
A Language for Counterfactual Generative Models

Zenna Tavares 1 James Koppel 1 Xin Zhang 2 Ria Das 1 Armando Solar-Lezama 1

Abstract
We present OMEGAC, a probabilistic program-
ming language with support for counterfactual
inference. Counterfactual inference means to ob-
serve some fact in the present, and infer what
would have happened had some past intervention
been taken, e.g. “given that medication was not
effective at dose x, what is the probability that
it would have been effective at dose 2x?” We
accomplish this by introducing a new operator to
probabilistic programming akin to Pearl’s do, de-
fine its formal semantics, provide an implementa-
tion, and demonstrate its utility through examples
in a variety of simulation models.

1. Introduction
In this paper we introduce OMEGAC: a Turing-universal
programming language for causal reasoning. OMEGAC al-
lows users to automatically derive causal inferences about
phenomena modelled through simulation. This contribu-
tion focuses on using OMEGAC to compute counterfactuals
– what-if causal inferences about the way the world could
have been, had things been different.

OMEGAC programs are simulation models augmented with
probability distributions to represent uncertainty. In a sim-
ilar vein to other probabilistic languages, OMEGAC pro-
vides primitive operators for conditioning, which revises the
model to be consistent with observed evidence. Counterfac-
tuals, however, cannot be expressed through probabilistic
conditioning alone. They have the form: “Given that some
evidence E is true, what would Y have been had X been
different?” For example, given that a drug treatment was
not effective on a patient, would it have been effective at a
stronger dosage? Although one can condition on E being
true, attempting to condition on X being different to the

1CSAIL, MIT, USA 2Key Lab of High Confidence Software
Technologies, Ministry of Education, Department of Computer
Science and Technology, Peking University, China. Correspon-
dence to: Zenna Tavares <zenna@csail.mit.edu>, Xin Zhang
<xin@pku.edu.cn>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1: A speeding driver (Left: driver’s view) crashes
into a pedestrian (yellow) emerging from behind an ob-
struction (blue). Given a single frame of camera footage
(Right), OMEGAC infers whether driving below the speed
limit would have prevented the crash.

value it actually took is contradictory.

In order to express these hypothetical scenarios, OMEGAC
introduces a do operator, which constructs interventions:

Y ||| do(X → x) (1)

This evaluates to what Y would have been had X been
bound to x when Y was defined. Here, X and Y are pro-
gram variables, typically bound to random variables.

A counterfactual in OMEGAC is then simply an expression
of the form Yx | E where Yx = Y ||| do(X → x), i.e.,
one that contains both a condition and an intervention, in a
particular pattern. The salient feature of this counterfactual
pattern is that conditioning on E revises the distribution
over Y (because E is defined in terms of Y , not YX), and
it is to this revised distribution that a causal intervention
is performed. The relative nesting of the condition and
intervention reflects the fact that we want to intervene Y but
not on the evidence E.

To illustrate the potential of counterfactual reasoning within
a universal programming language, consider the scenario of
an expert witness called to determine, from only a frame of
recorded video (Fig. 1), whether a driver was to blame for
them crashing into a pedestrian. Using OMEGAC, the expert
could first construct a probabilistic model that includes the
car dynamics, the driver and pedestrian’s behaviour, and a
rendering function that produces two dimensional images

A Language for Counterfactual Generative Models

from the three dimensional scene. She could then condition
the model on the captured images to infer the conditional
distribution over the driver’s velocity, determining the prob-
ability that the driver had been speeding. Next, she could
then pose a counterfactual in OMEGAC, querying whether
the crash would have still occurred even if the driver had
obeyed the speed limit. If she later wanted to investigate
the culpability of another candidate cause, such as the pres-
ence of an obstacle occluding the driver’s view, she could
do so by adding a single-line, and without modifying her
underlying models at all.

Causal reasoning is currently done predominantly using
causal graphical models (21): graphs whose vertices are
variables, and whose directed edges represent causal de-
pendencies. Despite widespread use, causal graphs cannot
easily express many real-world phenomena. One reason
for this is that causal graphs are equivalent to straight-line
programs: programs without conditional branching or loops
– just finite sequences of primitive operations. Straight-line
languages are not Turing-complete; they cannot express un-
bounded models with an unknown number of variables. In
practice, they lack many of the features (composite func-
tions, data types, polymorphism, etc.) necessary to express
the kinds of simulation models we would like to perform
causal inference in.

OMEGAC, in contrast, can express complex simulation mod-
els, but the design of a generic do operator presents several
challenges. In particular, to construct YX , we must be able
to copy Y in such a way that the code that defines it is
retroactively modified. This goes beyond the capabilities of
existing programming languages, probabilistic or otherwise,
and hence OMEGAC requires a non-standard semantics and
implementation.

In summary, we (i) present the syntax and semantics of a uni-
versal probabilistic language for counterfactual generative
models (Section 3); (ii) provide a complete implementation
of OMEGAC, and (iii) demonstrate counterfactual genera-
tive modelling through a number of examples (Section 5).
Regarding scope, causal inference includes problems of
both (i) inferring a causal model from data, and (ii) given
a causal model, predicting the result of interventions and
counterfactuals on that model. We focus here on the latter.

2. Overview of Counterfactuals
Counterfactual claims assume some structure is invariant
between the original factual world and intervened hypothet-
ical world. For instance, the counterfactual “If I had trained
more, I would have won the match” is predicated on the
invariance of the opponent’s skill, the existence of the game,
laws of physics, etc. Any system for counterfactual rea-
soning must provide mechanisms to construct hypothetical

worlds that maintain invariances (and hence share informa-
tion) with the factual world, so that for instance the fact that
I actually lost the match helps predict whether I would have
won the match had I trained harder.

These requirements have been resolved in the context of
causal graphical models. Causal interventions are “surgical
procedures” which modify single nodes but leave functional
dependencies intact. Pearl’s twin-network construction (21)
of counterfactuals duplicates the model into one twice the
size. One half is the original model. The other half is a
duplicate, modified to express the counterfactual interven-
tions. These halves are joined via a shared dependence on
the background facts. Hence, conditioning a variable in the
factual world influences the counterfactual world.

To generalize the twin-network construction to arbitrary pro-
grams, OMEGAC runs two copies of a program, one factual
execution, and one counterfactual execution which shares
some variables, but where others have been given alternate
definitions. It is folklore that programs doing this can be
built by hand, but, as in the twin-network construction, each
intervention requires writing a separate model, and each
counterfactual included doubles the size of the program.
The solution in OMEGAC is to provide a new do operator
which removes the need to modify an existing program to
add a counterfactual execution. Instead, t1 ||| do(x→ t2) is
defined to be the value that a term t1 would take if x had
been set to t2. This works even if any dependencies of t1 on
x are indirect. For instance, if y = 2x, then y2 ||| do(x→ f)
is equivalent to (2f)2. And note that the variable x can be
any variable, even one that is bound to a function, meaning
users can compactly define interventions which are substan-
tial modifications. Finally, combining the operator with
conditioning automatically gives counterfactual inference.

Our examples show that OMEGAC enables compact defini-
tion of many counterfactual inference problems. Indeed, we
prove that the do operator is not expressible as syntactic
sugar (as defined by programming language theory).

3. A Calculus for Counterfactuals
Our language OMEGAC is a simple functional probabilistic
language augmented to support counterfactuals. To achieve
this: (1) the syntax includes a do operator, and (2) the lan-
guage evaluation is lazy rather than eager, which is key to
handling interventions. In this section, we introduce λC , a
core calculus of OMEGAC. After some preliminaries, we
show the deterministic semantics of the language, followed
by its probabilistic features. Together, intervention and con-
ditioning give the language the ability to do counterfactual
inference. Appendix A gives a more formal definition of the
entire λC language. A Julia implementation of OMEGAC
can be found at https://github.com/zenna/Omega.jl, and

https://github.com/zenna/Omega.jl

A Language for Counterfactual Generative Models

a Haskell implementation of λC can be found at https:

//github.com/jkoppel/omega-calculus.

Variables x, y, z ∈ Var
Type τ ::= Int | Bool | Real | τ1 → τ2

Term t ::= n | b | r | t1 ⊕ t2 | x | let x = t1 in t2 |
λx : τ.t | t1(t2) | if t1 then t2 else t3

Figure 2: Abstract Syntax for λC , deterministic fragment

Preliminaries Here, we introduce the notation to describe
the semantics of a simple deterministic programming lan-
guage; Fig. 2 gives the syntax. We use the formalism of
operational semantics (24) to describe how one expression
reduces to another. Appendix A provides an operational
semantics for OMEGAC. Here, we describe these reductions
through examples. The execution of an expression is de-
fined both in terms of the expression as well as the current
program state. In λC , this program state is an environment
Γ: a mapping from variables to values.

λC has integer numbers (denoted n), Booleans
{True,False} (denoted b), and real numbers (r). ⊕
represents a mathematical binary operator such as +, ∗,
etc. let x = t1 in t2 binds variable x to expression t1
when evaluating t2. Lambda expressions create functions:
λx.2 ∗ x defines a mapping x 7→ 2x.

Next, we show the semantics of operators and let. The
notation

{
Γ
e

}
denotes a pair of an environment Γ and an

expression e, and
{

Γ1

e1

}
→

{
Γ2

e2

}
denotes that e1 with envi-

ronment Γ1 steps to e2 with environment Γ2. For example,
in the expression let x = 3 in x, x is first bound to 3, creat-
ing a new environment. Finally, x is evaluated by looking
up its value in the environment.{

Γ : ∅
let x = 3 in x

}
→

{
Γ : x 7→ 3

x

}
→

{
Γ : x 7→ 3

3

}

Function applications are done by substitution, as in other
variants of the lambda calculus:

{
Γ : ∅

(λx.(x+ x)(2)

}
→

{
Γ : ∅
2 + 2

}
→

{
Γ : ∅

4

}

The above semantics is eager: let x = t1 in t2 first evalu-
ates t1 and then binds the result to x, creating a new envi-
ronment in which to then evaluate t2. We next show how
this is problematic for counterfactuals. and how we address
it using lazy semantics.

Deterministic OMEGAC OMEGAC adds a new term: the
do expression (Fig. 3). t1 ||| do(x→ t2) evaluates t1 to the

value that it would have evaluated to, had x been defined as
t2 at its point of definition. Here, x can be any variable that
is in scope, bound locally or globally, and t can be any term
denoting a value. One idea is to define do similarly to let:
t1 ||| do(x → t2) would rebind x to t2 when evaluating t1.
However, this does account for transitive dependencies. For
example, let x = 0 in let y = x in (y ||| do(x→ 1)) should
evaluate to 1, but by the time we evaluate the do, y has
already been bound to 0 so that rebinding x does nothing.
To overcome this, we redefine let to use lazy evaluation.

In lazy evaluation, instead of storing the value of a variable
in the environment, the execution stores its defining expres-
sion as well as the environment when the variable is defined.
So, while environments for eager evaluation store mappings
x 7→ v from variable x to value v, in lazy evaluation, the
environments store mappings x 7→ (Γ, e), which map each
variable x to a closure containing both its defining expres-
sion e and the environment Γ in which it was defined. A
variable, such as x, is evaluated by evaluating its definition
under the environment where it is defined.

We can now define do: y ||| do(x→ −1) evaluates y under
a new environment which is created by recursively mapping
all bindings for x in the current environment to −1. This in-
cludes both the binding of x at the top level and the bindings
in an environment that is used in any closure. The following
example demonstrates this process:{

Γ : ∅
let x = 0 in let y = x+ 1 in y + (y ||| do(x→ −1))

}
1−→

{
Γ : x 7→ (∅, 0)

let y = x+ 1 in y + (y ||| do(x→ −1))

}
2−→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

y + (y ||| do(x→ −1))

}
3−→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1){

Γ:x 7→(∅,0)
x+1

}
+ (y ||| do(x→ −1))

}
4−→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 + (y ||| do(x→ −1))

}
5−→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 +
{

Γ:x7→(∅,0),y 7→(x 7→(∅,0),x+1)
(y|||do(x→−1))

} }
6−→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 +
{

Γ:x7→(∅,−1),y 7→(x 7→(∅,−1),x+1)
y

} }
7−→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 +
{

Γ:x 7→(∅,−1)
x+1

} }
8−→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1 + 0

}
9−→

{
Γ : x 7→ (∅, 0), y 7→ (x 7→ (∅, 0), x+ 1)

1

}

https://github.com/jkoppel/omega-calculus
https://github.com/jkoppel/omega-calculus

A Language for Counterfactual Generative Models

Term t ::= · · · | t1 ||| do(x→ t2)

Figure 3: Abstract Syntax for λC , causal fragment

The program is evaluated under an empty environment. (1)
Evaluating the outermost let binds x to a closure (∅, 0) (con-
sisting of the initial environment and x’s definition). (2)
y is bound to a closure, containing the environment from
step (1) and y’s definition. The left operand of the addition
is then evaluated, by first (3) looking up its closure in the
environment, and then (4) evaluating its definition under
the corresponding environment in the closure. To evaluate
the do in the right operand, (5) the current environment is
copied, and then (6) modified to rebind all definitions of x
to −1. The right operand of the addition is a do expression
of y, which the execution tries to evaluate under the current
environment, by (7) looking up the closure of y in this “in-
tervened” environment, and then (8) evaluating it. (9) The
final result of the program is then 1.

To implement do we introduce a procedure which we call
retroactive-updating. Informally, this creates a new environ-
ment that rebinds all occurrences of the intervened variable
within a closure to its intervened value. This is formally
specified with respect to the operational semantics in the
supplementary material.

Type τ ::= · · · | Ω Term t ::= · · · | ⊥ | t1 ||| t2 | rand(t)

Figure 4: Abstract Syntax for λC , probabilistic fragment

Probabilistic OMEGAC In probability theory, a random
variable is a function from a sample space Ω to some domain
τ . λC defines random variables similarly: as functions of
type Ω → τ . This separates the source of randomness of
a program from its main body, which allows for a clean
definition of counterfactuals.

Fig. 4 shows the abstract syntax of the probabilistic frag-
ment. It introduces a new type Ω, representing the sample
space. Ω is left unspecified, save that it may be sampled
from uniformly. In most applications, Ω will be a hypercube,
with one dimension for each independent sample. To access
the values of each dimension of this hypercube, one of the
⊕ operators must be the indexing operator [], so that ω[i]
evaluates to the ith component of ω.

Random variables are normal functions. If Ω = [0, 1], and
a < b are integer constants, then R = λω : Ω.ω ∗ (b −
a) + a is a random variable uniformly distributed in [a, b].
The rand operator then samples from a random variable:
randR returns a random value drawn uniformly from [a, b].
Note that unlike in other probabilistic languages, we sepa-

rate the construction of random variables from their sam-
pling. Consequently, rand does not occur in the definition
of a random variable itself.

To support conditioning, we use ⊥ to denote the undefined
value. Any expression (excluding rand) that depends on a
⊥ value will result in another⊥ value. A program execution
is invalid if it evaluates to ⊥.

Conditioning can now be defined as syntactic sugar: t ||| E
is defined as λω.if E(ω) then t(ω) else ⊥. In words: if the
evidence E is false in scenario ω, then t ||| E is undefined in
that scenario.

One can imagine the execution of a λC program as a rejec-
tion sampling process: we ignore all samples from rand that
would make the program evaluate to ⊥. In the implementa-
tion, we use a much more efficient inference algorithm (31).

For example, let Ω = {1, 2, . . . , 10}, and consider the pro-
gram randλω.ω ∗ 2 ||| λω.ω < 4. If ω ≥ 4, then evaluating
the random variable results in ⊥. The rand operator hence
runs the variable with ω drawn uniformly from {1, 2, 3},
resulting in 2, 4, or 6, each with 1

3 probability.

Counterfactuals A counterfactual is a random variable
of the form (t1 ||| do(x→ t2)) | E. Consider the following
program depicting a game where a player chooses a number
c, and then a number ω is drawn randomly from a sample
space Ω = {0, 1, . . . , 6}. He wins iff c is within 1 of ω. The
query asks: given that the player chose 1 and did not win,
what would have happened, had the player chosen 4?

let c = 1 in

let x = λω . if (ω-c)*(ω-c)<= 1

then 1 else -1 in

let cfx = (x | do(c → 4)) | λω. x(ω) == -1)

in rand(cfx)

As before, the rand expression is evaluated in the context
Γ1 = {c 7→ (∅, 1), x 7→ (c 7→ . . . , λω.if . . .)}. Its argu-
ment, a conditioning term, desugars to λω′.if x(ω′) ==
−1 then (x ||| do(c → 4))(ω′) else ⊥. This random vari-
able evaluates to ⊥ for ω′ ∈ {0, 1, 2}, so the program is
evaluated with ω′ drawn uniformly from {3, 4, 5, 6}. The
do expression x ||| do(c→ 4) is reduced to evaluating x in
the context Γ2 = {c = . . . , x = (c 7→ (∅, 4), λω.if . . .)}.
This is then applied to ω′, and the overall computation hence
evaluates to 1 with probability 3

4 and −1 with probability 1
4 .

Syntactic Sugar OMEGAC introduces some syntactic
conveniences on top of λC . Random variables are func-
tions but it is convenient to treat them as if they were the
values in their domains. To support this, OMEGAC interprets
the application of a function to one or more random vari-
ables pointwise – if bothX and Y are random variables, then
X+Y is also a random variable defined as λω.X(ω)+Y (ω).

A Language for Counterfactual Generative Models

Similarly, if x is a constant, then X = x is λω.X(ω) = x.
In addition, OMEGAC represents distribution families as
functions from parameters to random variables. For instance,
bern = λp.λω.ω[1] < p represents the Bernoulli family by
mapping a parameter p ∈ [0, 1] to a random variable that
is true with probability p. Finally, since λC is purely func-
tional, if X = bern(0.5) and Y = bern(0.5), then X and
Y are not only i.i.d. but the very same random variable,
which is not often what we want. OMEGAC defines the syn-
tax ∼ X , so that in let X ∼ bern(0.5), Y ∼ bern(0.5), X
and Y are independent.

3.1. Other Composite Queries

Conditioning and intervening can be composed arbitrarily.
This allows us to express a variety of causal queries.

To demonstrate, we adapt an example from (21), whereby
(i) with probability p, a court orders rifleman A and B to
shoot a prisoner, (ii) A’s calmness C ranges uniformly from
1 (cool) to 0 (nervous), (iii) if C falls below a threshold q
(and hence with probability q) A nervously fires regardless
of the order, and (iv) the prisoner dies (D = 1) if either
shoots. In OMEGAC:

let p = 0 .7, q = 0 .3,
E = ~ bern(p), -- Execution order

C = ~ unif(0, 1), -- Calmness

N = C < q, -- Nerves

A = E or N, -- A shoots

B = E, -- B shoots on order

D = A or B in -- Prisoner Dies

As we have seen, counterfactuals condition the real world
and consider the implications in a hypothetical world, e.g.:

-- Given D, would D be true had A not fired?

(D | do(A → 0)) | D

Non-atomic Interventions Atomic interventions, which
replace a random variable with a constant, often do not
reflect the kinds of interventions that have, or even could
have, taken place in the real-world. Various non-atomic
interventions are easily expressed in OMEGAC:

Conditional interventions (8) replace a variable with a de-
terministic function of other observable variables:

-- if A’s nerves had spread to B, would D occur?

D | do(B → C < q)

A mechanism change (32) alters the functional dependencies
between variables.

-- Would D occur if it took both shots to kill him?

(D | do(D → A and B)) | D

Parametric interventions (9) alter, but do not break, causal
dependencies. They are expressible by intervening a vari-
able to be a function of its non-intervened self.

-- If A were more calm, would D have occurred?

D | do(C → C * 1 .2)

Partial compliance (20) is where an intervention fails to
have any effect with some probability:

-- Would D have occurred had we attempted (and failed

-- with probability s) to prevent A shooting?

D | do(A → if ~ bern(s) then 0 else A)

“Fat-hand” interventions (9) inadvertently (and probabilisti-
cally) affect some variables other than the intended ones:

-- Would D be dead if we stopped A from firing and

-- (with probability r) also prevented B, too?

D | do(A → 0, B → if ~ bern(r)

then 0 else B)

4. Why do is not Syntactic Sugar
In his influential thesis work, Felleisen (10) addressed the
question of when a language construct is mere “syntac-
tic sugar,” vs. when it increases a language’s power. In
this, he provided the notions of expressibility and macro-
expressibility. A language construct F is expressible in
terms of the rest of the language if the minimal subprograms
containing F can be rewritten to not use F while preserving
program semantics. Macro-expressibility further stipulates
that these rewrites must be local.

With these, he also provided an ingeniously simple proof
technique: a construct is not macro-expressible if there
are two expressions which are indistiguishable without the
language construct (i.e.: they run the same when embedded
into any larger program), but distinguishable with it.

In the following theorem, we prove that we cannot imple-
ment the do operator as a syntactic sugar (i.e., macro) in the
original OMEGA language.

From our literature search, this is also the first time any vari-
ant of dynamic scope has been proven not macro-expressible
in a language without dynamic scope.

Theorem 1. The do operator is not macro-expressible in
λC without do.

Proof. According to the proof technique of Felleisen (10),
to show do is not macro-expressible in λC without do, it
suffices to find two expressions P and P ′ such that, for any
evaluation context C in λC without do, C[P] = C[P ′], but
such that there is an evaluation context C in λC with do
such that C[P] 6= C[P ′].

A Language for Counterfactual Generative Models

Figure 5: Traces of counterfactual scenarios through time.
Each figure is a single sample from (Left) the posterior – the
car crashes into the pedestrian, (Middle) the counterfactual
on intervening the obstacle position, and (Right) intervening
the driver speed. Each image shows the driver and car at (in
decreasing transparency) at times 1, 9, and 19.

Let P = λf.λx.(f 0), and P ′ = λf.(λa.λx.a)(f 0).

Note that all constructs of λC except do and rand are macro-
expressible in terms of the pure lambda calculus. After
fixing a random seed, rand is also deterministic. Hence,
with a fixed seed, λC without do respects beta equivalence.
Hence, since P ≡β P ′, for any context C which does not
contain do, C[P] = C[P ′].

Now pick:

C[e] = ((λg.g 0 ||| do(p→ 1))(e(λx.p))) ||| do(p→ 0)

Then C[P] ⇓ 1, but C[P ′] ⇓ 0, where ⇓ is the reduction
relation between terms.

5. Experiments
Here we demonstrate counterfactual reasoning in OMEGAC
through three case studies. All experiments were performed
using predicate exchange (31).

Car-Crash Model Continuing from the introduction, this
example asks whether a crash would have occurred had
a car driven more slowly, given observed camera footage.
Let S be the space of scenes, where each scene s ∈ S
consists of the position, velocity, and acceleration of the
car, pedestrian and an obstacle. A ray-marching based (1)
rendering function r : S → I maps a scene to an image.
The driver acts according to a driver model – a function
mapping s ∈ S to a target acceleration:

Figure 6: Histograms of causal effect of interventions. How
close would the car have come to the pedestrian had (Left)
the velocity been reduced to the speed limit (CarV→ 14),
or (Right) the obstacle been moved. Even at the speed limit,
the driver still would have crashed with high probability.

let

drivermodel = λ car, ped, obs .
if cansee(car, ped, obs) -- if ped is visible

then -9 -- decelerate

else 0, -- else maintain

The expert witness maintains random variables over the
car’s acceleration, velocity, and position at t = 0. The func-
tion simulate returns state space trajectories of the form
(st, st+1, . . . , sn). Since the initial scene is a random vari-
able, Traj is a random variable over trajectories. Applying
render to each scene in Traj yields a random variable over
image trajectories.

CarV = ~ normal(12, 4),

CarP = ~ normal(30, 5),

PedV = ~ normal(3, 1),

PedP = ~ normal(1, 2),

InitScene = (CarV, CarP, PedV, PedP, obs),

Traj = simulate(InitScene, drivermodel),

Images = map(render, Traj),

We then ask the counterfactual, conditioning the tobsth
image on observed data (Figure 1 right) and intervening
CarV→ 14.

E = (Images[t] == data) and crashed(Traj)

in (Traj | do(CarV → 14)) | E

We can also ask: would the crash have occurred had the
obstacle been displaced?

in (Traj | do(obs → obs - 3)) | E

Figures 5 and 6 visualize the posterior distributions over
d(pred, car), the (smallest) distance between the car and the
pedestrian.

Glucose Modelling This example queries whether a hy-
poglycemic episode could have been avoided in a diabetic
patient. We first construct an ODE over variables captured

A Language for Counterfactual Generative Models

in the Ohio Glucose dataset (17): (1) CGM: continuously
monitored glucose measurements, (2) Steps: steps walked
by patient, (3) Bolus: insulin injection events, and (4) Meals:
calorie intake. The recursive function euler implements Eu-
ler’s method to solve the ODE, taking as input an initial state
u and derivative function f’, and producing a time-series
(ut, ut+∆t, ut+2∆t, . . . , utmax).

let t0 = 0, ∆t = 0 .1, tmax = 1,

τ = λ u, t . u, -- to intervene u

euler = λ f’, u, t .
let u = τ(u, t), tnext = t + ∆t in

if t < tmax

then let unext = u + f’(tnext, u) * ∆t

in cons(u, euler(f’, unext, tnext))

else u,

We pre-trained a neural network for the derivative function,
and added normally distributed noise to the weights to in-
troduce uncertainty, yielding F’, a random variable over
functions. Given F’ as input, euler produces a random
variable over time-series.

Series = euler(F’, u, t0),

Now we can ask, had we eaten (increased food) at t = 0.2,
would the hypoglycemic event have occurred? We use the
function τ to intervene. It maps u at every time t to a new
value, since u is internal to euler.

τint = λ u, t . if t == 0 .5
then [u[1], u[2], inc(u[3])] else u,

Series = Series | do(τ → τint),

As a more exotic example, suppose we are told that someone
has intervened, and hypoglycemia was avoided, but we do
not know when the intervention occurred. We construct a
distribution over the intervention time, then condition the
intervened world to find the posterior over times.

CGM = first(Series),

-- Hypoglycemia occurs if x is low at any time

Hypo = any(map(λ x . x < thresh, CGM))

-- Prior over time of intervention

T = ~ unif(0, 1)

-- intervention increases food at time T

τint2 = λ ω . λ u, t . if t == T(ω)

then [u[1], u[2], inc(u[3])] else u

-- Condition on hypoglycemia not occurring

-- in intervened world

Hypoint = λ ω .
(Hypo | do(τ → τint2(ω)))(ω)

in CGM | ¬ Hypoint

As shown in Figure 7(c), it is more plausible that the inter-
vention occurred early in the day.

Counterfactual Planning Consider a dispute between
three hypothetical islands (Figure 10): S (South), E (East)
and N (North). The people of S consider a barrier between
S and N , asking the counterfactual: given observed migra-
tion patterns, how would they differ had a border existed.

We model this as a population of agents each acting ac-
cording in accordance to a Markov Decision Process (25)
(MDP) model. Each grid cell is a state in a state space
S = {(i, j) | i = 1 . . . 7, j = 1 . . . 6}. The action space
moves an agent a single cell: A = {up, down, left, right).
Each agent acts according to a reward function that is a func-
tion of the state they are in only R : S → R. This reward
function is normally distributed, conditional on the country
the agent originates from. For t = 100 timesteps we simu-
late the migration behavior of each individual using value
iteration and count the amount of time spent in each country
over the time period. Figure 8 shows population counts
according to these dynamics. Figure 9 shows migration in
the prior, after conditioning on an observed migration pat-
tern (constructed artificially), and the counterfactual cases
(adding the border).

But-for Causality in Occlusion In this experiment, we
implement “but-for” causation (13) to determine (i) whether
a projectile’s launch-angle is the cause of it hitting a ball,
and (ii) occlusion, i.e. whether one object is the cause of
an inability to see another. An event C is the but-for cause
of an event E if had C not occurred, neither would have E
(12). But-for judgements cannot be resolved by conditioning
on the negation of C, since this fails to differentiate cause
from effect. Instead, the modeler must find an alternative
world where C does not hold. In OMEGAC, a value ω ∈ Ω
encompasses all the uncertainty, and hence we define but-for
causality relative to a concrete value ω.

Definition 1. Let C1, . . . Cn be a set of random variables
and c1, . . . , cn a set of values. With respect to a world ω,
the conjunction C1 = c1 ∧ · · · ∧ Cn = cn is the but-for
cause of a predicate E : Ω→ Bool if (i) it is true wrt ω and
(ii) there exist ĉ1, . . . , ĉn such that:

(E | do(C1 → ĉ1, . . . , Cn → ĉn))(ω) = False (2)

E(ω) = True is a precondition, the effect must actually
have occurred for but-for to be defined.

But-for is defined existentially. To solve it, OMEGAC re-
lies on predicate relaxation (31), which underlies infer-
ence in OMEGAC. That is, E is a predicate that in (i)
is true iff the projectile hits the ball, and in (ii) is true
iff the yellow object is occluded in the scene, computed
by tracing rays from the viewpoint and checking for in-
tersections. Predicate relaxation transforms E into soft
predicate Ẽ which returns a value in [0, 1] denoting how

A Language for Counterfactual Generative Models

Figure 7: Glucose time series model. Dots are datapoints, trajectories sampled from prior. (Left) Prior samples, (Middle)
Samples from interventional distributions under Meal→ 5 at t = 0.20, (Right) Posterior over time T of intervention given
hypoglycemia did not occur after intervention.

Figure 8: Map (i) without / (ii) with boundary. Sample from
population counts after n timesteps of MDP based migra-
tion. (iii) unconditional sample, (iv) conditional sample (v)
counterfactual sample.

Figure 9: Three samples of migration under three conditions.
Each figure shows the migration from islanders born in S,
N , or E (y-axis) to S, N , E, W (water) or B (barrier)
on the x-axis. We accumulate all states visited in each
persons’ trajectory. (Plots 1 to 3 from left) Prior samples, (4
to 6) Conditioned on observations, (7 to 9) counterfactual:
conditioned and with intervention (border).

Figure 10: But-for causality. Left to Right: stages of op-
timization to infer that grey-sphere is cause of inability to
see yellow sphere, and launch-angle is cause of projectile
colliding with ball.

close E is to being satisfied. Using this, our implemen-
tation uses gradient descent over ĉ1, . . . , ĉn to minimize
(Ẽ | do(C1 → ĉ1, . . . , Cn → ĉn))(ω). In (i) ĉi is the
launch-angle and in (ii) ĉx,y,z is the position of the occluder.
Finding ĉi such that softE(ĉi) = 0 confirms a but-for cause.
In Figure 10 we present a visualization of the optimization,
which ultimately infers that the angle is the cause of colli-
sion and the grey-sphere is the cause of the viewer’s inability
to see the yellow sphere.

6. Related Work and Discussion
Related work. Operators resembling do appear in ex-
isting PPLs. Venture (16) has a force expression [FORCE

<expr> <value>] which modifies the current trace object (a
mapping from random primitives to values) so that the simu-
lation of <expr> takes on the value <value>. It is intended as
a tool for initialization and debugging. Pyro (5) and Angli-
can (34) have similar mechanisms. This can and has (18; 23)
been used to compute counterfactuals by (i) approximating
the posterior with samples, (ii) revising the model with an
intervention, and then (ii) simulating the intervened model
using the posterior samples instead of priors.

The fundamental distinction is that in OMEGAC, the opera-
tors to condition and intervene both produce new random
variables, which can then be further conditioned or inter-
vened to produce counterfactual variables, which in turn
can be either sampled from or reused in some other process.
The Pyro approach, in contrast, computes counterfactual
queries by performing inference first and then changing
the model second. This has several practical consequences.
Counterfactual queries in OMEGAC tend to be significantly
more concise, and require none of the manual hacks. More
fundamentally, OMEGAC does not embed an inference pro-
cedure into the counterfactual model itself, which muddles
the distinction between modelling and inference. In this
vein, Pyro is similar to Metaverse (23), a recent Python
based system, which mirrors Pearl’s three steps of abduc-
tion, action and prediction, using importance sampling for
inference. A downside of this approach is that it is difficult
to create the kinds of composite queries we have demon-
strated. We explore this in more detail in the Appendix.

RankPL (27) uses ranking functions in place of numerical
probability. It advertises support for causal inference, as
a user can manually modify a program to change a vari-
able definition. Baral et al. (4) described a recipe to encode
counterfactuals in P-log, a probabilistic logic programming
language. However, no language construct is provided to

A Language for Counterfactual Generative Models

automate this process, which they call “intervention”. There
has also been work in adding causal operators to knowledge-
based programming (11), answer-set programming (7), and
logic programming (22). There are several libraries for
causal inference on causal graphs (6; 28; 33; 3; 2). Whit-
temore (6) is an embedded Clojure DSL implementing the
do-calculus (21). It can estimate the results of interventions,
but not counterfactuals, from a dataset.

Ibeling and Icard (14) introduce computable structural equa-
tion models (SEMs) to support infinite variable spaces, and
prove that an axiomatization of counterfactuals is sound and
complete. OMEGAC similarly supports open-world mod-
els, but our approach is constructive rather than axiomatic
– we provide primitives to construct and compute counter-
factuals. Ness et al. (19) relates SEMs to Markov process
models, which are naturally expressible in OMEGAC. They
introduce a novel kind of intervention that finds a change to
induce a target post-equilibrium value. A version of this is
expressible within OMEGAC– first construct a distribution
over interventions, then condition that distribution on the
target post-equilibrium value occurring.

Alternative approaches. Some languages have inbuilt
mechanisms for reflection – the ability to introspect and
dynamically execute code, Python for instance includes
getsource(foo) which returns the source code of a function
foo. By extracting the source code of a model, transforming
it, and reexecuting the result with eval, a system of inter-
ventions could be formulated. This could be a useful way to
bring counterfactuals to existing languages such as Python
which cannot support lazy evaluation.

While we have presented a minimal language here,
OMEGAC is also implemented in Julia. Since Julia is not
lazy, it is less flexible than OMEGAC, suffering some of the
limitations of Pyro. We detail this in the Appendix.

Invariants in counterfactuals. An important property of
counterfactual inference is that observations in the factual
world carry over to the counterfactual world. This prop-
erty is easy to satisfy in conventional causal graphs as all
exogenous and endogenous variables are created and ac-
cessed statically. However, this is not true in OMEGAC as
variable creation and access can be dynamic. Concretely, in-
terventions can change the control-flow of a program, which
in turn can cause mismatches between variable accesses
in the factual world and ones in the counterfactual world.
To address this issue, we tie variable identities to program
structures. Appendix B discusses this in detail.

Limitations. Procedures such as the PC algorithm (30)
handle situations where a causal relationship exists, but
nothing is known about the relationship other than that it is
an arbitrary function. Like other probabilistic programming
languages, OMEGAC cannot reason about such models.

In some cases the variable we want to intervene is internal to
some function and not in scope at the point where we want
to construct an intervention. In other cases, the value we
want to intervene (e.g. (x + 2) in 2*(x + 2) is not bound
to a variable at all. While it is always possible to manually
modify the program to expose these inaccessible values,
future work is to increase the expressiveness of OMEGAC to
be able to automatically intervene in such cases. Since our
formalism relies on variable binding, this would require an
entirely different mechanism to what we have presented.

References
[1] Differentiable Path Tracing on the TPU. https://blog.

evjang.com/2019/11/jaxpt.html. Accessed: 2021-01-
01.

[2] ggdag. https://ggdag.malco.io/. Accessed: 2019-
03-08.

[3] pgmpy. http://pgmpy.org/. Accessed: 2019-03-08.

[4] Chitta Baral and Matt Hunsaker. Using the Probabilis-
tic Logic Programming Language P-log for Causal
and Counterfactual Reasoning and Non-Naive condi-
tioning. In IJCAI 2007, Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence,
Hyderabad, India, January 6-12, 2007, pages 243–249,
2007.

[5] Eli Bingham, Jonathan P. Chen, Martin Jankowiak,
Fritz Obermeyer, Neeraj Pradhan, Theofanis Karalet-
sos, Rohit Singh, Paul Szerlip, Paul Horsfall, and
Noah D. Goodman. Pyro: Deep Universal Proba-
bilistic Programming. Journal of Machine Learning
Research, 2018.

[6] Joshua Brulé. Whittemore: An Embedded Domain
Specific Language for Causal Programming. arXiv
preprint arXiv:1812.11918, 2018.

[7] Pedro Cabalar. Causal Logic Programming. In Correct
Reasoning, pages 102–116. Springer, 2012.

[8] Juan Correa and Elias Bareinboim. A Calculus for
Stochastic Interventions: Causal Effect Identification
and Surrogate experiments. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pages 10093–10100, 2020.

[9] Frederick Eberhardt and Richard Scheines. Interven-
tions and Causal Inference. Philosophy of Science,
74(5):981–995, 2007.

[10] Matthias Felleisen. On the Expressive Power of Pro-
gramming Languages. In ESOP’90, 3rd European
Symposium on Programming, Copenhagen, Denmark,
May 15-18, 1990, Proceedings, pages 134–151, 1990.

https://blog.evjang.com/2019/11/jaxpt.html
https://blog.evjang.com/2019/11/jaxpt.html
https://ggdag.malco.io/
http://pgmpy.org/

A Language for Counterfactual Generative Models

[11] Joseph Halpern and Yoram Moses. Using Counterfac-
tuals in Knowledge-Based Programming. volume 17,
pages 97–110, 07 1998.

[12] Joseph Y Halpern and Christopher Hitchcock. Actual
Causation and the Art of Modeling. arXiv preprint
arXiv:1106.2652, 2011.

[13] Daniel M Hausman, Herbert a Simon, et al. Causal
Asymmetries. Cambridge University Press, 1998.

[14] Duligur Ibeling and Thomas Icard. On Open-Universe
Causal Reasoning. In Uncertainty in Artificial Intelli-
gence, pages 1233–1243. PMLR, 2020.

[15] Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. De-
limited Dynamic Binding. In Proceedings of the 11th
ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2006, Portland, Oregon,
USA, September 16-21, 2006, pages 26–37, 2006.

[16] Vikash Mansinghka, Daniel Selsam, and Yura Perov.
Venture: A Higher-Order Probabilistic Programming
Platform with Programmable Inference. arXiv preprint
arXiv:1404.0099, 2014.

[17] Cindy Marling and Razvan C Bunescu. The
OhioT1DM Dataset for Blood Glucose Level Predic-
tion. In KHD@ IJCAI, 2018.

[18] Robert Ness. Lecture Notes for Causality in Machine
Learning, Section 9.6: “Bayesian counterfactual algo-
rithm with SMCs in Pyro”, 2019.

[19] Robert Osazuwa Ness, Kaushal Paneri, and Olga Vitek.
Integrating Markov processes with Structural causal
Modeling Enables Counterfactual Inference in Com-
plex Systems. arXiv preprint arXiv:1911.02175, 2019.

[20] Judea Pearl. From Bayesian networks to Causal Net-
works. In Mathematical models for handling partial
knowledge in artificial intelligence, pages 157–182.
Springer, 1995.

[21] Judea Pearl. Causality. Cambridge University Press,
2009.

[22] Luís Moniz Pereira and Ari Saptawijaya. Agent Moral-
ity via Counterfactuals in Logic Programming. In
Proceedings of the Workshop on Bridging the Gap be-
tween Human and Automated Reasoning - Is Logic
and Automated Reasoning a Foundation for Human
Reasoning? co-located with 39th Annual Meeting of
the Cognitive Science Society (CogSci 2017), London,
UK, July 26, 2017., pages 39–53, 2017.

[23] Yura Perov, Logan Graham, Kostis Gourgoulias,
Jonathan Richens, Ciaran Lee, Adam Baker, and

Saurabh Johri. Multiverse: Causal Reasoning Using
Importance Sampling in Probabilistic Programming.
In Symposium on advances in approximate bayesian
inference, pages 1–36. PMLR, 2020.

[24] Gordon D Plotkin. A Structural Approach to Opera-
tional Semantics. 1981.

[25] Martin L Puterman. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. John Wiley
& Sons, 2014.

[26] Jarrett Revels, Valentin Churavy, Tim Besard, Lyn-
don White, Twan Koolen, Mike J Innes, Nathan
Daly, Rogerluo, Robin Deits, Morten Piibeleht, Moritz
Schauer, Kristoffer Carlsson, Keno Fischer, and Chris
de Graaf. jrevels/cassette.jl: v0.3.3, April 2020.

[27] Tjitze Rienstra. RankPL: A Qualitative Probabilistic
Programming Language. In European Conference on
Symbolic and Quantitative Approaches to Reasoning
and Uncertainty, pages 470–479. Springer, 2017.

[28] Amit Sharma and Emre Kiciman. DoWhy: Mak-
ing Causal Inference Easy. https://github.com/

Microsoft/dowhy, 2018.

[29] Yehonathan Sharvit. Lazy Sequences are not Compati-
ble with Dynamic Scope. https://blog.klipse.tech/
clojure/2018/12/25/dynamic-scope-clojure.html,
2018.

[30] Peter Spirtes, Clark N Glymour, Richard Scheines,
David Heckerman, Christopher Meek, Gregory
Cooper, and Thomas Richardson. Causation, Pre-
diction, and Search. MIT press, 2000.

[31] Zenna Tavares, Javier Burroni, Edgar Minaysan, Ar-
mando Solar Lezama, and Rajesh Ranganath. Predi-
cate Exchange: Inference with Declarative Knowledge.
In International Conference on Machine Learning,
2019.

[32] Jin Tian and Judea Pearl. Causal Discovery from
Changes. arXiv preprint arXiv:1301.2312, 2013.

[33] Santtu Tikka and Juha Karvanen. Identifying Causal
Effects with the R Package causaleffect. Journal of
Statistical Software, 76(1):1–30, 2017.

[34] David Tolpin, Jan-Willem van de Meent, and Frank
Wood. Probabilistic Programming in Anglican. In
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 308–311.
Springer, 2015.

https://github.com/Microsoft/dowhy
https://github.com/Microsoft/dowhy
https://blog.klipse.tech/clojure/2018/12/25/dynamic-scope-clojure.html
https://blog.klipse.tech/clojure/2018/12/25/dynamic-scope-clojure.html

