
Parallel tempering on optimized paths

A. Proof of Proposition 1
Define π0 = N(µ0, σ

2) and π1 = N(µ1, σ
2) with

Wi(x) ∝ − 1
2σ2 (x−µi)2 (throughout we use the proportion-

ality symbol ∝ with log-densities to indicate an unspecified
constant, additive with respect to Wi, multiplicative with re-
spect to πt). Suppose πt is the linear path πt(x) ∝ exp(Wt)
where Wt = (1− t)W0 + tW1. Note that as a function of
x,

Wt(x) ∝ −1− t
2σ2

(x− µ0)2 − t

2σ2
(x− µ1)2

∝ − 1

2σ2
(x− µt)2, µt = (1− t)µ0 + tµ1,

and thus πt = N(µt, σ
2). Taking a derivative of Wt, we

find that

dWt

dt
=

(µ1 − µ0)
(
x− µ0+µ1

2

)
σ2

.

We will now compute λ(t). If Xt, X
′
t ∼ πt, then

λ(t) =
1

2
E
[∣∣∣∣dWdt (Xt)−

dW

dt
(X ′t)

∣∣∣∣]
=
|µ1 − µ0|

2σ
E

[∣∣∣∣∣Xt − µ0+µ1

2

σ
−
X ′t −

µ0+µ1

2

σ

∣∣∣∣∣
]

=
|µ1 − µ0|

2σ
E
[∣∣∣∣Xt − µt

σ
− X ′t − µt

σ

∣∣∣∣]
=
|µ1 − µ0|

2σ
E [|Z − Z ′|] ,

where Z,Z ′ ∼ N(0, 1). Thus Z −Z ′ ∼ N(0, 2), and |Z −
Z ′| has a folded normal distribution with expectation 2/

√
π.

This implies λ(t) = z/
√
π where z = |µ1 − µ0|/σ and

Λ =
∫ 1

0
λ(t)dt = z/

√
π. By Theorem 2, the asymptotic

round trip rate τ linear
∞ for the linear path satisfies,

τ linear
∞ =

1

2 + 2Λ
=

1

2 + 2z/
√
π

= Θ

(
1

z

)
.

We will now establish an upper bound for the communica-
tion barrier Λ for a general path πt. If Xt, X

′
t ∼ πt, then

Theorem 2 and Jensen’s inequality imply the following:

Λ =

∫ 1

0

1

2
E

√(dW
dt

(Xt)−
dW

dt
(X ′t)

)2
 dt

≤
∫ 1

0

1

2

√√√√E

[(
dW

dt
(Xt)−

dW

dt
(X ′t)

)2
]

dt

=
1√
2

∫ 1

0

√
Varπt

[
dWt

dt

]
dt

=
1√
2

ΛF ,

where ΛF is the length of the the path πt with the Fisher in-
formation metric. The geodesic path of Gaussians between
π0 and π1 that minimizes ΛF satisfies (Costa et al., 2015,
Eq. 11, Sec. 2)

ΛF =
√

2 log

(
1 +

z2

4
+
z

4

√
8 + z2

)
. (19)

Again, by Theorem 2, the asymptotic round trip rate
τgeodesic
∞ for the geodesic path satisfies

τgeodesic
∞ =

1

2 + 2Λ
≥ 1

2 + 2ΛF
= Θ

(
1

log z

)
.

B. Proof of Lemma 1
Definition 4. Given a path πt and measurable function f ,
we denote ‖f‖π = supt Eπt

[f ].

Following the computation in Predescu et al. (2004, Equa-
tion (6)), we have

r(t, t′) = 1−
E[exp(− 1

2 |At,t′(X̃1/2, X̃
′
1/2)|]

E[exp(− 1
2At,t′(X̃1/2, X̃

′
1/2))]

, (20)

where X̃s, X̃
′
s ∼ π̃s = 1

Z̃(s)
exp((1− s)Wt + sWt′) and

At,t′(x, x
′) = (Wt′(x)−Wt(x))− (Wt′(x

′)−Wt(x
′)).

In particular, the path of distributions π̃s for s ∈ [0, 1] is the
linear path between πt and πt′ .

Lemma 2. Suppose (6) and (7) hold. Then for all k ≤ 3,
there is a constant C̃k independent of t, t′, TN such that

sup
s

E[|At,t′(X̃s, X̃
′
s)|k] ≤ C̃k|t′ − t|k.

where X̃s, X̃
′
s ∼ π̃s.

Proof. The mean-value theorem and (6) imply that Wt(x)
is Lipschitz in t,

|Wt(x)−Wt′(x)| ≤ V1(x)|t′ − t|.

The triangle inequality therefore implies

|At,t′(x, x′)| ≤ (V1(x) + V1(x′))|t′ − t|.

By taking expectations and using the fact |a + b|k ≤
2k−1(|a|k + |b|k), we have that

E[|At,t′(X̃s, X̃
′
s)|k] ≤ 2kEπ̃s [V k1 ]|t′ − t|k

≤ 2kEπ̃s [V 3
1 ]|t′ − t|k,

where in the last line we use the fact that we can assume
V1 ≥ 1 without loss of generality. The result follows by
taking the supremum on both sides and noting that C̃k =
2k‖V 3

1 ‖π̃ is finite by (7).
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We now begin the proof of Lemma 1. Define λ̃(s) =
1
2E[|At,t′(X̃s, X̃

′
s)|] for X̃s, X̃

′
s ∼ π̃s. Then a third order

Taylor expansion of Equation (20) (Predescu et al., 2004),
which contains terms of the form E[|At,t′(X̃s, X̃

′
s)|k] that

can be controlled via Lemma 2, yields

r(t, t′) = λ̃(1/2) +R(t, t′), |R(t, t′)| ≤ C ′|t− t′|3,

for some finite constant C ′ independent of t, t′. By Syed
et al. (2019, Prop. 2, Appendix C) we have that in addi-
tion, λ̃(s) is in C2([0, 1]), and thus there is a constant C ′′

independent of t, t′ such that

sup
s

∣∣∣∣∣d2λ̃

ds2

∣∣∣∣∣ ≤ C ′′|t− t′|3.
The error bound for the midpoint rule implies,∣∣∣∣λ̃(1/2)−

∫ 1

0

λ̃(s)ds

∣∣∣∣ ≤ 1

24
sup
s

∣∣∣∣∣d2λ̃

ds2

∣∣∣∣∣
≤ C ′′

24
|t− t′|3.

The result follows: there is a finite constant C independent
of t, t′ such that

|r(t, t′)− Λ(t, t′)| =
∣∣∣∣r(t, t′)− ∫ 1

0

λ̃(s)ds

∣∣∣∣ ≤ C|t′ − t|3.
C. Proof of Theorem 2
We first note that without loss of generality we can place
an artificial schedule point tn at each of the finitely many
discontinuities in Wt or its first/second derivative. Thus we
assume the Wt is C2 on each interval [tn−1, tn]. Later in
the proof it will become clear that the contributions of these
artificial schedule points becomes negligible as ‖TN‖ → 0.

Given a schedule TN , define the path π̃t = 1
Z̃t

exp(W̃t)

with log-likelihood W̃t satisfying for each segment tn−1 ≤
t ≤ tn,

W̃t = Wtn−1
+

∆Wn

∆tn
(t− tn−1),

where ∆Wn = Wtn −Wtn−1 and ∆tn = tn − tn−1. In
particular, W̃t agrees with Wt for t ∈ TN , linearly interpo-
lates between Wtn−1

and Wtn for t ∈ [tn−1, tn], and for all
x, from Taylor’s theorem:

|W̃t(x)−Wt(x)| ≤ 1

2
sup

t∈[tn−1,tn]

∣∣∣∣d2Wt

dt2
(x)

∣∣∣∣∆t2n. (21)

The following lemma shows that the normalization con-
stant of, and expectations under, π̃t are comparable to the
same for πt with an error bound that depends on ‖TN‖ and
converges to 0 as ‖TN‖ → 0.

Lemma 3. For measurable functions f and s > 0, let

Et(f, s) = Eπt

[
|f |es

2V2

]
,

and define Et(s) = Et(1, s) for brevity.

(a) For any schedule TN ,∣∣∣∣∣ Z̃tZt − 1

∣∣∣∣∣ ≤ Et(‖TN‖)− 1,

and if ‖TN‖ is small enough that Et(‖TN‖) < 2,∣∣∣∣ZtZ̃t − 1

∣∣∣∣ ≤ Et(‖TN‖)− 1

2− Et(‖TN‖)
.

(b) For any schedule TN and measureable function f , if
‖TN‖ is small enough that Et(‖TN‖) < 2,

|Eπ̃t
[f ]− Eπt

[f ]| ≤ Et(‖TN‖)− 1

2− Et(‖TN‖)
Et(f, ‖TN‖)

+ Et(f, ‖TN‖)− Et(f, 0).

Proof. (a) We rewrite the expression

Z̃t
Zt

=
1

Zt

∫
X
eW̃t(x)dx

=

∫
X
eW̃t(x)−Wt(x)πt(x)dx

= 1 +

∫
X

(
eW̃t(x)−Wt(x) − 1

)
πt(x)dx.

Thus using the inequality |ex − 1| ≤ e|x| − 1,∣∣∣∣∣ Z̃tZt − 1

∣∣∣∣∣ ≤
∣∣∣∣∫
X

(
eW̃t(x)−Wt(x) − 1

)
πt(x)dx

∣∣∣∣
≤
∫
X

(
e|W̃t(x)−Wt(x)| − 1

)
πt(x)dx

≤
∫
X

(
eV2(x)‖TN‖2 − 1

)
πt(x)dx

= Eπt

[
e‖TN‖

2V2 − 1
]

= Et(‖TN‖)− 1.

The bound on |Zt/Z̃t − 1| arises from straightforward
algebraic manipulation of the above bound.
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(b) We begin by rewriting Eπ̃t
[f ]:

Eπ̃t
[f ]− Eπt

[f ]

=
1

Z̃t

∫
X
f(x)eW̃t(x)dx− Eπt

[f ]

=

∫
X
f(x)

(
Zt

Z̃t
eW̃t(x)−Wt(x) − 1

)
πt(x)dx

=

(
Zt

Z̃t
− 1

)∫
X
f(x)eW̃t(x)−Wt(x)πt(x)dx

+

∫
X
f(x)

(
eW̃t(x)−Wt(x) − 1

)
πt(x)dx.

Therefore again using |ex − 1| ≤ e|x| − 1 and the
previous bound,

|Eπ̃t
[f ]− Eπt

[f ]| ≤ Et(‖TN‖)− 1

2− Et(‖TN‖)
Et(f, ‖TN‖)

+ Et(f, ‖TN‖)− Et(f, 0).

By changing variables via t = tn−1 + s∆tn in (5), we can
rewrite Λ(tn−1, tn) as

Λ(tn−1, tn) =

∫ tn

tn−1

1

2
E
[∣∣∣∣∆Wn

∆tn
(X̃t)−

∆Wn

∆tn
(X̃ ′t)

∣∣∣∣] dt,

where X̃t, X̃
′
t ∼ π̃t. Note that by construction for t ∈

(tn−1, tn) we have dW̃t

dt exists and equals ∆Wn

∆tn
. So by

summing over n we get,

Λ(TN ) =

N∑
n=1

Λ(tn−1, tn)

=

∫ 1

0

1

2
E

[∣∣∣∣∣dW̃t

dt
(X̃t)−

dW̃t

dt
(X̃ ′t)

∣∣∣∣∣
]
dt

=

∫ 1

0

λ̃(t)dt

If we can show that supt |λ̃(t)−λ(t)| converges uniformly4

to 0 as ‖TN‖ → 0 then by dominated convergence theorem
Λ(TN ) converges to Λ uniformly as ‖TN‖ → 0. The round
trip rate then uniformly converges to (2+2Λ)−1 by Theorem
3 of (Syed et al., 2019).

Adding and subtracting E
[∣∣∣dW̃t

dt (Xt)− dW̃t

dt (X ′t)
∣∣∣] within

the absolute difference 2|λ̃(t)− λ(t)| and using the triangle
inequality, it can be shown that we require bounds on

J1,t =

∫
πt(x)πt(y)

∣∣∣| dW̃t
dt (x)− dW̃t

dt (y)|−| dWt
dt (x)− dWt

dt (y)|
∣∣∣

4We say a(TN ) converges uniformly to a if for all ε > 0, ∃δ >
0 such that ‖TN‖ < δ implies |a(TN )− a| < ε.

and

J2,t =

∫
|πt(x)πt(y)− π̃t(x)π̃t(y)|

∣∣∣∣∣dW̃t

dt
(x)− dW̃t

dt
(y)

∣∣∣∣∣ .
For the first term, the mean value theorem implies that there
exist s, s′ ∈ [tn−1, tn] (potentially functions of x and y,
respectively) such that

J1,t =

∫
πt(x)πt(y)

∣∣∣| dWs
dt (x)−

dW
s′

dt (y)|−| dWt
dt (x)− dWt

dt (y)|
∣∣∣

Split the integral into the set A of x, y ∈ X where the
first term in the absolute value is larger; the same analysis
with the same result applies in the other case in Ac. Here,
Taylor’s theorem and the triangle inequality yield∣∣∣∣dWs

dt
(x)− dWs′

dt
(y)

∣∣∣∣ ≤ ∣∣∣∣dWt

dt
(x)− dWt

dt
(y)

∣∣∣∣
+ (V2(x) + V2(y))‖TN‖.

Using this and the same procedure for Ac, we have that

J1,t ≤
∫
πt(x)πt(y)(V2(x) + V2(y))‖TN‖

= 2Eπt [V2] ‖TN‖.

This converges to 0 as ‖TN‖ → 0.

For the second term J2,t, we can again use the mean value
theorem to find s, s′ ∈ [tn−1, tn] where

J2,t =

∫
|πt(x)πt(y)− π̃t(x)π̃t(y)|

∣∣∣∣dWs

dt
(x)− dWs′

dt
(y)

∣∣∣∣ ,
and therefore via the triangle inequality, symmetry, and the
V1(x) bound on the first path derivative,

J2,t ≤ 2

∫
V1(x) |πt(x)πt(y)− π̃t(x)π̃t(y)| .

We then add and subtract πt(x)π̃t(y) within the absolute
value and use the triangle inequality again to find that

J2,t ≤ 2

∫
(V1(x) + Eπt

[V1]) |πt(x)− π̃t(x)|

= 2

∫
πt(x) (V1(x) + Eπt

[V1])

∣∣∣∣1− π̃t(x)

πt(x)

∣∣∣∣ .
Note that by the triangle inequality and the bound |ex−1| ≤
e|x| − 1,∣∣∣∣1− π̃t(x)

πt(x)

∣∣∣∣ ≤ ∣∣∣∣ZtZ̃t − 1

∣∣∣∣ e‖TN‖2V2(x) + e‖TN‖
2V2(x) − 1.

Assume that ‖TN‖ is small enough such thatEt(‖TN‖) < 2,
and let f = V1 + EπtV1. Then by Lemma 3,

J2,t ≤ 2
Et(‖TN‖)− 1

2− Et(‖TN‖)
Et(f, ‖TN‖)

+ Et(f, ‖TN‖)− Et(f, 0).
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By assumption we know that Et(f, s) is finite for some
s small enough. Therefore as ‖TN‖ → 0, by monotone
convergence Et(f, ‖TN‖) → Et(f, 0), and in particular
Et(‖TN‖) → 1. Therefore J1,t + J2,t → 0 as ‖TN‖ → 0
and the proof is complete.

D. Objective and Gradient
Here we derive the gradient used to optimize the surrogate
SKL objective in Equation 17. First we derive the gradient
for the expectation of a general function in Section D.1.
Next, in Section D.2, we show the result for the specific
case of expectations of linear functions with respect to dis-
tributions in the exponential family. Lastly, we show how
the result is related to our SKL objective in Sections D.3
and D.4.

D.1. Derivative of parameter-dependent expectation

Here we consider the problem of computing

gφ(x) = ∇φ
∫
X
πφ(x)Jφ(x)dx

where πφ(x) = Z(φ)−1 exp(Wφ(x)), Z(φ) =∫
X exp(Wφ(x))dx and Jφ(x) is a function depending on φ.

Assuming we can interchange the gradient and the expecta-
tion and using the product rule we can rewrite:

gφ(x) =

∫
X

(Jφ(x)∇φπφ(x) + πφ(x)∇φJφ(x)) dx.

Using∇φπφ(x) = πφ(x)∇φ log πφ(x),

gφ(x) =

∫
X
πφ(x)(Jφ(x)∇φ log πφ(x) +∇φJφ(x))dx.

From the definition of πφ(x), we can evaluate the score
function as

∇φ log πφ(x) = −∇φ logZ(φ) +∇φWφ(x)

= −E [∇φWφ(x)] +∇φWφ(x).

Substitute this in gφ(x) we obtain,

gφ(x) =

∫
X
πφ(x)Jφ(x)(−E [∇φWφ(x)] +∇φWφ(x))dx

+

∫
X
πφ(x)∇φJφ(x)dx

= −E[Jφ(x)]E[∇φWφ(x)] + E[Jφ(x)∇φWφ(x)]

+ E[∇φJφ(x)]

= Cov[∇φWφ(x), Jφ(x)] + E[∇φJφ(x)].

D.2. Exponential family and linear function

The gradient derived in the previous section can easily be
applied to expectations with respect to functions linear in φ

under distributions in the exponential family. Let Jφ(x) =
ξJ(φ)TJ(x) be a linear function in φ and supposeWφ(x) =
ξW (φ)TW (x) for some functions ξJ : Rd → Rn, J : X →
Rn and ξW : Rd → Rm, W : X → Rm. Then

gφ(x) = Cov[∇φWφ(x), Jφ(x)] + E[∇φJφ(x)]

= ∇φξW (φ)TCov[W (x), JT (x)]ξJ(φ)

+∇φξJ(φ)TE[J(x)]

where∇φξ(φ)T is the transposed Jacobian of ξ.

D.3. Symmetric KL: general case

Next we show that the symmetric KL divergence of Equa-
tion 17 can be rewritten as a sum of expectations over func-
tions parametrized by φ, hence falling in the framework
presented above.

For path parameter φ, the symmetric KL divergence is

LSKL(φ) =

N−1∑
n=0

SKL(πφtn , π
φ
tn+1

)

=

N−1∑
n=0

E

[
log

πφtn+1
(Xn+1)

πφtn(Xn+1)
+ log

πφtn(Xn)

πφtn+1
(Xn)

]

where Xn ∼ πφtn . After cancellation of the normalization
constants we obtain

LSKL(φ) =

N−1∑
n=0

E
[
Wφ
tn+1

(Xn+1)−Wφ
tn(Xn+1)

+Wφ
tn(Xn)−Wφ

tn+1
(Xn)

]
.

Collecting expectations under the same distribution and
rearranging terms,

LSKL(φ) =

E[Wφ
t0(X0)−Wφ

t1(X0)]+

N−1∑
n=1

E[2Wφ
tn(Xn)−Wφ

tn+1
(Xn)−Wφ

tn−1
(Xn)]+

E[Wφ
tN (XN )−Wφ

tN−1
(XN )].

Defining for n = 1, . . . , N − 1,

Jφ0 (x) = Wφ
t0(x)−Wφ

t1(x)

Jφn (x) = 2Wφ
tn(x)−Wφ

tn+1
(x)−Wφ

tn−1
(x)

JφN (x) = Wφ
tN (x)−Wφ

tN−1
(x),

we have that

LSKL(φ) =

N∑
n=0

E[Jφn (Xn)]
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and

∇φLSKL(φ) =

N∑
n=0

∇φE[Jφn (Xn)]

where ∇φE[Jφn (Xn)] can be computed using the formula
derived in Section D.1.

D.4. Symmetric KL: exponential family case

For the spline family introduce in Section 4, the distributions
πφtn are in the exponential family with,

Wφ
tn(x) = ηφ(tn)

T
W (x), n = 0, . . . , N.

It follows that the functions Jφn are linear in φ with

Jφ0 (x) = zφ0
T
W (x)

Jφn (x) = zφn
T
W (x), n = 1, . . . , N − 1

JφN (x) = zφN
T
W (x),

where

zφ0 = ηφ(t0)− ηφ(t1)

zφn = 2ηφ(tn)− ηφ(tn+1)− ηφ(tn−1), n = 1, . . . , N − 1

zφN = ηφ(tN )− ηφ(tN−1).

Given this relation, the stochastic gradient of Equation 17
can be evaluated using s samples from parallel tempering
through the formula in Section D.2 defining:

X = (X0, . . . , XN )

W (X) = [W0(X0),W1(X0), . . . ,W0(XN ),W1(XN )]T

J(X) = W (X)

ξW (φ) = [ηφ0 (t0), ηφ1 (t0), . . . , ηφ0 (tN ), ηφ1 (tN )]T

ξJ(φ) = [zφ0,0, z
φ
0,1, . . . , z

φ
N,0, z

φ
N,1]T

where X is the s×N matrix of samples from parallel tem-
pering,W (X) is a s×2N matrix evaluatingX elementwise
at the reference and target distributions W0 and W1, ξW (φ)
is a 2N × 1 vector of annealing coefficients and ξJ(φ) is a
2N × 1 vector of coefficients defining Jφ = [Jφ0 , . . . , J

φ
N ].

E. Proof of proposition 2
For this annealing path family,

Wt(x) = η(t)TW (x).

Therefore, the piecewise twice continuous differentiability
of η(t) and endpoint conditions imply that Definition 1 is
satisfied. Next, note that if

sup
t

max{‖η′(t)‖2, ‖η′′(t)‖2} ≤M,

then ∣∣∣∣dWt

dt

∣∣∣∣ = |η′(t)TW (x)| ≤M‖W (x)‖2∣∣∣∣d2Wt

dt2

∣∣∣∣ = |η′′(t)TW (x)| ≤M‖W (x)‖2,

and thus by setting V1(x) = V2(x) = M‖W (x)‖2 we sat-
isfy Equations (6) and (10). Equation (11) implies Equation
(7); so as long as Equation (11) holds, the path η satisfies
all of the conditions of Theorem 2.

Finally, note that Ω is a convex subset of R2: for any non-
negative function G(x), vectors ξ1, ξ2 ∈ R2, and λ ∈ [0, 1],

exp((λξ1 + (1− λ)ξ2)TW (x))G(x)

=
(
exp(ξT1 W )G(x)

)λ (
exp(ξT1 W )G(x)

)1−λ
and so Hölder’s inequality

∫
fλg1−λ ≤ (

∫
f)λ(

∫
g)1−λ

yields log-convexity (and hence convexity). Therefore as
long as the endpoints (0, 1) and (1, 0) are both in Ω, any
convex combination of (0, 1) and (1, 0) is also in Ω, and
therefore the linear path η(t) = (1 − t, t) creates a set of
normalizable densities and may be included in A.

F. Empirical support for the SKL surrogate
objective function

Two objective functions were discussed in Section 3: one
based on rejection rate statistics, i.e. Equation (14), and the
symmetric KL divergence (SKL). In this section we perform
controlled experiments comparing the signal-to-noise ratio
of Monte Carlo estimators of the gradient of these two ob-
jectives. Let G denote a Monte Carlo estimator of a partial
derivative with respect to one of the parameters φi. Refer to
D for details on the stochastic gradient estimators. In this
experiment we use i.i.d. samples so that the Monte Carlo
estimators are unbiased, justifying the use of the variance as
a notion of noise. Hence following Rainforth et al. (2018),
we define the signal-to-noise ratio by SNR = |E[G]/σ[G]|,
where σ[G] denotes the standard deviation of G. We use
two chains with one set to a standard Gaussian, the other
to a Gaussian with mean φ and unit variance. We show
the value of the two objective functions in Figure 5 (left).
The label “Rejection” refers to the expected rejection of the
swap proposal between the two chains, r. We also show the
square root of half of the SKL (“SqrtHalfSKL”), to quantify
the tightness of the bound in Equation (17), while “Ineff”
shows the rejection odds, r/(1− r), called inefficiency in
Syed et al. (2019).

Signal-to-noise ratio estimates were computed for each pa-
rameter φi ∈ {0, 1/5, 2/5, . . . , 2}. Each gradient estimate
uses 50 samples, and to approximate the signal-to-noise
ratio, the estimation was repeated 1000 times for each φi
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Figure 5. Left: objective functions for path optimization in a controlled experiment as a function of a variational parameter φ. Right:
signal-to-noise of corresponding gradient estimators on the same range of parameters.

and objective function. The results are shown in Figure 5
(right), and demonstrate that in the regime of small rejec-
tion (/ 30%), the gradient estimator based on the rejection
objective has a superior signal-to-noise ratio compared to
its SKL counterpart. However as φ increases and the two
distributions become farther apart, the situation is reversed,
providing empirical support for the surrogate objective for
challenging path optimization problems.

G. Experimental details
All the experiments were conducted comparing reversible
PT, non-reversible PT and non-reversible PT based on the
spline family with K ∈ {2, 3, 4, 5, 10}.

Every method was initialized at the linear path with equally
spaced schedule, i.e. πt ∝ π

1−t/N
0 π

t/N
1 with N the num-

ber of parallel chains. All methods performed one local
exploration step before a communication step.

To ensure a fair comparison of the different algorithms, we
fixed the computational budget to a pre-determined num-
ber of samples in each experiment. Reversible PT used
the budget to perform local exploration steps followed by
communication steps. In non-reversible PT the computa-
tional budget was used to tune the schedule according to the
procedure described in Syed et al. (2019, Section 5.1). For
non-reversible PT with path optimization, the computational
budget was divided equally over a fixed number of scans of
Algorithm 2, where a scan corresponds to one iteration of
the for loop.

Optimization of the spline annealing path family was per-
formed using the SKL surrogate objective of Equation 17.
Adagrad was used for the optimization. The gradient was
scaled elementwise by its absolute value plus the value of
the knot component. Such scaling was necessary to limit
the gradient in the interval [−1, 1], stabilizing the optimiza-
tion and avoiding possible exploding gradients due to the

transformation to log space.

To mitigate variance in the results due to randomness, we
performed 10 runs of each method and averaged the results
across the runs.

G.1. Gaussian

This experiment optimized the path between the reference
π0 = N(−1, 0.012) and the target π1 = N(1, 0.012).
We used N = 50 parallel chains initialized at a state
sampled from a standard Gaussian distribution. In this
setting, πt has a closed form that can be shown to be

N

(
η1(t)−η0(t)
η0(t)+η1(t) ,

(
0.012

η0(t)+η1(t)

)2
)

, therefore, in the local ex-

ploration step of parallel tempering we sampled i.i.d. from
πt. The computational budget was fixed at 45000 samples.
Non-reversible PT with optimized path divided the budget
in 150 scans. Therefore, for every gradient step in Algo-
rithm 2, the gradient was estimated with 300 samples. We
used 0.2 as learning rate for Adagrad.

G.2. Beta-binomial model

The second experiment was performed on a conju-
gate Bayesian model. The model prior was π0(p) =
Beta(180, 840). The likelihood was L(x|p) =
Binomial(x|n, p). We simulated x1, . . . , x2000 ∼
Binomial(100, 0.7), resulting in a posterior distribution
π1(p) = Beta(140180, 60840). The prior is concentrated
at 0.176 with a standard deviation of 0.0119. The posterior
distribution is concentrated at 0.697 with a standard devia-
tion of 0.001. We used N = 50 parallel chains initialized
at 0.5. Also in this experiment it is possible to compute πt
in closed form. Let S =

∑2000
i=1 xi, R = 2000 × 100 then

πt(p) = Beta(179η0(t)+(180+S−1)η1(t)+1, 839η0(t)+
(840+N−S−1)η1(t)+1). Hence, in the local exploration
step of parallel tempering we sampled i.i.d. from πt. The
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computational budget was fixed at 45000 samples. Non-
reversible PT with optimized path divided the budget in 150
scans. Therefore, for every gradient step in Algorithm 2, the
gradient was estimated with 300 samples. We used 0.2 as
learning rate for Adagrad.

G.3. Galaxy data

The third experiment was a Bayesian Gaussian mixture
model applied to the galaxy dataset of Roeder (1990).
We used six mixture components with mixture propor-
tions w0, . . . , w5, mixture component densities N(µi, 1)
for mean parameters µ0, . . . , µ5, and a binary cluster label
for each data point. We placed a Dir(1) prior on the pro-
portions, where 1 = (1, 1, 1, 1, 1, 1) and a N(150, 1) prior
on each of the mean parameters. We did not marginalize
the cluster indicators, creating a multi-modal posterior in-
ference problem over 94 latent variables. In this experiment
we used N = 35 chains. Mixture proportions were ini-
tialized at 1/6, mean parameters were initialized at 0 and
cluster labels were initialized at 0. The local exploration
step involved standard Gibbs steps for the means, indica-
tors, and proportions. To improve local mixing, we also
included an additional Metropolis-Hastings step for the pro-
portions that approximates a Gibbs step when the indicators
are marginalized. We fixed the computational budget to
50000 samples, divided into 500 scans using 100 samples
each. We optimized the path using Adagrad with a learning
rate of 0.3.

G.4. Mixture model

The fourth experiment was a Bayesian Gaussian mixture
model with mixture proportions w0, w1, mixture component
densities N(µi, 102) for mean parameters µ0, µ1, and a bi-
nary cluster label for each data point. We placed a Dir(1, 1)
prior on the proportions, and a N(150, 1) prior on each of
the two mean parameters. We simulated n = 1000 data
points from the mixture 0.3N(100, 102) + 0.7N(200, 102).
We did not marginalize the cluster indicators, creating a
multi-modal posterior over 1004 latent variables. We used
N = 35 chains. Mixture proportions were initialized at
0.5, mean parameters were initialized at 0 and cluster labels
were initialized at 0. The local exploration step involved
standard Gibbs steps for the means, indicator variables, and
proportions. To improve local mixing, we also included an
additional Metropolis-Hastings step for the proportions that
approximates a Gibbs step when the indicators are marginal-
ized. The computational budget was fixed at 25000 samples.
Non-reversible PT with optimized path divided the budget
in 50 scans. Therefore, for every gradient step in Algorithm
2, the gradient was estimated with 500 samples. We used 0.3
as learning rate for Adagrad. Results are shown in Figure 6.

Figure 6. Top: Cumulative round trips averaged over 10 runs for
the spline path with K = 2, 3, 4, 5, 10 (solid blue), NRPT using
a linear path (dashed green), and reversible PT with linear path
(dash/dot red). The slope of the lines represent the round trip rate.
Bottom: Non-asymptotic communication barrier from Equation
15 (solid blue) and Symmetric KL (dash orange) as a function of
iteration for one run of PathOptNRPT + Spline (K = 4 knots).


