimensional hyperbolic space is given
by 2π sinhR = O(expR) in constrast to 2πR in two-
dimensional Euclidean space. Owing to this property, in
graph embedding setting, we can embed any tree with ar-
bitrarily low distortion to hyperbolic space in graph em-
bedding setting (Sarkar, 2011), and in ordinal embedding
setting, we can get representations that satisfy all the ordinal
constraints generated by any tree (Suzuki et al., 2019) if the
ordinal data are noiseless.

2.3. HOE and EOE

In this section, we define HOE. We also formulate EOE
for the later comparison between HOE and EOE. HOE and
EOE are ordinal embedding using hyperbolic space and
Euclidean space, respectively. Specifically, HOE is ordinal
embedding to obtain representations in LD that agree as
well as possible with (2) with ∆Z = ∆LD . Likewise, EOE
is ordinal embedding to obtain representations in RD that
agree as well as possible with (2) with ∆Z = ∆RD where
∆RD is defined by ∆RD (x,x′) := ‖x′ − x‖2.

As an embedding scheme, we mainly focus on minimizing
the empirical risk function defined below. Let φ : R→ R≥0

and ψ : R → R be increasing functions and call them
the loss function and dissimilarity transformation function,
respectively. The empirical risk function Rz

S : (Z)
N →

R≥0 is defined by

R̂z
S

(
(zn)

N
n=1

)
:=

1

S

S∑
s=1

φ
(
−ysh

(
is, js, ks; (zn)

N
n=1

))
,

(6)
where the hypothesis function h

(
·; (zn)

N
n=1

)
: T → R is

defined by

h
(
i, j, k; (zn)

N
n=1

)
:= ψ(∆(zi, zj))− ψ(∆(zi, zk)),

(7)
for (zn)

N
n=1 ∈ (Z)

N .

For HOE, if we set φ(x) = max {0, x+ 1} and ψ(x) = x,
the risk function (6) is reduced to that proposed by Suzuki
et al. (2019). In the following discussion, we set ψ(x) =
cosh(x) for HOE and ψ(x) = x2 for EOE as in (Jain et al.,
2016). Whereas we can extend the following discussion for
the case where another function is used for ψ, the general-
ization error bound for that case is worse than that of cosh
if we follow the discussion below.

We also define the expected risk function:

Rz
(

(zn)
N
n=1

)
:= E(i,j,k),yφ

(
−yh

(
i, j, k; (zn)

N
n=1

))
.

(8)

Fix B ⊂ (Z)
N , and we define the empirical risk minimizer

(ẑn)
N
n=1 and expected risk minimizer (z∗n)

N
n=1 by

(ẑn)
N
n=1 := argmin

(zn)Nn=1∈B
R̂z
S

(
(zn)

N
n=1

)
,

(z∗n)
N
n=1 := argmin

(zn)Nn=1∈B
Rz
(

(zn)
N
n=1

)
.

(9)

Our interest in this paper is the excess risk given by

Rz
(

(ẑn)
N
n=1

)
−Rz

(
(z∗n)

N
n=1

)
, (10)

which shows the generalization error of ordinal embedding.

3. Finite Sample Generalization Bound for
HOE

3.1. Assumptions on Data Generation

To discuss the generalization error, we need to determine the
distribution of data generation. Similar to (Jain et al., 2016),
we assume that training data ((is, js, ks), ys) are generated
independently and identically according to the following
distributions.

Assumption 1. We assume that the triplets are generated
independently and identically, and the conditional distribu-
tion of the label ys given the triplet is determined by the true
dissimilarity between is and js, and that between is and js
as follows:

P[ys = +1|(is, js, ks) = (i, j, k)] = f(∆∗(i, j)−∆∗(i, k)),
(11)

where f : R → [0, 1] is a fixed function called the link
function (Jain et al., 2016).

3.2. Restriction on Representation Domain

To derive a finite generalization bound, in general, it is nec-
essary to restrict parameters (in embedding cases, represen-
tations) to a bounded domain (e.g., linear prediction models
(Bartlett & Mendelson, 2002; Kakade et al., 2008), neu-
ral networks (Bartlett & Mendelson, 2002; Schmidt-Hieber
et al., 2020)). In this section, we discuss our restriction on
embedding space. For the derived generalization bound to
be practical, the restriction should be simple and geometri-
cally intuitive. We put the following simple restrictions on
the embedding space with respect to its radius.

Definition 1. Let z0 :=
[
1 0 . . . 0

]
∈ LD. For
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R, ρ ∈ R≥0, we define BR,Bρ,BρR,⊂
(
LD
)N

by

BR :=
{

(zn)
N
n=1

∣∣∣∀n ∈ [N ] : ∆LD (z0, zn) ≤ R
}
,

Bρ :=

{
(zn)

N
n=1

∣∣∣∣∣ 1

N

N∑
n=1

cosh2 ∆LD (z0, zn) ≤ cosh2 ρ

}
,

(12)

and BρR := BR ∩ Bρ, respectively.

Note that, since BR ⊂ BR, BRR = BR is valid. We mainly
use BR as the embedding space restriction since it is the
simplest and most practical, we also show later that we can
achieve a lower generalization error bound if we can set a
small ρ for the restriction given by BρR.

3.3. Main Result: Generalization Error

In this section, we give our main results, the upper bound of
HOE’s Rademacher complexity, to obtain HOE’s general-
ization error bound.
Theorem 1. Assume that φ is Lφ-Lipschitz and bounded.
Define

cφ := supφ
(
h
(
t; (zn)

N
n=1

)
, y
)
−inf φ

(
h
(
t; (zn)

N
n=1

)
, y
)
,

(13)
where sup and inf are taken over all t ∈ T , y ∈
{−1,+1}, (zn)

N
n=1 ∈ B

ρ
R. Let (ẑn)

N
n=1 and (z∗n)

N
n=1 be

the empirical and expected risk minimizer of HOE defined
by (9) with B = BρR. Then with probability at least 1 - δ we
have that

Rz
(

(ẑn)
N
n=1

)
−Rz

(
(z∗n)

N
n=1

)
≤ 2Lφ

(
cosh2 ρ+ sinh2 ρ

)(√2N2 lnN

S
+
N lnN√

12S

)

+ 2cφ

√
2 ln 2

δ

S
.

(14)

Moreover, if the triplet is generated uniformly, that is, for
all (i, j, k) ∈ T ,

P[(is, js, ks) = (i, j, k)] =
1

|T |
. (15)

is valid, then with probability at least 1 - δ we have that

Rz
(

(ẑn)
N
n=1

)
−Rz

(
(z∗n)

N
n=1

)
≤ 2Lφ

(
cosh2 ρ+ sinh2 ρ

)(√2(N + 1) lnN

S
+
N lnN√

12S

)

+ 2cφ

√
2 ln 2

δ

S
.

(16)

If we only know R and Lφ, we have the following.

Corollary 2. Suppose that (ẑn)
N
n=1 and (z∗n)

N
n=1 are the

empirical and expected risk minimizer of HOE in BR = BRR .
Then with probability at least 1 - δ we have that

Rz
(

(ẑn)
N
n=1

)
−Rz

(
(z∗n)

N
n=1

)
≤ 2Lφ

(
cosh2R+ sinh2R

)(√2N2 lnN

S
+
N lnN√

12S

)

+ 4Lφ cosh2 (2R)

√
2 ln 2

δ

S

= O

Lφ(expR)
2

√N2 lnN

S
+
N lnN

S
+

√
ln 2

δ

S

.
(17)

Moreover, if the triplet is generated uniformly, then with
probability at least 1 - δ we have that

Rz
(

(ẑn)
N
n=1

)
−Rz

(
(z∗n)

N
n=1

)
≤ 2Lφ

(
cosh2R+ sinh2R

)(√2(N + 1) lnN

S
+
N lnN√

12S

)

+ 4Lφ cosh2 (2R)

√
2 ln 2

δ

S

= O

Lφ(expR)
2

√N lnN

S
+
N lnN

S
+

√
ln 2

δ

S

.
(18)

Proof. We can set ρ = R in Theorem 1 since BRR = BR.
All we need to determine is cφ in Theorem 1. For all zi, zj ,
we have that ∆LD (z0, zi) ≤ R and ∆LD (z0, zj) ≤ R.
Since hyperbolic space is a metric space, we have that
∆LD (zi, zj) ≤ 2R, from the triangle inequality. Hence
cφ ≤ 2Lφ cosh2 (2R), which completes the proof.

Remark 1. Consider the case where the triplet distribution
is given by (15). The dependency of HOE’s generalization
error bounds suggests that the ordinal data size S should
be O(N lnN), which is much smaller than the number
|T | of possible triplets O

(
N3
)

and even smaller than the
number of entity pairs O

(
N2
)
. These dependencies of

HOE’s bound are the same as those of EOE’s bound. We
discuss the dependency on R in the next section.

Before giving our proof of Theorem 1, we first discuss the
difference between HOE and EOE in the next section.

3.4. Comparison between EOE and HOE

In this section, we compare our generalization error bound
of HOE to EOE’s bound derived by Jain et al. (2016). First,
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we introduce the Gramian matrix and its norms, as pre-
liminaries to discuss the results by Jain et al. (2016). The
Gramian matrix of the representations z1, z2, . . . ,zN ∈
RD is defined by

G =
[
z1 z2 . . . zN

]>[
z1 z2 . . . zN

]
∈ RN,N .

(19)
We denote by ‖·‖∗ and ‖·‖max the nuclear norm and max
norm defined by

‖A‖∗ :=

N∑
n=1

σn(A), ‖A‖max := max
i,j∈[N ]

[A]i,j , (20)

respectively, where σn(G) is the n-th singular value ofG.

EOE’s restriction on its embedding space is given by the
following sets.

Definition 2. We define Eγ , Eλ, Eλγ ,⊂
(
RD
)N

as follows:

Eγ :=
{

(zn)
N
n=1

∣∣∣‖G‖max ≤ γ
}
,

Eλ :=
{

(zn)
N
n=1

∣∣∣‖G‖∗ ≤ λ},
Eλγ := Eγ ∩ Eλ.

(21)

The generalization error bound for EOE is given as follows:

Theorem 3 (Theorem 1 in (Jain et al., 2016)). Assume
that φ is L-Lipschitz. Let (ẑn)

N
n=1 and (z∗n)

N
n=1 be the

empirical and expected risk minimizer of EOE defined by
(9) with B = Eλγ . Then with probability at least 1 - δ we
have that

Rz
(

(ẑn)
N
n=1

)
−Rz

(
(z∗n)

N
n=1

)
≤ 12

√
2L

λ

N

(√
N lnN

S
+

√
3

9

N lnN

S

)
+ 12

√
2Lγ

√
ln 2

δ

S
.

(22)

Theorem 3 is not easy enough to interpret as its restrictions
on the embedding space given by Definition 2 is not intu-
itive. Our following lemma shows that these restrictions are
nothing else but those of the radius of the embedding space.

Lemma 4. LetG be the Gramian matrix of z1, z2, . . . zN .
Then the followings are valid.

‖G‖∗ =

N∑
n=1

[∆RD (0, zn)]
2
,

‖G‖max = max
n∈[N ]

[∆RD (0, zn)]
2
.

(23)

In particular the following holds:

‖G‖∗ ≤ N‖G‖max. (24)

Proof. See Supplementary Materials.

Applying Lemma 4, we have a simplified version of Theo-
rem 3. We define BRDR ⊂

(
RD
)N

by

BR
D

R :=
{

(zn)
N
n=1

∣∣∣∀n ∈ [N ] : ∆RD (0, zn) ≤ R
}
. (25)

Corollary 5. Suppose that (ẑn)
N
n=1 and (z∗n)

N
n=1 are the

empirical and expected risk minimizer in BRDR , then with
probability at least 1 - δ we have that

Rz
(

(ẑn)
N
n=1

)
−Rz

(
(z∗n)

N
n=1

)
≤ 12

√
2LR2

√N lnN

S
+

√
3

9

N lnN

S
+

√
ln 2

δ

S


= O

LφR2

√N lnN

S
+
N lnN

S
+

√
ln 2

δ

S


(26)

Remark 2. We can formally obtain our generalization error
bound of HOE by replacing R2 in (26) by (expR)

2 up to
constant factor. This is consistent to the fact that the volume
of a ball in Euclidean space and hyperbolic space is poly-
nomial and exponential with respect to its radius. We can
say that HOE pays cost of exponential generalization error
in compensation for its exponential volume for embedding
space.

In this section, we compare EOE and HOE’s generalization
errors, that is variances. In the next section, by combining
the above discussion about the variance and existing dis-
cussion about bias, we clarify the condition on which HOE
outperforms EOE.

3.5. Bias-variance trade-off: where does HOE
outperform EOE?

As in other machine learning models, there is a bias-variance
trade-off between HOE and EOE. The comparison between
EOE and HOE bounds shows that HOE’s generalization
error bound is larger than that of EOE, suggesting that
we should not use hyperbolic space if euclidean space can
represent the dissimilarity among the entities successfully.
However, it does not mean that HOE’s expected loss is al-
ways larger than that EOE, because HOE may have lower
minimum expected lossRz

(
(z∗n)

N
n=1

)
than EOE, as exist-

ing theoretical analyses have shown in noiseless settings
(e.g., (Sarkar, 2011)). In fact, if the true dissimilarity mea-
sure ∆∗ is given by the graph distance of a weighted tree,
where euclidean space cannot represent their metric struc-
ture well, then HOE can perform better than EOE with
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sufficient number S of ordinal data as discussed in the fol-
lowing. Suppose that [N ] is the set of vertices of a weighted
tree and ∆∗(i, j) is the graph distance between i ∈ [N ] and
j ∈ [N ] on the weighted tree. We consider the ramp loss
φramp defined by

φramp(x) :=


0 x ≤ −1.
x+ 1 −1 ≤ x ≤ 0.
1 x ≥ 1.

(27)

Suppose that the link function is given by

f(x) =

{
1
2 + α if x > 0,
1
2 − α if x < 0,

(28)

where α ∈ R>0. For any embedding model, the expected
loss is equal to or larger than 1

2 − α. For an embedding
model to achieve the minimum loss 1

2 − α, the number
V of triplets violating (2) must be zero. Specifically, the
expected loss is no smaller than

(
1
2 − α

)
+2α V

|T | . Let V R2

min

and V L2

min denote the minimum V attainable by EOE using
R2 and HOE using L2, respectively. Assume that the true
dissimilarity ∆∗ is the graph distance of a weighted tree.
Regarding HOE, we have that V L2

min = 0. This is achieved by
(1 + ε)-distortion Delaunay embedding algorithm (Sarkar,
2011). We formally state this fact in the following.

Lemma 6. Suppose that [N ] is the set of vertices of a
weighted tree and ∆∗ : [N ] × [N ] → R≥0 is given by
its graph distance, and assume that for i, j, i′, j′ such that
i 6= j, i′ 6= j′ and {i.j} 6= {i′.j′}, ∆∗(i, j) 6= ∆∗(i′, j′)
is valid. Then there exist representations z1, z2, . . . ,zN ∈
L2 that satisfy ∆L2(zi, zj) − ∆L2(zi′ , zj′) > 1 for all
i, j, i′, j′ ∈ [N ] such that ∆∗(i, j) > ∆∗(i′, j′).

Proof. See Supplementary Materials.

Hence, if we take R sufficiently large, the minimum ex-
pected loss of HOE in L2 is 1

2 − α. On the other hand,
EOE cannot achieve this minimum value for some trees
(e.g., all the trees that have a node with degree larger than
or equal to 6). We discuss this in the following. In EOE,

Rz
(
(z∗n)Nn=1

)
=
(

1
2 − α

)
+ 2α

V R2
min

|T | . Here, V R2

min is not
smaller than the number of disjoint 6-star subgraphs in the
graph, as stated in the following lemma.

Lemma 7. Assume that the true dissimilarity ∆∗ is the
graph distance of a weighted tree. There exists at least
one triplet that violates (2) for each 6-star subgraph in the
original graph.

Proof. See Supplementary Materials.

In this case, as HOE’s generalization error bound converges
to zero as S → ∞, the expected loss of HOE’s empirical

risk minimizer can perform better than all representations
in EOE. Specifically, we have the following condition on
which HOE outperforms EOE.
Proposition 8. With probability 1−δ, HOE’sRz

(
(ẑn)Nn=1

)
is smaller than EOE’s if

S > O

(
(expR)

2|T |
αV R2

minN lnN

(
√
N lnN +

√
ln

2

δ

)

+
1

√
N lnN +

√
ln 2

δ

)2

.

(29)

3.6. Limitation

Whereas EOE bound by Jain et al. (2016) and our HOE
clarify the dependency of EOE and HOE’s generalization
error on the embedding space’s radius R, respectively, the
dependency on the embedding space’s dimension D could
be improved. Both of these bounds do not directly depend
on D. This is not consistent with our intuition that using
low-dimensional space should give low generalization error.
Jain et al. (2016) has discussed the dependency of EOE’s
bound on D by substituting λ =

√
DNγ, based on the

following observation:

‖G‖∗ ≤
√
D‖G‖F ≤

√
DN‖G‖∞. (30)

However, as we have seen in (24), we can directly prove
‖G‖∗ ≤ N‖G‖∞. Hence there is no reason to consider
condition λ =

√
DNγ. Deriving a tighter bound in terms

of the dimension for general ordinal embedding could be
future work.

4. Proof Techniques
In this section, we explain our techniques used to prove
Theorem 1. Firstly, we explain why existing generalization
error bound derivation for EOE does not work in HOE. Sec-
ondly, we introduce the first key idea to solve the problem,
which is the reformulation of HOE’s hypothesis function
by the Lorentz Gramian matrix. Thirdly, we introduce the
second key idea, which is the reformulation of the restriction
on HOE’s embedding space by our novel characterization
of the decomposed Lorentz Gramian matrix. Lastly, we
provide the sketch of the proof.

4.1. Difficulty in HOE and Our Solution

In this section, we explain the difficulty of deriving the
generalization error bound and our solutions to prove Theo-
rem 1. We first see the approach for the existing EOE case.
Jain et al. (2016) succeeded in deriving the generalization
error bound of EOE following the procedures below:

• Converting the hypothesis function to that of a linear
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prediction problem in the following form:

h
(
i, j, k; (zn)

N
n=1

)
= 〈G,T i,j,k〉F , (31)

where T i,j,k ∈ SN,N is some matrix determined by
i, j, k. Here the Gramian matrix works as the parameter
of a linear prediction model.

• Calculating the Rademacher complexity (Koltchinskii,
2001; Koltchinskii & Panchenko, 2000; Bartlett et al.,
2002, See Supplementary Materials for definition.) of
EOE’s hypothesis functions under the restriction on
norms of the Gramian matrix given by Definition 2,
which we have shown are equivalent to those on the
radius of the embedding space (Lemma 4).

However, this procedure does not straightforwardly work
for HOE, owing to following reasons. The first reason is
that as hyperbolic space is not inner-product space, it is diffi-
cult to convert HOE’s hypothesis function to that of a linear
prediction model in the form of (31), as long as we use the
Gramian matrix as its parameters. We solve this problem
using the Lorentz Gramian matrix to reformulate HOE’s hy-
pothesis function, leveraging the fact that hyperbolic space
is a sub-manifold of Minkowski space. The second reason
is that, even though we can reformulate HOE’s hypothesis
function as that of a linear prediction model, that conversion
also converts our simple restrictions given in Definition 1 to
an unknown set of the Lorentz Gramian matrices. To solve
this second problem, we give a clear characterization of the
restrictions on embedding space’s radius as conditions on
the decomposed Lorentz Gramian matrices. Our characteri-
zation by the decomposed Lorentz Gramian matrix enables
us to calculate the Rademacher complexity of HOE’s hy-
pothesis functions using similar techniques to that used in
(Jain et al., 2016). Once we can calculate the Rademacher
complexity, we can prove Theorem 1 by the standard statis-
tical learning technique.

4.2. Reformulation of HOE Hypothesis Function by
Lorentz Gramian Matrix

Recall that Minkowski space is equipped with the Lorentz
inner-product function 〈·, ·〉M. The Lorentz Gramian matrix
L of representations z0, z1, . . . ,zN ∈ LD is defined by
[L]i,j = 〈zi, zj〉M. If ψ = cosh, we can reformulate
HOE’s hypothesis function using the Lorentz inner-product
function as follows:

h
(
i, j, k; (zn)

N
n=1

)
= −〈zi, zj〉M + 〈zi, zk〉M . (32)

For (i, j, k) ∈ T , we define T i,j,k ∈ SN,N by

[T i,j,k]n,n′ =


− 1

2 if (n, n′) = (i, j), (j, i),

+ 1
2 if (n, n′) = (i, k), (k, i),

0 otherwise.
(33)

Then we can convert h
(
i, j, k; (zn)

N
n=1

)
as a linear func-

tion of the Lorentz Gramian as follows:

h
(
i, j, k; (zn)

N
n=1

)
= 〈L,T i,j,k〉F . (34)

Using (34), we redefine the empirical risk function as a
function of the Lorentz Gramian as follows:

RG
S (L) :=

1

S

S∑
s=1

φ
(
yi,j,k · 〈L,T is,js,ks〉F

)
. (35)

By definition, if L is the Lorentz Gramian matrix of
(zn)

N
n=1, RG

S (L) = R̂z
S

(
(zn)

N
n=1

)
is valid. According

to the above reformulation of HOE risk using the Lorentz
Gramian matrix, the risk bound is obtained if the range of
values that the Lorentz Gramian matrix can take is specified.
In the next section, we discuss the exact range.

4.3. Decomposition of the Lorentz Gramian Matrix

In Section 3.2, we have put the restrictions on the radius of
HOE’s embedding space, and in the previous section, we
have reformulated HOE hypothesis function as the function
of the Lorentz Gramian matrix. To calculate the Rademacher
complexity of the set of the HOE hypothesis functions and
derive a generalization error bound, it is necessary to charac-
terize the original restrictions on embedding space given in
Definition 1 by conditions on the Lorentz Gramian matrix.
In this section, we give our novel characterization of the
restrictions as conditions with respect to the decomposed
Lorentz Gramian matrices. The following lemma gives con-
ditions on the Lorentz Gramian matrix that is equivalent to
the restrictions in Section 3.2.

Lemma 9. Let R ∈ R≥0 and L,L−,L+ ∈ SN,N . Define
conditions (a)-(f) as follows:

(a)

{
(a-) L− � O,

(a+) L+ � O,

(b)

{
(b-) rankL− = 1,

(b+) rankL+ ≤ D,

(c) ∀n ∈ [N ] :
[
L+ −L−

]
n,n

= −1,

(d) ∀i, j ∈ [N ] :
[
L+ −L−

]
i,j
≤ −1,

(e)

{
(e-)

∥∥L−∥∥
max
≤ cosh2R,

(e+)
∥∥L+

∥∥
max
≤ sinh2R,

(f)

{
(f-)
∥∥L−∥∥∗ ≤ N cosh2 ρ,

(f+)
∥∥L+

∥∥
∗ ≤ N sinh2 ρ,



Generalization Error Bound for Hyperbolic Ordinal Embedding

where conditions (a), (b), (e), and (f) are conditions (a-)
and (a+), (b-) and (b+), (e-) and (e+), and (f-) and (f+),
respectively. Then

(i) L is the Lorentz Gramian matrix of a series of repre-
sentations (zn)

N
n=1 ∈

(
LD
)N

if and only if there exist
L−,L+ ∈ SN,N such that L = L+ − L− and conditions
(a)-(d) are satisfied.

(ii) L is the Lorentz Gramian matrix of a series of rep-
resentations (zn)

N
n=1 ∈ BR if and only if there exist

L−,L+ ∈ SN,N such that L = L+ − L− and conditions
(a)-(e) are satisfied.

(iii) L is the Lorentz Gramian matrix of a series of rep-
resentations (zn)

N
n=1 ∈ Bρ if and only if there exist

L−,L+ ∈ SN,N such that L = L+ − L− and conditions
(a)-(d),(f) are satisfied.

(iv) L is the Lorentz Gramian matrix of a series of rep-
resentations (zn)

N
n=1 ∈ B

ρ
R if and only if there exist

L−,L+ ∈ SN,N such that L = L+ − L− and conditions
(a)-(f) are satisfied.

Proof. See Supplementary Materials.

We call the pair L− and L− the decomposed Lorentz
Gramian matrices. Lemma 9 rephrases the geometric re-
strictions on hyperbolic space to conditions including those
on the max norm and nuclear norm of the decomposed
Lorentz Gramian matrices. The significance of Lemma 9
is that this rephrasing enables us to use techniques similar
to those in (Jain et al., 2016), where they considered the
restriction on those norms of the ordinary Gramian matrix.
Note that the statement of Lemma 9 (i) is equivalent to that
of Proposition 1 in (Tabaghi & Dokmanic, 2020) and we
can regard (ii) and (iii) as extensions of (i). However, their
proof of the necessity in (i) is incomplete, for which we
give a complete proof. See the remark in Supplementary
Materials for details.

4.4. Proof Sketch of Theorem 1

Lastly, we give a brief sketch of our proof of Theorem 1. By
the decomposition of the Lorentz Gramian matrix, we have
the following form of HOE’s hypothesis function.

h
(
i, j, k; (zn)

N
n=1

)
=
〈
L+ −L−,T i,j,k

〉
F
, (36)

with constraints on norms ofL+ andL− given by Lemma 9.
This enables us to decompose the Rademacher complexity
of HOE’s hypothesis function into two terms. These de-
composed terms can be evaluated in a similar way to that
used in (Jain et al., 2016). See Section F in Supplementary
Materials for the definition of Rademacher complexity, our
upper bound of the Rademacher complexity of HOE’s hy-
pothesis functions and its proof, and the complete proof of
Theorem 1.

Table 1. Triplet classification error (%).
Dataset S 100 200 400 800 1600

R2 EOE 40.45 38.62 38.22 33.06 30.86
HOE 45.50 42.58 39.23 33.50 32.01

Star EOE 40.02 39.70 38.87 39.46 36.30
HOE 43.61 43.17 41.04 39.11 35.74

5. Experiments
We compared EOE and HOE on two types of ordinal
datasets (R2 and Star). The ordinal data are generated ac-
cording to (15) and (11), where f is given by (28) with
α = 0.25 and ∆∗ is defined by a metric. The metric for R2
is the distance matrix of 20 points in R2, where we expect
both HOE and EOE to have smallRz

(
(z∗n)Nn=1

)
. The met-

ric for Star is the distance matrix of a 20-star graph with
random weights, where we expect HOE to have smaller
Rz
(
(z∗n)Nn=1

)
than EOE since a star graph is a special tree.

We set ψ(x) = x2 for EOE and ψ(x) = coshx for HOE.
The ordinal data size is S = 100, 200, 400, 800, 1600. We
have set both batch size and the number of epoch in stochas-
tic gradient descent to 1000. The learning rate has been
selected from {0.1, 1.0, 10.0} by grid-search, following
(Suzuki et al., 2019). We have run 10 times for each dataset
and report the average error in Table 1. EOE obtains smaller
errors than HOE in R2, owing to EOE’s smaller excess risk.
In Star, HOE shows larger errors than HOE for small Ss
(100,200,400) but smaller errors than HOE for large Ss
(800.1600). This is inline with the analysis in Section 3.4.

6. Conclusion
We have shown that HOE’s generalization error is at most
exponential with respect to the embedding space’s radius
R. Also, we have seen that the bound’s dependency on the
number of entities and the size of ordinal data is the same
up to constant factors as that of EOE. Comparing our bound
and that of EOE, we have seen that we can formally obtain
HOE’s bound by replacing a linear term in EOE’s bound
with respect to the embedding space’s radius by an exponen-
tial term. The generalization error bounds of HOE and EOE
reflect the volume of embedding space, and our HOE bound
is reasonable as a cost for HOE’s exponential representa-
tion ability. Our bias-variance trade-off discussion suggests
that although we should not use hyperbolic space where
Euclidean space can represent the true dissimilarity well,
HOE’s generalization performance cost is worth paying if
the data has hierarchical tree structure, as we have seen
through the tree example. Combined with existing analyses
of hyperbolic embedding in noiseless settings, our general-
ization error analysis in general noisy settings provides a
guide for embedding space selection in real applications.
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Boguná, M., Papadopoulos, F., and Krioukov, D. Sustaining
the internet with hyperbolic mapping. Nature communi-
cations, 1(1):1–8, 2010.
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