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Abstract
The dot product self-attention is known to be cen-
tral and indispensable to state-of-the-art Trans-
former models. But is it really required? This
paper investigates the true importance and con-
tribution of the dot product-based self-attention
mechanism on the performance of Transformer
models. Via extensive experiments, we find that
(1) random alignment matrices surprisingly per-
form quite competitively and (2) learning atten-
tion weights from token-token (query-key) in-
teractions is useful but not that important after
all. To this end, we propose SYNTHESIZER,
a model that learns synthetic attention weights
without token-token interactions. In our exper-
iments, we first show that simple Synthesizers
achieve highly competitive performance when
compared against vanilla Transformer models
across a range of tasks, including machine trans-
lation, language modeling, text generation and
GLUE/SuperGLUE benchmarks. When com-
posed with dot product attention, we find that Syn-
thesizers consistently outperform Transformers.
Moreover, we conduct additional comparisons
of Synthesizers against Dynamic Convolutions,
showing that simple Random Synthesizer is not
only 60% faster but also improves perplexity by a
relative 3.5%. Finally, we show that simple fac-
torized Synthesizers can outperform Linformers
on encoding only tasks.

1. introduction
Transformer models (Vaswani et al., 2017) have demon-
strated success across a wide range of tasks. This has
resulted in Transformers largely displacing once popular
auto-regressive and recurrent models in recent years. At the
heart of Transformer models lies the query-key-value dot
product attention. The success of Transformer models is
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widely attributed to this self-attention mechanism since fully
connected token graphs, which are able to model long-range
dependencies, provide a robust inductive bias.

But is the dot product self-attention really so important? Do
we need it? Is it necessary to learn attention weights via
pairwise dot products? This paper seeks to develop a deeper
understanding of the role that the dot product self-attention
mechanism plays in Transformer models.

The fundamental role of dot product self-attention is to learn
self-alignment, i.e., to determine the relative importance
of a single token with respect to all other tokens in the
sequence. To this end, there have been memory metaphors
and analogies constructed to support this claim. Indeed,
the terms query, keys, and values imply that self-attention
emulates a content-based retrieval process which leverages
pairwise interactions at its very core.

Moving against convention, this paper postulates that we
cannot only do without dot product self-attention but also
content-based memory-like self-attention altogether. Tra-
ditionally, attention weights are learned at the instance or
sample level, where weights are produced by instance-level
pairwise interactions. As a result, these instance-specific
interactions often fluctuate freely across different instances
as they lack a consistent global context.

This paper proposes SYNTHESIZER, a new model that learns
to synthesize the self-alignment matrix instead of manually
computing pairwise dot products. We propose a diverse suite
of synthesizing functions and extensively evaluate them. We
characterize the source information that these synthesizing
functions receive, i.e., whether they receive information
from individual tokens, token-token interactions, and/or
global task information. Intuitively, different source inputs
to the synthesizing functions should capture diverse views,
which may be useful when employed in conjunction.

Aside from generalizing the standard Transformer model,
we show that it is possible to achieve competitive results
with fully global attention weights that do not consider
token-token interactions or any instance-level (local) infor-
mation at all. More specifically, a random matrix SYNTHE-
SIZER model achieves a 27.27 BLEU score on WMT 2014
English-German1. Via a set of rigorous experiments, we

1The originally reported result is 27.30.
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observe that the popular and well-established dot-product
content-based attention can be approximated with simpler
variants such as random matrices or dense layers without
sacrificing much performance in some cases.

In our experiments, we also show that our relatively simple
Synthesizer models also outperform Dynamic Convolutions
(Wu et al., 2019) with a +3.5% relative improvement in
perplexity while being 60% faster. On encoding tasks, our
factorized Synthesizers can outperform other low-rank effi-
cient Transformer models such as Linformers (Wang et al.,
2020).

While simple Synthesizer models are able to perform com-
petitively, our experiments show that the pairwise dot prod-
uct is still ultimately helpful. When composing our syn-
thesizing functions with dot products, we find that they
consistently improve the performance of Transformers. In
general, we believe our findings will spur further investi-
gation and discussion about the true role and utility of the
self-attention mechanism in Transformer models.

Our Contributions Our key contributions are described
as follows:

• We propose Synthetic Attention, a new way of learn-
ing to attend without explicitly attending (i.e., without
dot product attention or content-based attention). In-
stead, we generate the alignment matrix independent
of token-token dependencies and explore a potpourri
of parameterized functions for synthesizing attention
matrices.

• We propose SYNTHESIZER, a new model that lever-
ages Synthetic Attention. The model performs compet-
itive to state-of-the-art Transformer models on a wide
range of language tasks, including machine translation
and language modeling.

• Moreover, we show that (1) random learnable align-
ment matrices perform competitively and (2) token-
token dependencies are not necessary to achieve good
performance with Transformer models on certain tasks.

• On large-scale masked language modeling on the
C4 dataset (Raffel et al., 2019) and finetuning on
SuperGLUE and GLUE benchmarks, we show that
simple random Synthesizers can outperform/match
Lightweight Dynamic convolutions (Wu et al., 2019)
along with outperforming Transformers and Universal
Transformers (Dehghani et al., 2018). On two encod-
ing tasks, factorized random Synthesizers outperform
low-rank Linformers (Wang et al., 2020).

• Implementation of our Synthesizer model is released at
https://github.com/tensorflow/mesh.

2. Related Work
Attention-based models are used across a wide spectrum
of problem domains. Such models are especially popular,
due to their effectiveness, in the language and vision do-
mains. Attention models can be traced back to the machine
translation models of (Bahdanau et al., 2014) and (Luong
et al., 2015), where attention is employed to learn soft word
alignments between language pairs. The intuition behind
the attention mechanism is deeply-rooted in the notion of
memory-based retrieval (Graves et al., 2014; Weston et al.,
2014), in which soft differentiable addressing of memory
was initially proposed.

The paradigm of learning self-alignments, also known as
self-attention, has been largely popularized by Transformer
models (Vaswani et al., 2017). This technical narrative
has also been explored by a number of other recent stud-
ies, including those on intra-attention (Parikh et al., 2016),
self-matching networks (Wang et al., 2017), and LSTMN
(Cheng et al., 2016). To this end, Transformer models,
which function primarily based on self-attention and feed-
forward layers, generally serve as a reliable replacement for
autoregressive recurrent models.

The self-attention layer itself has been the subject of many
recent technical innovations. For example, recent studies
have investigated improving the layer’s overall efficiency
via sparsification and reducing the complexity of computing
the alignment matrix (Child et al., 2019; Kitaev et al., 2020;
Huang et al., 2018; Tay et al., 2020; Beltagy et al., 2020).
These methods are tightly coupled with the query-key-value
paradigm, employing a form of memory-based content re-
trieval as an attention mechanism. On the other end of the
spectrum, there have been studies that advocate for replac-
ing self-attention with convolution (Wu et al., 2019). The
recent surge in interest in simplifying the attention mech-
anism raises important questions about the role and utility
of the pairwise dot products, which are one the defining
characteristics of self-attention models. Meanwhile, in the
image domain, (Cordonnier et al., 2019) shows connection
of Transformers with CNNs.

Our work is a new take on the self-attention mechanism in
Transformer models. We delve deeper, starting with replac-
ing the pairwise dot products with what we call synthesizing
functions that learn attention matrices that may or may not
depend on the input tokens. The most closely related work
is ((Raganato et al., 2020)), in which the authors propose us-
ing fixed (i.e., not learned) attention patterns in Transformer
encoders. However, the scope of their work is limited to en-
coders and relies on manually defined handcrafted patterns
that seem to work well. Our work takes this intuition further
and expands on this narrative.

https://github.com/tensorflow/mesh
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MLP-Mixers are Random Synthesizers This is an up-
date2 discussing the relationship between Random Syn-
thesizers and recent MLP-Mixers (Tolstikhin et al., 2021).
There have been recent work (April 2021) that proposed All-
MLP architectures for vision. Although, this work made it’s
appearance first in May 2020, a year before the MLP-Mixer
was proposed, we show that Random Synthesizers are a
form of MLP-Mixers. Random Synthesizers apply a weight
matrix R on the length dimension. R is a L× L matrix and
can be seen as a form of projection across the length dimen-
sion. This is equivalent to transposing the axis before linear
projection in the token-mixer in the MLP-Mixer model. The
key difference here is that (1) we use a softmax normaliza-
tion on the kernel (weights) and (2) Random Synthesizers
are a form of multi-headed MLP-Mixers.

3. The Proposed Method
This section introduces our proposed SYNTHESIZER model.
At its core, our model is essentially a Transformer model
with self-attention modules replaced with our Synthetic At-
tention modules. Figure 3.1 illustrates the key ideas behind
(a) Transformer (b) Dense Synthesizers and (c) Random
Synthesizers.

3.1. Synthesizer Model

This section introduces Synthetic Attention, our proposed
self-attention module. Our model removes the notion of
query-key-values in the self-attention module and directly
synthesizes the alignment matrix instead. For simplicity, we
describe the per head and per layer computation, which is
denoted by h and ` respectively in most cases.

Dense Synthesizer Let us consider the simplest varia-
tion of the SYNTHESIZER model which is conditioned on
each input token. Overall, our method accepts an input
Xh,` ∈ RN×d and produces an output of Yh,` ∈ RN×d.
Here, ` refers to the sequence length and d refers to the di-
mensionality of the model. We first adopt Fh,`(.), a parame-
terized function, for projecting input Xi from d dimensions
to N dimensions.

Bi,h,` = Fh,`(Xi,h,`) (1)

where Fh,`(.) is a parameterized function that maps Rd to
R` and i is the i-th token of Xh,` and is applied position-
wise (to each vector in the sequence of lengthN ). Intuitively,
this can be interpreted as learning a token-wise projection
to the sequence length N . Essentially, with this model, each
token predicts weights for each token in the input sequence.
In practice, we adopt a simple two layered feed-forward

2This paper’s draft first went out a year ago, on May 2020.

layer with ReLU activations for Fh,`(.):

Fh,`(Xi,h,`) =W2,h,`(σR(W1,h,`(Xi,h,`)) (2)

where σR is the ReLU activation function and W1,h,` ∈
Rd×d and W2,h,` ∈ Rd×`. Hence, Bi,h,` is now of R`.
Given Bi,h,` ∈ RN×N , we now compute:

Yh,` = softmax(Bh,`)Gh,`(Xh,`) (3)

whereGh,`(.) is another parameterized function ofX that is
analogous to Vh,` (value) in the standard Transformer model.
This approach eliminates the dot product attention Y =
softmax(Qh,`K

>
h,`)Vh,` altogether by replacing Qh,`K

>
h,`

in standard Transformers with the synthesizing function
Fh,`(.).

Random Synthesizer The previous variant learns syn-
thetic attention by conditioning on each input of X and
projecting to N dimensions. Hence, the Dense Synthesizer
conditions on each token independently, as opposed to pair-
wise token interactions in the vanilla Transformer model.
We consider another variation of SYNTHESIZER where the
attention weights are not conditioned on any input tokens.
Instead, the attention weights are initialized to random val-
ues. These values can then either be trainable or kept fixed
(denoted as Fixed).

Let Rh,` be a randomly initialized matrix. The Random
Synthesizer is defined as:

Yh,` = softmax(Rh,`)Gh,`(Xh,`). (4)

where Rh,` ∈ RN×N . Notably, each head adds N2 pa-
rameters to the network. The basic idea3 of the Random
Synthesizer is to not rely on pairwise token interactions or
any information from individual token but rather to learn
a task-specific alignment that works well globally across
many samples. This is a direct generalization of the re-
cently proposed fixed self-attention patterns (Raganato et al.,
2020).

Factorized Models The Dense Synthesizer adds d × N
parameters to the network. On the other hand, the Random
Synthesizer addsN×N parameters. Here, note that we omit
the Q,K projections in the standard Transformer which
results in further parameter savings. Despite these savings,
synthesized models can be cumbersome to learn when `
is large. Hence, we propose factorized variations of the
SYNTHESIZER models and show that these variants perform
comparably in practice.

Factorized Dense Synthesizer Factorized outputs not
only slightly reduce the parameter cost of the SYNTHE-
SIZER but also aid in preventing overfitting. The factorized

3We were not expecting this variation to work at all, but it turns
out to be a strong baseline.
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Figure 1. Our proposed SYNTHESIZER model architecture.

variant of the dense synthesizer can be expressed as follows:

Ah,`, Bh,` = FA,h,`(Xi,h,`), FB,h,`(Xi,h,`) (5)

where FA,h,`(.) projects input Xi,h,` into a dimensions,
FB,h,`(.) projects Xi,h,` to b dimensions, and a × b = N .
The output of the factorized module is now written as:

Yh,` = softmax(Ch,`)Gh,`(Xh,`). (6)

where Ch,` = HA(Ah,`) ∗ HB(Bh,`) where HA, HB are
tiling functions and Ch,` ∈ RN×N . The tiling function
simply duplicates the vector k times, i.e., RN → RN×k. In
this case,HA(·) is a projection of Ra → Ra×b andHB(·) is
a projection of Rb → Rb×a. To avoid having similar values
within the same block, we compose the outputs of HA and
HB .

Factorized Random Synthesizer Similar to Factorized
Synthesizers, we are also able to factorize Rh,` into low
rank matrices R1,h,`, R2,h,` ∈ RN×k.

Yh,` = softmax(R1,h,`R
>
2,h,`)Gh,`(Xh,`). (7)

Therefore, it is easy to see that, for each head, this reduces
the parameter costs from N2 to 2(Nk) where k << N and
hence helps prevent overfitting. In practice, we use a small
value of k = 8.

Mixture of Synthesizers Finally, we note that all of the
proposed synthetic attention variants can be mixed in an
additive fashion. This can be expressed as:

Yh,` = softmax(α1,h,`S1,h,`(Xh,`)+

· · ·αN,h,`SN,h,ell(Xh,`))Gh,`(Xh,`).

where S(.) is a parameterized synthesizing function and the
α (where

∑
α = 1) are learnable weights. In the case of

mixing Random Factorized with standard Dense Synthesiz-
ers, this is expressed as:

Yh,` = softmax(α1,h,`R1,h,`R
>
2,h,`+

α2,h,`Fh,`(Xh,`))Gh,`(X).

We investigate several Mixture of Synthesizers variants in
our experiments.

On Parameters Depending on Sequence Length Ran-
dom and dense Synthesizers both rely on parameters that
depend on length `. In general, we define a maximum length
and dynamically truncate to the actual length of each batch.
We note that this is in similar spirit to trainable positional en-
codings which have been common practice in Transformer
models. Hence, we do not forsee any issue here. In the
case that this is really a problem, one potential solution is
to project to a smaller value b and tile b to the maximum
sequence length. We leave this exploration to future work.

3.2. Discussion

This paper asks fundamental questions about the attention
matrix A and whether it is possible to synthesize A by al-
ternate means other than pairwise attention. It is worth
noting that the regular dot product attention can also be
subsumed by our SYNTHESIZER framework, i.e., SYNTHE-
SIZER generalizes the Transformer model. In the case of
the Transformer, the synthesizing function in question is
S(X) = FQ(X)FK(X)>. Table 1 lists the different model
variants explored within our SYNTHESIZER framework. The
’condition on’ column refers to whether the synthesized out-
put is produced as a function ofXi or everyXi, Xj pair. The
‘sample‘ column indicates whether a given variant leverages
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Model S(X) Condition On Sample Interact |θ|

Dot Product FQ(X)FK(Xi)
> Xj ∀j Local Yes 2d2

Random R N/A Global No N2

Fac. Random R1R
>
2 N/A Global No 2Nk

Dense F1σ(F2(Xi)) Xi Local No d2 + dN
Fac. Dense HA(FA(Xi))) ∗HB(FB(Xi))) Xi Local No d2 + d(k1 + k2)

Table 1. Overview of all Synthesizing Functions.

local or global context. Random Synthesizers are global be-
cause they share the same global alignment patterns across
all samples. Dense Synthesizers are considered to be local
as they are conditioned on Xi, which makes the alignment
pattern dependent on each individual sample. To this end, it
is imperative for synthesized models to have multiple heads
to be effective.

4. Experiments
This section outlines our experimental setup and results. We
first conduct experiments on five tasks to evaluate the ef-
fectiveness4 of different Synthesizer variants along with
how they compare to the vanilla Transformer. Specif-
ically, we conduct experiments on (1) machine transla-
tion (EnDe, EnFr) (2) autoregressive language modeling
(LM1B) (3) text generation (summarization and dialogue
modeling and (4) multi-task natural language processing
(GLUE/SuperGLUE). Details of each experiments can be
found in the appendix.

Notation of Variants We use R to denote Random, D to
denote Dense and V to denote vanilla dot product attention.
Fix to represent Fixed Random, FR to represent Factorized
Random and FD to represent Factorized random. For Mix-
ture Synthesizers, we use + to denote that two methods are
mixed.

4.1. Comparing Synthesizer Variants and Transformer
Models

This section dives into a detailed study of multiple Synthe-
sizer variants and the base Transformer model.

Experimental Results on MT/LM First, we observe that
our Random Synthesizer baseline achieves 27.27 on EnDe
and 41.12 on EnFr. The non-trainable (i.e., fixed) variant
performs substantially worse, but still yields surprisingly
strong ≈ 24 BLEU with fixed random attention weights.
Most other SYNTHESIZER variants achieve competitive per-
formance, although with slight performance degradation

4Note that we are primarily interested in making controlled
comparisons instead of going for the state-of-the-art result on each
task.

compared to Transformers. An interesting finding is that
the Mixture model of Random + Dense synthesizer per-
forms comparably to vanilla Transformers on EnDe. When
mixing the standard dot product attention, performance fur-
ther increases by +0.8 BLEU points (EnDe). In general,
the performance of SYNTHESIZER variants are competitive
with Transformers for this task. On LM1b, We find that the
Random Synthesizers perform within 1-2 PPL points away
from the vanilla Transformer model. The best performing
model is the Synthesizer (D+V), which achieves the best
performance on this setting.

Results on Text Generation For summarization, we find
that the (R) and (D) variants do not outperform Transform-
ers. The performance of the (D) model is ≈ 2 Rouge-L
points below Transformers. Hence, we postulate that the
local sample-wise pairwise interactions are important for
the summarization task. On the other hand, the utility of
synthesized attention can also be observed, i.e., the (R+V)
and (R+D) models both outperform Transformers. On the
dialogue task, Synthesizers (R) and (D) both outperform
vanilla Transformers by a reasonable margin (≈ 1-3) points
across most/all metrics. The best performing model here
is the (D) variant. Surprisingly, unlike most other tasks,
the (+V) variants do not perform well, signifying that dot
product self-attention may actually be harmful for this task.

Sum. Dialogue
Model RL B4 RL Met. CIDr

Trans. 35.77 3.20 13.38 5.89 18.94

Synthesizer Models

R 33.10 2.25 15.00 6.42 19.57
D 33.70 4.02 15.22 6.61 20.54
D+V 36.02 3.57 14.22 6.32 18.87
R+V 35.95 2.28 14.79 6.39 19.09

Table 3. Experimental results on Abstractive Summarization
(CNN/Dailymail) and Dialogue Generation (PersonaChat). We
report on RL (Rouge-L), B4 (Bleu-4), Met. (Meteor) and CIDr.

Comparing Synthesizers with Dynamic Convolutions
To ascertain the competitiveness of Synthesizers, we also
compare them with Dynamic convolutions (Wu et al., 2019).
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NMT (BLEU) LM (PPL)
Model |θ| EnDe EnFr |θ| LM

Transformer† 67M 27.30 38.10 - -
Transformer 67M 27.67 41.57 70M 38.21

Synthesizer (Fixed Random) 61M 23.89 38.31 53M 50.52
Synthesizer (Random) 67M 27.27 41.12 58M 40.60
Synthesizer (Factorized Random) 61M 27.30 41.12 53M 42.40
Synthesizer (Dense) 62M 27.43 41.39 53M 40.88
Synthesizer (Factorized Dense) 61M 27.32 41.57 53M 41.20
Synthesizer (Random + Dense) 67M 27.68 41.21 58M 42.35
Synthesizer (Dense + Vanilla) 74M 27.57 41.38 70M 37.27
Synthesizer (Random + Vanilla) 73M 28.47 41.85 70M 40.05

Table 2. Experimental Results on WMT’14 English-German, WMT’14 English-French Machine Translation tasks and Language Modeling
One Billion (LM1B). † denotes original reported results in (Vaswani et al., 2017).

Model Log PPL Steps/Sec Params TFLOPS

Trans. 1.865 3.90 223M 3.70
DyConv 2.040 2.65 257M 3.93
LightConv 1.972 4.05 224M 3.50
Syn (D) 1.965 3.61 224M 3.80
Syn (R) 1.972 4.26 254M 3.36
Syn (R+V) 1.849 3.79 292M 4.03
Syn (D+V) 1.832 3.34 243M 4.20

Table 4. Validation perplexity scores on C4 dataset (Raffel et al.,
2019). All models are at approximately similar parameterization.

We compare them on (1) pretraining perplexity using the
masked language modeling objective on C4 and (2) down-
tream finetuning results on GLUE and SuperGLUE.

Results on Masked Language Modeling We also bench-
mark the speed of these models. In order to do so, we con-
duct additional experiments on the T5 adaptation of masked
language modeling on the C4 dataset (Raffel et al., 2019) by
comparing against lightweight dynamic convolutions (Wu
et al., 2019) on a masked language modeling task. We also
take this chance to benchmark the speed of Synthesizers
compared with Transformers. Experiments are conducted
on Mesh Tensorflow (Shazeer et al., 2018) and ran on 2x2
TPU V3 Chips for approximately 524K steps.

Results on MLM Table 4 reports the validation set log
perplexity on masked language modeling5. We observe
that Synthesizers (R) can outperform Dynamic Convolu-
tions by a relative +3.5% while being +60% faster. Against
Lightweight Dynamic Convolutions, we match the perfor-
mance while being +5% faster. Given that this is the simple
random Synthesizer baseline, we find this extremely inter-
esting how it is able to outperform dynamic convolutions,
a relatively complex model. The Random Synthesizer also
has less FLOPS compared to both convolution models. On

5Note that this follows the sequence transduction style in T5.

the other hand, the Mixture Synthesizer models that use the
dot product attention improves the performance of the base
Transformer model with relatively an equal model speed.
Finally, similar to the earlier results, we see a consistent
performance gain of Synthesizer (D+V) and Synthesizer
(R+V) outperforming the base Transformer model.

Results on GLUE and SuperGLUE Tables 5 and 6 re-
port results on the GLUE and SuperGLUE benchmarks.
We note that the (R) and (D) variants of SYNTHESIZER do
not achieve reasonable performance. This can be largely
attributed to the fact that the encoder self-attention in the
T5 setting also functions as a cross-sentence attention. For
example, in the entailment or reading comprehension tasks,
the premise and hypothesis are concatenated together and
self-attention effectively acts as cross-sentence attention6.
On datasets like SST, a straightforward sentiment classifi-
cation task, this cross sentence attention is not necessary
and therefore Syn (R) and Syn (D) both perform competi-
tively. To this end, Dynamic Convolutions (Wu et al., 2019)
also do not have this encoder ”cross-attention” and there-
fore also suffer on many of these pairwise matching tasks.
Notably, in this ‘no cross attention’ setting, the Random
Synthesizers are are 4 to 5 percentage points higher in
GLUE/SuperGLUE score compared to Dynamic Convo-
lutions.

Optimistically, we observe that the mixture model Syn
(R+V) outperforms the T5 model by a substantial margin
(+1.9 points on SuperGLUE and +0.6 points on GLUE).
Naturally, the hybrid mixture model also very substantially
outperforms Dynamic Convolution. Finally to ensure that
the Syn (+V) variations are not outperforming Transformers
due to simply having more parameters, we also compared

6On a related note, the perceived success of pairwise self-
attention might also be attributed to the fact that these public
benchmarks are bias towards pairwise matching tasks. In reality,
this is computationally prohibitive for many practical real-world
applications (Seo et al., 2018).
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Model Glue CoLA SST MRPC STSB QQP MNLI QNLI RTE

T5 (Base) 83.5 53.1 92.2 92.0/88.7 89.1/88.9 88.2/91.2 84.7/85.0 91.7 76.9
T5 (Base+) 82.8 54.3 92.9 88.0/83.8 85.2/85.4 88.3/91.2 84.2/84.3 91.4 79.1
DyConv 69.4 33.9 90.6 82.6/72.5 60.7/63.1 84.2/88.2 73.8/75.1 84.4 58.1

Syn (R) 75.1 41.2 91.2 85.9/79.4 74.0/74.3 85.5/89.0 77.6/78.1 87.6 59.2
Syn (D) 72.0 18.9 89.9 86.4/79.4 75.3/75.5 85.2/88.3 77.4/78.1 86.9 57.4
Syn (D+V) 82.6 48.6 92.4 91.2/87.7 88.9/89.0 88.6/91.5 84.3/84.8 91.7 75.1
Syn (R+V) 84.1 53.3 92.2 91.2/87.7 89.3/88.9 88.6/91.4 85.0/84.6 92.3 81.2

Table 5. Experimental results (dev scores) on multi-task language understanding (GLUE benchmark) for small model and en-mix
mixture. Note: This task has been co-trained with SuperGLUE.

Model SGlue BoolQ CB CoPA MultiRC ReCoRD RTE WiC WSC

T5 (Base) 70.3 78.2 72.1/83.9 59.0 73.1/32.1 71.1/70.3 77.3 65.8 80.8
T5 (Base+) 70.7 79.3 81.1/87.5 60.0 75.1/34.4 71.7/70.7 80.5 64.6 71.2
DyConv 57.8 66.7 65.9/73.2 58.0 57.9/8.71 58.4/57.4 69.0 58.6 73.1

Syn (R) 61.1 69.5 54.6/73.2 60.0 63.0/15.7 58.4/57.4 67.5 64.4 66.3
Syn (D) 58.5 69.5 51.7/71.4 51.0 66.0/15.8 54.1/53.0 67.5 65.2 58.7
Syn (D+V) 69.7 79.3 74.3/85.7 64.0 73.8/33.7 69.9/69.2 78.7 64.3 68.3
Syn (R+V) 72.2 79.3 82.7/91.1 64.0 74.3/34.9 70.8/69.9 82.7 64.6 75.0

Table 6. Experimental results (dev scores) on multi-task language understanding (SuperGLUE benchmark) for small model and en-mix
mixture. Note: This task has been co-trained with GLUE.

with T5 (Base+) which has equal number of parameters to
Syn (+V) variants (approximately≈ 10M more parameters).
Our results show that Synthesizers (+V) still outperform T5
(Base+).

4.2. Comparing Synthesizers with Linformers

We conduct more experiments comparing factorized random
Synthesizers with Linformers. Since Linformer cannot be
used to decode, we compare them on two encoding tasks
from tensorflow datasets (AGnews (Zhang et al., 2015) and
movie reviews (Maas et al., 2011)). We use k=32 for both
factorized models. We also benchmark Transformers on
this task. Note we do not use contextualized embeddings so
results are not comparable with other work.

Model News Reviews Steps/Sec

Transformer 88.83 81.34 1.09
Linformer 86.50 82.86 1.09

Syn (FR) 86.53 83.39 1.10
Syn (FR+V) 89.13 84.61 0.80

Table 7. Results on Encoding only tasks (accuracy).

Results We notice that factorized Synthesizers (FR) are
competitive with Linformers and Transformers on this task.
The accuracy of Syn (FR) is competitive with Linformers
while Syn (FR+V) outperforms both Transformers and Lin-
formers.

Figure 2. Init Decoder weights (Reference)

5. Qualitative Analysis
Distribution of Weights We are interested in investigat-
ing how the synthetically generated attention weights differ
from the dot product attention weights. Figure 3 shows the
attention histograms on trained Transformer and SYNTHE-
SIZER models. We report histograms at layers 1, 3, and 5
of a 6 layered (Transformer or SYNTHESIZER) model at
50K steps. We found that the weight distributions remain
relatively identical thereafter. Figure 2 shows the initializa-
tion state. We observe that there are distinct differences in
the weight distribution of SYNTHESIZER and Transformer
models. The variance of the SYNTHESIZER weights tends
to be higher. On the other hand, the weights on the Trans-
former model tends to gravitate near 0 and have smaller
variance. There are also notable differences across the (R)
and (D) SYNTHESIZER variants. Specifically, the (D) model
in general has greater max values with more values in the
0.1-0.2 range while the values of the R model tends to stay
closer to 0.
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Figure 6. Synthesizer weights
on LM1B.

Figure 7. Transformer weights
on LM1B.

Enc L1 Enc L3 Enc L5

Dec L1 Dec L3 Dec L5

Figure 3. Histogram of Encoder and Decoder Attention Weights
on MT (WMT EnDe). L denotes the layer number and Enc/Dec
denotes encoder or decoder.

5.1. What patterns do Synthesizers learn?

In this section, we perform a deeper analysis of the SYN-
THESIZER model.

Vanilla Random Fr Dense FD

Figure 4. Visual analysis of Synthetic Attention (encoder) on
WMT EnDe.

Vanilla Random FR Dense FD

Figure 5. Visual analysis of Synthetic Attention (decoder) on
WMT EnDe.

Analysis Finally, we are interested to understand what
these Synthesizer models are learning. We inspect the ran-
dom synthetic attention weights for language modeling task

LM1B and visualise the differences compared to the vanilla
attention. We find that, for the LM task, Synthesizers are
capable of learning a local window, emulating the vanilla
Transformer quite closely despite starting from completely
random. The weights, however, seem smoother and less
coarse as compared to the Transformer. This seems to reflect
what we expect since the Synthesizer does not benefit from
token specific information. We provide additional analysis
and visualisation of weights for the Machine Translation
task in the supplementary material.

5.2. Overall Summary of Quantitative Results

This section summarizes our overall findings.

Synthetic Attention is competitive even without Dot
Product Attention On all evaluated tasks, we showed
that synthesized attention functions competitively, i.e., it
achieves performance reasonably close to the dot product
self-attention. On one task (dialogue generation), the dot
product self-attention is found to actually degrade perfor-
mance. Amongst the other tasks, machine translation is
the least affected by the removal of the vanilla dot prod-
uct. These findings allow us to introspect about whether
pairwise comparisons for self-attention are even necessary.
On the multi-task language understanding benchmark, the
self-attention functions as a form of cross-attention by con-
catenating sentence pairs. Hence, synthesize attention per-
formance is considerably worse than vanilla Transformers.

Synthetic Attention and Dot Product Attention are
highly complementary Overall, we also observe that the
dot product attention is very helpful. To this end, synthetic
attention is highly complementary to the pairwise dot prod-
uct attention. While Synthetic Attention can usually achieve
competitive and fast performance on its own, synthetic at-
tention boosts performs, composing multiple synthetic at-
tention (and dot product attention) together shows gains
on almost all tasks that we have investigated. Hence, we
believe this to be a robust finding.

The simplest Synthesizers such as Random Synthesiz-
ers are fast competitive baselines Finally, we note that
simple random Synthesizers are competitive with dynamic
convolutions and Linformers, which are recently proposed
models. On two encoding task and a large-scale masked
language modeling task, we show that random (or factorized
random) Synthesizers remain competitive to other fast or
efficient Transformer models.

6. Conclusion
This paper proposed SYNTHESIZER, a new Transformer
model that employs Synthetic Attention. We conducted
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a principled study to better understand and evaluate the
utility of global alignment and local, instance-wise align-
ment (e.g., independent token and token-token based) in
self-attention. We show that, on multiple tasks such as ma-
chine translation, language modeling, dialogue generation,
masked language modeling and document classification,
synthetic attention demonstrates competitive performance
compared to vanilla self-attention. Moreover, for the dia-
logue generation task, pairwise interactions actually hurt
performance. Notably, we reemphasize that this study refers
to self-attention. We found that we are not able to replace
cross-attention with simpler variants in most cases. Via a
set of additional large-scale experiments, also find that Syn-
thesizers can outperform or match Dynamic Convolutions
and Factorized Synthesizers can outperform other low rank
Linformer models.
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