A Language for Counterfactual Generative Models

The Appendix is structured as follows:

1. Section A presents the full operational semantics of
Ac.

2. Section B details issues around invariance that can
occur in dynamic OMEGA( programs.

3. Section C relates interventions to lazy-dynamic scope.

4. Section D provides more details on OMEGA( that go
beyond the core calculus A¢.

5. Section E provides a comparisons between OMEGAc
and Pyro, Multiverse and the Julia implementation.
An interpreter for the core calculus can be found at the
following repository:
https://github.com/jkoppel/omega-calculus

The Julia implementation, as well as all the code for the
examples, can be found in the following repository:

https://github.com/zenna/Omega.jl

A. The Full Semantics of )\

In this section, we outline the full semantics of our core
calculus, \¢.

Variables z,y,z € Var
Type 7 ::=1Int | Bool | Real | 71 — 72 | Q
Termt:n|b|r|J_|a:|>\:r T.t|
if t1 then ¢ else ¢35 | t1 B t2 |
1( )\letm:tlint2|
(prob. terms) t1 ] t2 |
(causal terms) t1 | do(z — t2) |
Query rand(t)

Figure 11: Abstract Syntax for A\¢

Fig. 11 shows the abstract syntax for A\¢. n represents inte-
ger numbers, b are Boolean values in {True, False}, and r
are real numbers. @ represents a mathematical binary oper-
ator such as +, *, etc. We assume there is a countable set of
variables Var = {w, x,y, 2, ... }; « represents a member in
this set. L represents the undefined value. Finally, there is a
sample space (2, which is left unspecified, save that it may
be sampled from uniformly. In most applications, {2 will
be a hypercube, with one dimension for each independent
sample.

Overall \¢ is a normal lambda calculus with booleans, but
with three unique features: conditioning (on arbitrary pred-
icates), intervention, and sampling. Together, these give
counterfactual inference.

Closure ¢ ::= clo(T', t)
Env I" € Var — Closure

Figure 12: Runtime environments of A¢

Semantics Fig. 13 gives the big-step operational seman-
tics of A\c. A A\¢ expression e is evaluated in an environment
T", which stores previously-defined random variables as clo-
sures. Fig. 12 defines closures and environments: a closure
is a pair of an expression and an environment, while an
environment is a partial map of variables to closures. The
notation I', z — ¢ refers to some environment I" extended
with a mapping from z to ¢. The judgement I' - ¢ || v
means that, in environment I', completely evaluating ¢ re-
sults in v. We explain each rule in turn.

Integers, booleans, and real numbers, are values in Ao,
and hence evaluate to themselves, as indicated by the INT,
BooOL, and REAL rules. Evaluating a lambda expression
captures the current environment and the lambda into a
closure (LAMBDA rule). The BINOP rule evaluates the
operands of a binary operator left-to-right and then com-
putes the operation. The IFTRUE and IFFALSE rules are
also completely standard, evaluating the condition to either
True or False, and then running the appropriate branch.

The VAR rule is the first nonstandard rule, owing to the lazy
evaluation. When a variable x is referenced, its defining
closure clo(I”, e) is looked up. «’s defining expression e
is then evaluated in environment I"V. Correspondingly, the
LET rule binds a variable z to a closure containing its defin-
ing expression and the current environment. Note that the
closure for  does not contain a binding for x itself, pro-
hibiting recursive definitions. LET also has a side-condition
prohibiting shadowing.

As an example of the LET and VAR rules, consider the term
let z = 1linlet y = x+x in y+y. The LET rule first binds
x to clo(0, 1), where () is the empty environment, and then
binds y to clo({z — clo(@, 1)}, z + x). It finally evaluates
y + y in the environment {x — clo(@, 1),y — clo({z —
clo(§,1)}, z+x)}. Each reference to y is evaluated with the
VAR rule, which evaluates = + 2 in the environment {x —
clo(f,1)}. Each such reference to x is again evaluated with
the VAR rule, which evaluates 1 in the environment @). The
overall computation results in the value 4.

We are now ready to introduce the DO rule, which lies at
the core of Ac. The term t; | do(x — t3) evaluates ¢,
to the value that it would have taken had x been bound to
to at its point of definition. It does this by creating a new
environment IV, which rebinds z in all closures to ¢5. This
I is created by the retroactive-update function RETROUPD
(Fig. 14).
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Figure 13: Operational semantics for A¢

‘ RetroUpd : Env x Var x Closure — Env ‘

RetroUpd(T, z,¢)(y) = ¢
ify =2 Az € dom(T)
RetroUpd(T', z, ¢)(y) = clo(RetroUpd(I”, z, ¢), ')
ify#xA(yrclo(I,t') el

Figure 14: The RETROUPD procedure

For example, consider the term letz = linlety = x +
xin (y +y | do(z — 2)). The first part of the computation
is pthe same as in the previous example, and results in
evaluating y + y | do(z — 2) in the environment I'; =
{z — clo(§,1),y — clo({z — clo(d,1)},z + x)}. The
Do rule recursively updates all bindings of x, and evaluates
y + y in the environment {z — clo(T'1,2),y — clo({z —
clo(T'1,2)},  + x)}. The computation results in the value
8.

APP is the standard application rule for a semantics with clo-
sures. Unlike the LET rule, it is strict, so that ¢; (¢2) forces to
to a value before invoking ¢;. This destroys the provenance
of t5, meaning that it will be consider exogeneous to the
computation of ¢;, and unaffected by any do operators.

The final rules concern randomness and conditioning. The
special L value indicates an undefined value, and any term
which strictly depends on _L is also L, as indicated by
1 VAL, L BINOPy, and similar rules. Conditioning one ran-
dom variable ¢; on another random variable ¢, is then de-
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fined via the COND rule as a new random variable which
is t; when t5 is true, and L otherwise. Finally, the RAND
rule samples from a random variable by evaluating it on a
random point in the sample space ).

As our final example in this section, we show how to com-
bine the RAND, COND, and DO rules to evaluate a coun-
terfactual. This program depicts a game where a player
chooses a number ¢, and then a number w is drawn ran-
domly from a sample space @ = {0,1,...,6}, and the
player wins iff ¢ is within 1 of w. The query asks: given
that the player chose 1 and did not win, what would have
happened had the player chosen 4?

let c = 1 in
let X = Aw. if (0-c)*(w-c)<= 1
then 1 else -1
in rand((X | do(c — 4)) | Aw. X(®) == -1)
As before, the LET rule causes the inner rand expression to
evaluate in the context I'y = {c > clo(f, 1), X + clo(c —
..., Aw.if ...)}. The COND rule will essentially replace
the argument to rand with A\w’.if X (w’) == —1 then (X |
do(c — 4))(w’) else L. This random variable evaluates to
1 for w" € {0,1,2}, so the RAND rule evaluates it with
w’ drawn uniformly from {3,4,5,6}. The do expression
evaluates to clo({c +— clo(T'1,4)}, Aw.if ...). This is then
applied to w’, and the overall computation hence evaluates
to 1 with probability % and —1 with probability i.

B. Invariants in Counterfactuals

In an expression wle], e is an ordinary expression. In-
terventions may change e, and hence w|e] in unexpected
ways. This can lead to undesirable results for counterfactual
queries. For example, take the following program, which
centers on a function digits which computes a random
n-digit base-10 number:

1 let

2 digits = Aw, d .

3 if d ==

4 then 0

5 else floor(1l0*w[d]) + 10*digits(w, d-1),
6 n=>5,

7 f = Aw.digits(w, n) * w[n+l] in

8 rand((f | do(n — 4)) | Aw.f(®) < 10)

The function f is a random variable over 5-digit numbers
whose digits are based on w[l],...,w[5], and then scales
it by w[6]. The counterfactual query asks what the corre-
sponding scaled 4 digit number would be, given that the
5-digit number. The user likely desired that this counter-
factual will be a 4-digit number whose digits are based on,
w[1],...,w[4], and then scale it by the same factor, w|[6]. In
fact, the counterfactual execution will scale by w|5], which
was not intended to be a scale factor. The factual and coun-
terfactual executions both used the same value w[5], but at

completely different points in the program!

The conceptual problem is that the value w([5] is intended to
represent differs between the original and intervened model.
This occurred because the intervention changed the control
flow of the program, and does not occur in static models
(where the number of variables is fixed).

Following this intuition, OMEGA¢ provides a macro uid
for indexing w, which is processed at compile time. The
implementation keeps a separate counter for each program
point, and uses the counter and program point to compute a
unique index to access w. In addition, since a function can
be used to define different random variables, it resets the
counter whenever it starts sampling a new random variable.
Consider the following program:

let uniform = Aa. Ab. Aw. (a-b)*w[uid]+b in
rand(uniform(1,2))

Conceptually, it is translated into

let uniform = Aa. Ab. \w.
push_counters();
(a-b)xw[h(#pc,get_and_increase(#pc))1+b;
pop_counters()

in

rand(uniform(1,2))

The language runtime maintains a stack of maps from pro-
gram points to counters. Whenever a random variable is
sampled from, built-in function push_counters is invoked to
push a map of new counters to the stack. And when the sam-
pling finishes, built-in function pop_counters is invoked to
pop the map. Macro #pc returns the current program point.
Built-in function increase_and_get returns the counter cor-
responds to the current program point and increases it by
one. The hash function h returns a unique number for ev-
ery pair of numbers. Note now, a exogenous variable is
identified by the program point where it is accessed and the
counter corresponds to this program point.

C. The do Operator is Foundational

In this section, we connect the do operator with foundational
research in programming languages.

C.1. Lazy Dynamic Scope

As we developed the semantics of do, we realized that it was
far too elegant to not already exist. After much reflection,
we realized that it’s an unknown variant of a well-studied
language construct.

Dynamic scope refers to variables referenced in a function
which may be bound to a different value each time the
function is called. It’s best known as the default semantics
of variables in Emacs Lisp, and has also been used to model
system environmental variables such as $PATH (15).

All known uses of dynamic scope are strict, and, in the only
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reference to lazy dynamic scope we found, a blogger writes
that laziness and dynamic scope are “not compatible" due
to its surprising behavior (29).

But, as we’ve shown, lazy dynamic scope is not unpre-
dictable. It expresses counterfactuals.

D. OMEGA ¢ Details
D.1. Ids and independent random variables

OMEGA( includes a ~ operator, allowing us to construct
an copy of a random variable that is independent but
identically distributed. For example, if we have a stan-
dard Bernoulli distribution flip = A ® . w[1] > 0.5 then
flip2 = 2 ~ flip will be i.i.d. with ﬁip. More over we
can avoid specifying the id manually and simply write
flip2 = ~ flip.

To implement the ~ operator, first we represent w values as
functions from an integer id to a value in the unit interval,
and hence wli] is simply a syntactic convenience for the
function application w(7). The operator ~ is then a binary
function mapping an id id and a random variable X to a new
random variable that is i.i.d. with X:

-- Constructs idth i.i.d. copy of X
~= A wid, X . A ® . X(project(w, id))

It works by projecting any w that is input to X onto a new
space prior to applying X to it. A projection of w onto id is
a new value w’ such that w’(¢) = w(j) where j is a unique
combination of ¢ and id.

project = A\ w, idl .
A id2 — w(pair(idl, id2))

Such a unique combination can be constructed using a pair-
ing function pair, which is a bijection from N x N to N.
Many pairing functions exist, below we define Cantor’s
pairing function:

pair = A k1, k2 . 1/2(k1+k2) (k1+k2+1)+k2.

If an id is not explicity provided, as in flip2 = ~ flip, itis
automatically generated using the macro uid as described
above.

D.2. Nesting

OMEGA( allows us to express flattened versions of nested
let, do, and A\ expressions.

In the case of let, this means that the following OMEGAc
code:

let A
B = b,
C

1]
Q

in t

is equivalent to the following A\ code:

let A = a in
(let B = b in
(let C = ¢ in t))

In the case of do this means that the following OMEGAc
code:

Y | do(A — a, B— b, C — ¢)

is equivalent to the A¢ code:

((Y | do(A — a)) | do(B — b)) | do(C — c)

Note that do is not commutative, the first intervention is
applied first to produce a new variable, upon which the
second intervention is applied. Reversing the order would
not in general produce the same result if the interventions
affect overlapping variables.

In the case of A this means that the OMEGA( code:

AMabc.a+b+c

is equivalent to the A¢ code:
Aa. Axb. Xc.

a+b+c

E. Comparison With Other Languages
E.1. Multiverse

Below is an example taking from the Multiverse (23) docu-
mentation, translated into OMEGA(:

let
X

bern(0.0001),
bern(0.001),
X_0r_z = x or z,
y = if bern(0.00001)
then not x_or_z else x_or_z,
in (y | do(x — 0) | y ==

z

The corresponding Multiverse code is:

def cfmodel():
x = BernoulliERP(prob=0.0001, proposal_prob=0.1)
z = BernoulliERP(prob=0.001, proposal_prob=0.1)
y = ObservableBernoulliERP(
input_val=x.value or z.value,
noise_flip_prob=0.00001,
depends_on=[x, z]
)
observe(y, 1)
do(x, 0)
predict(y.value)
results = run_inference(cfmodel, 10000)
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E.2. Pyro

Pyro is a popular python based probabilistic programming
language, with some support for causal queries. Below is
the rifleman example taken from Pearl expressed in both

OMEGA( and Pyro.

In OMEGAC:
let p = 0.7,
q=0.3,
Order = ~ bern(p),
Anerves = ~ bern(q),

Ashoots = Order or Anerves,

Bshoots = Order,

Dead = Ashoots or Bshoots,

Dead_cf = (Dead | do(Ashoots — 0)) | Dead,
in rand(Dead_cf)

In Pyro:
p=20.7
qg=20.3

exogenousdists = {
"order": Bernoulli(torch.tensor(p)),
"Anerves": Bernoulli(torch.tensor(q))

def rifleman(exogenousdists):
order = pyro.sample("order",
exogenous_dists["order"])
Anerves = pyro.sample("Anerves",

exogenous_dists["Anerves"])

Ashoots = torch.logicalV(order, Anerves)

Bshoots = order

dead_ = dead = torch.logicalV(Ashoots,
Bshoots)

dead = pyro.sample("dead",
dist.Delta(dead))

return {"order" : order,
"Anerves" : Anerves,
"Ashoots" : Ashoots,
"Bshoots" : Bshoots,
"dead" : dead}

cond = condition(rifleman,
data={"dead": torch.tensor(1.0)})

posterior = Importance(
cond,
numUamples=100).run(exogenous5ists)

order_marginal = EmpiricalMarginal(posterior,
"order")

order_samples = [order_marginal().item()
for _ in range(1000)]

Anerves_marginal = EmpiricalMarginal(posterior,
"Anerves")
Anerves_samples = [Anerves_marginal().item()
for _ in range(1000)]

cf_model = pyro.do(rifleman,
{’Ashoots’: torch.tensor(0.)})
updated_exogenous_dists = {
"order": dist.Bernoulli(
torch.tensor(mean(order_samples))),
"Anerves": dist.Bernoulli(
torch.tensor(mean(Anerves_samples)))
}
samples = [cf_model(updated_exogenous_dists)
for _ in range(100)]
b_samples = [float(b["dead"]) for b in samples]
print("CF_prob_death_is", mean(b_samples))

In short, this example samples from the posterior of the
exogenous variables, then constructs a new model where
(i) these exogenous variables take their posterior values,
and (ii) the model structure has been changed through an
intervention.

E.3. Differences

The main differences are:

1. Pyro performs sampling to construct a posterior, then
intervenes, and then resimulates. That is, it computes
the (approximate) posterior at an intermediate state. In
contrast, in OMEGAc one constructs a counterfactual
generative model, which is itself a first class random
variable. One then later performs inference (such as
sampling) on that model. The disadvantage of the Pyro
approach is that it ties an inference procedure to the
definition of a counterfactual. A practical limitation
from this is that composite queries, such as intervening
both the counterfactual and factual world become prob-
lematic. It is not clear how this could be expressed in
Pyro, and even if possible would involve performing in-
ference twice, and the accumulation of approximation
errors that would entail.

2. Multiverse is built around an importance sampling ap-
proach, whereas OMEGAC( is entirely agnostic to the
probabilistic inference procedure used.

3. Multiverse specifies the interventions and conditioning
through imperative operations. As shown in the exam-
ple above, observe(y, 1); do(x, 0) first observes y
and then intervenes x. It is not clear, without a seman-
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tics or some other guide, whether other compositions
are expressible and sound, such as conditioning the
intervened world (or both), intervening a value to be a
function of its non-intervened (and posterior) self, or
stochastic interventions.

4. Although it can be emulated as shown in the example
above, Pyro does not enforce the exogenous/endoge-
nous divide. In Pyro, the primitives are actually dis-
tribution families, such as Normal(y, o), whereas in
OMEGAC the primitives are parameterless exogenous
variables, and distribution families are transformations
of these primitives. This is important because it allows
OMEGA( to give meaning to an expression such as
let @ = 0, X = normal(y,1) in X | do(u — 2), be-
cause the process by which X is generated is fully
specified. This would not make sense in Pyro, where
families are primitives.

5. Pyro and Multiverse can only intervene named ran-
dom variables, whereas in OMEGA( can intervene any
variable bound to a value. More fundamentally, inter-
vening in OMEGAC( is not a probabilistic construct at
all.

6. As a cosmetic (but important for practical usage) mat-
ter, since Pyro was not designed from the ground up
for counterfactual reasoning, it is very cumbersome
and verbose to do. If one progresses to more advanced
queries, this only exacerbates. Multiverse is less ver-
bose, but requires that you explicitly specify what vari-
ables every variable depends on (see depends_on in the
example), whereas those dependencies are automatic
in an OMEGA program.

E.4. OMEGA vs Julia implementation

The Julia implementation follows the basic structure of
OMEGACc. That is, in Julia:

e Random variables are pure functions of 2, that is, any
value f of type T is a random variable if f(w::()) is
defined.

e Conditioning is performed through a function cond,
which maps one random variable into another one
which is conditioned. It is defined as:

cond(x, y) =0 — y(®) ? x(w) : error()

e Interventions are performed by an operation intervene,
which maps one random variable into one which is
intervened.

However, as mentioned in the introduction, conventional
programming languages do not provide a mechanism to re-
define program variables retroactively, making it difficult

to implement intervene. To circumvent this, we take ad-
vantage of recent developments in Julia which permit users
to write dynamic compiler transformations (26), which en-
ables us to perform certain kinds of non-standard execution.
To demonstrate, consider the following example:

c=25

X(®) = ~ unif(w)

Y(w) = X(w) + ¢

Y = intervene(Y, X, 10)

Here, Y is a random variable. Using Julia’s dynamic com-
piler transformations, we are able to modify the standard
interpretation of Y (w) to intercept the application X (w) within
Y, such that it instead returns the constant 10. Hence Y will
be a constant random variable that always returns 15.

Our Julia implementation shares two key properties with
OMEGACc: (i) that random variables are pure functions on
a single probability space, and (ii) that the conditioning
and intervention operators are higher-order transformations
between variables. This allows us to preserve many of the
important advantages of OMEGA(, such as the ability to sys-
tematically compose different operators to construct a wide
diversity of the different causal questions outlined in Section
3. The main limitation of this approach is that only random
variables can be intervened, unlike any bound variable in
OMEGACc. If we want a variable to be intervened, such as
the constant c in the above example, we must explicitly
construct a constant random variable c(®) = 5.



