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A. Appendix
A.1. Proofs of Section 4

Proof of Proposition 4.1. Note that optimization problem (3) constitutes an unbounded convex optimization problem when
ψ is the Kullback-Leibler-type divergence of Definition 3.1. Let g(µ,Σ) , λD((µ,Σ) ‖ (µ̂S, Σ̂S)) + (1− λ)D((µ,Σ) ‖
(µ̂T, Σ̂T)), then, the first order optimality condition reads

∇µg(µ,Σ) = 2λΣ̂−1
S (µ− µ̂S) + 2(1− λ)Σ̂−1

T (µ− µ̂T) = 0,

∇Σg(µ,Σ) = λΣ̂−1
S − λΣ−1 + (1− λ)Σ̂−1

T − (1− λ)Σ−1 = 0.

One can then show (µ̂λ, Σ̂λ) provided in statement of Proposition 4.1 solves the system of equalities above.

Below we prove Proposition 4.2. In the proof of Proposition 4.2 and its auxiliary lemmas, Lemma A.1 and Lemma A.2, we
omit the subscripts λ and ρ to avoid clutter.

Lemma A.1 (Dual problem). Fix (µ̂, Σ̂) ∈ Rp × Sp++ and ρ ≥ 0. For any symmetric matrix H ∈ Sp, the optimization
problem 

sup
µ,Σ

Tr
[
H(Σ + µµ>)

]
s. t. Tr

[
ΣΣ̂−1

]
− log det(ΣΣ̂−1)− p+ (µ− µ̂)>Σ̂−1(µ− µ̂) ≤ ρ

Σ � 0

(A.1a)

admits the dual formulation{
inf κ(ρ− µ̂>Σ̂−1µ̂) + κ2µ̂>Σ̂−1[κΣ̂−1 −H]−1Σ̂−1µ̂− κ log det(I − Σ̂

1
2HΣ̂

1
2 /κ)

s. t. κ ≥ 0, κΣ̂−1 � H.
(A.1b)

Proof of Lemma A.1. For any µ ∈ Rp such that (µ− µ̂)>Σ̂−1(µ− µ̂) ≤ ρ, denote the set Sµ as

Sµ ,
{

Σ ∈ Sp++ : Tr
[
ΣΣ̂−1

]
− log det Σ ≤ ρµ

}
,

where ρµ ∈ R is defined as ρµ , ρ+p− log det Σ̂− (µ− µ̂)>Σ̂−1(µ− µ̂). Using these auxiliary notations, problem (A.1a)
can be re-expressed as a nested program of the form

sup
µ

µ>Hµ+ sup
Σ∈Sµ

Tr
[
HΣ

]
s. t. (µ− µ̂)>Σ̂−1(µ− µ̂) ≤ ρ,

where we emphasize that the constraint on µ is redundant, but it is added to ensure the feasibility of the inner supremum over
Σ for every feasible value of µ of the outer problem. We now proceed to reformulate the supremum subproblem over Σ.
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Assume momentarily that H 6= 0 and that µ satisfies (µ − µ̂)>Σ̂−1(µ − µ̂) < ρ. In this case, one can verify that Σ̂ is a
Slater point of the convex set Sµ. Using a duality argument, we find

sup
Σ∈Sµ

Tr
[
HΣ

]
= sup

Σ�0
inf
φ≥0

Tr
[
HΣ

]
+ φ

(
ρµ − Tr

[
Σ̂−1Σ

]
+ log det Σ

)
= inf
φ≥0

{
φρµ + sup

Σ�0

{
Tr
[
(H − φΣ̂−1)Σ

]
+ φ log det Σ

}}
,

where the last equality follows from strong duality (Bertsekas, 2009, Proposition 5.3.1). If H − φΣ̂−1 6≺ 0, then the inner
supremum problem becomes unbounded. To see this, let σ ∈ R+ be the maximum eigenvalue of H − φΣ̂−1 with the
corresponding eigenvector v, then the sequence (Σk)k∈N with Σk = I + kvv> attains the asymptotic maximum objective
value of +∞. If H − φΣ̂−1 ≺ 0 then the inner supremum problem admits the unique optimal solution

Σ?(φ) = φ(φΣ̂−1 −H)−1, (A.2)

which is obtained by solving the first-order optimality condition. By placing this optimal solution into the objective function
and arranging terms, we have

sup
Σ∈Sµ

Tr
[
HΣ

]
= inf

φ≥0

φΣ̂−1�H

φ
(
ρ− (µ− µ̂)>Σ̂−1(µ− µ̂)

)
− φ log det(I − Σ̂

1
2HΣ̂

1
2 /φ). (A.3)

We now argue that the above equality also holds when µ is chosen such that (µ− µ̂)>Σ̂−1(µ− µ̂) = ρ. In this case, Sµ
collapses into a singleton {Σ̂}, and the left-hand side supremum problem attains the value Tr

[
HΣ̂

]
. The right-hand side

infimum problem becomes
inf
φ≥0

φΣ̂−1�H

− φ log det(I − Σ̂
1
2HΣ̂

1
2 /φ).

One can show using the l’Hopital rule that

lim
φ↑+∞

− φ log det(I − Σ̂
1
2HΣ̂

1
2 /φ) = Tr

[
HΣ̂

]
,

which implies that the equality holds. Furthermore, when H = 0, the left-hand side of (A.3) evaluates to 0, while the
infimum problem on the right-hand side of (A.3) also attains the optimal value of 0 asymptotically as φ decreases to 0. This
implies that (A.3) holds for all H ∈ Sp and for any µ satisfying (µ− µ̂)>Σ̂−1(µ− µ̂) ≤ ρ.

The above line of argument shows that problem (A.1a) can now be expressed as the following maximin problem

sup
µ:(µ−µ̂)>Σ̂−1(µ−µ̂)≤ρ

inf
φ≥0

φΣ̂−1�H

µ>Hµ+ φ
(
ρ− (µ− µ̂)>Σ̂−1(µ− µ̂)

)
− φ log det(I − Σ̂

1
2HΣ̂

1
2 /φ).

For any φ ≥ 0 such that φΣ̂−1 � H , the objective function is concave in µ. For any µ, the objective function is convex in φ.
Furthermore, the feasible set of µ is convex and compact, and the feasible set of φ is convex. As a consequence, we can
apply Sion’s minimax theorem (Sion, 1958) to interchange the supremum and the infimum operators, and problem (A.1a) is
equivalent to

inf
φ≥0

φΣ̂−1�H

 φρ− φ log det(I − Σ̂
1
2HΣ̂

1
2 /φ)

+ sup
µ:(µ−µ̂)>Σ̂−1(µ−µ̂)≤ρ

µ>Hµ− φ(µ− µ̂)>Σ̂−1(µ− µ̂)

 .

For any φ which is feasible for the outer problem, the inner supremum problem is a convex quadratic optimization problem
because φΣ̂−1 � H . Using a strong duality argument, the value of the inner supremum equals to the value of

inf
ν≥0

{
νρ− (ν + φ)µ̂>Σ̂−1µ̂+ sup

µ
µ>(H − (φ+ ν)Σ̂−1)µ+ 2(ν + φ)(Σ̂−1µ̂)>µ

}
= inf
ν≥0

νρ− (ν + φ)µ̂>Σ̂−1µ̂+ (ν + φ)2(Σ̂−1µ̂)>[(φ+ ν)Σ̂−1 −H]−1(Σ̂−1µ̂),



where the equality follows from the fact that the unique optimal solution in the variable µ is given by

(φ+ ν)[(φ+ ν)Σ̂−1 −H]−1Σ̂−1µ̂. (A.4)

By combining two layers of infimum problem and using a change of variables κ ← φ + ν, problem (A.1a) can now be
written as {

inf κ(ρ− µ̂>Σ̂−1µ̂) + κ2µ̂>Σ̂−1[κΣ̂−1 −H]−1Σ̂−1µ̂− φ log det(I − Σ̂
1
2HΣ̂

1
2 /φ)

s. t. φ ≥ 0, φΣ̂−1 � H, κ− φ ≥ 0.
(A.5)

We now proceed to eliminate the multiplier φ from the above problem. To this end, rewrite the above optimization problem
as

inf κ(ρ− µ̂>Σ̂−1µ̂) + κ2µ̂>Σ̂−1[κΣ̂−1 −H]−1Σ̂−1µ̂+ g(κ)

s. t. κ ≥ 0, κΣ̂−1 � H,

where g(κ) is defined for every feasible value of κ as

g(κ) ,

{
inf −φ log det(I − Σ̂

1
2HΣ̂

1
2 /φ)

s. t. φ ≥ 0, φΣ̂−1 � H, φ ≤ κ.
(A.6)

Let g0(φ) denote the objective function of the above optimization, which is independent of κ. Let σ1, . . . , σp be the
eigenvalues of Σ̂

1
2HΣ̂

1
2 , we can write the function g directly using the eigenvalues σ1, . . . , σp as

g0(φ) = −φ
p∑
i=1

log(1− σi/φ).

It is easy to verify by basic algebra manipulation that the gradient of g0 satisfies

∇g0(φ) =

p∑
i=1

[
log

(
φ

φ− σi

)
− φ

φ− σi

]
+ p ≤ 0,

which implies that the value of φ that solves (A.6) is κ, and thus g(κ) = −κ log det(I − Σ̂
1
2HΣ̂

1
2 /κ). Substituting φ by κ

in problem (A.5) leads to the desired claim.

Lemma A.2 (Optimal solution attaining f(β)). For any (µ̂, Σ̂) ∈ Rp × Sp++, ρ ∈ R++ and w ∈ Rp, f(β) equals to the
optimal value of the optimization problem{

sup
µ,Σ�0

w>(Σ + µµ>)w

s. t. Tr
[
ΣΣ̂−1

]
− log det(ΣΣ̂−1)− p+ (µ− µ̂)>Σ̂−1(µ− µ̂) ≤ ρ,

(A.7a)

which admits the unique optimal solution

Σ? = κ?(κ?Σ̂−1 − ww>)−1, µ? = Σ?Σ̂−1µ̂, (A.7b)

with κ? > w>Σ̂w being the unique solution of the nonlinear equation

ρ =
(w>µ̂)2w>Σ̂w

(κ− w>Σ̂w)2
+

w>Σ̂w

κ− w>Σ̂w
+ log

(
1− w>Σ̂w

κ

)
. (A.7c)

Moreover, we have κ? ≤ w>Σ̂w
(
1 + 2ρ+

√
1 + 4ρ(w>µ̂)2

)
/(2ρ).

Proof of Lemma A.2. First, note that

f(β) = sup
Q∈B

EQ
[
(β>X − Y )2

]
= sup

Q∈B
EQ
[
w>ξξ>w

]
= sup

(µ,Σ)∈U
w>

(
Σ + µµ>

)
w,



which, by the definition of U and definition (3.2), equals to the optimal value of problem (A.7a).

From the duality result in Lemma A.1, problem (A.7a) is equivalent to

inf κ(ρ− µ̂>Σ̂−1µ̂) + (κΣ̂−1µ̂)>[κΣ̂−1 − ww>]−1(κΣ̂−1µ̂)− κ log det(I − Σ̂
1
2ww>Σ̂

1
2 /κ)

s. t. κ ≥ 0, κΣ̂−1 � ww>.

Applying Bernstein (2009, Fact 2.16.3), we have the equalities

det(I − Σ̂
1
2ww>Σ̂

1
2 /κ) = 1− w>Σ̂w/κ

(κΣ̂−1 − ww>)−1 = κ−1Σ̂ + κ−2
(
1− w>Σ̂w/κ

)−1
Σ̂ww>Σ̂,

and thus by some algebraic manipulations we can rewrite

f(β) =

{
inf κρ+ κ(w>µ̂)2

κ−w>Σ̂w
− κ log

(
1− w>Σ̂w/κ

)
s. t. κ > w>Σ̂w.

(A.8)

Let f0 be the objective function of the above optimization problem. The gradient of f0 satisfies

∇f0(κ) = ρ− (w>µ̂)2w>Σ̂w

(κ− w>Σ̂w)2
− w>Σ̂w

κ− w>Σ̂w
− log

(
1− w>Σ̂w

κ

)
.

By the above expression of ∇f0(κ) and the strict convexity of f0(κ), the value κ? that solves (A.7c) is also the unique
minimizer of (A.8). In other words, f0(κ) = f(β).

We now proceed to show that (µ?,Σ?) defined as in (A.7b) is feasible and optimal. First, we prove feasibility of (µ?,Σ?).
By direct computation,

(µ? − µ̂)>Σ̂−1(µ? − µ̂) = µ̂>(Σ̂−1Σ? − I)Σ̂−1(Σ?Σ̂−1 − I)µ̂ =
(µ̂>w)2w>Σ̂w

(κ? − w>Σ̂w)2
. (A.9a)

Moreover, because Σ?Σ̂−1 = I + (κ? − w>Σ̂w)−1Σ̂ww>, we have

Tr
[
Σ?Σ̂−1

]
− log det(Σ?Σ̂−1)− p = (κ? − w>Σ̂w)−1w>Σ̂w + log

(
1− w>Σ̂w

κ?
)
. (A.9b)

Combining (A.9a) and (A.9b), we have

Tr
[
Σ?Σ̂−1

]
− log det(Σ?Σ̂−1)− p+ (µ? − µ̂)>Σ̂−1(µ? − µ̂) = ρ,

where the first equality follows from the definition of D, and the second equality follows from the fact that κ? solves (A.7c).
This shows the feasibility of (µ?,Σ?).

Next, we prove the optimality of (µ?,Σ?). Through a tedious computation, one can show that

w>(Σ? + (µ?)(µ?)>)w = w>(Σ? + Σ?Σ̂−1µ̂µ̂>Σ̂−1Σ?)w

=w>Σ̂w
(

1 +
w>Σ̂w

κ? − w>Σ̂w

)
+ (µ̂>w)2

(
1 +

2w>Σ̂w

κ? − w>Σ̂w

)
+

(w>µ̂)2(w>Σ̂w)2

(κ? − w>Σ̂w)2

=
κ?w>Σ̂w

κ? − w>Σ̂w
+

(κ?)2(µ̂>w)2

(κ? − w>Σ̂w)2

=
κ?w>Σ̂w

κ? − w>Σ̂w
+
κ?(µ̂>w)2w>Σ̂w

(κ? − w>Σ̂w)2
+

κ?(µ̂>w)2

κ? − w>Σ̂w

=κ?ρ− κ? log
(
1− w>Σ̂w

κ?
)

+
κ?(µ̂>w)2

κ? − w>Σ̂w
= f0(κ?) = f(β),



where the antepenultimate equality follows from the fact that κ? solves (A.7c), and the last equality holds because κ? is the
minimizer of (A.8). Therefore, (µ?,Σ?) is optimal to problem (A.7a). The uniqueness of (µ?,Σ?) now follows from the
unique solution of Σ and µ with respect to the dual variables from (A.2) and (A.4), respectively.

It now remains to show the upper bound on κ?. Towards that end, we note that for any κ > w>Σ̂w,

0 = ρ− (w>µ̂)2w>Σ̂w

(κ? − w>Σ̂w)2
− w>Σ̂w

κ? − w>Σ̂w
− log

(
1− w>Σ̂w

κ?

)
> ρ− (w>µ̂)2w>Σ̂w

(κ? − w>Σ̂w)2
− w>Σ̂w

κ? − w>Σ̂w
.

Solving the above quadratic inequality in the variable κ? − w>Σ̂w yields the desired bound. This completes the proof.

We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. The convexity of f follows immediately by noting that it is the pointwise supremum of the family
of convex functions EQ[(β>X − Y )2] parametrized by Q.

To prove the continuously differentiability and the formula for the gradient, recall the expression (A.8) for the function f(β):

f(β) =

{
inf κρ+ κ(w>µ̂)2

κ−w>Σ̂w
− κ log

(
1− w>Σ̂w/κ

)
s. t. κ > w>Σ̂w.

(A.10)

Problem (A.10) has only one constraint. Therefore, LICQ (hence MFCQ) always holds, which implies that the Lagrange
multiplier ζβ of problem (A.10) is unique for any β. Also, it is easy to see that the constraint of problem (A.10) is never
binding. So, ζβ = 0 for any β. The Lagrangian function Lβ : R× R→ R is given by

Lβ(κ, ζ) = ρκ+
ω2κ

κ− ω1
− κ log

(
1− ω1

κ

)
+ ζ(ω1 − κ),

where ω1 = w>Σ̂w and ω2 = (w>µ̂)2. The first derivative with respect to κ is

dLβ
dκ

(κ, ζ) = ρ− ω1ω2

(κ− ω1)2
− log

(
1− ω1

κ

)
− ω1

κ− ω1
− ζ.

The second derivative with respect to κ is

d2Lβ
dκ2

(κ, ζ) =
ω1

(κ− ω1)3

(
2ω2 +

ω1

κ
(κ− ω1)

)
.

From the proof of Lemma A.2, we have that the minimizer κβ of problem (A.10) is precisely the κ? defined by equa-
tion (A.7c) (below we write κβ instead of κ? to emphasize and keep track of the dependence on β). Therefore, for any β,
the minimizer κβ exists and is unique. So, there exists some constant ηβ > 0 such that

d2Lβ
dκ2

(κβ , ζβ) ≥ ηβ > 0.

Therefore, for any β, the strong second order condition at κβ holds (see Still (2018, Definition 6.2)). By Still (2018, Theorem
6.7),

∇f(β) = ∇βLβ(κβ , ζβ) = ∇βLβ(κβ , 0) ∀β ∈ Rd. (A.11)

Then we compute

∇wLβ(κ, ζ) = ∇w

[
κ(w>µ̂)2

κ− w>Σ̂w
− κ log

(
1− w>Σ̂w

κ

)
+ ζ(w>Σ̂w − κ)

]

=
2κω2

(κ− ω1)2
Σ̂w +

2κ

(κ− ω1)
µ̂µ̂>w +

2κ

(κ− ω1)
Σ̂w + 2ζΣ̂w.



Hence,

∇βLβ(κ, ζ) =
dw

dβ

>
·∇wLβ(κ, ζ) = [Id 0d] ·∇wLβ(κ, ζ),

which, when combined with (A.11), yields the desired gradient formula

∇f(β) =
2κβ

(
ω2Σ̂w+(κβ−ω1)(Σ̂+µ̂µ̂>)w

)
1:d

(κβ − ω1)2
.

By Still (2018, Theorem 6.5), the function β 7→ κβ is locally Lipschitz continuous, i.e., for any β ∈ Rd, there exists
cβ , εβ > 0 such that if ‖β′ − β‖2 ≤ εβ , then

|κβ′ − κβ | ≤ cβ ‖β′ − β‖2 .

Note that ω1 and ω2 are both locally Lipschitz continuous in β. Also, it is easy to see that κβ > ω1 for any β. Thus,∇f(β)
is locally Lipschitz continuous in β.

Proof of 4.3. Noting that problem (3) is the barycenter problem between two Gaussian distributions with respect to the
Wasserstein distance, the proof then directly follows from Agueh & Carlier (2011, §6.2) and McCann (1997, Example 1.7).

Proof of Proposition 4.4. Again we omit the subscripts λ and ρ. Reminding that ξ = (X,Y ), we find

sup
Q∈B

EQ[(β>X − Y )2] = sup
Q∈B

EQ[(w>ξ)2]

=


inf κ

(
ρ− ‖µ̂‖22 − Tr

[
Σ̂
])

+ z + Tr
[
Z
]

s. t. κ ∈ R+, z ∈ R+, Z ∈ Sp+[
κI − ww> κΣ̂

1
2

κΣ̂
1
2 Z

]
� 0,

[
κI − ww> κµ̂

κµ̂> z

]
� 0

=

{
inf κ

(
ρ− ‖µ̂‖22 − Tr

[
Σ̂
])

+ κ2µ̂>(κI − ww>)−1µ̂+ κ2 Tr
[
Σ̂(κI − ww>)−1

]
s. t. κ ≥ ‖w‖22,

(A.12)

where the second equality follows from Kuhn et al. (2019, Lemma 2). By applying Bernstein (2009, Fact 2.16.3), we find

(κI − ww>)−1 = κ−1I + κ−2
(
1− ‖w‖22/κ

)−1
ww>. (A.13)

Combining (A.12) and (A.13), we get

sup
Q∈B

EQ[(β>X − Y )2] =

{
inf κρ+ κw>(Σ̂ + µ̂µ̂>)w/(κ− ‖w‖22)
s. t. κ ≥ ‖w‖22.

One can verify through the first-order optimality condition that the optimal solution κ? is

κ? = ‖w‖2

‖w‖2 +

√
w>(Σ̂ + µ̂µ̂>)w

ρ

 ,

and by replacing this value κ? into the objective function, we find

sup
Q∈B

EQ[(β>X − Y )2] =
(√

w>(Σ̂ + µ̂µ̂>)w +
√
ρ‖w‖2

)2
,

which then completes the proof.



A.2. Proofs of Section 5

Lemma A.3 (Compactness). For k ∈ {S,T}, the set

Vk = {(µ,M) ∈ Rp × Sp++ : M − µµ> ∈ Sp++,D((µ,M − µµ>) ‖ (µ̂k, Σ̂k)) ≤ ρk}

is convex and compact. Furthermore, the set

V , {(µ,M) ∈ Rp × Sp++ : (µ,M − µµ>) ∈ UρS,ρT}

is also convex and compact.

Proof of Lemma A.3. For any (µ,M) ∈ Rp × Sp++ such that M − µµ> ∈ Sp++, we find

D
(
(µ,M − µµ>) ‖ (µ̂k, Σ̂k)

)
=(µ− µ̂k)>Σ̂−1

k (µ− µ̂k) + Tr
[
(M − µµ>)Σ̂−1

]
− log det((M − µµ>)Σ̂−1

k )− p

=µ̂>k Σ̂−1
k µ̂k − 2µ̂>k Σ̂−1

k µ+ Tr
[
M Σ̂−1

k

]
− log det(M Σ̂−1

k )− log(1− µ>M−1µ)− p, (A.14)

where in the last expression, we have used the determinant formula (Bernstein, 2009, Fact 2.16.3) to rewrite

det(M − µµ>) = (1− µ>M−1µ) detM.

Because M − µµ> ∈ Sp++, one can show that 1 − µ>M−1µ > 0 by invoking the Schur complement, and as such, the
logarithm term in the last expression is well-defined. Moreover, we can write

Vk =

(µ,M) :

(µ,M) ∈ Rp × Sp++, M − µµ> ∈ Sp++, ∃t ∈ R+ :

µ̂>k Σ̂−1
k µ̂k − 2µ̂>k Σ̂−1

k µ+ Tr
[
M Σ̂−1

k

]
− log det(M Σ̂−1

k )− log(1− t)− p ≤ ρ[
M µ
µ> t

]
� 0

 , (A.15)

which is a convex set. Notice that by Schur complement, the semidefinite constraint is equivalent to t ≥ µ>M−1µ.

Next, we show that Vk is compact. Denote by Uk = {(µ,Σ) ∈ Rp × Sp+ : D((µ,Σ)‖(µ̂k, Σ̂k)) ≤ ρk}. Then, it is easy to
see that Vk is the image of Uk under the continuous mapping (µ,Σ) 7→ (µ,Σ + µµ>). Therefore, it suffices to prove the
compactness of Uk. Towards that end, we note that

D
(
(µ,Σ) ‖ (µ̂k, Σ̂k)

)
= (µ̂k − µ)>Σ̂−1

k (µ̂k − µ) + Tr
[
ΣΣ̂−1

k

]
− log det(ΣΣ̂−1

k )− p

is a continuous and coercive function in (µ,Σ). Thus, as a level set of D
(
(µ,Σ) ‖ (µ̂k, Σ̂k)

)
, Uk is closed and bounded,

and hence compact.

To prove the last claim, by the definitions of V and UρS,ρT we write

V = {(µ,M) ∈ Rp × Sp++ : (µ,M − µµ>) ∈ UρS,ρT}
={(µ,M) ∈ Rp × Sp++ : (µ,M) ∈ VS} ∩ {(µ,M) ∈ Rp × Sp++ : (µ,M) ∈ VT} ∩ {(µ,M) ∈ Rp × Sp++ : M � εI}.

(A.16)

The convexity of {(µ,M) ∈ Rp × Sp++ : (µ,M − µµ>) ∈ UρS,ρT} then follows from the convexity of the three sets
in (A.16). Furthermore, from the first part of the proof, we know that both {(µ,M) ∈ Rp × Sp++ : (µ,M) ∈ VS} and
{(µ,M) ∈ Rp × Sp++ : (µ,M) ∈ VT} are compact sets, so is their intersection. Also, the last set {(µ,M) ∈ Rp × Sp++ :
M � εI} in (A.16) is closed. Since any closed subset of a compact set is again compact, we conclude that V is compact.
This completes the proof.



Proof of Theorem 5.2. As ξ = (X,Y ), we can rewrite

min
β∈Rd

sup
Q∈BρS,ρT

EQ[(β>X − Y )2]

= min
β∈Rd

sup
Q∈BρS,ρT

[
β
−1

]>
EQ[ξξ>]

[
β
−1

]

= min
β∈Rd

sup
(µ,M−µµ>)∈UρS,ρT

[
β
−1

]>
M

[
β
−1

]

= min
β∈Rd

sup
(µ,M)∈V

[
β
−1

]>
M

[
β
−1

]
= sup

(µ,M)∈V
min
β∈Rd

[
β
−1

]>
M

[
β
−1

]
(A.17a)

= sup
(µ,M)∈V

MY Y −M>XYM−1
XXMXY , (A.17b)

where (A.17a) follows from the Sion’s minimax theorem, which holds because the objective function is convex in β, concave
in M , and Lemma A.3. Equation (A.17b) exploits the unique optimal solution in β as β? = M−1

XXMXY , in which the
matrix inverse is well defined because M � 0 for any feasible M .

Finally, after an application of the Schur complement reformulation to (A.17b), the nonlinear semidefinite program in the
theorem statement follows from representations (A.15) and (A.16). This completes the proof.

Proof of Proposition 5.3. It is well-known that the space of probability measures equipped with the type-2 Wasserstein
distance W2 is a geodesic metric space (see Villani (2008, Section 7) for example), meaning that for any two probability
distributions N0 and N1, there exists a constant-speed geodesic curve [0, 1] 3 a 7→ Na satisfying

W2(Na,Na′) = |a− a′|W2(N0,N1) ∀a, a′ ∈ [0, 1].

The claim follows trivially if W2(NS,NT) ≤ √ρS. Therefore, we assume W2(NS,NT) >
√
ρS.

Consider the the geodesic Nt from N0 = NS to N1 = NT. Also, denote by Uk = {(µ,Σ) ∈ Rp × Sp+ : D((µ,Σ) ‖
(µ̂k, Σ̂k)) ≤ ρk} for k ∈ {S,T}. Then, US and UT has empty intersection if and only if

W2(Na,NS) ≤ √ρS =⇒W2(Na,NT) >
√
ρT ∀a ∈ [0, 1],

which is in turn equivalent to

aW2(NT,NS) ≤ √ρS =⇒ (1− a)W2(NT,NS) ≤ √ρT ∀a ∈ [0, 1].

Picking a =
√
ρS

W2(NT,NS) ∈ (0, 1), then we have(
1−

√
ρS

W2(NT,NS)

)
W2(NT,NS) ≤ √ρT.

The above inequality can be rewritten as
W2(NT,NS) ≤ √ρS +

√
ρT,

which contradicts with our supposition

ρT ≥
(√

W((µ̂S, Σ̂S) ‖ (µ̂T, Σ̂T))−√ρS

)2

.

Thus, US and UT have a non-empty intersection.



Proof of Theorem 5.4. As ξ = (X,Y ), we can rewrite

min
β∈Rd

sup
Q∈BρS,ρT (P̂)

EQ[(β>X − Y )2] (A.18a)

= min
β∈Rd

sup
(µ,M−µµ>)∈UρS,ρT

[
β
−1

]>
M

[
β
−1

]

= sup
(µ,M−µµ>)∈UρS,ρT

min
β∈Rd

[
β
−1

]>
M

[
β
−1

]
(A.18b)

= sup
(µ,M−µµ>)∈UρS,ρT

MY Y −M>XYM−1
XXMXY , (A.18c)

where (A.18b) follows from the Sion’s minimax theorem, which holds because the objective function is convex in β, concave
in M , and the set UρS,ρT is compact (Shafieezadeh-Abadeh et al., 2018, Lemma A.6). Equation (A.18c) exploits the unique
optimal solution in β as β? = M−1

XXMXY , in which the matrix inverse is well-defined because M − µµ> � εI for any
feasible M .

B. Additional Numerical Results
In the following the details of the datasets used in Section 6 are presented.

• Uber&Lyft1 has NS = 5000 instances in the source domain and 5000 available samples in the target domain.

• US Births (2018)2 has NS = 5172 samples in the source domain and 4828 available samples in the target domain.

• Life Expectancy3 has NS = 1407 instances in the source domain and 242 available samples in the target domain.

• House Prices in King County4 has NS = 543 instances in the source domain and 334 available samples in the target
domain.

• California Housing Prices5 has NS = 9034 instances in the source domain, and 6496 available instances in the target
domain.

Figure A.1 demonstrates how the average cumulative loss in (1) grows over time for the US Births (2018), Life Expectancy,
House Prices in KC and California Housing datasets. The results suggest that the IR-WASS and SI-WASS experts perform
favorably over the competitors in that their cumulative loss at each time step is lower than that of most other competitors.

1Available publicly at https://www.kaggle.com/brllrb/uber-and-lyft-dataset-boston-ma
2Available publicly at https://www.kaggle.com/des137/us-births-2018
3Available publicly at https://www.kaggle.com/kumarajarshi/life-expectancy-who
4Available publicly at https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
5The modified version that we use is available publicly at https://www.kaggle.com/camnugent/

california-housing-prices and the original dataset is available publicly at https://www.dcc.fc.up.pt/˜ltorgo/
Regression/cal_housing.html

https://www.kaggle.com/brllrb/uber-and-lyft-dataset-boston-ma
https://www.kaggle.com/des137/us-births-2018
https://www.kaggle.com/kumarajarshi/life-expectancy-who
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/camnugent/california-housing-prices
https://www.kaggle.com/camnugent/california-housing-prices
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html


(a) US Births (2018) (b) Life Expectancy

(c) House Prices in KC (d) California Housing

Figure A.1. Cumulative loss averaged over 100 runs on logarithmic scale



References
Agueh, M. and Carlier, G. Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis, 43(2):904–924,

2011.

Bernstein, D. S. Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, 2009.

Bertsekas, D. Convex Optimization Theory. Athena Scientific, 2009.

Kuhn, D., Mohajerin Esfahani, P., Nguyen, V. A., and Shafieezadeh-Abadeh, S. Wasserstein distributionally robust
optimization: Theory and applications in machine learning. In Operations Research & Management Science in the Age of
Analytics, pp. 130–166. 2019.

McCann, R. J. A convexity principle for interacting gases. Advances in Mathematics, 128(1):153–179, 1997.

Shafieezadeh-Abadeh, S., Nguyen, V. A., Kuhn, D., and Mohajerin Esfahani, P. Wasserstein distributionally robust Kalman
filtering. In Advances in Neural Information Processing Systems, volume 31, pp. 8474–8483, 2018.

Sion, M. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958.

Still, G. Lectures on Parametric Optimization: An Introduction. 2018.

Villani, C. Optimal Transport: Old and New. Springer Science & Business Media, 2008.


