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Abstract 
When learning from streaming data, a change in 
the data distribution, also known as concept drift, 
can render a previously-learned model inaccurate 
and require training a new model. We present an 
adaptive learning algorithm that extends previous 
drift-detection-based methods by incorporating 
drift detection into a broader stable-state/reactive-
state process. The advantage of our approach is 
that we can use aggressive drift detection in the 
stable state to achieve a high detection rate, but 
mitigate the false positive rate of standalone drift 
detection via a reactive state that reacts quickly to 
true drifts while eliminating most false positives. 
The algorithm is generic in its base learner and 
can be applied across a variety of supervised learn-
ing problems. Our theoretical analysis shows that 
the risk of the algorithm is (i) statistically better 
than standalone drift detection and (ii) compet-
itive to an algorithm with oracle knowledge of 
when (abrupt) drifts occur. Experiments on syn-
thetic and real datasets with concept drifts confrm 
our theoretical analysis. 

1. Introduction 
Learning from streaming data is an ongoing process in 
which a model is continuously updated as new training 
data arrive. We focus on the problem of concept drift, which 
refers to an unexpected change in the distribution of data 
over time. The objective is high prediction accuracy at 
each time step on test data from the current distribution. To 
achieve this goal, a learning algorithm should adapt quickly 
whenever drift occurs by focusing on the most recent data 
points that represent the new concept, while also, in the ab-
sence of drift, optimizing over all the past data points from 
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the current distribution (for statistical accuracy). The latter 
has greater importance in the setting we consider where 
data points may be stored and revisited to achieve accuracy 
greater than what can be obtained in a single pass. More-
over, computational effciency of the learning algorithm is 
critical to keep pace with the continuous arrival of new data. 

In a survey from Gama et al. (Gama et al., 2014), concept 
drift between time steps t0 and t1 is defned as a change in 
the joint distribution of examples: pt0 (X, y) 6= pt1 (X, y). 
Gama et al. categorize drifts in several ways, distinguishing 
between real drift that is a change in p(y|X) and virtual drift 
(also known as covariate drift) that is a change only in p(X) 
but not p(y|X). Drift is also categorized as either abrupt 
when the change happens across one time step, or gradual 
if there is a transition period between the two concepts. 

A learning algorithm that reacts (well) to concept drift is 
referred to as an adaptive algorithm. In contrast, an oblivi-
ous algorithm, which optimizes the empirical risk over all 
data points observed so far under the assumption that the 
data are i.i.d., performs poorly in the presence of drift. One 
major class of adaptive algorithms is drift detection, which 
includes DDM (Gama et al., 2004), EDDM (Baena-García 
et al., 2006), ADWIN (Bifet & Gavaldà, 2007), PERM 
(Harel et al., 2014), FHDDM (Pesaranghader & Viktor, 
2016), and MDDM (Pesaranghader et al., 2018). Drift de-
tection tests commonly work by tracking the prediction 
accuracy of a model over time, and signal that a drift has 
occurred whenever the accuracy degrades by more than a 
signifcant threshold. After a drift is signaled, the previously-
learned model can be discarded and replaced with a model 
trained solely on the data going forward. 

There are several key challenges with using drift detection. 
Different tests are preferred depending on whether a drift 
is abrupt or gradual, and most drift detection tests have a 
user-defned parameter that governs a trade-off between the 
detection accuracy and speed (Gama et al., 2014); choosing 
the right test and the right parameters is hard when the types 
of drift that will occur are not known in advance. There is 
also a signifcant cost in prediction accuracy when a false 
positive results in the discarding of a long-trained model 
and data that are still relevant. Furthermore, even when drift 
is accurately detected, not all drifts require restarting with a 
new model. Drift detection can trigger following a virtual 
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drift when the model misclassifes data points drawn from a 
previously unobserved region of the feature space, but the 
older data still have valid labels and should be retained. We 
have also encountered real drifts in our experimental study 
where a model with high parameter dimension can adapt to 
simultaneously ft data from both the old and new concepts, 
and it is more effcient to continue updating the original 
model rather than starting from scratch. 

Our contribution is DriftSurf, an adaptive algorithm that 
helps overcome these drift detection challenges. DriftSurf 
works by incorporating drift detection into a broader two-
state process. The algorithm starts with a single model 
beginning in the stable state and transitions to the reactive 
state based on a drift detection trigger, and then starts a 
second model. During the reactive state, the model used 
for prediction is greedily chosen as the best performer over 
data from the immediate previous time step (each time step 
corresponds to a batch of arriving data points). At the end 
of the reactive state, the algorithm transitions back to the 
stable state, keeping the model that was the best performer 
during the reactive state. DriftSurf’s primary advantage over 
standalone drift detection is that most false positives will 
be caught by the reactive state and lead to continued use 
of the original long-trained model and all the relevant past 
data—indeed, our theoretical analysis shows that DriftSurf 
is statistically better than standalone drift detection. Other 
advantages include (i) when restarting with a new model 
does not lead to better post-drift performance, the original 
model will continue to be used; and (ii) switching to the 
new model for predictions happens only when it begins 
outperforming the old model, accounting for potentially 
lower accuracy of the new model as it warms up. Meanwhile, 
the addition of this stable-state/reactive-state process does 
not unduly delay the time to recover from a drift, because 
the switch to a new model happens greedily within one 
time step of it outperforming the old model (as opposed to 
switching only at the end of the reactive state). 

We present a theoretical analysis of DriftSurf, showing that it 
is “risk-competitive” with Aware, an adaptive algorithm that 
has oracle access to when a drift occurs and at each time step 
maintains a model trained over the set of all data since the 
previous drift. We also provide experimental comparisons 
of DriftSurf to Aware and two adaptive learning algorithms: 
a state-of-the-art drift-detection-based method MDDM and 
a state-of-the-art ensemble method AUE (Brzezinski & Ste-
fanowski, 2013). Our results on 10 synthetic and real-world 
datasets with concept drifts show that DriftSurf generally 
outperforms both MDDM and AUE. 

2. Related Work 
Most adaptive learning algorithms can be classifed into 
three major categories: Window-based, drift detection, and 

ensembles. Window-based methods, which include the fam-
ily of FLORA algorithms (Widmer & Kubat, 1996) train 
models over a sliding window of the recent data in the 
stream. Alternatively, older data can be forgotten gradually 
by weighting the data points according to their age with ei-
ther linear (Koychev, 2000) or exponential (Hentschel et al., 
2019; Klinkenberg, 2004) decay. Window-based methods 
are guaranteed to adapt to drifts, but at a cost in accuracy in 
the absence of drift. 

The aforementioned drift detection methods can be further 
classifed as either detecting degradation in prediction accu-
racy with respect to a given model, which include all of the 
tests mentioned in §1, or detecting change in the underlying 
data distribution which include tests given by (Kifer et al., 
2004; Sebastião & Gama, 2007); the connection between 
the two approaches is made in (Hinder et al., 2020). In 
this paper, we focus on the subset of concept drifts that are 
performance-degrading, and that can be detected by the frst 
class of these drift detection methods. As observed in (Harel 
et al., 2014), under this narrower focus, the problem of drift 
detection has lower sample and computational complexity 
when the feature space is high-dimensional. Furthermore, 
this approach ignores drifts that do not require adaptation, 
such as changes only in features that are weakly correlated 
with the label. Tests for drift detection may also be com-
bined, known as hierarchical change detection (Alippi et al., 
2016), in which a slow but accurate second test is used to 
validate change detected by the frst test. The two-state 
process of DriftSurf has a similar pattern, but differs in that 
DriftSurf’s reactive state is based on the performance of a 
newly created model, which has the advantage of not pro-
longing the time to recover from a drift because the new 
model is available to use immediately. 

Finally, there are ensemble methods, such as DWM (Kolter 
& Maloof, 2007), Learn++.NSE (Elwell & Polikar, 2011), 
AUE (Brzezinski & Stefanowski, 2013), DWMIL (Lu et al., 
2017), DTEL (Sun et al., 2018), Diversity Pool (Chiu & 
Minku, 2018), and Condor (Zhao et al., 2020). An ensem-
ble is a collection of individual models, often referred to 
as experts, that differ in the subset of the stream they are 
trained over. Ensembles adapt to drift by including both 
older experts that perform best in the absence of drift and 
newer experts that perform best after drifts. The predictions 
of each individual expert are typically combined using a 
weighted vote, where the weights depend on each expert’s 
recent prediction accuracy. Strictly speaking, DriftSurf is an 
ensemble method, but differs from traditional ensembles by 
maintaining at most two models and where only one model 
is used to make a prediction at any time step. The advan-
tage of DriftSurf is its effciency, as the maintenance of each 
additional model in an ensemble comes at either a cost in 
additional training time, or at a cost in the accuracy of each 
individual model if the available training time is divided 
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among them. The ensemble algorithm most similar to ours 
is from (Bach & Maloof, 2008), which also maintains just 
two models: a long-lived model that is best-suited in the 
stationary case, and a newer model trained over a sliding 
window that is best-suited in the case of drift. Their algo-
rithm differs from DriftSurf in that instead of using a drift 
detection test to switch, they are essentially always in what 
we call the reactive state of our algorithm, where they choose 
to switch to a new model whenever its performance is better 
over a window of recent data points. Their algorithm has no 
theoretical guarantee, and without the stable-state/reactive-
state process of our algorithm, there is no control over false 
switching to the newer model in the stationary case. 

3. Model and Preliminaries 
We consider a data stream setting in which the training data 
points arrive over time. For t = 1, 2, . . . , let Xt be the set 
of labeled data points arriving at time step t. We consider a 
constant arrival rate m = |Xt| for all t. (Our discussion and 
results can be readily extended to Poisson and other arrival 

∪t2−1distributions.) Let St1,t2 = Xt be a segment of the t=t1 

stream of points arriving in time steps t1 through t2 − 1. Let 
nt1,t2 = m(t2 − t1) be the number of data points in St1,t2 . 
Each Xt consists of data points drawn from a distribution 
It not known to the learning algorithm. In the stationary 
case, It = It−1; otherwise, a concept drift has occurred at 
time t. 

We seek an adaptive learning algorithm A with high pre-
diction accuracy at each time step. At time t, A has access 
to all the data points so far, S1,t, and a constant number of 
processing steps (e.g., gradient computations) to output a 
model wt from a class of functions F that map an unlabeled 
data point to a predicted label. Note this setting differs from 
the traditional online learning setting, as we are not limited 
in memory and allow for the reuse of relevant older data 
points in the stationary case to achieve higher accuracy than 
what can be achieved in a single pass. 

To achieve high prediction accuracy at time t, we want 
to minimize the expected risk over the distribution It. 
The expected risk of function w over a distribution I is: 
RI (w) = Ex∼I [fx(w)], where fx(w) is the loss of func-
tion w on input x. Thus, the objective at each time t is: 

min Ex∼It [fx(wt)] 
wt∈F 

Given a stream segment St1,t2 of training data points, the 
best we can do when the data are all drawn from the same 
distribution is to minimize the empirical risk over St1,t2 . 
The empirical risk of function w over a sample S of n 

1 P 
elements is: RS (w) = fx(w). The optimizer n x∈S 

∗ ∗of the empirical risk is denoted as wS , defned as w = S 
arg minw∈F RS (w). The optimal empirical risk is R∗ = S 

∗RS (w ).S 

Table 1: Commonly used symbols 

Xt data points arriving at time step t 
m = |Xt|, number of points arriving at each time 
RS empirical risk over the set of points S 
H statistical error bound H(n) = hn−α 

h constant factor in the statistical error bound 
α exponent in the statistical error bound 
W length of the windows W 1 and W 2 
r length of the reactive state 
δ threshold in condition 2 to enter the reactive state 
δ0 threshold in condition 3 to switch the model 
Δ magnitude of a drift 

In order to quantify the error in the expected risk from 
empirical risk minimization, we use a uniform convergence 
bound (Boucheron et al., 2005; Bousquet & Bottou, 2007). 
We assume the expected risk over a distribution I and the 
empirical risk over a sample S of size n drawn from I are 
related through the following bound: 

E[ sup |RI (w) −RS (w)|] ≤ H(n)/2 (1) 
w∈F 

where H(n) = hn−α , for a constant h and 1/2 ≤ α ≤ 1. 
From this relation, H(n) is an upper bound on the statistical 
error (also known as the estimation error) over a sample of 
size n (Bousquet & Bottou, 2007). 

Let w be the solution learned by an algorithm A over stream 
segment S = St1 ,t2 . Following prior work (Bousquet & 
Bottou, 2007; Jothimurugesan et al., 2018), we defne the 
difference between A’s empirical risk and the optimal em-
pirical risk over this stream segment as its sub-optimality: 

∗ SUBOPTS (A) := RS (w) −RS (w ). Based on (BousquetS 
& Bottou, 2007), in the stationary case, achieving a sub-
optimality on the order of H(nt1,t2 ) over stream segment 
St1,t2 asymptotically minimizes the total (statistical + opti-
mization) error for F . 

However, suppose a concept drift occurs at time td such 
that t1 < td < t2. We could still defne empirical risk 
and sub-optimality of an algorithm A over stream segment 
St1,t2 . But, balancing sub-optimality with H(nt1,t2 ) does 
not necessarily minimize the total error. Algorithm A needs 
to frst recover from the drift such that the predictive model 
is trained only over data points drawn from the new distri-
bution. We defne recovery time as follows: The recovery 
time of an algorithm A is the time it takes after a drift for A 
to provide a solution w that is maintained solely over data 
points drawn from the new distribution. 

Let td1 , td2 , . . . be the sequence of time steps at which a 
drift occurs, and defne td0 = 1. The goals for an adaptive 
learning algorithm A are (G1) to have a small recovery 
time ri at each tdi and (G2) to achieve sub-optimality on 
the order of H(ntdi ,t

) over every stream segment Stdi ,t 
for 
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(i.e., during the stationary, recovered tdi + ri < t < tdi+1 

periods between drifts). In §5, we formalize the latter as A 
being “risk-competitive” with an oracle algorithm Aware. It 
implies that A is asymptotically optimal in terms of its total 
error, despite concept drifts. 

Table 1 summarizes the symbols commonly used throughout 
the rest of the paper. 

4. DriftSurf: Adaptive Learning over 
Streaming Data in Presence of Drift 

We present our algorithm DriftSurf for adaptively learning 
from streaming data that may experience drift. Incremen-
tal learning algorithms work by repeatedly sampling a data 
point from a training set S and using the corresponding gra-
dient to determine an update direction. This set S expands 
as new data points arrive. In the presence of a drift from 
distribution I1 to I2, without a strategy to remove from S 
data points from I1, the model trains over a mixture of data 
points from I1 and I2, often resulting in poor prediction 
accuracy on I2. One systematic approach to mitigating this 
problem would be to use a sliding window-based set S from 
which further sampling is conducted. Old data points are re-
moved when they fall out of the sliding window (regardless 
of whether they are from the current or an old distribution). 
However, the problem with this approach is that the sub-
optimality of the model trained over S suffers from the 
limited size of S. Using larger window sizes helps with 
achieving a better sub-optimality, but increases the recovery 
time. Smaller window sizes, on the other hand, provide 
better recovery time, but the sub-optimality of the algorithm 
over S increases. An ideal algorithm manages the set S 
such that it contains as many as possible data points from 
the current distribution and resets it whenever a (signifcant) 
drift happens, so that it contains only data points from the 
new distribution. 

As noted in §1, prior work (Baena-García et al., 2006; Bifet 
& Gavaldà, 2007; Gama et al., 2004; Harel et al., 2014; Pe-
saranghader & Viktor, 2016; Pesaranghader et al., 2018) has 
sought to achieve this ideal algorithm by developing better 
and better drift detection tests, but with limited success due 
to the challenges of balancing detection accuracy and speed, 
and the high cost of false positives. Instead, we couple 
aggressive drift detection with a stable-state/reactive-state 
process that mitigates the shortcomings of prior approaches. 
Unlike prior drift detection approaches, DriftSurf views per-
formance degrading as only a sign of a potential drift: the 
fnal decision about resetting S and the predictive model 
will not be made until the end of the reactive state, when 
more evidence has been gathered and a higher confdence 
decision can be made. 

Our algorithm, DriftSurf, is depicted in Algorithm 1, which is executed when DriftSurf is in the stable state, and Algo-
rithm 2, which is executed when DriftSurf is in the reactive 

Algorithm 1 DriftSurf-Stable-State: Processing a set of train-
ing points Xt arriving in time step t during a stable state 

0// wt−1(S), wt−1(S 0) are respectively the parameters 
// (stream segments for training) of the predictive, and 
// reactive models. Every W time steps starting with 
// the creation of the current predictive model, we start 
// a new “window” of size W . 
// wb1, wb2 are the models with the best observed risk 
// Rb1, Rb2 in the two most-recent windows W 1, W 2. 
if condition 2 holds then {Enter reactive state} 

state ← reactive 
T ← ∅ {T is a segment arriving during the last r/2 
time steps of reactive state} 
0wt−1 ← w0, S 0 ← ∅ {initialize randomly a new reac-

tive model} 
i ← 0 {time steps in the current reactive state} 
execute Algorithm 2 on Xt 

else 
wt ← Update(wt−1, S, Xt) {update w, S} 

end if 

Algorithm 2 DriftSurf-Reactive-State: Processing a set of 
training points Xt arriving in time step t during a reactive 
state 

0// wt−1, S , wt−1, S 0 , wb1, wb2, Rb1, Rb2 are as defned 
// in Algorithm 1, except that W 1, W 2 are the two most-
// recent windows started before the current reactive state. 
if condition 2 does NOT hold then {Early exit} 

state ← stable 
execute Algorithm 1 on Xt 

else 
i ← i + 1 
wt ← Update(wt−1, S , Xt) {update w, S} 
0 0 0w ← Update(wt−1, S 0 , Xt) {update w , S 0}t 

rif i = 2 then 
0 0w ← w {take a snapshot of reactive model} f t−1 

else if 2 
r < i ≤ r then 

add Xt to T 
end if 
if i = r then {Exit reactive state} 

state ← stable 
if condition 3 holds then 

0wt ← wt, S ← S 0{change the predictive model} 
end if 

0else if RXt (w ) < RXt (wt) thent 
0use w instead of wt for predictions at the next time t 

step {greedy policy} 
end if 

end if 
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state. The algorithm starts in the stable state, and the steps 
are shown for processing the batch of points arriving at time 
step t. When in the stable state, there is a single model, 
wt−1, called the predictive model. Our test for entering the 
reactive state is based on dividing the time steps since the 
creation of that model into windows of size W . DriftSurf 
enters the reactive state at the sign of a drift, given by the 
following condition: 

RXt (wb) > Rb + δ, where b = arg minb∈b1,b2Rb (2) 

and δ is a predetermined threshold that represents the 
tolerance in performance degradation (the selection of δ 
is discussed in §6), and wb1 (wb2) are the parameters 
of the predictive model that provided the best-observed 
risk Rb1 (Rb2) over the most-recent window W 1 (second 
most-recent window W 2). E.g., Rb1 = (wb1) =RXb1+1 

minj∈W 1 RXj (wj−1). Although most drift detection tech-
niques rely on their predictive model to detect a drift, we 
keep a snapshot of the predictive model that provided the 
best-observed risk over two jumping windows of up to W 
time steps because: (i) having a frozen model that does not 
train over the most recent data increases the chance of de-
tecting slow, gradual drifts; (ii) each frozen model is at most 
2W time steps old which makes it refective of the current 
predictive model; and (iii) the older of the models refects 
the best over W steps, while the younger of the models is 
guaranteed to have at least W steps that it can be used for 
drift detection tests, which are both key factors in obtaining 
our theoretical analysis. 

If condition 2 does not hold, DriftSurf assumes there was 
no drift in the underlying distribution and remains in the 
stable state. It calls Update, an update process that expands 
S to include the newly arrived set of data points Xt and 
then updates the (predictive) model parameters using S for 
incremental training (examples in Appendix A). Otherwise, 

0DriftSurf enters the reactive state, adds a new model wt−1, 
called the reactive model, with randomly initialized parame-
ters, and initializes its sample set S 0 to be empty. To save 
space, the growing sample set S 0 can be represented by 
pointers into S . 

If, at time step t, DriftSurf is in the reactive state (including 
the time step that it has just entered the reactive state) (Al-
gorithm 2), DriftSurf checks that condition 2 still holds (to 
handle a corner case discussed below), adds Xt to S and S 0 , 
the sample sets of the predictive and reactive models, and 

0updates wt−1 and wt−1. During the reactive state, DriftSurf 
uses for prediction at t whichever model w or w0 performed 
the best in the previous time step t − 1. This greedy heuris-
tic yields better performance during the reactive state by 
switching to the newly added model sooner in the presence 
of drift. 

Upon exiting the reactive state (when i=r), DriftSurf chooses 
the predictive model to use for the subsequent stable state. 

It switches to the reactive model w0 if condition 3 holds: 

0RT (wf ) < RT (wb) − δ0 , where b = arg minb∈b1,b2Rb 

(3) 
0and w is the snapshot of reactive model (at i = r/2), wbf 

is snapshot of the predictive model with the best-observed 
performance over the last two windows and δ0 is set to be 
much smaller than δ (our experiments use δ0 = δ/2). This 
condition checks their performance over the test set of data 
points T that arrived during the last r/2 time steps of the 

0reactive state (note that neither wf nor wb have been trained 
over this test set). This provides an unbiased test to decide 
on switching the model. Otherwise, DriftSurf continues with 
the prior predictive model. 

Handling a corner case. Consider the case that a drift 
happens when DriftSurf is in the reactive state (due to an 
earlier false positive on entering the reactive state). In this 
case, no matter what predictive model DriftSurf chooses at 
the end of the reactive state, both the current predictive and 
reactive models are trained over a mixture of data points 
from both the old and new distributions. This will decrease 
the chance of recovering from the actual drift. To avoid this 
problem, DriftSurf keeps checking condition 2 and drops out 
of the reactive state if it fails to hold (because the failure 
indicates a false positive). Then the next time the condition 
holds, a fresh reactive state is started. This way the new 
reactive model will be trained solely on the new distribution. 

Algorithm 1 and 2 are generic in the individual base learner. 
For the experimental evaluation in §6, we focus on base 
learners where the update process is STRSAGA (Jothimu-
rugesan et al., 2018), a variance-reduced SGD for streaming 
data. Compared to SGD, STRSAGA has a faster conver-
gence rate and better performance under different arrival 
distributions. The time and space complexity of DriftSurf is 
within a constant factor of the individual base learner. 

5. Analysis of DriftSurf 

In this section, we show that DriftSurf achieves goals G1 
and G2 from §3. As in prior work (Bousquet & Bottou, 
2007; Jothimurugesan et al., 2018), we assume that H(n) = 
hn−α, for a constant h and 1 ≤ α ≤ 1, is an upper bound 2 
on the statistical error over a set of n data points all drawn 
from the same distribution. 

Aware is an adaptive learning algorithm with oracle knowl-
edge of when drifts occur. At each drift, the algorithm 
restarts the predictive model to a random initial point and 
trains it over data points that arrive after the drift. The main 
obstacle for other adaptive learning algorithms to compete 
with Aware is that they are not told exactly when drifts 
occur. 

We assume that Aware and DriftSurf use base learners that 
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effciently learn to within statistical accuracy: 
Assumption 1. Let t0 be the time the base learner B was 
initialized. At each time step t, 

E[SUBOPTSt0,t (B)] ≤ H(nt0 ,t). 

As an example, a base learner that uses STRSAGA as the 
update process satisfes Assumption 1 by Lemma 3 in (Joth-
imurugesan et al., 2018). We use STRSAGA in the bulk of 
our experimental evaluation. 

As a means of achieving goal G2 (sub-optimality on the 
order of H(ntd ,t) after a drift at time td), we will show that 
the empirical risk of DriftSurf after a drift is “close” to the 
risk of Aware, where close is defned formally in terms of 
our notion of risk-competitiveness in Defnition 1. 
Defnition 1. For c ≥ 1, an adaptive learning algorithm A 
is said to be c-risk-competitive to Aware at time step t > td 

if E[SUBOPTStd,t (A)] ≤ cH(ntd,t), where td is the time 
step of the most recent drift and ntd,t = |Std ,t|. 

We will analyze the risk-competitiveness of DriftSurf in a 
stationary environment and after a drift. Additionally, we 
will provide high probability analysis of the recovery time 
after a drift (goal G1). 

Let td1 , td2 , . . . be the sequence of time steps at which a 
drift occurs. We assume that each drift at tdi is abrupt 
and that it satisfes the following assumption of sustained 
performance-degradation. 
Assumption 2. For the drift at time tdi , and for both 
frozen models wb ∈ {wb1, wb2} stored at tdi , we have 

(wt−1) > Rb for each time tdi < t < asRXt tdi+1 

long as DriftSurf has not recovered. Furthermore, we 
denote Δ to be the magnitude of the drift where Δ = 
minwb (RJ (wb) −RI (wb)) where I denotes the distribu-
tion at the time tdi − 1 before the drift, and J denotes the 
distribution at tdi . 

Typically in drift detection, the magnitude of a drift is de-
fned as the difference in the expected risks over the old 
and new distributions with respect to the current predictive 
model. But that defnition results in a moving target after 
the drift but before replacement of the model, as the model 
gets updated with new data, and possibly slowly converges 
on the new distribution, making the drift harder to detect. 
Instead in our approach in DriftSurf, detection is done on 
frozen models snapshotted prior to the drift, and we accord-
ingly defne the drift magnitude with respect to the frozen 
models. The implication of Assumption 2 is that after a 
drift, the current predictive model being continually updated 
with the new data does not automatically adapt to the drift 
for at least W time steps and actually needs to be replaced. 

Finally, we assume that all loss functions fx are 
bounded [0, 1], that the optimal expected risk R∗ = It 

infw∈F RIt (w) = 0 for each distribution It, that the 
batch size m > 16/δ0 , that each drift magnitude Δ > 
δ, that 2W is upper bounded by both exp( 1 mδ2) and2 
exp( 1 m(Δ − δ)2) for each drift magnitude Δ, and that2 
for each frozen model wb that yielded a minimal observed 
risk Rb, that its expected risk is at least as good as its expec-
tation. 

5.1. Stationary Environment 

We will show that DriftSurf is competitive to Aware in the sta-
tionary environment during the time 1 < t < td1 before any 
drift happens. By Assumption 1 the expected sub-optimality 
of Aware and DriftSurf are (respectively) bounded by H(n1,t) 
and H(nte,t), where te is the time that the current predic-
tive model of DriftSurf was initialized. To prove DriftSurf is 
risk-competitive to Aware, we need to show that nte,t, the 
size of the predictive model’s sample set, is close to n1,t. 
To achieve this, we frst give a constant upper bound ps on 
the probability of entering the reactive state: 

Lemma 1. In the stationary environment for 1 < t < 
td1 , the probability of entering the reactive state is upper 
bounded by ps = 2 exp(− 1 mδ2).8 

In the proof (Appendix B.1), we use sub-Gaussian concen-
tration in the empirical risk under a bounded loss function. 

Besides, if DriftSurf enters the reactive state in the station-
ary case, Lemma 2 asymptotically bounds the probability 
of switching to the reactive model by qs(β) to approach 0, 
where β is the age of the frozen model wb used in condi-
tion 3. 

Lemma 2. In the stationary environment for 1 < t < 
td1 , if DriftSurf enters the reactive state, the probability of 
switching to the reactive model at the end of the reactive 
state is bounded by qs = c1/β2 for β > c2, where β is 
the number of time steps between the initialization of the 
model wb and the time it was frozen, and the constants 

1c1 = (2h/mα)mrδ0/4 and c2 = (2h/δ0)1/α. m 

In the proof (Appendix B.1), we use the convergence of the 
base learner and Bennett’s inequality. 

As the probability of falsely switching to the reactive model 
goes to 0, DriftSurf is increasingly likely to hold onto the 
predictive model. Using the above results, we bound the 
size of the predictive model’s sample set to at least half of 
the size of Aware’s sample set, with high probability. 

Corollary 1. With probability 1 − �, the size of the sample 
set S for the predictive model in the stable state is larger 
than 1 n1,t at any time step 2W + c4/(� − c3) ≤ t < td1 ,2 
where n1,t is the total number of data points that arrived 
until time t, and constants c3 = c1((c2 + W ) − 1/c2)ps 

2 2and c4 = (2c3 − 8)c1p + 6c1ps (where c1 and c2 are thes 
constants in Lemma 2). 
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Based on the result of Corollary 1, we show that the pre-
dictive model of DriftSurf in the stable state is 41 

7 
−α -risk-

competitive with Aware with probability 1 − �, at any time 
step 2W + c4/(� − c3) ≤ t < td1 . This is a special case of 
the forthcoming Theorem 1 in §5.2. 

In addition, it follows from Lemma 1 and Corollary 1 that 
DriftSurf maintains an asymptotically larger expected num-
ber of samples compared to the standalone drift detection 
algorithm that resets the model whenever condition 2 holds 
(this algorithm is DriftSurf without the reactive state). 

Lemma 3. In the stationary environment for 1 < t < td1 , 
let β be the age of the predictive model in DriftSurf and let 
γ be the age of the model of standalone drift detection. For 
(2W + 2c4 ) < t < td1 , E[β] > t/4 (where c3 and c4 are 1−2c3 

the constants in Corollary 1). Meanwhile, even as t →∞ 
(in the absence of drifts), E[γ] > 1/ps − o(1). 

When each model is trained to statistical accuracy (Assump-
tion 1), the total (statistical+optimization) error bound is 
asymptotically limited by the statistical error for the number 
of samples maintained. Hence, DriftSurf is statistically better 
than standalone drift detection in a stationary environment. 

5.2. In Presence of Abrupt Drifts 

Consider an abrupt drift that occurs at time tdi , and let Δ be 
its magnitude. Suppose the drift occurs while DriftSurf is in 
the stable state. The case of drift occurring when DriftSurf 
is in the reactive state is handled in Appendix B.2. We 
show that DriftSurf has a bounded recovery time (goal G1). 
In order to do so, we frst give a lower bound pd on the 
probability of entering the reactive state: 

Lemma 4. For tdi < t < W , the probability of entering 
the reactive state while DriftSurf has not yet recovered is 
lower bounded by pd = 1 − 2 exp(−( 1 m(Δ − δ)2).8 

Next, we give a lower bound qd on the probability of switch-
ing to the reactive model at the end of the reactive state: 

Lemma 5. For tdi < t < W , the probability of switch-
ing to the reactive model at the end of the reactive state 
while DriftSurf has not yet recovered is lower bounded by 
qd = 1 − 2 exp(−C2) where C = (Δ − δ0) 

√ 
mr/2 − 

2α+1h/(mr)α−1/2 subject to C > 0. 

The proofs of the preceding two lemmas are similar to their 
stationary counterparts due to the use of frozen models: 
for the W time steps after the drift, by Assumption 2, the 
previous frozen models will not be displaced by a newer 
model that has been partially trained over data after the drift. 

Following from Lemmas 4 and 5, the recovery time of 
DriftSurf is bounded by W with a probability 1 − �r where 
�r is parameterized by pd, qd, which is shown in Lemma 11 
in Appendix B.2. 

We next show the risk-competitiveness of DriftSurf after 
recovery (goal G2). The time period after recovery until 
the next drift is a stationary environment for DriftSurf, in 
which each model is trained solely over points drawn from 
a single distribution, allowing for an analysis similar to the 
stationary environment before any drifts occurred. 

Theorem 1. With probability 1 − �, the predictive model 
7of DriftSurf in the stable state is 41−α -risk-competitive with 

Aware at any time step tdi + 3W + c4/(�s − c3) ≤ t < 
, where tdi is the time step of the most recent drift and tdi+1 

� = �s + �r (where c3, c4 are the constants in Corollary 1). 

At a high level, �r and �s, respectively, capture the error 
rates in false negatives in drift detection and false positives 
in the stationary period afterwards. The full proof is in 
Appendix B.2. 

6. Experimental Results 
In this section, we present experimental results on datasets 
with drifts that (i) empirically confrm the advantage of 
DriftSurf’s stable-state / reactive-state approach over Stan-
dard Drift Detection (StandardDD), (ii) empirically con-
frm the risk-competitiveness of DriftSurf with Aware, and 
(iii) show the effectiveness of DriftSurf via comparison to 
two state-of-the-art adaptive learning algorithms, the drift-
detection-based method MDDM and the ensemble method 
AUE. Both StandardDD and MDDM are standalone drift 
detection algorithms, with the key difference being that 
StandardDD’s drift detector matches the test used by Drift-
Surf to enter the reactive state, enabling us to quantify the 
gains of having a reactive state. More details on these algo-
rithms, and additional algorithm comparisons, are provided 
in Appendix C.1. 

We use fve synthetic, two semi-synthetic and three real 
datasets for binary classifcation, chosen to include all such 
datasets that the authors of MDDM and AUE use in their 
evaluations. These datasets include both abrupt and gradual 
drifts. Drifts in semi-synthetic datasets are generated by 
rotating data points or changing the labels of the real-world 
datasets that originally do not contain any drift. We divide 
each dataset into equally-sized batches that arrive over the 
course of the stream. More detail on the datasets is provided 
in Appendix C.2. 

In our experiments, a batch of data points arrives at each 
time step. We frst evaluate the performance of each al-
gorithm by measuring the misclassifcation rate over this 
batch, and then each algorithm gains access to the labeled 
data to update their model(s); i.e., test-then-train. The base 
learner in each algorithm is a logistic regression model with 
STRSAGA as the update process. More details on this base 
learner, hyperparameter settings, and additional base learn-
ers, are provided in Appendix C.3. All reported results of 
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Figure 1: Misclassifcation rate over time for CoverType, PowerSupply, and Electricity 
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Figure 2: CoverType (update steps di-
vided among each model) 
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Figure 3: All datasets, DriftSurf and 
StandardDD under varying threshold δ 
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Figure 4: RCV1, DriftSurf and DriftSurf 
(no-greedy) 

the misclassifcation rates represent the median over fve 
trials. 

We present the misclassifcation rates at each time step on 
the CoverType, PowerSupply, and Electricity datasets (see 
Appendix D.1 for other datasets) in Figure 1. A drift occurs 
at times 30 and 60 in CoverType, at times 17, 47, and 76 
in PowerSupply, and at time 20 in Electricity. We observe 
DriftSurf outperforms MDDM because false positives in drift 
detection lead to unnecessary resetting of the predictive 
model in MDDM, while DriftSurf avoids the performance 
loss by catching most false positives via the reactive state 
and returning to the older model. CoverType and Electricity 
were especially problematic for MDDM, which continually 
signaled a drift. We also observe DriftSurf adapts faster than 
AUE on CoverType and Electricity. This is because after an 
abrupt drift, the predictions of DriftSurf are solely from the 
new model, while for AUE, the predictions are a weighted 
average of each expert in the ensemble. Immediately after 
a drift, the older, inaccurate experts of AUE have reduced, 
but non-zero weights that negatively impact the accuracy. 
In particular, on CoverType, we observe the recovery time 
of DriftSurf is within one reactive state. 

StandardDD also suffers from false-positive drift detection, 
especially on PowerSupply and Electricity. However, it out-
performs all the other algorithms on CoverType. It detects 
the drifts at the right moment and resets its predictive model. 
Following the greedy approach during the reactive state al-

lows DriftSurf to converge to its newly created model with 
only a one time step lag. 

Table 2: Average of misclassifcation rate (equal number of 
update steps for each model) 

ALGORITHM AUE MDDM Stand- DriftSurf Aware 
DATASET ardDD 

SEA0 0.093 0.086 0.097 0.086 0.137 
SEA20 0.245 0.289 0.249 0.243 0.264 
SEA-GRADUAL 0.162 0.165 0.160 0.159 0.177 
HYPER-SLOW 0.112 0.116 0.116 0.118 0.110 
HYPER-FAST 0.179 0.163 0.168 0.173 0.191 
SINE1 0.212 0.176 0.184 0.187 0.171 
MIXED 0.209 0.204 0.204 0.204 0.192 
CIRCLES 0.379 0.372 0.377 0.371 0.368 
RCV1 0.167 0.125 0.126 0.125 0.121 
COVERTYPE 0.279 0.311 0.267 0.268 0.267 
AIRLINE 0.333 0.345 0.338 0.334 0.338 
ELECTRICITY 0.296 0.344 0.320 0.290 0.315 
POWERSUPPLY 0.301 0.322 0.308 0.292 0.309 

Table 2 summarizes the results for all the datasets in terms 
of the total average of the misclassifcation rate over time. 
In the frst two rows, we observe the stability of DriftSurf 
in the presence of 20% additive noise in the synthetic SEA 
dataset, again demonstrating the beneft of the reactive state 
while MDDM’s performance suffers due to the increased 
false positives. We also observe that DriftSurf performs well 
on datasets with gradual drifts, such as SEA-gradual and Cir-
cles, where the stable-state / reactive-state approach is more 
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accurate at identifying when to switch the model, compared 
to MDDM and StandardDD, respectively. Overall, DriftSurf 
is the best performer on a majority of the datasets in Table 2. 
For some datasets (Airline, Hyper-Slow) AUE outperforms 
DriftSurf. A factor is the different computational power (e.g., 
number of gradient computations per time step) used by 
each algorithm. AUE maintains an ensemble of ten experts, 
while DriftSurf maintains just one (except during the reactive 
state when it maintains two), and so AUE uses at least fve 
(up to ten) times the computation of DriftSurf. To account for 
the varying computational effciency of each algorithm, we 
conducted another experiment where the available computa-
tional power for each algorithm is divided equally among all 
of its models. (A different variation on AUE that is instead 
limited by only maintaining two experts is also studied in 
Appendix D.2.) The misclassifcation rates for each dataset 
are presented in Table 3, where we observe DriftSurf dom-
inates AUE across all datasets. The CoverType dataset is 
visualized in Figure 2 (compare to Figure 1a for equal com-
putational power given to each model), where we observe a 
signifcant penalty to the accuracy of AUE because of the 
constrained training time per model. 

Table 3: Average of misclassifcation rate (update steps 
divided among each model) 

ALGORITHM AUE MDDM Stand- DriftSurf Aware 
DATASET ardDD 

SEA0 0.201 0.089 0.097 0.094 0.133 
SEA20 0.291 0.283 0.253 0.249 0.266 
SEA-GRADUAL 0.240 0.172 0.161 0.160 0.174 
HYPER-SLOW 0.191 0.116 0.117 0.130 0.117 
HYPER-FAST 0.278 0.164 0.168 0.188 0.191 
SINE1 0.309 0.178 0.180 0.209 0.168 
MIXED 0.259 0.204 0.204 0.204 0.191 
CIRCLES 0.401 0.372 0.380 0.369 0.368 
RCV1 0.403 0.131 0.128 0.143 0.120 
COVERTYPE 0.317 0.313 0.267 0.271 0.267 
AIRLINE 0.369 0.351 0.338 0.348 0.338 
ELECTRICITY 0.364 0.339 0.319 0.308 0.311 
POWERSUPPLY 0.313 0.309 0.311 0.307 0.311 

Another advantage of the stable-state / reactive-state ap-
proach of DriftSurf is its robustness in the setting of the 
threshold δ. In general, drift detection tests have a threshold 
that poses a trade-off in false positive and false negative 
rates (for StandardDD, Lemmas 1 and 4 in §5), which can 
be diffcult to tune without knowing the frequency and mag-
nitude of drifts in advance. Across a range of δ, Figure 3 
shows the misclassifcation rates for DriftSurf compared to 
StandardDD, averaged across the datasets in Table 2 (see 
Appendix D.3 for results per dataset). We observe that the 
performance of DriftSurf is resilient in the choice of δ. We 
also confrm that lower values of δ, corresponding to ag-
gressive drift detection in the stable state, allow DriftSurf 
to detect subtle drifts while not sacrifcing performance 
because the reactive state eliminates most false positives. 

We also study the impact of the design choice in DriftSurf 
of using greedy prediction during the reactive state. While 
in the reactive state, the predictive model used at one time 
step is the model that had the better performance in the 
previous time step, and then at the end of the reactive state, 
the decision is made whether or not to use the reactive 
model going forward. The natural alternative choice is that 
switching to the new reactive model can happen only at the 
end of the reactive state; we call this DriftSurf (no-greedy). 
The comparison of these two choices is visualized on the 
RCV1 dataset in Figure 4, where we observe the delayed 
switch of DriftSurf (no-greedy) to the new model following 
the drifts at times 30 and 60. The full results for each 
dataset are presented in Appendix D.4, where we observe 
that DriftSurf performs equal or better than DriftSurf (no-
greedy) on 11 of the 13 datasets in Table 2, and, averaging 
over all the datasets, has a misclassifcation rate of 0.221 
compared to 0.229. 

Appendices D.5–D.8 contain additional experimental re-
sults. In Appendix D.5, we report the results for single-pass 
SGD and an oblivious algorithm (STRSAGA with no adapta-
tion to drift), which are generally worse across each dataset. 
Appendix D.6 includes results for each algorithm when 
SGD is used as the update process instead of STRSAGA. 
We observe that using SGD results in lower accuracy for 
each algorithm, and also that, relatively, AUE gains an edge 
because its ensemble of ten experts mitigates the higher vari-
ance updates of SGD. Appendix D.7 studies base learners 
beyond logistic regression, showing the advantage of Drift-
Surf’s stable-state/reactive-state approach on both Hoeffding 
Trees and Naive Bayes classifers. Finally, Appendix D.8 
reports additional numerical results on the recovery time of 
each algorithm. 

7. Conclusion 
We presented DriftSurf, an adaptive algorithm for learning 
from streaming data that contains concept drifts. Our risk-
competitive theoretical analysis showed that DriftSurf has 
high accuracy competitive with Aware both in a stationary 
environment and in the presence of abrupt drifts. Further 
analysis showed that DriftSurf’s reactive-state approach pro-
vides statistically better learning than standalone drift de-
tection. Our experimental results confrmed our theoretical 
analysis and also showed high accuracy in the presence of 
abrupt and gradual drifts, generally outperforming state-of-
the-art algorithms MDDM and AUE. Furthermore, DriftSurf 
maintains at most two models while achieving high accuracy, 
and therefore its computational effciency is signifcantly 
better than an ensemble method like AUE. 
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