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Supplementary Materials
We complement the omitted proofs in Section A. We then provide the additional experimental results in Section B.
Furthermore, in Section C, we give supplementary notes for some statements in the main text.

A. Proofs
A.1. Proof of Theorem 4.1

Theorem 4.1 (Provable Guarantee) Let ŵ(x) be an estimate of the weight w(x). Assume that E[ŵ(X)|Ztr] = 1 and
E[w(X)] = 1. Denote Ĉ1

n(x) as the output band of Algorithm 1 with n calibration samples, then for a new data X ′, its
corresponding survival time satisfies

lim
n→∞

P
(
T ′ ∈ Ĉ1

n(X ′)
)
≥ 1− α− 1

2
E|ŵ(X)− w(X)|,

where the probability P on the left hand side is taken over (X ′, T ′) ∼ PX × PT |X , and all the expectation operators E are
taken over X ∼ PX|∆=1.

Firstly, consider a new sample
(
X̃ ′, T̃ ′

)
generated from P̃X × PT |X , where we assume that

dP̃X (x) = ŵ (x) dPX|∆=1 (x) .

As a comparison, due to the definition of w (x), we have

dPX (x) = w (x) dPX|∆=1 (x) .

We remark that P̃X (x), PX (x) are indeed distribution since we assume Ew (X) = Eŵ (X) = 1, where the expectation is
taken over PX|∆=1.

We would first prove that the probability T̃ ′ falls in the derived confidence interval Ĉ1
n (X ′) is larger than 1− α, where α is

the given significance level. The intuition is that, since the derived Ĉ1
n (X ′) is derived based on the estimated weight ŵ (x),

the sample T̃ ′ is then guaranteed to fall in the confidence interval with probability at least 1− α.

We derive that

P
(
T̃ ′ ∈ Ĉ1

n

(
X̃ ′
)
|Ztr

)
=P
(
T̃ ′ ≤ Tu

(
X̃ ′
)
|Ztr

)
=P
(
V
(
X̃ ′, T̃ ′

)
≤ V

(
X̃ ′, Tu

(
X̃ ′
)
|Ztr

))
≥P

(
V
(
X̃ ′, T̃ ′

)
≤ Quantile

(
1− α;

n∑
i=1

p̂iδvi + p̂∞δ∞

)
|Ztr

)
,

(8)

where the last inequality is due to the fact that V
(
X̃ ′, Tu

(
X̃ ′
)
≥ Quantile

)
(1− α;

∑n
i=1 p̂iδvi + p̂∞δ∞). We also use

the non-decreasing property of V (X,T ) on T. Furthermore, by Lemma 3, we can replace the δ∞ in the quantile term by
δV (X̃′,T̃ ′), therefore,

P

(
V
(
X̃ ′, T̃ ′

)
≤ Quantile

(
1− α;

n∑
i=1

p̂iδvi + p̂∞δ∞

)
|Ztr

)

=P

(
V
(
X̃ ′, T̃ ′

)
≤ Quantile

(
1− α;

n∑
i=1

p̂iδvi + p̂∞δV (X̃′,T̃ ′)

)
|Ztr

)
.

(9)

Besides, we know from Lemma 4 that

V
(
X̃ ′, T̃ ′

)
|Ztr, E (V ) ∼

n∑
i=1

p̂iδvi + p̂∞δV (X̃′,T̃ ′),
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therefore, we derive that

P

(
V
(
X̃ ′, T̃ ′

)
≤ Quantile

(
1− α;

n∑
i=1

p̂iδvi + p̂∞δV (X̃′,T̃ ′)

)
|Ztr

)

=EEP

(
V
(
X̃ ′, T̃ ′

)
≤ Quantile

(
1− α;

n∑
i=1

p̂iδvi + p̂∞δV (X̃′,T̃ ′)

)
|Ztr, E (V )

)
≥1− α.

(10)

Combining the Equation 8, Equation 9 and Equation 10 leads to

P
(
T̃ ′ ∈ Ĉ1

n

(
X̃ ′
)
|Ztr

)
≥ 1− α. (11)

Furthermore, we need to transform the above results into random sample (X ′, T ′) ∼ dPX × dPT |X . This directly follows
Lemma 5 that∣∣∣P(T ′ ∈ Ĉ1

n (X ′) |Ztr
)
− P

(
T̃ ′ ∈ Ĉ1

n (X ′) |Ztr
)∣∣∣ ≤ dTV (PX × PT |X , P̃X × PT |X) = dTV

(
PX , P̃X

)
.

We can express the total-variation distance between QX and Q̃X as

dTV

(
PX , P̃X

)
=

1

2

∫
|ŵ (X) dPX|∆=1 (X)− w (X) dPX|∆=1 (x) | = 1

2
EX∼PX|∆=1

|ŵ (X)− w (X) |.

Combine the above results and take expectations on the training set, we conclude that

P
(
T ′ ∈ Ĉ1

n (X ′)
)

=EZtr
P
(
T ′ ∈ Ĉ1

n (X ′) |Ztr
)

≥1− α− 1

2
E|ŵ (X)− w (X) |.

(12)

where the expectation is taken over the training set space and X ∼ PX|∆=1

Technical Lemmas. In this part, we give some technical lemmas used in the proof. We first introduce Lemma 3 which is
commonly used in conformal inference. By Lemma 3, we can use δ∞ to replace δV (X̃′,T̃ ′) without changing the probability.

Lemma 3 (Equation(2) in Lemma 1 from Barber et al. (2019a).) For random variables vi ∈ R, i ∈ [n + 1], let pi ∈
R, i ∈ [n+ 1] be the corresponding weights summing to 1. Then for any β ∈ [0, 1], we have

V
(
X̃ ′, T̃ ′

)
≤ Quantile

(
β,

n∑
i=1

piδvi + p∞δ∞

)
⇐⇒ V

(
X̃ ′, T̃ ′

)
≤ Quantile

(
β,

n∑
i=1

piδvi + p∞δV (X̃′,T̃ ′)

)
. (13)

We next introduce Lemma 4 which provides the distribution of the non-conformity score.

Lemma 4 (Equation(A.5) from Lei & Candès (2020).)(
V
(
X̃ ′, T̃ ′

)
|E (V ) = E (V ∗) ,Ztr

)
∼

n∑
i=1

p̂iδv∗i + p̂∞δV (X̃′,T̃ ′), (14)

where E (V ∗) is the unordered set of V ∗ =
(
v∗1 , v

∗
2 , . . . , v

∗
n, V

(
X̃ ′, T̃ ′

))
.

Thirdly, we introduce Lemma 5 which shows a basic property of the total variance distance.

Lemma 5 (Equation(10) from Berrett et al. (2020).) Let dTV (Q1X , Q2X) denote the total-variation distance between
Q1X and Q2X , then

dTV
(
Q1X × PT |X , Q2X × PT |X

)
= dTV (Q1X , Q2X) . (15)
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A.2. Proof of Theorem 5.1

Theorem 5.1 (Lower Bound) Let ŵ(x) be an estimate of the weight w(x), q̂αlo
(x), q̂αhi

(x) be the quantile estimator
returned by WCCI, and H(X) be defined as Equation 7. Assume that E[ŵ(X)|Ztr] = 1 and E[w(X)] = 1, where all the
expectation operators E are taken over X ∼ PX|∆=1. Denote Ĉ2

n(x) as the output band of Algorithm 2 with n calibration
samples, and denote X ′ as the testing point.

From the weight perspective, under assumptions (A1):

A1. EX|∆=1|ŵ(X)− w(X)| ≤M1,
we have:

lim
n→∞

P
(
T ′ ∈ Ĉ2

n(X ′)
)
≥ 1− α− 1

2
M1.

From the quantile perspective, under assumptions (B1-B3):

B1. H(X) ≤M2 a.s. w.r.t. X;
B2. There exists δ > 0 such that Eŵ(X)1+δ <∞;
B3. There exists γ, b1, b2 > 0 such that P(T = t|X = x) ∈ [b1, b2] uniformly over all (x,t) with t ∈ [qαlo

(x) − 2M2 −
2γ, qαlo

(x) + 2M2 + 2γ] ∪ [qαhi
(x)− 2M2 − 2γ, qαhi

(x) + 2M2 + 2γ],
we have:

lim
n→∞

P
(
T ′ ∈ Ĉ2

n(X
′)
)
≥ 1− α− b2(2M2 + γ)− 16M2

(M2 + γ)2b1
.

The proof under (A1) directly follows the proof of Theorem 4.1. Firstly, for a new testing point (X ′, T ′) ∼ PX ×PT |X , we
have

P
(
T ′ ∈ Ĉ2

n (X ′) |X ′
)

=P (T ′ ∈ [q̂αlo
(X ′)− η, q̂αhi

(X ′) + η]|X ′)
=P (max{T ′ − q̂αhi

(X ′) , q̂αlo
(X ′)− T ′} ≤ η|X)

i
≥P (max{T ′ − qαhi

(X ′) , qαlo
(X ′)− T ′} ≤ η −H (X ′) |X ′)

ii
≥P (max{T ′ − qαhi

(X ′) , qαlo
(X ′)− T ′} ≤ −ε−H (X ′) |X ′)− P (η < −ε)

iii
≥P (max{T ′ − qαhi

(X ′) , qαlo
(X ′)− T ′} ≤ −ε−H (X ′) I (H (X ′) ≤ ε) |X ′)− I (H (X ′) > ε)− P (η < −ε) .

(16)

Equation (i) follows from Lemma 6, and Equation (ii) follows from:

P (max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′} ≤ −ε−H (X ′) |X ′)
− P (max{T ′ − q̂αhi

(X ′) , q̂αlo
(X ′)− T ′} ≤ η −H (X ′) |X ′)

≤P (η −H (X ′) < max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′} ≤ −ε−H (X ′) |X ′)
≤P (η −H (X ′) < −ε−H (X ′) |X ′)
=P (η < −ε) .

Equation (iii) can be derived simply based on the discussion on the value of I (H (X ′) ≤ ε).

By Assumption (B3), since −ε−H (X ′) I (H (X ′) ≤ ε) ≤ −2ε, when ε ≤M2 + γ, we have

P (max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′} ≤ −ε−H (X ′) I (H (X ′) ≤ ε) |X ′)
≥P (max{T ′ − qαhi

(X ′) , qαlo
(X ′)− T ′} ≤ 0|X ′)− b2 (ε+H (X ′) I (H (X ′) ≤ ε))

≥P (max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′} ≤ 0|X ′)− b2 (ε+H (X ′))

≥1− α− b2 (ε+H (X ′)) .

(17)
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Combining Eqn 16 with Eqn 17 and taking expectations over X ′, we have:

P
(
T ′ ∈ Ĉ2

n (X ′)
)

≥1− α− b2 (ε+ EH (X ′))− P (H (X ′) > ε)− P (η < −ε)
(i)

≥1− α− b2 (2M2 + γ)− P (η < − (M2 + γ)) .

(18)

The Equation (i) holds by taking ε = M2 + γ. Due to Assumption (B1), we have EH (X ′) ≤M2 and P (H (X ′) > ε) = 0.
Note that ε = M2 + γ does not break the condition of Equation 17.

We next show that limn→∞ P (η < − (M2 + γ)) ≤ 16M2

(M2+γ)2b1
. Firstly, by Lemma 7, we have

lim
n→∞

P (η < − (M2 + γ)) ≤ 16

(M2 + γ)
2
b1
E[ŵ (X)H (X)] ≤ 16M2

(M2 + γ)
2
b1
E[ŵ (X)] =

16M2

(M2 + γ)
2
b1
.

The inequality is due to Assumption (B1) and E[ŵ (X)] = 1.

The proof is done.

Technical Lemmas. In this part, we give some technical lemmas used in the proof. The following Lemma 6 shows that
the difference between non-conformity score under true quantile q and non-conformity score under estimated quantile q̂ is
upper bounded by H (X ′).

Lemma 6 Under notations in Theorem 5.1, we have |max{T ′ − q̂αhi
(X ′) , q̂αlo

(X ′) − T ′} − max{T ′ −
qαhi

(X ′) , qαlo
(X ′)− T ′}| ≤ H (X ′)

Proof. We investigate the results via situations on the operator max.

If max{T ′ − q̂αhi
(X ′) , q̂αlo

(X ′)− T ′} = T ′ − q̂αhi
(X ′) and max{T ′ − qαhi

(X ′) , qαlo
(X ′)− T ′} = T ′ − qαhi

(X ′),
the conclusion follows the definition of H (X ′).

If max{T ′ − q̂αhi
(X ′) , q̂αlo

(X ′)− T ′} = T ′ − q̂αhi
(X ′) and max{T ′ − qαhi

(X ′) , qαlo
(X ′)− T ′} = qαlo

(X ′)− T ′,
we have

max{T ′ − q̂αhi
(X ′) , q̂αlo

(X ′)− T ′} −max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′}
= (T ′ − q̂αhi

(X ′))− (qαlo
(X ′)− T ′)

≤ (T ′ − q̂αhi
(X ′))− (T ′ − qαhi

(X ′))

=qαhi
(X ′)− q̂αhi

(X ′)

≤H (X ′) .

Similarly,

max{T ′ − q̂αhi
(X ′) , q̂αlo

(X ′)− T ′} −max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′}
= (T ′ − q̂αhi

(X ′))− (qαlo
(X ′)− T ′)

≥ (q̂αlo
(X ′)− T ′)− (qαlo

(X ′)− T ′)
=q̂αlo

(X ′)− qαlo
(X ′)

≥−H (X ′) .

Therefore, we have

|max{T ′ − q̂αhi
(X ′) , q̂αlo

(X ′)− T ′} −max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′}| ≤ H (X ′) .

The other two situations are derived similarly.

We next introduce Lemma 7 which provides the upper bounds of the term limn→∞ P (η < −ε).

Lemma 7 Under the assumptions in Theorem 5.1, the following inequality holds.

lim
n→∞

P (η < −ε) ≤ 16

ε2b1
E[ŵ (X)H (X)].
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Proof. By combining Equation (A.10), (A.11), (A.12), (A.13) in Lei & Candès (2020), and apply the Assumption (B2) we
have

lim
n→∞

P (η < −ε) ≤ P

(
n∑
i=1

ŵ (Xi)H (Xi) ≥
ε2b1n

16

)
.

And by Markov inequality, we have

P

(
n∑
i=1

ŵ (Xi)H (Xi) ≥
ε2b1n

16

)
≤ 16

ε2b1n

n∑
i=1

E[ŵ (Xi)H (Xi)] =
16

ε2b1
E[ŵ (X)H (X)].

The proof is done.

A.3. Proof of Theorem 5.2

Theorem 5.1 (Lower Bound) Let ŵ(x) be an estimate of the weight w(x), q̂αlo
(x), q̂αhi

(x) be the quantile estimator
returned by WCCI, and H(X) be defined as Equation 7. Assume that E[ŵ(X)|Ztr] = 1 and E[w(X)] = 1, where all the
expectation operators E are taken over X ∼ PX|∆=1. Denote Ĉ2

n(x) as the output band of Algorithm 2 with n calibration
samples, and denote X ′ as the testing point.

From the weight perspective, under assumptions (A1):

A1. EX|∆=1|ŵ(X)− w(X)| ≤M1,
we have:

lim
n→∞

P
(
T ′ ∈ Ĉ2

n(X ′)
)
≥ 1− α− 1

2
M1.

From the quantile perspective, under assumptions (B1-B3):

B1. H(X) ≤M2 a.s. w.r.t. X;
B2. There exists δ > 0 such that Eŵ(X)1+δ <∞;
B3. There exists γ, b1, b2 > 0 such that P(T = t|X = x) ∈ [b1, b2] uniformly over all (x,t) with t ∈ [qαlo

(x) − 2M2 −
2γ, qαlo

(x) + 2M2 + 2γ] ∪ [qαhi
(x)− 2M2 − 2γ, qαhi

(x) + 2M2 + 2γ],
we have:

lim
n→∞

P
(
T ′ ∈ Ĉ2

n(X
′)
)
≥ 1− α− b2(2M2 + γ)− 16M2

(M2 + γ)2b1
.

We now show the proof of Theorem 5.2. For a new testing point (X ′, T ′) ∼ PX × PT |X , we have

P
(
T ′ ∈ Ĉ2

n (X ′) |X ′
)

=P (T ′ ∈ [q̂αlo
(X ′)− η, q̂αhi

(X ′) + η]|X ′)
=P (max{T ′ − q̂αhi

(X ′) , q̂αlo
(X ′)− T ′} ≤ η|X)

i
≤P (max{T ′ − qαhi

(X ′) , qαlo
(X ′)− T ′} ≤ η +H (X ′) |X ′)

ii
≤P (max{T ′ − qαhi

(X ′) , qαlo
(X ′)− T ′} ≤ ηq,w + ε+H (X ′) |X ′) + P (η − ηq,w > ε)

iii
≤P(max{T ′ − qαhi

(X ′) , qαlo
(X ′)− T ′} ≤ ηq,w + ε

+H (X ′) I (H (X ′) ≤ ε) |X ′) + I (H (X ′) > ε) + P (η − ηq,w > ε) .

(19)

where we denote ηq,w = Quantile
(
1− α;

∑n
i=1 piδV ∗i + p∞δV ∗∞

)
, and obviously, ηq,w = 0 by the definition of the

non-conformity score, where V ∗i is calculated based on qαlo
(·) and qαhi

(·).

Equation (i) follows from Lemma 6, and Equation (ii) follows from:

P (max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′} ≤ η +H (X ′) |X ′)
− P (max{T ′ − q̂αhi

(X ′) , q̂αlo
(X ′)− T ′} ≤ ηq,w + ε+H (X ′) |X ′)

≤P (ηq,w + ε+H (X ′) < max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′} ≤ η +H (X ′) |X ′)
≤P (ηq,w + ε+H (X ′) < η +H (X ′) |X ′)
=P (η − ηq,w > ε) .
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Equation (iii) can be derived simply based on the discussion on the value of I (H (X ′) ≤ ε).

By Assumption (C4), since ε+H (X ′) I (H (X ′) ≤ ε) ≤ 2ε, when ε ≤M2 + γ, we have

lim
n→∞

P (max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′} ≤ ηq,w + ε+H (X ′) I (H (X ′) ≤ ε) |X ′)

≤ lim
n→∞

P (max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′} ≤ ηq,w|X ′) + b2 (ε+H (X ′) I (H (X ′) ≤ ε))

≤ lim
n→∞

P (max{T ′ − qαhi
(X ′) , qαlo

(X ′)− T ′} ≤ 0|X ′) + b2 (ε+H (X ′))

≤1− α+ b2 (ε+H (X ′)) .

(20)

The last inequality is from Lemma 2. Combining Eqn 19 with Eqn 20 and taking expectations over X ′, we have:

lim
n→∞

P
(
T ′ ∈ Ĉ2

n (X ′)
)

≤1− α+ b2 (ε+ EH (X ′)) + P (H (X ′) > ε) + lim
n→∞

P (η − ηq,w > ε) .

By taking ε = M ′2 +M ′1/K, and plugging in Assumption (B1), the above equation is equivalent to

lim
n→∞

P
(
T ′ ∈ Ĉ2

n (X ′)
)
≤ 1− α+ b2 (2M ′2 +M ′1/K) + lim

n→∞
P (η − ηq,w > M ′2 +M ′1/K) . (21)

The left is to show that
lim
n→∞

P (η − ηq,w > M ′2 +M ′1/K) = 0. (22)

First we denote ηq = Quantile
(
1− α;

∑n
i=1 p̂iδV ∗i + p̂∞δV ∗∞

)
where p̂i is the estimator of pi. Equation 22 holds by

applying Lemma 8 and Lemma 9.

The proof is done.

Technical Lemmas. In this part, we give some technical lemmas used in the proof. We first prove the following Lemma 8
which gives an upper bound of |η − ηq|.

Lemma 8 Under assumptions of Theorem 5.2, |η − ηq| ≤M ′2

Proof. Notice that η is the quantile of distribution
∑n
i=1 p̂iδVi

+ p̂∞δV∞ and ηq is the quantile of distribution
∑n
i=1 p̂iδV ∗i +

p̂∞δV ∗∞ , where Vi is calculated based on q̂αhi
, q̂αlo

.

When η = ηq , the conclusion directly follows. When η 6= ηq , notice that the two distribution share the same weight ŵ, there
must exist a V ′ and V ′′ such that

V ′
∗ ≤ η, V ′ ≥ ηq

V ′′
∗ ≥ η, V ′′ ≤ ηq.

This leads to the following two inequalities by Assumption (C2) and Lemma 7.

η − ηq ≥ V ′
∗ − V ′ ≥ −H (X) ≥ −M ′2

η − ηq ≤ V ′′
∗ − V ′′ ≤ H (X) ≤M ′2

(23)

Therefore,
|η − ηq| ≤M ′2.

The proof is done.

We next prove Lemma 9 which provides an upper bound of |ηq − ηq,w|.

Lemma 9 Under assumptions of Theorem 5.2, |ηq − ηq,w| ≤M ′1/K
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Proof. WLOG, assume ηq,w − ηq = ∆ > 0. Denote F (·) =
∑n
i=1 piδV ∗i + p∞δV ∗∞ and G (·) =

∑n
i=1 p̂iδV ∗i + p̂∞δV ∗∞ .

By the definition of ηq, ηq,w, we have
F (ηq,w) = G (ηq) = 1− α.

Therefore, on the one hand, by Assumption (C1) and Assumption Ew (X) = Eŵ (X) = 1

F (ηq,w)− F (ηq)

=G (ηq)− F (ηq)

≤ sup
t
G (ηq)− F (ηq)

≤ sup
S
|
∑
i∈S

w (Xi)− ŵ (xI) |

≤M ′1.

(24)

On the other hand, by Assumption (C3)

F (ηq,w)− F (ηq)

=F (ηq + ∆)− F (ηq)

≥K∆.

(25)

Combining Equation 24 and Equation 25 leads to

ηq,w − ηq ≤M ′1/K.

The conclusion directly follows.

Combining Lemma 8 and Lemma 9 leads to the upper bound of |η − ηq,w|.

B. Supplemental Experiment Results
All codes are available at https://github.com/thutzr/Cox.

B.1. Experiment Process

Data Pre-processing. There are both numerical features and categorical features in our datasets. We normalize numerical
features on both training set and test set.

Process. In each run, the experiment runs as follows:

• We first randomly split 80% data as the training set while the rest is splitted randomly into calibration set and test set.

• Following (Chen, 2020), we randomly sample 100 data points, which are used to construct prediction intervals, from
test set. Denote these points as Xcenters.

• For each point x0 ∈ Xcenters:

– We sample 100 data points in test set with respect to sampling probability proportional to K(x, x0), where K(·)
is the Gaussian kernel.

– For these 100 test points, we use algorithm 1 and 2 to calculate the predicted survival interval with respect to the
given confidence level α and check if the true survival time of each point is included in the predicted interval.
The fraction of points that are covered in the calculated confidence interval is the empirical coverage. And the
difference of upper confidence band and its lower counterpart is interval length. In our experiments, the upper
interval band is likely to be infinity sometimes. We truncate those upper bands to the maximum duration of the
according dataset.

We run the above procedure for different confidence level αs. Results show that our algorithms are robust and effective for
different αs. In our experiments, α is chosen to be 0.6, 0.7, 0.8, 0.9, 0.95,respectively.

https://github.com/thutzr/Cox
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Table 3. Model Comparison on METABRIC
Method Total Censored Uncensored Interval Length

Mean Std. Mean Std. Mean Std. Mean Std.
Cox Reg. 0.996 0.003 / / / / 319.84 2.78

Random Survival Forest (Ishwaran et al., 2008) 0.997 0.002 / / / / 341.73 4.82
Nnet-Survival (Gensheimer & Narasimhan, 2019) 0.978 0.008 0.554 0.017 0.980 0.003 19.85 0.34

MTLR (Yu et al., 2011) 0.990 0.005 0.990 0.008 0.990 0.005 306.08 6.44
CoxPH (Katzman et al., 2018) 0.995 0.003 0.994 0.005 0.995 0.005 340.20 6.85
CoxCC (Katzman et al., 2018) 0.996 0.004 0.994 0.005 0.998 0.004 344.26 6.93

CoxPH+WCCI 0.977 0.011 0.948 0.021 0.985 0.009 334.14 5.33
CoxPH+T-SCI 0.986 0.009 0.970 0.016 0.989 0.008 340.67 2.91
CoxCC+WCCI 0.973 0.014 0.942 0.027 0.980 0.012 334.28 5.36
CoxCC+T-SCI 0.986 0.008 0.971 0.015 0.990 0.007 340.80 2.98

CoxPH+WCCI(unweigted) 0.946 0.031 0.910 0.055 0.972 0.021 254.56 8.38
CoxPH+T-SCI(unweighted) 0.958 0.063 0.932 0.063 0.977 0.021 261.18 9.26
CoxCC+WCCI(unweigted) 0.946 0.031 0.904 0.053 0.968 0.019 254.35 8.27
CoxCC+T-SCI(unweighted) 0.958 0.063 0.926 0.061 0.975 0.022 261.17 8.87

Kernel (Chen, 2020) 0.981 0.025 0.997 0.010 0.971 0.038 337.66 20.39

(a) SUPPORT (b) METABRIC

Figure 7. Empirical Coverage of Censored and Uncensored Data

B.2. Model and Hyperparameters

We use pycox and PyTorch to implement CoxCC,CoxPH and neural network model respectively. Then we combine them
together to Cox-MLP models. We implement a neural network model with three hidden layers, where each layer has 32
hidden nodes. Between each two layers, we use ReLU as the activation function. We apply batch normalization and dropout
which drop 10% nodes at one epoch. Adam is chosen to be the optimizer. In the training process, we feed 80% data as
training data and the rest as validation data. Note that here the total data set (training data + validation data) is the training
data mentioned in the main article. Each batch contains 128 data points. We train the network for 512 epochs and the trained
model is used as the MLP part in our Cox-MLP model.

B.3. Supplemental Results

All the empirical coverage and predicted interval length of different models are listed in Table 1 (Dataset: RRNLNPH)
Table 2 (Dataset: SUPPORT) and Table 3 (Dataset: METABRIC). The results in Table 2 and Table 3 are similar to those of
RRNLNPH.

Prediction on censored data and uncensored data are compared in Figure 7. Performance on censored data are much better
than that of uncensored data. The standard deviation is also larger on uncensored data than censored data. This is consistent
with our intuition as we do not have exact information of censored data.
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(a) SUPPORT (b) METABRIC

Figure 8. Empirical Coverage of Weighted and Unweighted Models

Comparison on weighted and unweighted models are shown in Figure 8. Performance of unweighted models are much
weaker than weighted models. This shows the effectiveness of weighted conformal inference.

We also compare performance on different α’s on both SUPPORT and METABRIC. Results similar with RRNLNPH are
shown in Figure 9, Figure 10, and Figure 11. Note that we split the weighted and unweighted version to make the figure
more clear. The empirical coverage of our algorithms exceed the given confidence level and the standard deviation of
prediction is relatively low.

Notice that in Table 2 and Table 3, censored coverage in CoxPH and CoxCC performs well (around 0.992 in Table 2 and
0.004 in Table 3). However, we emphasize that any coverage type could happen due to a lack of theoretical guarantee
(extremely large, extremely small, or highly unbalanced, etc.). The censored coverage of CoxPH happens to be large (0.992)
in Table 2 (dataset: SUPPORT) and Table 3 (dataset: METABRIC), just like it happens to be small in Table 1 (0.554, dataset:
RRNLNPH). As a comparison, our newly proposed method (T-SCI) is guaranteed to return a nearly perfect guarantee (the
whole coverages are larger than 0.95), which is more stable.

C. Supplementary Notes
We make some supplementary notes in this section.

C.1. Stability of Non-conformity Score

We state in Section 4 that the non-conformity score is usually more stable when it is single-peak. A multi-peak situation
implies that samples with different covariate may have different coverage, namely,

P(T ∈ Cn(X)|X = x1) 6= P(T ∈ Cn(X)|X = x2),

where x1, x2 belong to different peaks. Therefore, we describe the above formula as “unstable” since it provides distinct
coverage for distinct groups, although the overall coverage (for the population) is still 1− α.

The multi-peak phenomenon comes from the fact that we calculate the 1 − α quantile of Vi based on all samples. For
example, consider a two-peak distribution where the first group has 1 − α populations. Then the algorithm returns zero
coverage (probability equal to zero) for the second group and returns one coverage (probability equal to one) for the first
group, which causes instability.
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C.2. The Effect of Censoring

Figure 1 illustrates that ignoring and deleting censoring will indeed cause bias and inefficiency. We may also consider a
more straightforward case to calculate the sample mean of a dataset. However, the dataset contains censoring issues, where
we clip the data to a constant C when the value is larger than C. If we ignore the censoring phenomenon, the new sample
mean is smaller than the expected value, leading to bias. If we delete the censoring phenomenon, the new sample mean
is also smaller since we delete samples with large values (those deleted samples are always larger than the constant C).
Besides, it leads to inefficiency since we use fewer samples during the inference.

C.3. Strong Ignorability Assumption

Strong ignorability assumption stands for
T ⊥∆ | X.

Note that strong ignorability assumption directly leads to the fact:

PT |X,∆ = PT |X .

since PT |X,∆ = PT,∆|X/P∆|X = PT |X . Therefore, we can apply weighted conformal inference which requires a covariate
shift. A similar idea could be found in Lei & Candès (2020).
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(a) Coverage Comparison(weighted) (b) Coverage Comparison(unweighted)

(c) Interval Length Comparison(weighted) (d) Interval Length Comparison(unweighted)

Figure 9. Different Model’s Empirical Coverage of Different α (RRNLNPH).
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(a) Coverage Comparison(weighted) (b) Coverage Comparison(unweighted)

(c) Interval Length Comparison(weighted) (d) Interval Length Comparison(unweighted)

Figure 10. Different Model’s Empirical Coverage of Different α (SUPPORT)
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(a) Coverage Comparison(weighted) (b) Coverage Comparison(unweighted)

(c) Interval Length Comparison(weighted) (d) Interval Length Comparison(unweighted)

Figure 11. Different Model’s Empirical Coverage of Different α (METABRIC)


