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Abstract
We provide a detailed analysis of the dynamics of
the gradient flow in overparameterized two-layer
linear models. A particularly interesting feature
of this model is that its nonlinear dynamics can be
exactly solved as a consequence of a large num-
ber of conservation laws that constrain the system
to follow particular trajectories. More precisely,
the gradient flow preserves the difference of the
Gramian matrices of the input and output weights,
and its convergence to equilibrium depends on
both the magnitude of that difference (which is
fixed at initialization) and the spectrum of the data.
In addition, and generalizing prior work, we prove
our results without assuming small, balanced or
spectral initialization for the weights. Moreover,
we establish interesting mathematical connections
between matrix factorization problems and differ-
ential equations of the Riccati type.

1. Introduction
Understanding overparameterization in deep learning is
a puzzling question. Contrary to the common belief that
it may hurt generalization and optimization, recent work
suggests that overparameterization may actually bias the
optimization algorithm towards solutions that generalize
well—a phenomenon known as implicit regularization or
implicit bias—and may also accelerate convergence—a phe-
nomenon known as implicit acceleration. Both phenomena
are consequences of the fact that different optimization algo-
rithms correspond to different dynamical systems acting on
different models. Understanding these effects thus requires
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a thorough analysis of the dynamics of optimization meth-
ods, such as gradient descent, which despite its simplicity
can lead to a complicated nonlinear dynamics.

Recent work on the implicit bias in the overparameterized
regime (Chizat & Bach, 2020; Gunasekar et al., 2018a;b;
Ji & Telgarsky, 2019b) shows that gradient descent on un-
regularized problems finds minimum norm solutions. For
instance, Ji & Telgarsky (2019a); Soudry et al. (2018) an-
alyze linear networks trained for binary classification on
linearly separable data, and show that the predictor con-
verges to a max-margin solution. Similar ideas have been
developed for matrix factorization, yielding solutions with
minimum nuclear norm (Gunasekar et al., 2017; Li et al.,
2018) or low-rank (Arora et al., 2019a). The convergence
properties of gradient descent on wide neural networks was
also analyzed (Arora et al., 2019b; Du & Hu, 2019; Du
et al., 2018b), leading to a linear convergence when the
initialization is Gaussian or balanced. Recent results regard-
ing the implicit acceleration of gradient descent on matrix
factorization and deep linear networks (Arora et al., 2018)
show that when the initialization is sufficiently small and
balanced (see Definition 2), overparameterization acts as a
preconditioning and can be interpreted as a combination of
momentum and an adaptive learning rate, suggesting that
acceleration for `p-regression is possible when p > 2.

A parallel line of research has been exploring the continuous-
time limit of gradient descent, i.e., the gradient flow, which
has the advantage of being mathematically more tractable.
Furthermore, such a continuous-time analysis can provide
a stepping stone towards understanding the (discrete-time)
dynamics of gradient descent. For instance, Saxe et al.
(2014) analyzed the gradient flow dynamics for deep linear
models with least squares loss under the assumptions of
whitened data, small, balanced, and spectral initialization
(see Definition 3); they obtained a closed-form solution in
this setting. For two-layer linear networks, by means of such
solution, Gidel et al. (2019); Saxe et al. (2019) highlighted
the sequential learning of the hierarchical components as a
phenomenon that could improve generalization. Moreover,
Gidel et al. (2019) was able to extend some of these results
to gradient descent. However, both of these papers limited
the analysis to vanishing spectral initialization.
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In the present paper, we explore the same setting as Gidel
et al. (2019); Saxe et al. (2019) but present a novel and more
general analysis of the gradient flow on two-layer linear net-
works that applies not only to small, balanced, or spectral
initializations, but also to imbalanced and nonspectral ini-
tializations. We show that a key ingredient is the existence
of a sufficiently large number of conservation laws that con-
strain the dynamics to follow a particular path.1 The quantity
that is preserved by the gradient flow is the difference of the
Gramians of the input and output weight matrices, which
in turn implies that the difference of the norm square of
the weight matrices is preserved. The particular case where
this difference is zero corresponds to balanced weights, but
the more general case of imbalanced weights also emerges
as a conserved quantity and plays an important role in the
convergence of the system. In particular, we prove conver-
gence of the gradient flow for two-layer models without the
assumption of small, balanced or spectral initialization, and
we show explicitly the dependency of initialization and data
spectrum on the convergence rate. Our work thus extends
some of the results previously established by Gidel et al.
(2019); Saxe et al. (2014; 2019) which now follow as a par-
ticular cases of our analysis. We also establish interesting
connections with Riccati differential equations, providing
an explicit characterization of the gradient flow dynamics.
In short, our work makes the following contributions—see
also Table 1:

• In Section 2, we analyze the dynamics of gradient flow
for symmetric matrix factorization, providing a closed-
form solution and a convergence rate that depends on
the eigenvalues of the data; this is done without assum-
ing small or spectral initialization.

• In Section 3, we consider an asymmetric matrix fac-
torization with spectral initialization. We highlight the
role of conservation laws that only appear in the over-
parameterized setting—as a consequence of an under-
lying rotational symmetry—and provide a convergence
rate under imbalanced initialization.

• In Section 4, we analyze the dynamics of gradient
flow for asymmetric matrix factorization with arbi-
trary initialization. We make interesting connections
with Riccati differential equations, yielding a more
general characterization of the convergence rate and an
interesting connection with explicit regularization.

1A quantity Q(x(t)) is said to be conserved under the
flow ẋ(t) = f(x(t)) if it remains constant through time, i.e.,
d
dt
Q(x(t)) = 0. For example, in mechanics the sum of potential

and kinetic energies remains constant for a conservative system.
A conservation law is usually a consequence of an underlying
symmetry (Noether’s theorem). In optimization, this can be seen
as a constraintQ(x) = Q0 that is automatically satisfied, without
having to be explicitly enforced.

2. Symmetric Matrix Factorization
In this section we analyze and compare the dynamics of the
gradient flow,2

Ẋ(t) = −∇X`(X(t)), (1)

when applied on two problems. The first is a symmetric
one-layer linear model:

min
X∈Rm×m

{
`(X) ≡ 1

2 ||Y −X||2F
}

(2)

where Y ∈ Rm×m is a given data matrix that one wishes to
approximate by X ∈ Rm×m. The second is its overparame-
terized counterpart:

min
U∈Rm×k

{
`(U) ≡ 1

2 ||Y − UUT ||2F
}
. (3)

We show that the dynamics of the linear model converge at
a rate O(e−t), while the overparameterized model has a rate
O(e−4t|σi|), where σi is the ith eigenvalue of the data matrix
Y . Therefore, different spectral components are learned at
different rates—this is the sequential learning phenomenon
described by Saxe et al. (2019) which we extend to the
symmetric factorization case.

Linear model. Let us start with the (trivial) problem of
learning the linear model (2).3 Applying the gradient flow
(1) to problem (2) yields Ẋ(t) + X(t) = Y with X(0) =
X0. This is a linear differential equation whose unique
solution is

X(t) = Y + (X0 − Y )e−t. (4)

Thus, ‖X(t)−Y ‖F = e−t‖X0−Y ‖F and limt→∞X(t) =
Y at an exponential rate of O(e−t).

For completeness, it will be interesting to consider the par-
ticular case in whichX is constrained to be positive semidef-
inite (PSD), i.e., X � 0. In this case, notice that if X0 � 0
and Y � 0, then X(t) � 0 for all t > 0, hence the same
dynamics and convergence rate still apply without having
to enforce the PSD constraint. Otherwise, if Y is not PSD,
gradient flow is not directly applicable.

Symmetric matrix factorization model. Consider now
the more interesting case of learning a two-layer linear
model with tied weights U ∈ Rm×k, formulated as the
symmetric matrix factorization problem in (3). In clas-
sical low-rank matrix factorization one assumes k < m.
Here, we consider an overparameterized formulation where
k ≥ m plays the role of the number of hidden units

2Gradient descent, xn+1 = xn − η∇`(xn), is simply an ex-
plicit Euler discretization of (1).

3In a linear neural network, Y plays the role of the input-output
data correlation matrix and X plays the role of the model’s input-
output map. In this trivial model, the input correlation matrix is
assumed to be the identity as is the case when the data is whitened.
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Table 1. Comparison between our work and the state-of-the-art.

Small and Balanced Imbalanced Spectral Nonspectral
Gradient flow Our work Our work Our work Our work

Saxe et al. (2014) Saxe et al. (2014)
Saxe et al. (2019) Saxe et al. (2019)

Gradient descent Arora et al. (2018) None Gidel et al. (2019) Arora et al. (2018)
Gidel et al. (2019)

(width). The gradient flow (1) on problem (3), for U , now
yields U̇ = 2(Y − UUT )U with U(0) ≡ U0. Letting
X(t) ≡ U(t)U(t)T � 0 and X(0) = U0U

T
0 � 0, one can

easily verify that

Ẋ = U̇UT + UU̇T = 2Y X + 2XY − 4X2. (5)

We note that problem (3) is nonconvex and the system has
multiple stationary points characterized by

Y X +XY − 2X2 = (Y −X)X +X(Y −X) = 0. (6)

Due to the symmetric and positive semidefinite nature of X
and Y , the algebraic equation (6) can be reduced to

X(Y −X) = 0. (7)

This problem shares the trivial solution X = Y with the
one-layer problem. However, any matrix of the form X =
Φ diag(x1, . . . xn)ΦT where Y = Φ diag(σ1, . . . , σn)ΦT

and xi ∈ {0, σi} is also a solution.

Equation (5) is known to be rank preserving, i.e., if r ≡
rank(X0) ≤ m, and X∗ = limt→∞X(t) exists, then
rank(X∗) ≤ r. Thus, low-rank initializations lead to low-
rank solutions and, importantly, it is impossible to recover a
solution with higher rank than that of the initialization.

We note that Eq. (5) (resp. Eq. (6)) is a matrix differential
equation (resp. algebraic equation) of the Riccati type. Such
equations often characterize dynamical systems behind least
squares problems and have been extensively studied in op-
timal control. Using results from this literature, we obtain
(see Appendix A for the proof):

Proposition 1. For anyX0 ∈ Rm×m the solution to Eq. (5)
exists and is given by

X(t) = e2tYX0

[
I + Y −1(e4tY − I)X0

]−1
e2tY , (8)

provided Y and the matrix inside [· · · ]−1 are invertible.

This solution is derived for any X0, while the overparame-
terized model requires X0 = U0U

T
0 � 0. Thus, in using (8)

as an analysis tool, it is important to keep in mind the set
of consistent initializations. In what follows, we consider

the spectral initialization (Gidel et al., 2019; Saxe et al.,
2019) and show that the eigenspace of the data is preserved
throughout the entire evolution of the learning dynamics.

Definition 1 (Symmetric Spectral initialization). Let
Y = ΦΣΦT be the eigendecomposition of the data. A
spectral initialization is defined as U0≡ΦΣ

1/2
0 and X0≡

U0U
T
0 =ΦΣ0ΦT where Σ0�0 is a diagonal matrix.

From the explicit solution (8) we can readily obtain a con-
vergence rate under spectral initializations.

Corollary 1. If Y = ΦΣΦT =
∑m
i=1 σiφiφ

T
i is invert-

ible and X0 = ΦΣ0ΦT =
∑m
i=1 σ0,iφiφ

T
i is a spectral

initialization, the solution to Eq. (5) is given by X(t) =
ΦΣ(t)ΦT =

∑m
i=1 σi(t)φiφ

T
i with

σi(t) = σi +
σi(σ0,i − σi)

σi + σ0,i(e4tσi − 1)
, (9)

provided the denominator is nonzero. Moreover, if Ỹ =∑m
i=1 max(σi, 0)φiφ

T
i = ΦΣ̃ΦT is the projection of Y

onto the PSD cone, then for all initializations X0 � 0 such
that rank(Σ0Σ̃) = rank(Σ̃), then X(t) converges to Ỹ at a
rate O(e−4tσmin(Y )) where σmin(Y ) = mini |σi|.

Proof. The first part follows trivially by substitution into
(8) and verifying the invertibility condition. For the second
part, note from (9) that if σi > 0 then σi(t)→ σi as t→∞
at a rate O(e−4tσi), and if σi < 0, then σi(t) → 0 at a
rate O(e4tσi). Therefore, Σ(t)→ max(Σ, 0) and X(t)→
Φ max(Σ, 0)ΦT at a rate O(e−4tσmin(Y )).

From (9) we see that the ith eigencomponent of X(t) con-
verges at a rate O(e−4t|σi|). This result about different
components of the network being learned at different rates
is related in spirit to the result of Gidel et al. (2019); Saxe
et al. (2019) about sequential learning with spectral bal-
anced initialization. Here the balancedness is enforced by
construction.

Next, we derive the same convergence rate with a more
general— nonspectral—initialization. The proof is in Ap-
pendix B and makes use of several interesting relations for
Riccati differential equations.
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Proposition 2 (Convergence rate). Consider the eigen-
value decomposition Y =

∑m
i=1 σiφiφ

T
i . Let Ỹ =∑m

i=1 max(σi, 0)φiφ
T
i be the projection of Y onto the PSD

cone and Ŷ =
∑m
i=1 |σi|φiφTi . For any initialization

X0 � 0, assume I + Ŷ −1
(
X0 − Ỹ

)
and Y are nonsin-

gular. Then the solution X(t) of (5) converges to Ỹ as∥∥X(t)− Ỹ
∥∥
F
≤ Ce−4tσmin(Y ), (10)

where σmin(Y ) is the smallest eigenvalue of Y in absolute
value, and C > 0 is a constant.

It follows from Proposition 2 that the convergence result for
symmetric matrix factorization with spectral initialization
can be extended to any positive semidefinite initialization
X0, provided I + Ŷ −1

(
X0 − Ỹ

)
is invertible. This is an

extension of the previous assumption on X0, namely that
rank(Σ0Σ̃) = rank(Σ̃). The main difference is that, in the
spectral initialization case we can derive the convergence
rate for each eigenvalue of X(t), while in general we can
only obtain a global convergence rate of X(t). We note
that conditions on I + Ŷ −1

(
X0 − Ỹ

)
being nonsingular

are almost surely satisfied by random initializations. They
merely characterize a few pathological initializations that
lead to suboptimal solutions. For example, in the case of
spectral initialization they suggest that it is impossible to
learn a nonzero component starting from zero initialization.
Therefore, such conditions impose no practical limitations.

3. Asymmetric Matrix Factorization with
Spectral Initialization

In this section we analyze the dynamics of gradient flow
for a more general—asymmetric—matrix factorization. We
transform the dynamics to a canonical form and show that
the solutions under the spectral initialization are diagonal
and can be computed in closed form. This solution reveals
a convergence rate O

(
e−t
√

4σ2
i +λ2

0,i
)
, where σi is the ith

singular value of Y and λ0,i defines the level of imbalance in
the initialization for the ith component. As in the symmetric
case, the components of the solution are learned at different
rates, however, in the asymmetric formulation the imbalance
at initialization also plays a role and changes the rate at
which different components are learned.

Asymmetric matrix factorization model. Consider

min
U,V

`(U, V ), `(U, V ) ≡ 1
2 ||Y − UV T ||2F , (11)

where U ∈ Rm×k, V ∈ Rn×k and k ≥ n ≥ m. The
gradient flow thus takes the form

U̇ = −∇U ` = (Y − UV T )V,

V̇ = −∇V ` = (Y − UV T )TU.
(12)

We will make use of a conservation law for the difference
of the Gramian matrices UTU and V TV (this has also been
identified by Arora et al. (2018); Du et al. (2018a)). Previous
works have used this conservation law to ensure balanced-
ness under vanishingly small initialization. In contrast, our
analysis highlights the role of imbalance in the dynamics,
e.g., in the convergence rate of the gradient flow, which has
not been previously considered or even noticed.

Conservation law. A straightforward calculation shows
that (12) admits an invariant:

Q ≡ UTU − V TV,
dQ
dt

= U̇TU + UT U̇ − V̇ TV − V T V̇ = 0
(13)

so that Q(t) = Q(0). The origin behind this conserved
quantity Q is a global rotational symmetry of (12), i.e., the
system is invariant under the orthogonal group O(k). To see
this, consider the singular value decomposition Y = ΦΣΨT

and, following Saxe et al. (2019), define Ū and V̄ through

U ≡ ΦŪGT , V ≡ ΨV̄ GT , (14)

whereG is an arbitrary element ofO(k). These transformed
variables obey

˙̄U = (Σ− Ū V̄ T )V̄ , ˙̄V = (Σ− Ū V̄ T )T Ū , (15)

which have exactly the same form as (12) up to a gauge
freedom on the choice of G. Since Q is real and symmetric,
it is diagonalizable by an orthogonal matrix. Therefore, we
can choose G to be the matrix that diagonalizes Q. Hence,
from (13) we have

ŪT Ū − V̄ T V̄ = GTQ(t)G = ΛQ

= ΛQ0 = ŪT0 Ū0 − V̄ T0 V̄0, (16)

where ΛQ0
is the (constant) diagonal matrix containing the

k eigenvalues of Q0 ≡ Q(0) (or Q(t)) which is completely
specified by the initial conditions U0 and V0 alone. Note
that the number of conserved quantities in ΛQ0

depends
on k, which is equal to the degree of overparameterization.
Although we do not assume balanced initialization in this
paper, for further reference and comparison with prior work
(Arora et al., 2018; Saxe et al., 2014; 2019), let us state its
precise meaning since it relates to the conservation law.

Definition 2 (Balanced initialization). (U0, V0) is said to
be balanced if ‖Q(t)‖F = ‖Q0‖F ≤ ε for sufficiently small
ε > 0, i.e., the conserved quantity in (13) is small.

Under the above transformation, the matrix factorization
problem with spectral initialization can be reduced to solv-
ing k one-dimensional systems (one for each component).
Proposition 3 below provides a closed-form solution and
explicitly characterizes the evolution of each component.
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Definition 3 (Asymmetric Spectral initialization). Let
Y = ΦΣΨT be the SVD of the data. The spectral ini-
tialization is defined as U0 = ΦŪ0G, V0 = ΨV̄0G, and
X0 = U0V

T
0 , where Ū0 and V̄0 are rectangular diagonal

matrices and G is any orthogonal matrix.

Proposition 3 (Exact solution and convergence rate).
Let Y = ΦΣΨT =

∑m
i=1 σiφiψ

T
i be the SVD of the

data. The solution to (12) with spectral initialization X0 =
ΦΣ0ΨT =

∑m
i=1 σ0,iφiψ

T
i yields X(t) = U(t)V (t)T =

ΦΣ(t)ΨT =
∑m
i=1 σi(t)φiψ

T
i where σi(t) is given by

σie
2t
√

4σ2
i +λ2

0,i − 2Ciλ
2
0,ie

t
√

4σ2
i +λ2

0,i − 4σiλ
2
0,iC

2
i

e2t
√

4σ2
i +λ2

0,i + 8σiCie
t
√

4σ2
i +λ2

0,i − 4λ2
0,iC

2
i

, (17)

λ0 = diag(ŪT0 Ū0 − V̄ T0 V̄0), and Ci = Ci(σi, λ0,i, σ0,i)
is a constant. Moreover, the ith eigencomponent of
X(t) converges to the ith eigencomponent of Y at a rate

O
(
e−t
√

4σ2
i +λ2

0,i
)
.

Proof. Under the spectral initialization, Ū0 and V̄0 are diag-
onal, thus so are ˙̄U(0) and ˙̄V (0). Consequently, ˙̄U(t) and
˙̄V (t) remain diagonal for all t ≥ 0 since the components

of (15) can be decoupled and the evolution will induce no
change in off-diagonal elements. To see this, observe that

˙̄Uii = (σi − ŪiiV̄ii)V̄ii, ˙̄Vii = (σi − ŪiiV̄ii)Ūii, (18)

for all 1 ≤ i ≤ m, while off-diagonal terms obey ˙̄Uij = 0

and ˙̄Vij = 0 (i 6= j). Thus (18) describes the evolution of
the singular values of the solution. This decouples the prob-
lem into a set of independent one-dimensional equations.
Therefore, it suffices to consider the scalar system

˙̄u = (σ − ūv̄)v̄, ˙̄v = (σ − ūv̄)ū, (19)

where we drop the index i = 1, . . . ,m for simplicity. Saxe
et al. (2019) makes the strong assumption ūii(0) = v̄ii(0)
for all i, which is a balanced initialization (Definition 2).
Here instead we solve (18) without such an assumption.
From (19), it is immediate that the conservation law (13)
becomes d

dt

(
ū2 − v̄2

)
= 0. Trajectories (ū(t), v̄(t)) are

thus constrained to lie on hyperbolas:

ū2(t)− v̄2(t) = ū2
0 − v̄2

0 = λ0 = const. (20)

Since we are mostly interested in the behavior of the product
x(t) = ū(t)v̄(t), by making explicit use of the conservation
law (20), i.e., λ2

0 = ū4 − 2ū2v̄2 + v̄4 = ū4 + v̄4 − 2x2 and
(ū2 + v̄2)2 = λ2

0 + 4x2, we obtain

ẋ = (σ − ūv̄)v̄2 + (σ − ūv̄)ū2

= (σ − ūv̄)
√

(v̄2 + ū2)2

= 2(σ − x)
√
x2 + λ2

0/4.

(21)

Even though this is a nonlinear differential equation, it is
separable, thus integrating both sides yields precisely (17)
(we restore i, and x → σi represents the corresponding
component associated with singular value σi and conserved
quantity λ0,i), where C > 0 is a constant given by√

4σ2λ2
0 + 16σ2x2

0 + λ4
0 + 4x2

0λ
2
0 − 4σx0 − λ2

0

4λ2
0(σ − x0)

. (22)

Above, only m out of k ≥ m conserved quantities are
used. Hence, there is degeneracy in the solution and only
m effective degrees of freedom regardless how large k is.
Note that if k < m—underparameterized case—then (18)
becomes underdetermined.

Moreover, recall from (4) that the convergence rate for the
non overparameterized problem in (2) is O(e−t), which
does not depend on the data or the initialization. It follows
from (17) that the asymptotic behavior of the singular values
of the overparameterized solution is

|σi(t)− σi| ' 2Ci(4σ
2
i + λ2

0,i)e
−t
√

4σ2
i +λ2

0,i , (23)

which depends on both σi (singular values of the data) and
λ0,i (level of initialization imbalance). When the initializa-
tion is balanced, i.e., λ0,i ≈ 0, we recover the results of
Gidel et al. (2019); Saxe et al. (2019) about the sequential
learning of components. We note that this is similar to the
symmetric case, which is not surprising since a symmetric
factorization is by construction balanced. However, when
the initialization is not balanced, the eigenvalues of ΛQ0

also play a role and can make smaller components converge
faster than larger ones.

4. Asymmetric Matrix Factorization without
Spectral Initialization

We now relax the assumption of spectral initialization (Defi-
nition 3). Defining the quantities

R(t) ≡
[
Ū(t)
V̄ (t)

]
, S ≡

[
0 Σ

ΣT 0

]
, S̄ ≡ 1

2

[
Im 0
0 −In

]
,

(24)
one can immediately obtain from (15) and (16) a Riccati-
like differential equation:

Ṙ = SR− 1
2RR

TR+ S̄RΛQ0
, (25)

where from (16) we conclude that 2RT0 S̄R0 = ΛQ0
with

R(0) ≡ R0. However, in general, one cannot go back from
(25) to (15) unless the conservation law (16) is explicitly
imposed for all times t ≥ 0. The natural question is then,
when are they equivalent? Our next result provides the
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answer, and additionally reveals an interesting relation be-
tween (25) and a matrix factorization problem with explicit
regularization (the proof is in Appendix D).

Proposition 4 (Explicit regularization). The differential
equation (25) is equivalent to

˙̄U = (Σ− Ū V̄ T )V̄ − 1
2 Ū(ŪT Ū − V̄ T V̄ − ΛQ0

),

˙̄V = (Σ− Ū V̄ T )T Ū + 1
2 V̄ (ŪT Ū − V̄ T V̄ − ΛQ0

).
(26)

This system corresponds to the dynamics of gradient flow
applied to the regularized problem

min
Ū,V̄

{
1
2 ||Σ−Ū V̄ T ||2F+ 1

8 ||ŪT Ū−V̄ T V̄ −ΛQ0 ||2F
}
. (27)

Moreover, if Q̄(t) ≡ ŪT (t)Ū(t) − V̄ T (t)V̄ (t) obeys
Q̄(t0) = ΛQ0

at some t = t0, then Q̄(t) = ΛQ0
for all

t ≥ t0. In particular, if we initialize (26)—or equivalently
(25)—such that Q̄(0) = 2RT0 S̄R0 = ΛQ0 , then the conser-
vation law (16) holds true for all t and the dynamics of both
(26) and (15) are the same.

Let us stress a few points:

• For any orthogonal matrix G ∈ O(k), under defini-
tions (14) and with Q0 ≡ GTΛQ0G, problem (27) is
equivalent to

min
U,V

{
1
2 ||Y −UV T ||2F + 1

8 ||UTU −V TV −Q0||2F
}
.

(28)

• A solution to (15) implies a solution to (26): When (13)
holds the 2nd terms on the RHS of (26) vanish, while
the 1st terms are exactly (15). However, the converse
is not necessarily true, unless (26) is initialized in the
same way as (15). Proposition 4 relates the conserva-
tion law to an explicit regularization (see Proposition 5
below), namely, one can either select a particular ini-
tialization and solve an unregularized problem, or start
at an arbitrary initialization and explicitly regularize.

• The dynamics of (26) versus (15) are analogous to solv-
ing the explicitly regularized problem (27) versus the
unregularized problem (11) subject to ‖UTU−V TV −
Q0‖2F = 0–which in continuous-time is automatically
satisfied thanks to the conservation law (16).

• The specific weight of 1/8 in (27) is special: If one
replaces 1/8 by some constant α > 0, the gradient
flow dynamics, i.e., the analog of (26), will not be
equivalent to (25). We note that problem (27) also
appeared in (Du et al., 2018a) but without any of such
connections.

Eq. (25) is reminiscent of a Riccati differential equation due
to the cubic term in R (similar to the gradient flow in the

symmetric case) but we believe that, in general, it cannot
be solved exactly due to the last term. However, it can be
solved exactly in a particular case (proof in Appendix C).

Proposition 5 (Exact solution and convergence rate). If
ΛQ0

= λ0Ik for some constant λ0, then the differential
equation (25) reduces to

Ṙ = S̃R− 1
2RR

TR (29)

which yields a close-form solution for R(t)RT (t) equal to

etS̃R0R
T
0

(
I + 1

2 S̃
−1(e2tS̃ − I)R0R

T
0

)−1

etS̃ (30)

where S̃ ≡ S + λ0S̄ = ΦΣ̃ΦT , R0 ≡ R(0). Moreover,
if S̃ and I + 1

2 Ŝ
−1(R0R

T
0 − R?R

T
? ) are invertible then

R(t)RT(t) converges exponentially toR?RT? , defined as the
projection of the matrix 2S̃ on the PSD cone, Ŝ = Φ|Σ̃|ΦT .
More precisely, if Y is a square matrix the convergence rate
isO

(
e−t
√

4σ2
min+λ2

0
)
, where σmin is the smallest eigenvalue

of Y , and otherwise the rate is O(e−|λ0|t).

Note that Eq. (29) is nothing but the gradient flow for the
symmetric factorization problem: minR

{
1
8 ||2S̃−RRT ||2F }.

The particular case ΛQ0 = λ0Ik is mathematically inter-
esting because it is amenable to an analytical treatment.
However, it may not be realizable in practice because the
conserved quantity Q0 (or ΛQ0

) must have low rank, i.e.,

rank(Q0) = rank(UT0 U0 − V T0 V0)

≤ rank(UT0 U0) + rank(V T0 V0)

≤ m+ n.

(31)

Since rank(λ0Ik) = k, choosing Ū0 and V̄0 such that
ŪT0 Ū0 − V̄ T0 V̄0 = λ0Ik is not generally possible in an
overparameterized setting with k > m + n. On the other
hand, the choice ΛQ0

= λ0Ik does not present a problem
if we consider the system (26) where we have the freedom
to choose any initialization. The experiments in Section 6
illustrate that Eq. (26), or equivalently Eq. (29), is actually
enough to capture the general behaviour of system (15).

5. Discrete- versus Continuous-Time Rates
We provide an explicit example to illustrate why studying
the continuous-time dynamics of the gradient flow is ex-
pected to reproduce the behaviour of its discretization, i.e.,
gradient descent. For simplicity, we limit the discussion
to the case considered in Section 2 and in the scalar case
Y = σ ∈ R. What we would like to do is to compare
two different algorithms, namely gradient descent applied to
problem (2) versus gradient descent applied to the factorized
problem (3). We thus have

Xk+1 = Xk + η(σ −Xk) (32)



Understanding the Dynamics of Gradient Flow in Overparameterized Linear Models

versus
Uk+1 = Uk + 2η(σ − U2

k )Uk. (33)

The respective continuum limits of these algorithms are

Ẋ = (σ −X) (34)

versus
U̇ = 2(σ − U2)U. (35)

The solution of (34) is X(t)− σ = (X0 − Y )e−t, yielding
a rate O(e−t). Define the perturbed variable

X̃k ≡ Xk − σ. (36)

Hence (32) gives X̃k+1 = (1− η)X̃k, i.e., a matching rate
ofO(e−ηk); this example is trivial because both systems are
linear. Now let us consider the more interesting nonlinear
case. Consider (34) and let X(t) ≡ U2(t). Thus Ẋ =
4σX − 4X2 whose solution is

X(t) =
σ

1− ce−4σt
≈ σ − ce−4σt, (37)

implying a continuous-time rate O(e−4σt)—compare this
with the last phrase in Corollary 1. Now let us see what
happens for (33). This is a complicated nonlinear recurrence
relation, but fortunately we can solve it approximately. By
introducing Xk ≡ U2

k it becomes

Xk+1 = Xk + 4η(σ−Xk)Xk + 4η2(σ−Xk)2Xk. (38)

Consider the perturbed variable (36). For sufficiently small
η we can neglect terms of O(η2), hence

X̃k+1 ≈ X̃k − 4ηX̃k(σ + X̃k) ≤ (1− 4ησ)X̃k. (39)

This implies X̃k → 0, or Xk → σ, at a discrete-time rate of
O(e−4σηk), which matches the continuous-time rate.

It is not hard to see how such nonlinear recurrence relations
quickly become intractable for more complicated problems.
On the other hand, even though the continuous-time limit
provided by the gradient flow consists of a nonlinear ODE,
the analysis is much more feasible besides introducing in-
teresting mathematical connections.

6. Numerical Experiments
Imbalanced initialization. Here we provide numerical evi-
dence to our theoretical results. First, we generate a random
matrix Y with Yij ∼ N (0, 1) and set m = 5, n = 10 and
k = 50. We approximate the dynamics of gradient flow
for one-layer and two-layer linear models by using gradient
descent with a step size η = 10−3 (smaller step sizes did not
lead to a discernible change). We evaluate the reconstruc-
tion error ‖Y −X(t)‖F /‖Y ‖F , whereX(t) = U(t)V T (t),
and compare the evolution of the singular values of X(t).
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Figure 1. Top row: Reconstruction error for one- vs. two-layer
linear models. Bottom row: Evolution of singular values. From
left to right we use σ = 10−2, σ = 10−1, and σ = 1, respectively.

We consider Gaussian initializations, i.e., U0 and V0 have
entries ∼ N (0, σ2) where σ is varied to obtain different
degrees of imbalance. To start both models in the same
state, we choose X(0) = U0V

T
0 for the one-layer case. The

results are shown in Fig. 1. From our theoretical analysis,
we expect a different behaviour for the convergence rate
depending whether the initialization is balanced or imbal-
anced, i.e., whether ‖Q‖F = ‖Q0‖F ≡ ‖UT0 U0−V T0 V0‖F
is small or large, respectively. When it is very small (Fig. 1a)
the strength of the singular values dominate and we expect
the components to be learned sequentially from the largest
to the smallest, in agreement with Gidel et al. (2019); Saxe
et al. (2019). As we make the weights more imbalanced
(Fig. 1b) the singular values are learned faster, even the
smaller ones. Finally, as ‖Q‖F becomes very large, the
imbalance becomes the dominating term in the convergence
rate and the solution of the factorized problem converges
significantly faster (Fig. 1c). In other words, these numerical
results are consistent with Propositions 2 and 5.4

ΛQ0 = λ0I is general enough. Since Proposition 5 con-
tains the case where an exact solution is available, we want
to investigate whether this is general enough to capture the
qualitative behaviour of system (15). To avoid confusion,
we refer to Ū I and V̄ I as the variables of (26), as well as
ΛIQ0

≡ λ0Ik; here I stands for “identity.” The variables Ū
and V̄ refer to system (15), with its ΛQ fixed by the initial

4We note that such a comparison is meaningful only if the step
size is the same for both models, which should be small enough to
ensure stability of the discretizations; increasing imbalance does
not accelerate convergence in discrete-time because a smaller step
size would be required.
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Figure 2. Top row: Reconstruction error for the asymmetric fac-
torization dynamics without regularization in (15) and (16) and
generalQ0 (red dashed line), versus the regularized dynamics in
(26) with a diagonal ΛQ0 = λ0Ik (black solid line). Bottom row:
Evolution of the corresponding singular values. From left to right
we set k=50, k=100, and k=200, respectively.

conditions; see (16). We want to show that it is possible to
find an “optimal” λ0 ∈ R such that both cases have similar
dynamics. We thus initialize U0 and V0 (and equivalently
Ū0 and V̄0) with entries ∼ N (0, 1). The same initial con-
dition is used for (26), i.e., Ū I0 = Ū0 and V̄ I0 = V̄0. We
set η = 10−5, Y ∼ N (0, 1), m = 5, n = 10 and vary k.
We look for λ0 that minimizes ‖XI(t)−X(t)‖F . In Fig. 2
we illustrate that, indeed, this can be done. Note that the
evolution of both systems are nearly indistinguishable. In
practice, λ0 does not need to be chosen. It is implicitly de-
termined by the choice of initialization and typically grows
with ‖Q0‖. This is only relevant to theoretically understand
the dynamics of the gradient flow on this problem.

Extension to nonlinear networks. Our analysis so far has
shown that imbalance affects the convergence rate and is
induced by a conservation law. However, its definition
should change when introducing nonlinearities. In fact,
both the network architecture and the objective function
should affect these conserved quantities. As such, con-
ducting a full analysis for more complex nonlinear net-
works is necessary to characterize the the dynamics and
implicit bias in such cases, which we leave open for fu-
ture work. Nonetheless, we provide some numerical evi-
dence by adding nonlinearity (sigmoid) to the final layer.
We train the two networks (one layer vs. two layers) on
synthetic data, i.e., we compare the dynamics of gradient
descent for the objectives `1(W ) = 1

2 ||Y − φ(XW )||2F
versus `2(U, V ) = 1

2 ||Y − φ(XUV T )||2F , where φ is the
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Figure 3. Evolution of the training loss for nonlinear one-layer
and two-layer models. Top row: ||Q0||2 = 0. Bottom row:
||Q0||2 = 4.6. Initial weights are drawn from a normal distri-
butionN (0, 10−1).

sigmoid function, X ∈ Rn×d and Y ∈ Rn×d represent the
training samples and labels, respectively (n = 103, d = 10),
W ∈ Rd×d, U, V ∈ Rn×k are the weight matrices and the
width is k = 100. We generated the matrices W ∗ and X
with entries drawn from N (0, 1) and Y = φ(XW ∗) + ε
where ε ∼ 10−3N (0, I). The results in Fig. 3 interestingly
suggest that our conclusions about the role of imbalance
still hold in this case as well.

7. Conclusion
We considered the gradient flow dynamics on two-layer
linear neural networks, providing an analytical treatment
to a great level of detail. Our results establish a precise
characterization of the solutions. Importantly, we do not
assume balanced or vanishingly small initialization which
so far have been present in all prior work in this vein.

Our analysis shows that the dynamics and convergence of
the gradient flow is strongly related to an emerging rota-
tional symmetry induced by overparameterization which
gives rise to several conservation laws that constrain the
dynamics to follow specific trajectories; such conserved
quantities are completely fixed by the initialization. Our
analysis focused on the simple case of linear networks, how-
ever, it reveals a potential key to understand implicit bias
which lies in the conservation laws that arise from the sym-
metries of the problem. Such symmetries depend on the
network architecture, objective function, optimization al-
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gorithm, and they constrain the dynamics to an invariant
manifold that encapsulates the implicit regularization and
acceleration effects. Understanding this in more complex
models may thus be reduced to finding dynamical invariants,
for which our results provide a foundational starting point.
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