
Supplementary Material

A. Proofs
A.1. Proof of Lemma 7

Proof. Consider the following MDP:

s1

s2

a2

a1

a1

Figure 6. In UNICYCLE, the goal is to stay in s1 forever.

As illustrated above, c(s, a) = 1s2 is the cost function
for this MDP. Let the expert perfectly optimize this func-
tion by always taking a1 in s1. Thus, we are in the
O(T)-recoverable setting. Then, for any ε > 0, if the
learner takes a2 in s1 with probability ε, J(πE)− J(π) =∑T
t=1 ε(1− ε)t−1(T − t) = Ω(εT 2). There is only one ac-

tion in s2 so it is not possible to have a nonzero classification
error in this state.

A.2. Proof of Entropy Regularization Lemma

Lemma 8. Entropy Regularization Lemma: By optimiz-
ing Uj(π, f)−αH(π) to a δ-approximate equilibrium, one

recovers at worst a QM
√

2δ
α +αT (ln |A|+ ln |S|) equilib-

rium strategy for the policy player on the original game.

Proof. We optimize in the P (AT ||ST) policy representation
where strong duality holds and define the following:

πR = arg min
π∈Π

(max
f∈F

Uj(π, f)− αH(π))

First, we derive a bound on the distance between π̂ and πR.
We define M as follows:

M(π) = max
f∈F

Uj(π, f)− αH(π) + αT (ln |A|+ ln |S|)

M is an α-strongly convex function with respect to || · ||1
because U is a max of linear functions, −H is 1-strongly

convex, and the third term is a constant. This tells us that:

M(πR)−M(π̂) ≤ ∇M(πR)T (πR − π̂)− α

2
||πR − π̂||21

We note that because πR minimizes M , the first term on the
RHS is negative, allowing us to simplify this expression to:

α

2
||πR − π̂||21 ≤M(π̂)−M(πR)

We now upper bound the RHS of this expression via the
following series of substitutions:

M(π̂) = max
f∈F

Uj(π̂, f)− αH(π̂) + αT (ln |A|+ ln |S|)

≤ Uj(π̂, f̂)− αH(π̂) + αT (ln |A|+ ln |S|) + δ

≤ Uj(πR, f̂)− αH(πR) + αT (ln |A|+ ln |S|) + δ

≤ max
f∈F

Uj(π
R, f)− αH(πR) + αT (ln |A|+ ln |S|) + δ

= M(πR) + δ

Rearranging terms to get the desired bound on strategy
distance:

M(π̂)−M(πR) ≤ δ

⇒ ||πR − π̂||21 ≤
2δ

α

⇒ ||πR − π̂||1 ≤
√

2δ

α

Next, we prove that πR is a αT (ln |A|+ln |S|)-approximate
equilibrium strategy for the original, unregularized game.
We note that H(π) ∈ [0, T (ln |A| + ln |S|)] and then pro-
ceed as follows:

max
f∈F

Uj(π
R, f) = M(πR) + αH(πR)− αT (ln |A|+ ln |S|)

≤M(πR)

≤ αT (ln |A|+ ln |S|)

The last line comes from the fact that playing the optimal
strategy in the original game on the regularized game could
at worst lead to a payoff of αT (ln |A|+ ln |S|). Therefore,
the value of the regularized game can at most be this quan-
tity. Recalling that the value of the original game is 0 and
rearranging terms, we get:

max
f∈F

Uj(π
R, f)− αT (ln |A|+ ln |S|) ≤ 0 = max

f∈F
min
π∈Π

Uj(π, f)

Thus by definition, πR must be half of an αT (ln |A| +
ln |S|)-approximate equilibrium strategy pair.

Next, let QM denote the absolute difference between the
minimum and maximum Q-value. For a fixed f , the maxi-
mum amount the policy player could gain from switching to
policies within an L1 ball of radius r centered at the original

Of Moments and Matching

policy is rQM by the bilinearity of the game and Hölder’s
inequality. Because the supremum over k-Lipschitz func-
tions is known to be k-Lipschitz, this implies the same is
true for the payoff against the best response f . To com-

plete the proof, we can set r =
√

2δ
α and combine this

with the fact that πR achieves in the worst case a payoff of
αT (ln |A|+ln |S|) to prove that π̂ can at most achieve a pay-

off of QM
√

2δ
α +αT (ln |A|+ ln |S|) on the original game,

which establishes π̂ as a (QM

√
2δ
α + αT (ln |A|+ ln |S|))-

approximate equilibrium solution.

A.3. Proof of Theorem 1

We proceed in cases.
Proof. We first consider the primal case. Our goal is to
compute a policy π̂ such that:

max
f∈F

Uj(π̂, f) ≤ δ

We prove that such a policy can be found efficiently by
executing the following procedure for a polynomially large
number of iterations:

1. For t = 1 . . . N , do:

2. No-regret algorithm computes πt.

3. Set f t to the best response to πt.

4. Return π̂ = πt
∗
, t∗ = arg mint Uj(π

t, f t).

Recall that via our no-regret assumption we know that

1

N

N∑
t

Uj(π
t, f t)− 1

N
min
π∈Π

N∑
t

Uj(π, f
t) ≤ βΠ(N)

N
≤ δ

for some N that is poly(1
δ). We can rearrange terms and

use the fact that πE ∈ Π to upper bound the average payoff:

1

N

N∑
t

Uj(π
t, f t) ≤ δ +

1

N
min
π∈Π

N∑
t

Uj(π, f
t) ≤ δ

Using the property that there must be at least one element
in an average that is at most the value of the average:

min
t
Uj(π

t, f t) ≤ 1

N

N∑
t

Uj(π
t, f t) ≤ δ

To complete the proof, we recall that f t is chosen as the
best response to πt, giving us that:

min
t

max
f∈F

Uj(π
t, f) ≤ δ

In words, this means that by setting π̂ to the policy with the
lowest loss out of the N computed, we are able to efficiently
(within poly(1

δ) iterations) find a δ-approximate equilibrium
strategy for the policy player. Note that this result holds
without assuming a finite S and A and does not require
regularization of the policy. However, it requires us to have
a no-regret algorithm over Π which can be a challenge for
the reward moment-matching game.

We now consider the dual case. As before, we wish to find
a policy π̂ such that:

max
f∈F

Uj(π̂, f) ≤ δ

We run the following procedure on Uj(π, f)− αH(π):

1. For t = 1 . . . N , do:

2. No-regret algorithm computes f t.

3. Set πt to the best response to f t.

4. Return π̂ = arg minπ∈Π Uj(π, f)− αH(π).

By the classic result of (Freund and Schapire 1997), we
know that the average of the N iterates produced by
the above procedure (which we denote f and π) is a
δ′-approximate equilibrium strategy for some N that is
poly(1

δ′). Applying our Entropy Regularization Lemma,
we can upper bound the payoff of π on the original game:

sup
f∈F

Uj(π, f) ≤ QM
√

2δ′

α
+ αT (ln |A|+ ln |S|)

We now proceed similarly to our proof of the Entropy Regu-
larization Lemma by first bounding the distance between π
and π̂ and the appealing to the Qm-Lipschitzness of Uj . Let
l(π) = Uj(π, f) − αH(π). Then, while keeping the fact
that l is α-strongly convex in mind:

l(π̂)− l(π) ≤ ∇l(π̂)T (π̂ − π)− α

2
||π − π̂||21

⇒ α

2
||π − π̂||21 ≤ l(π)− l(π̂) +∇l(π̂)T (π̂ − π)

⇒ α

2
||π − π̂||21 ≤ l(π)− l(π̂)

⇒ α

2
||π − π̂||21 ≤ δ′

⇒ ||π − π̂||1 ≤
√

2δ′

α

As before, the second to last step follows from the definition
of a δ′-approximate equilibrium. Now, by the bilinearity of
the game, Hölder’s inequality, and the fact that supremum
over k-Lipschitz functions is known to be k-Lipschitz, we
can state that:

sup
f∈F

Uj(π̂, f) ≤ 2QM

√
2δ′

α
+ αT (ln |A|+ ln |S|)

Of Moments and Matching

To ensure that the LHS of this expression is upper bounded
by δ, it is sufficient to set α = δ

2T (ln |A|+ln |S|) and δ′ =
δ2α

32Q2
M

. Plugging in these terms, we arrive at:

sup
f∈F

Uj(π̂, f) ≤ δ

2
+
δ

2
≤ δ

We note that in practice, α is rather sensitive hyperparame-
ter of maximum entropy reinforcement learning algorithms
(Haarnoja et al. 2018) and hope that the above expres-
sion might provide some rough guidance for how to set
α. To complete the proof, note that N is poly(1

δ′) and 1
δ′ =

64Q2
MT (ln |A|+ln |S|)

δ3 . Thus, N is poly(1
δ , T, ln |A|, ln |S|)).

B. Algorithm Derivations
B.1. AdVIL Derivation

We begin by performing the following substitution: f =
v − Bπv, where

Bπv = E
st+1∼T (·|st,at),
at+1∼π(st+1)

[v]

is the expected Bellman operator under the learner’s current
policy. Our objective (2) then becomes:

sup
v∈F

T∑
t=1

E
τ∼π

[v(st, at)− Bπv(st, at)]

− E
τ∼πE

[v(st, at)− Bπv(st, at)]

This expression telescopes over time, simplifying to:

sup
v∈F

E
τ∼π

[v(s0, a0)]−
T∑
t=1

E
τ∼πE

[v(st, at)− Bπv(st, at)]

We approximate Bπv via a single-sample estimate from
the respective expert trajectory, yielding the following off-
policy expression:

sup
v∈F

E
τ∼π

[v(s0, a0)]−
T∑
t=1

E
τ∼πE

[v(st, at)− E
a∼π(st+1)

[v(st+1, a)]]

This resembles the form of the objective in ValueDICE
(Kostrikov et al. 2019) but without requiring us to take the
expectation of the exponentiated discriminator. We can
further simplify this objective by noticing that trajectories
generated by πE and π have the same starting state distribu-
tion:

sup
v∈F

E
τ∼πE

[

T∑
t=1

E
a∼π(st)

[v(st, a)]− v(st, at)] (4)

We also note that this AdVIL objective can be derived
straightforwardly via the Performance Difference Lemma.

B.2. AdRIL Derivation

Let F be a RKHS be equipped with kernel K : (S ×A)×
(S × A)→ R. On iteration k of the algorithm, consider a
purely cosmetic variation of our IPM-based objective (2):

sup
c∈F

T∑
t=1

(E
τ∼πk

[c(st, at)]− E
τ∼πE

[c(st, at)]) = sup
c∈F

Lk(c)

We evaluate the first expectation by collecting on-policy
rollouts into a datasetDk and the second by sampling from a
fixed set of expert demonstrations DE . Assume that |Dk| is
constant across iterations. Let E be the evaluation functional.
Then, taking the functional gradient:

∇cLk(c) =

T∑
t=1

1

|Dk|

Dk∑
τ

∇cE [c; (st, at)]−
1

|DE |

DE∑
τ

∇cE [c; (st, at)]

=

T∑
t=1

1

|Dk|

Dk∑
τ

K([st, at], ·)−
1

|DE |

DE∑
τ

K([st, at], ·)

whereK could be an state-action indicator (1s,a) in discrete
spaces and relaxed to a Gaussian in continuous spaces. Let
Dk =

⋃k
i=0Di be the aggregation of all previous Di. Aver-

aging functional gradients over iterations of the algorithm
(which, other than a scale factor that does not affect the op-
timal policy, is equivalent to having a constant learning rate
of 1), we get the cost function our policy tries to minimize:

C(πk) =

k∑
i=0

∇cLi(c)

=

T∑
t=1

1

|Dk|

Dk∑
τ

K([st, at], ·)−
1

|DE |

DE∑
τ

K([st, at], ·)

(5)

B.3. DAeQuIL Derivations

Let dπ denote the state-action visitation distribution of π.
Then, DAeQuIL can be seen as Follow The Regularized
Leader on the following sequence of losses:

1. fi = arg maxf∈F Es,a∼dπi [f(s, a)− f(s, πE(s))]

2. li(π) = Es∼dπi [fi(s, π(s))− fi(s, πE(s))]

Solving the on-Q game proper would instead require
l′i(π) = Es∼dπ [fi(s, π(s)) − fi(s, πE(s))] – for the state
distribution to depend on the policy that is passed to the loss.
While this would allow our previous no-regret analysis to
apply as written, we would need to re-sample trajectories
after every gradient step, a burden we’d like to avoid.

Let us consider the no-regret guarantee we get from the
DAeQuIL losses:

1

N

N∑
t

lt(π
t)− 1

N
min
π∈Π

N∑
t

lt(π) ≤ βΠ(N)

N
≤ δ

Of Moments and Matching

Notice that lt(πt) = maxf∈F U3(πt, f), the exact quan-
tity we’d like to bound. The tricky part comes from the
second term in the regret – under realizability, (πE ∈ Π),
this term is 0 and DAeQuIL directly finds a δ-approximate
equilibrium for the on-Q game. Otherwise, we require the
following weak notion of realizability to maintain the on-Q
moment matching bounds: ∃π′ ∈ Π s.t.

max
dπ∈dΠ

max
f∈F

Es∼dπ [f(s, π′(a))− f(s, πE(a))] ≤ O(ε)

In words, this is saying that there exists a policy π′ that
can match expert moments up to ε on any state visitation
distribution generated by a policy in Π. If we instead solved
the on-Q game directly by using l′i(π), we would instead
need the condition: ∃π′ ∈ Π s.t.

max
f∈F

Es∼dπ′ [f(s, π′(a))− f(s, πE(a))] ≤ O(ε)

This weaker condition is concomitant with a much more
computationally expensive optimization procedure.

C. Experimental Setup
C.1. Expert

We use the Stable Baselines 3 (Raffin et al. 2019) implemen-
tation of PPO (Schulman et al. 2017) and SAC (Haarnoja
et al. 2018) to train experts for each environment, mostly
using the already tuned hyperparameters from (Raffin 2020).
Specifically, we use the modifications in Tables 4 and 5 to
the Stable Baselines Defaults.

PARAMETER VALUE

BUFFER SIZE 300000
BATCH SIZE 256
γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE 7.3E-4
POLICY ARCHITECTURE 256 X 2
STATE-DEPENDENT EXPLORATION TRUE
TRAINING TIMESTEPS 1E6

Table 4. Expert hyperparameters for HalfCheetah Bullet Task.

C.2. Baselines

For all learning algorithms, we perform 5 runs and use a
common architecture of 256 x 2 with ReLU activations.
For each datapoint, we average the cumulative reward
of 10 trajectories. For offline algorithms, we train on
{5, 10, 15, 20, 25} expert trajectories with a maximum of
500k iterations of the optimization procedure. For online
algorithms, we train on a fixed number of trajectories (5 for

PARAMETER VALUE

BUFFER SIZE 300000
BATCH SIZE 256
γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE 7.3E-4
POLICY ARCHITECTURE 256 X 2
STATE-DEPENDENT EXPLORATION TRUE
TRAINING TIMESTEPS 1E6

Table 5. Expert hyperparameters for Ant Bullet Task.

ENV. EXPERT BC PERFORMANCE

HALFCHEETAH 2154 2083
ANT 2585 2526

Table 6. With enough data (25 trajectories) and 100k steps of gradi-
ent descent, behavioral cloning is able to solve all tasks considered,
replicating the results of (Spencer et al. 2021). However, other
approaches are able to perform better when there is less data avail-
able.

HalfCheetah and 20 for Ant) for 500k environment steps.
For GAIL (Ho and Ermon 2016) and behavioral cloning
(Pomerleau 1989), we use the implementation produced by
(Wang et al. 2020). We use the changes from the default
values in Tables 6 and 7 for all tasks.

PARAMETER VALUE

ENTROPY WEIGHT 0
L2 WEIGHT 0
TRAINING TIMESTEPS 5E5

Table 7. Learner hyperparameters for Behavioral Cloning.

For SQIL (Reddy et al. 2019), we build a custom implemen-
tation on top of Stable Baselines with feedback from the
authors. As seen in Table 9, we use the similar parameters
for SAC as we did for training the expert.

We modify the open-sourced code for ValueDICE
(Kostrikov et al. 2019) to be actually off-policy with feed-
back from the authors. The publicly available version of the
ValueDICE code uses on-policy samples to compute a regu-
larization term, even when it is turned off in the flags. We
release our version.8 We use the default hyperparameters
for all experiments (and thus, train for 500k steps).

Of Moments and Matching

PARAMETER VALUE

NUM STEPS 1024
EXPERT BATCH SIZE 32

Table 8. Learner hyperparameters for GAIL.

PARAMETER VALUE

γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE LINEAR SCHEDULE OF 7.3E-4

Table 9. Learner hyperparameters for SQIL.

C.3. Our Algorithms

In this section, we use bold text to highlight sensitive hy-
perparameters. Similarly to SQIL, AdRIL is built on top
of the Stable Baselines implementation of SAC. AdVIL is
written in pure PyTorch. We use the same network archi-
tecture choices as for the baselines. For AdRIL we use the
hyperparameters in Table 10 across all experiments.

PARAMETER VALUE

γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE LINEAR SCHEDULE OF 7.3E-4
f UPDATE FREQ. 1250

Table 10. Learner hyperparameters for AdRIL.

We note that AdRIL requires careful tuning of
f Update Freq. for strong performance. To
find the value specified, we ran trials with
{1250, 2500, 5000, 12500, 25000, 50000} and selected the
one that achieved the most stable updates. In practice,
we would recommend evaluating a trained policy on a
validation set to set this parameter. We also note because
SAC is an off-policy algorithm, we are free to initialize the
learner by adding all expert samples to the replay buffer at
the start, as is done for SQIL.

We change one parameter between environments for AdRIL
– for HalfCheetah, we perform standard sampling from the
replay buffer while for Ant we sample an expert trajectory
with p = 1

2 and a learner trajectory otherwise, similar to
SQIL. We find that for certain environments, this modifica-
tion can somewhat increase the stability of updates while
for other environments it can significantly hamper learner

8https://github.com/gkswamy98/valuedice

0e5 1e5 2e5 3e5 4e5
Environment Steps

0

500

1000

1500

2000

2500

J(
π

)

AntBulletEnv-v0 @ 20 Expert Demos

AdRIL Balanced AdRIL πE

Figure 7. A comparison of balanced vs. unbalanced sampling for
AdRIL on the Ant Environment. For certain tasks, balanced sam-
pling can help with the stability of updates.

performance. We recommend trying both options if possible
but defaulting to standard sampling.

For AdVIL, we use the hyperparameters in Table 11 across
all tasks. Emperically, small learning rates, large batch

PARAMETER VALUE

ηπ 8E-6
ηf 8E-4
BATCH SIZE 1024
f GRADIENT TARGET 0.4
f GRADIENT PENALTY WEIGHT 10
π ORTHOGONAL REGULARIZATION 1E-4
π MSE REGULARIZATION WEIGHT 0.2
NORMALIZE STATES WITH EXPERT DATA TRUE
NORMALIZE ACTIONS TO [-1, 1] TRUE
GRADIENT NORM CLIPPING [-40, 40]

Table 11. Learner hyperparameters for AdVIL.

sizes, and regularization of both players are critical to stable
convergence. We find that AdVIL converges significantly
more quickly than ValueDICE, requiring only 50k steps
for HalfCheetah and 100k Steps for Ant instead of 500k
steps for both tasks. However, we also find that running
AdVIL for longer than these prescribed amounts can lead to
a collapse of policy performance. Fortunately, this can easily
be caught by watching for sudden and large fluctuations in
policy loss after a long period of steady decreases. One
can perform this early-stopping check without access to the
environment.

D. On-Q Experiments
We perform two experiments to tease out when one should
apply DAeQuIL over DAgger. We first present results on
a rocket-landing task from OpenAI Gym where behavioral
cloning by itself is able to nearly solve the task, as has been

https://github.com/gkswamy98/valuedice

Of Moments and Matching

previously noted (Spencer et al. 2021). To make the task
more challenging, we truncate the last two dimensions of the
state for the policy class, which corresponds to masking the
location of the legs of the lander. We use two-layer neural
networks with 64 hidden units as all our function classes,
perform the optimization steps via ADAM with learning
rate 3e − 4, and sample 10 trajectories per update. Here,
we see DAeQuIL do around as well as DAgger (Fig. 8),
with both algorithms quickly learning a policy of quality
equivalent to that of the expert. We list the full parameters
of the algorithms in Tables 12 and 13. As in the previous
section, bold text highlights sensitive hyperparameters.

0 20 40 60 80
Expert Demos

−200

0

200

J(
π

)

LunarLander-v2

Expert DAgger DAeQuIL

Figure 8. As behavioral cloning alone is able to nearly match the
expert, DAgger and DAeQuIL perform around the same.

PARAMETER VALUE

BATCH SIZE 32
GRADIENT STEPS π UPDATE 3E3
GRADIENT STEPS f UPDATE 1E3
f GRADIENT PENALTY TARGET 0
f GRADIENT PENALTY WEIGHT 5

Table 12. Learner hyperparameters for DAeQuIL on LunarLander-
v2.

PARAMETER VALUE

BATCH SIZE 32
GRADIENT STEPS π UPDATE 1E4

Table 13. Learner hyperparameters for DAgger on LunarLander-
v2.

We next perform an experiment to show how careful cura-
tion of moments can allow DAeQuIL to significantly out-
perform DAgger at some tasks. Consider an operator trying
to teach a drone to fly through a cluttered forest filled with
trees. The operator has already trained a perception system
that provides state information to the drone about whether a
tree is infront of it. Because the operator is primarily con-
cerned with safety, she only cares about making it through
the forest, not the lateral location of the drone on the other
side.

She also tries to demonstrate a wide variety of evasive ma-
neuvers as to hopefully teach the drone to generalize. We
simulate such an operator and visualize the trajectories in
Fig. 4, left.

Standard behavioral cloning with an `2 loss would fail at this
task because it would attempt to reproduce the conditional
mean action, leading the drone to fly straight into the tree.
Unfortunately, DAgger inherits this flaw, and is therefore
prone to producing a policy that crashes into the first tree it
sees, as shown in Fig. 4, center.

For DAeQuIL, the operator leverages her knowledge of
the problem and passes in two important moments: the
perception system’s imminent crash indicator and the abso-
lute difference between the current and proposed headings.
Whenever the former is on, the latter is a large value under
the expert’s distribution as they are trying to avoid the tree.
So, the learner figures out that it should swerve out of the
way of the tree. This leads to policies learned via DAeQuIL
to be able to progress much further into the forest, as seen
in Fig. 4, right.

Using the final position of executed trajectories as the cu-
mulative reward, we see the following learning curves with
DAeQuIL clearly out-performing DAgger (Fig. 9).

0 20 40 60 80
Num. Trajs

0

10

20

30

J(
π

)

Forest Navigation

DAgger DAeQuIL

Figure 9. J(π) is the longitudinal distance into the forest the
learner is able to progress. All experiments are run on the for-
est layout shown in Fig. 4 and standard errors are computed across
10 trials.

We use the same function classes as the previous experi-
ment but use a hidden size of 32 for the discriminator of
DAeQuIL. We list the full set of parameters in Tables 14
and 15.

E. Additional Moment Types
E.1. A Fourth Moment Class: Mixed-Moment Value

We could instead plug in Q-moments to the reward moment
payoff function U1. Let FV and FVE refer to the classes of
policy and expert value functions. As before, we assume
both of these classes are closed under negation and include
the true value and expert value functions. For notational
convenience, we assume both classes contain functions with

Of Moments and Matching

PARAMETER VALUE

BATCH SIZE 32
GRADIENT STEPS π UPDATE 2E3
`BC SCALE 5E-2
GRADIENT STEPS f UPDATE 1E3
f GRADIENT PENALTY TARGET 0
f GRADIENT PENALTY WEIGHT 5

Table 14. Learner hyperparameters for DAeQuIL on Forest Navi-
gation.

PARAMETER VALUE

BATCH SIZE 32
GRADIENT STEPS π UPDATE 5E3

Table 15. Learner hyperparameters for DAgger on Forest Naviga-
tion.

type signatures S × A → R, with the second argument
being ignored. Starting from the PDL, we can expand as
follows:

J(πE)− J(π)

=
∑T

t=1
E

τ∼πE
[Qπt (st, at)− E

a∼π(st)
[Qπt (st, a)]]

=
∑T

t=1
E

τ∼πE
[Qπt (st, at)− E

a∼π(st)
[Qπt (st, a)]]

+ E
τ∼π

[Qπt (st, at)−Qπt (st, at)]

=
∑T

t=1
E

τ∼πE
[Qπt (st, at)]]− E

τ∼π
[Qπt (st, at)]]

+ E
τ∼π

a∼π(st)

[Qπt (st, a)]− E
τ∼πE
a∼π(st)

[Qπt (st, a)]

≤ sup
f∈FQ∪FV

2
∑T

t=1
E
τ∼π

[f(st, at)]− E
τ∼πE

[f(st, at)]

The last step follows from the fact that supa∈A f(a) +
supb∈B f(b) ≤ supc∈A∪B 2f(c). An analogous bound for
FQE and FVE can be proved by expanding the PDL in the
reverse direction. We can use these expansions to provide
bounds related to the reward-moment bound:
Lemma 9. Mixed Moment Value Upper Bound: If
FQ/2T and FV /2T spans F or FQE/2T and FVE/2T
do, then for all MDPs, πE , and π ← Ψ{ε}(U1), J(πE)−
J(π) ≤ O(εT 2).

Proof. We start by expanding the imitation gap:
J(πE)− J(π)

≤ sup
f∈FQ∪FV

2
∑T

t=1
E
τ∼π

[f(st, at)]− E
τ∼πE

[f(st, at)]

≤ sup
f∈F

2 E
τ∼π

∑T

t=1
2Tf(st, at)− E

τ∼πE

∑T

t=1
2Tf(st, at)

= 4T 2 sup
f∈F

U1(π, f) ≤ 4εT 2

The T in the second to last line comes from the scaling
down of either the (FQ,FV) or the (FQE ,FVE) pairs by T
to fit into the function class F .

Lemma 10. Mixed Moment Value Lower Bound: There
exists an MDP, πE , and π ← Ψ{ε}(U1) such that J(πE)−
J(π) ≥ Ω(εT).

Proof. The proof of the reward lower bound holds verbatim.

These bounds show that solving this game, which might be
more challenging than the reward-moment game, appears to
offer no policy performance gains. However, in the imitation
learning from observation alone setting, where one does not
have access to action labels, reward-matching might be
impossible, forcing one to use an approach similar to the
above. This is because value functions are pure functions
of state, not actions. (Sun et al. 2019) give an efficient
algorithm for this setting.

E.2. Combining Reward and Value Moments

For both the off-Q and on-Q setups, one can leverage the
standard expansion of a Q-function into a sum of rewards
to derive a flexible family of algorithms that allow one to in-
clude knowledge of both reward and Q moments. Explicitly,
for the off-Q case:

J(πE)− J(π)

=
1

T
(E
τ∼πE
a∼π(st)

[

T∑
t=1

Qπ(st, a)−Qπ(st, at)])

=
1

T
(E
τ∼πE
a∼π(st′)

[

T∑
t=1

T ′∑
t′=1

r(st′ , a)− r(st′ , at′)

+QπT ′(sT ′ , a)−QπT ′(sT ′ , aT ′)])

≤ max
f∈Fr
g∈FQ

1

T
(E
τ∼πE
a∼π(st)

[

T∑
t=1

T ′∑
t′=t

f(st′ , a)− f(st′ , at′)

+ g(sT ′ , a)− g(sT ′ , aT ′)]) (6)

Passing such a payoff to our oracle with F spanned by
Fr/2×FQ/2T would recover the off-Q bounds.

This expansion begs the question of when it is useful. One
answer is a standard bias/variance trade-off with different
values of T ′, as has been explored in TD-Gammon (Tesauro
1995). We can provide an alternative answer by consider-
ing the limiting case – when the Q function is decomposed
entirely into reward functions, the learner is required at
timestep t to match the sum of future reward moments.
An efficient algorithm for such a problem can be derived
as a natural extension of Policy Search by Dynamic Pro-
gramming (PSDP) (Bagnell et al. 2003), where, starting
from t = T − 1, the learner matches expert moments one
timestep in the future, before moving one step backwards in

Of Moments and Matching

time along the expert’s trajectory. While this approach has
the same performance characteristics as off-Q algorithms,
matching the class of reward moments might be simpler
for some types of problems, like those with sparse rewards.
However, it has the added complexity of producing a non-
stationary policy.

We can perform an analogous expansion for the on-Q case
by utilizing the reverse direction of the PDL:

J(πE)− J(π)

=
1

T
(E

τ∼π
a∼πE(st)

[

T∑
t=1

QπE (st, at)−QπE (st, a)])

=
1

T
(E

τ∼π
a∼πE(st′)

[

T∑
t=1

T ′∑
t′=1

r(st′ , at′)− r(st′ , a)

+QπET ′ (sT ′ , aT ′)−QπET ′ (sT ′ , a)])

≤ min
π∈Π

max
f∈Fr
g∈FQE

1

T
(E

τ∼π
a∼πE(st′)

[
T∑
t=1

T ′∑
t′=t

f(st′ , at′)− f(st′ , a)

+ g(sT ′ , aT ′)− g(sT ′ , a)]) (7)

Passing such a payoff to our oracle with F spanned by
Fr/2 × FQE/2T would recover the on-Q bounds. A
backwards-in-time dynamic-programming procedure is not
possible for this expansion because of the need to sample
trajectories from the policy at previous timesteps.

