T-SCI: A Two-Stage Conformal Inference
Algorithm with Guaranteed Coverage for Cox-MLP

Jiaye Teng *!

Abstract

It is challenging to deal with censored data, where
we only have access to the incomplete information
of survival time instead of its exact value. Fortu-
nately, under linear predictor assumption, people
can obtain guaranteed coverage for the confidence
band of survival time using methods like Cox Re-
gression. However, when relaxing the linear as-
sumption with neural networks (e.g., Cox-MLP
(Katzman et al., 2018; Kvamme et al., 2019)),
we lose the guaranteed coverage. To recover the
guaranteed coverage without linear assumption,
we propose two algorithms based on conformal
inference under strong ignorability assumption.
In the first algorithm WCCI, we revisit weighted
conformal inference and introduce a new non-
conformity score based on partial likelihood. We
then propose a two-stage algorithm 7-SCI, where
we run WCCI in the first stage and apply quan-
tile conformal inference to calibrate the results in
the second stage. Theoretical analysis shows that
T-SCI returns guaranteed coverage under milder
assumptions than WCCI. We conduct extensive
experiments on synthetic data and real data using
different methods, which validate our analysis.

1. Introduction

In survival analysis, censoring indicates that the value of
interest (survival time) is only partially known (e.g., the
information can be ¢ > 5 instead of ¢ = 7). It is common
and inevitable in numerous fields, including medical care
(Robins & Finkelstein, 2000; Klein & Moeschberger, 2006),
astronomy (Feldmann, 2019), finance (Bellotti & Crook,
2009), etc. It is an annoying issue since ignoring or deleting
censored data causes bias and inefficiency (Nakagawa &
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Figure 1. Bias in censoring. Ignoring or deleting censored data
(light green points) causes bias compared to the ground truth linear
approximation (red line), where the linear approximation under
censoring (black line) does not overlap the ground truth (red line).

Freckleton, 2008), as illustrated in Figure 1.

When dealing with censored data, we usually focus on the
confidence band of the survival time since confidence bands
give a more conservative estimation than point estimation.
Under linear assumptions on covariate effect (See Assump-
tion 1), one can derive the survival time distribution using
Cox regression by asymptotic normality of linear coefficient.
It further leads to guaranteed coverage, meaning that sur-
vival time provably falls into the confidence band with high
probability (larger than the given confidence level).

However, the linear assumption broadly harms its perfor-
mances and restricts its applications. After all, the reality is
not always entirely linear. To relax the linear assumption,
Katzman et al. (2018); Kvamme et al. (2019) applies neural
networks into Cox regression (Cox-MLP), yielding the best
performance in terms of some metrics such as Brier score
and binomial log-likelihood. Unfortunately, the confidence
band in Cox-MLP has no guaranteed coverage since one
cannot expect neural network converges to the expected
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function, not to mention the asymptotic normality.

In general, we can use conformal inference to recover the
confidence band with guaranteed coverage by splitting the
dataset into training and calibration set (Vovk et al., 2005;
Nouretdinov et al., 2011; Lei & Candes, 2020). One of
its advantages is that conformal inference does not harm
the model performance since it is post-hoc. Therefore, we
propose to apply conformal inference into Cox-MLP.

When applying conformal inference into Cox-MLP, there
are several problems to be solved. Firstly, Cox regression
does not return survival time explicitly, which requires a
modification of the non-conformity score. Secondly, censor-
ing causes covariate shift under strong ignorability, meaning
that the covariate distribution differs in censored and uncen-
sored data. Therefore, we cannot apply conformal inference
directly. Thirdly, we need to consider the estimation error
and provide theoretical guarantees for the coverage.

In this paper, we propose a new non-conformity score un-
der strong ignorability assumption (which is a standard as-
sumption in weighted conformal inference. We refer to
more details in Section 3) based on the partial likelihood
of Cox regression. This non-conformity score does not
need an explicit estimation of the survival time. We then
apply weighted conformal censoring inference (WCCI), a
weighted conformal inference based on this non-conformity
score inspired by Tibshirani & Foygel (2019) to deal with
the covariate shift problem. Furthermore, inspired by Ro-
mano et al. (2019), we provide a two-stage conformal in-
ference (T-SCI) which returns “nearly perfect” coverage,
meaning that the coverage has not only guaranteed lower
bound but also upper bound. Inspired by (Lei & Candes,
2020), we provide theoretical guarantees for both WCCI
and T-SCI algorithms.

‘We summarize our contributions as follows:

* We provide coverage for Cox-MLP in WCCI based on
weighted conformal inference frameworks by introduc-
ing a new non-conformity score.

» We further propose a T-SCI algorithm based on the
quantile conformal inference framework. We show
that T-SCI returns nearly perfect guaranteed coverage,
namely, theoretical guarantees for coverage’s lower
and upper bound.

* We conduct extensive experiments on both synthetic
data and real-world data, showing that the T-SCI-based
algorithm outperforms other approaches in terms of
empirical coverage and interval length.

2. Related work

Censored data analysis. An early analysis of censored
data can be dating back to the famous Kaplan—Meier esti-

mator Kaplan & Meier (1958). However, this approach is
valid only when all patients have the same survival func-
tion. Therefore, several individual-level analysis is pro-
posed, such as proportional hazard model (Breslow, 1975),
accelerated failure time model (Wei, 1992) and Tree-based
models (Zhu & Kosorok, 2012; Li & Bradic, 2020).

On the other hand, researchers apply machine learning tech-
niques to deal with censored data (Wang et al., 2019). For
example, random survival forests (Ishwaran et al., 2008)
train random forests using the log-rank test as the splitting
criterion. Moreover, DeepHit (Lee et al., 2018) apply neu-
ral networks to estimate the probability mass function and
introduce a ranking loss. This paper mainly focuses on the
Cox-based model, one of the famous proportional hazard
model branches.

Cox regression was first proposed in Cox (1972), which
is a semi-parametric method focusing on estimating the
hazard function. Among all its extensions, Akritas et al.
(1995) first proposed using a one-hidden layer perceptron
to replace the linear predictor of the coefficient. However,
it generally failed mainly due to the low expressivity of the
one-hidden layer perceptron (Xiang et al., 2000; Sargent,
2001). Therefore, Katzman et al. (2018) proposed to use the
multi-layer perceptron instead of the one-layer perceptron
(DeepSurv). Furthermore, (Kvamme et al., 2019) generalize
the idea to the non-proportional hazard settings. In this
paper, we unify their names as Cox-MLP when the context
is clear. However, this line of work lacks a theoretical
guarantee. This paper tries to fill this blank and propose the
first guaranteed coverage of the survival time.

Conformal inference was pioneered by Vladimir Vovk and
his collaborators [e.g., Vovk et al. (2005); Shafer & Vovk
(2008); Nouretdinov et al. (2011)], focusing on the infer-
ence of response variables by splitting a training fold and
a calibration fold. There are several variations of confor-
mal inference. For example, weighted conformal inference
(Tibshirani & Foygel, 2019) focus on dealing with the co-
variate shift phenomenon, and quantile conformal inference
(Romano et al., 2019) returns coverage with not only an
upper bound but also the lower bound guaranteed coverage.
Conformal inference, as well as its variations, are widely
studied and used in Lei et al. (2013); Lei & Wasserman
(2014); Lei et al. (2018); Barber et al. (2019b); Sadinle et al.
(2019); Romano et al. (2020); Angelopoulos et al. (2020).

Recently, Lei & Candes (2020) apply conformal inference
under counterfactual settings and derive a double robust
guarantee for their proposed methods. Our work is partially
inspired by Lei & Candes (2020) but considers a different
censoring setting. Furthermore, we propose a different algo-
rithm and derive a “nearly perfect” guaranteed coverage. A
very recent work (Candes et al., 2021) focuses on a similar
censoring scenario. Unlike our approach (T-SCI), Candes
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et al. (2021) relax the strong ignorability assumption but re-
quire all information of censoring time to obtain confidence
bands. We emphasize that it is still an open problem on de-
riving guaranteed confidence bands under general censoring
scenarios.

There are some approaches which apply conformal infer-
ence under censoring settings. For example, Bostr et al.
(2017); Bostrom et al. (2019) apply conformal inference
into random survival forests, and Chen (2020) derive the
confidence band for DeepHit. However, one cannot apply
these approaches to Cox-based models since Cox-based
models do not explicitly return a predicted survival time.

3. Preliminary

Denote X ~ Px C RY the covariate, T ~ Pr C R the
survival time, and C' ~ P¢ C R the censoring time. Denote
the joint distribution by Px ¢, its marginal distribution by
Prx, and its conditional distribution by Pr|x. The survival
time cannot be observed when it is larger than the censoring
time. Therefore, observed time is the minimum of censoring
time and survival time. Let Y € R be the observed time
with uncensoring indicator A € R, then

Y = min{T, C}, A = H{TSC}

Denote the dataset by Z = {X;,Y;, A, };cz where we can
only access the covariate, the observed time, and the censor-
ing indicator. However, the value of interest is the survival
time 7. Therefore, the censored data is incomplete due to
the information loss when A = 0. We next introduce how
censoring happens, namely, the censoring mechanism.

Censoring Mechanism. In this paper, we consider the cen-
soring regimes with strong ignorability assumption, namely
T 1A | X. We will further discuss the strong ignorability
assumption in Appendix C.

However, note that there can be covariate shift under such
censoring regimes, namely, the distributions of covariate X
under censoring and non-censoring are different

(X|A=1)4(X|A=0).

We refer to Figure 2 for an illustration. Usually, we estimate
the distribution of the survival time via the dataset D by Cox
regression. We denote Fp(t) the survival time’s CDF.

Cox Regression. In Cox regression, we focus on two impor-
tant terms survival function St(t) and cumulative hazard
function Ar(t), as defined in Equation 1. We emphasize
that they are defined with respect to the survival time 7T’
instead of the observed time Y.

Sr(t) &1 — Fr(t), Ar(t) £ —log Sr(t). (1)

uncensored
—— censored

Density

Covariates

Figure 2. Covariate shift illustration. We show distributions of
z1 with (blue) and without (green) censoring under simulation
data. Obviously, censored and uncensored data have different
distributions, i.e. covariate shift'.

When the context is clear, we omit the subscript 7' and
denote the above function by F(t), S(t), and A(t), respec-
tively. Cox-based models usually require proportional haz-
ard assumption, formally stated in Assumption 1.

Assumption 1 (Proportional Hazard) For each individ-
ual i, we assume

Aslt: X3) = Ao(t) exp (9(Xy) @)

where A (t) is the baseline cumulative hazard function, and
9(X,;) is the individual effect named as predictor.

Remark: There are several non-proportional hazard Cox
models which replace g(z;) with g(x;,t) (e.g., Kvamme
et al. (2019)). Although our proposed algorithm can be
directly generalized to non-proportional settings, we only
consider proportional hazard models for clarity in this paper.

Specifically, Cox regression solves the case when the pre-
dictor g(-) is linear by maximizing partial log-likelihood
I(g), defined in Equation 3.

; 3

(g)2 ) log

thj:l

> explg(Xp) — g(X;)]

kER(T;)

where R(T)) is the set of all individuals at risk at time T, —
(the observed time is no less than 75), and g(X;) = XJ-T,B
is the linear predictor.

For the case when g(-) is not linear, Lee et al. (2018) and
Kvamme et al. (2019) propose Cox-MLP which uses neural
networks to replace the linear predictor g(X;). Concretely,
they use the negative partial log-likelihood as the training
loss, with a penalty on the complexity of g(+).

The simulation dataset is from Kvamme et al. (2019)
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Conformal inference. Conformal inference does post-hoc
estimation based on the splitting of training and calibration
fold. One trains a model g using the training fold and then
calculates the non-conformity score V; on the calibration
fold. A commonly used non-conformity score is the absolute
error V; = |T; — u(X;)| where (X, T;) is the iy, calibration
sample. When designing the non-conformity score, one of
the most important characteristics is exchangeability.

Assumption 2 (Exchangeability) Forn > 1 random vari-
ables V1, ..., Vy,, they satisfy exchangeability if
d
Vi, s Vo) = (Veays - Vamy)
for any permutation 7 : [n] — [n], where 2 means they
have the same distribution, and [n] = {1,2,...,n}.

Exchangeability is weaker than independence since indepen-
dence implies exchangeability. Under the exchangeability
assumption on the non-conformity score, we reach a the-
oretical guarantee of the confidence band. In this paper,
we mainly focus on two varieties of conformal inference,
weighted conformal inference (to deal with covariate shift,
Lemma 1) and quantile conformal inference (to return a
nearly perfectly guarantee, Lemma 2), respectively.

Lemma 1 (WCI, Tibshirani & Foygel (2019) Theorem 2)
Assume that the data (X;,T;),i € [n + 1] are weighted
exchangeable with weight w, . .., Wy 41, then the returned
confidence band 6n has guaranteed coverage:

P(Tn_;,_l S én(Xn_;,_l)) >1—a.

Lemma 2 (QCI, Romano et al. (2019) Theorem 1)
Assume that the data (X;,T;),1 € [n+ 1] are exchangeable,
and the non-conformity scores are almost surely distinct,
then the returned confidence band C, is nearly perfectly
calibrated:

~ 1
1—-a<P(T,.1€C,(X, <l-a4+ ————,
= ( +1 ( +1)) = |Ica|+1

where L., denotes the number of calibration samples.

Remark. One may wonder why not use S(t) to return the
confidence band in Cox-MLP. People usually do so in prac-
tice, but the confidence band has no theoretical guarantee in
Cox-MLP. To derive the theoretical guarantee under S(t),
one needs to show the convergence of the predictor g(Xj;).
However, it cannot be proved unless the generalization guar-
antee of neural networks is obtained.

4. Confidence band for the Survival Time

In this section, we derive the confidence band for the sur-
vival time. We start by analyzing the basic properties and
the critical ideas before proposing the algorithm.

1.0 1

0.81

Density

0.44

0.21

0.0 . . ; .
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Nonconformity Score

Figure 3. Non-conformity score distribution. We show the dis-

tribution of the non-conformity score?, which has a well-shaped

single peak (more stable, see Appendix C for more details). The
dark blue line is the KDE approximation.

The non-conformity score. In traditional conformal infer-
ence, the most commonly used non-conformity score is the
absolute form V; = |T; — ﬁ| That is because we can di-
rectly derive the confidence band of T; based on the band
of the non-conformity score V;. Unfortunately, it is hard
to compute T; in Cox-based models since they output the
survival hazard function instead of the survival time, which
requires a modification of the non-conformity score.

Inspired by the standard Cox regression, we introduce a
non-conformity score based on partial likelihood. Specifi-
cally, we use the sample partial log-likelihood as the non-
conformity score (shown in Equation 4). Compared to the
absolute non-conformity score, the newly proposed non-
conformity score V; = V,(X;, T;) do not need to calculate
T explicitly. Figure 3 illustrates the distribution of the
non-conformity score using a simulation dataset.

Vi=log | Y explg(Xp)—g(X)]l|. @&

kER(T;)

The incomplete data. Compared to the i.i.d. (independent
and identically distributed) data, censored data is incomplete.
Notice that we can only calculate the non-conformity scores
of the uncensored data in Equation 4 since we cannot obtain
the exact value of T} of censored data. As a result, the
returned confidence band is guaranteed under uncensored
distribution Px|a—1. However, as mentioned before, there
might be a distribution shift between censored data and
uncensored data, leading to the requirement of weighted
conformal inference (Tibshirani & Foygel, 2019).

In weighted conformal inference, one needs to calculate the

The simulation dataset is from Kvamme et al. (2019)
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Algorithm 1 WCCI: Weighted Conformal Censoring Inference

Input: Level o
Input: data Z = (X,,Y;, A;)iez, testing point X’

Input: function @ (x; D) to fit the weight function at x using D as data

[

. Randomly split Z into a training fold Z;, £ (X;,Y;, A;)iez,, and a calibration fold Z,, £ (X,;,Y;, A)iez.,
. Use Z;,. to train g(+) to estimate the predictor function

. For each i € Z.,, with A; = 1, compute the non-conformity score V; = 10g(3_.c p(1)nz,, €XPI(Xk) — §(Xi)])

ﬁ}(X/ ;Ztv‘)

. Calculate the normalized weights p; = =
1€ZLcq

2
3
4. For each i € 7, with A; = 1, compute the weight W; = @(X;; Z4,)
5
6

Wi - —
Wit o(X72,) Ad Poo = S5z

. Calculate the (1 — «)-th quantile Q1 _,, of the distribution Ziezm Di0v; + Dooloo

]

Output: C'(X’) = [0, T*(X")].

. Calculate T%(X") as the smallest value such that its conformity score V"’ (dependent on 7% (X)) is larger than Q1 _,,

weight w based on w(x), where

 dPx(x)
™) = dPxja=1(x) - ©

Intuitively, w(z) helps transfer the guarantee over Px|a—1
to Px. In the following of the paper, we use the regularized
weight p; in the algorithm, namely

w(X;)
dier., w(X;) +w(X)’

pi =

where we denote X; as the samples from the calibration
fold and X’ as the testing point.

Exchangeablility. In conformal inference, we assume that
the non-conformity score satisfies exchangeablility (See As-
sumption 2). However, as shown in Equation 4, there is
a summation term in the non-conformity score, where we
need to sum up all the samples at risk at time 7T’ —. Unfortu-
nately, it breaks the exchangeablility when we use the at-risk
samples in the calibration fold. As an alternative, we use
the at-risk samples in the training fold. The non-conformity
scores in the calibration fold V;, ¢ € [n] then satisfies ex-
changeablility given the training fold (See Equation 6).

4

Viyeo s Vi | D) £ (Vagays - oo Vany | D)y (6)

with arbitrary permutation 7.

The reconstruction of confidence band. Based on the non-
conformity score proposed in Equation 4, we can reconstruct
the confidence band for the survival time. We remark that
we calculate the one-sided band [0, T%(X")] although the
two-sided band directly follows. For a new sample X', we
first calculate the (1 — «) quantile of (weighted) distribution
of the non-conformity score, denoted as Q1. We then
calculate the smallest 7(X") that makes its non-conformity

score V' = V4 (X', T') larger than Q;_,,, formally,

Q1_o = Quantile <1 — a, Z inZ)

1€Zcq
THX') = inf{T: Vy(X',T) > Q1_a} .

Algorithm. Based on the discussions above, we conclude
our algorithm in Algorithm 1. In training process, we use
training fold to train the estimated predictor g(X) (defined
in Equation 2) and calculate the weight function (defined in
Equation 5). We then use calibration fold to calculate the
non-conformity score. We finally construct confidence band
[0, T"(X")] for a given testing point X".

Robustness on w. The weighted conformal inference has
guaranteed coverage under the true weight w(x) as shown
in Lemma 1. However, we can only obtain its estimator
w(z) in practice. In the following Theorem 4.1, we prove
how the estimation influences the coverage. Note that as
lim|z,, |00 [W(2) — w(x)| — 0, the coverage can be prov-
ably larger than 1 — «.

Theorem 4.1 (Provable Guarantee) Ler w(x) be an esti-
mate of the weight w(x). Assume that E[w(X)|Z;,] = 1
and Elw(X)] = 1. Denote C1(x) as the output band of
Algorithm 1 with n calibration samples, then for a new data
X', its corresponding survival time satisfies

R 1
lim P (T’ e c}L(X’)) >1-a— SEb(X) - w(X)|,
n—oo

where the probability P on the left hand side is taken over
(X', T") ~ Px x Pr|x, and all the expectation operators
E are taken over X ~ Px|a=1-

Theorem 4.1 proves the lower bound for WCCI. However, it
is insufficient to derive the upper bound under the weighted
conformal inference framework. To derive the upper bound,
we propose the algorithm T-SCI in the next section.



T-SCI: A Two-Stage Conformal Inference Algorithm with Guaranteed Coverage for Cox-MLP

Algorithm 2 T-SCI: Two-Stage Conformal Inference

Input: Level o
Input:
Input:

Input:

additional data Z.,2 = (X;, Y3, A;)iez..,, testing point X’
First-stage band [Ga,, (X'; Ztr, Zea1)s Gan, (X5 Ziry Zea1)] output from Algorithm 13
function w(x; D) to fit the weight function at x using D as data

1: Foreach i € Z,42 with A; = 1, compute the non-conformity score V; = max{qa,, (Xi; Ztr) — T3, Ti — G, (X5 Zir)
2: Foreach i € Z.40 with A; = 1, compute the weight W; = w(X;; Z4,.)

ﬁ}(X/ ;Ztv‘)

3: Calculate the normalized weights p; = s~ W%"w( X2,y d Poo = 5=
rezon Wi Zor

ieToy Wit (X' 2er)

4: Calculate 7 as the (1 — «)-th quantile of the distribution } ;. pidv; + Poocloo
Olltpllt: 02 (X/) = [Cjam(X/; Zt'm anl) -, (jahi (X/; Ztra anl) + 77]

5. T-SCI: Improved Estimation

In the previous section, we propose WCCI, which has lower
bound coverage guarantees. However, for better data effi-
ciency, we want not only lower bound but also upper bounds.
To reach the goal, we propose a two-stage algorithm T-SCI,
which returns nearly perfect coverage.

The intuition is from Lemma 2, stating that the quantile
conformal inference (QCI) returns a nearly perfect guar-
antee. Inspired by Lemma 2, we first use Algorithm 1 to
return a temporal confidence band and then apply Quantile
Conformal Inference to modify this band. We summarize
the whole algorithm in Algorithm 2.

Remark 1. To apply T-SCI in practice, we split the dataset
into Zy,, Z.q1 and Z.4o. We first apply Algorithm 1 with
Zr and Z.,1 and return a confidence band. We then do
calibration in Algorithm 2 with Z.,5.

Remark 2. In Algorithm 2, we modify the conformal score
to be the absolute form again for clarity, since we have
already derived an interval estimator of 7" in Algorithm 1.

Note that there are two conformal inference procedures in
Algorithm 2. When the context is clear, the weight function
w(z) and the non-conformity score V; refers to those in the
second conformal inference. Before stating the theorem, we
denote H (X)) to measure how well the quantile estimators
Goo (X)) oy (X)) are.

H(X) = max{|§a;, (X) = qau, (X)), [Gan; (X) = qan; (X) |}

(7
We next show in Theorem 5.1 that Algorithm 2 returns
a guaranteed coverage either the weight or the temporal
confidence band is estimated well.

Theorem 5.1 (Lower Bound) Let w(x) be an estimate of
the weight w(x), u,, (X)), 4a,,, () be the quantile estimator
returned by WCCI, and H(X) be defined as Equation 7.
Assume that B[ (X )| 2] = 1 and E[w(X)] = 1, where all
the expectation operators E are taken over X ~ Px|a=1.

3We use the two-sided band here for generality, and the one-
sided band directly follows.

Denote C2(x) as the output band of Algorithm 2 with n
calibration samples, and denote X' as the testing point.

From the weight perspective, under assumptions (Al):
Al. Ex‘Azll’UAJ(X) — U}(X)‘ S M17
we have:

) 1
lim P (T’ c cﬁ(x’)) >1-a- M.

n—oo

From the quantile perspective, under assumptions (B1-B3):

Bl. H(X) < Ms a.s. wrt. X;

B2. There exists § > 0 such that Bab(X)'*9 < oo;

B3. There exists y,b1,ba > 0 such that P(T = t| X = x) €
[b1, ba] uniformly over all (x,t) with t € [qq,,(x) — 2Ms —
29, aq, () +2Mo + 29 U [qay,; () —2M2 =27, oy, (2) +

2M2+2’y];
we have:
. 16 M-
. / 2 ’ >1—a— 772
Jim P (T € C2X1) 2 1-a-ba@Mat )~ (i,

Theorem 5.1 demonstrates that when M7 — 0 or Mo,y —
0 as | 2| — 0, the confidence band has guaranteed cover-
age with lower bound 1 — o. Compared to Theorem 4.1,
Theorem 5.1 is doubly robust since the coverage is guaran-
teed when either (A1) or (B1-B3) holds. We next prove the
upper bound in Theorem 5.2.

Theorem 5.2 (Upper Bound) Let 1 (x) be an estimate of
the weight w(x), a,, (%), da,,, () be the quantile estimator
returned by WCCI, and H(X) be defined as Equation 7.
Assume that E[w(X)| 2] = Land E[w(X)] = 1, where all
the expectation operators | are taken over X ~ Px|a=1.
Let Fy £ Ziezm Pidv, + Poodoo be CDF, and assume V;
has no ties. Denote C2 () as the output band of Algorithm 2
with n calibration samples, and X' as the testing point.
Under assumptions (C1-C4):

CL. VS C Zeaz, | 3 ics(w(Xi) — 0(X5))| < Mj;

C2. H(X) < M} as. wrt. X;

C3. Fy(t+ L) — Fy(t) > KL forallt, L;

C4. there exists by,ba > 0 such that P(T = t|X =
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Table 1. Performance of Different Models on RRNLNPH.

Method Total Censored Uncensored  Interval Length
Mean Std. Mean Std. Mean Std. Mean Std.
Cox Reg. 0.832  0.008 / / / / 22.08 0.23
Random Survival Forest (Ishwaran et al., 2008) 0.948 0.006 / / / / 16.39  0.22
Nnet-Survival (Gensheimer & Narasimhan, 2019) 0.834 0.007 0.560 0.016 0.982 0.005 20.11 0.37
MTLR (Yu et al., 2011) 0.830 0.008 0.554 0.017 0.980 0.003 19.85 0.34
CoxPH (Katzman et al., 2018) 0.829 0.008 0.554 0.016 0.978 0.004 19,65 0.21
CoxCC (Kvamme et al., 2019) 0.830 0.008 0.556 0.016 0.975 0.003 20.17 0.24
CoxPH+WCCI 0912 0.03 0.854 0.047 0.949 0.028 21.59 0.90
CoxPH+T-SCI 0.974 0.009 0.947 0.018 0994 0.005 29.85 0.68
CoxCC+WCCI 0.919 0.03 0.862 0.043 0.955 0.026 21.55 1.27
CoxCC+T-SCI 0.974 0.009 0.946 0.017 0.995 0.004 29.62 0.57
CoxPH+WCClI(unweigted) 0.907 0.020 0.830 0.049 0.949 0.006 22.06 1.27
CoxPH+T-SCl(unweighted) 0.950 0.018 0.875 0.049 0.990 0.012 27.72 3.13
CoxCC+WCCI(unweigted) 0.941 0.029 0.815 0.029 0948 0.009 2257 0.70
CoxCC+T-SCI(unweighted) 0.955 0.020 0.877 0.048 0.992 0.007 28.92 1.04

Kernel (Chen, 2020) 0.951 0.024 0.858 0.093 0.993 0.014 51.63 3292

x) € [b1, be] uniformly over all (x,t) with t € [qq,,(x) —
75 oy, (ZC) + T] U [qah,q‘, (x) — o, (‘r) + ’I"], where 1 =
2MY 4+ 2M7 /K We have

My

lim P (7€ C2(X)) < 1—a+ba(205+ L),

n—oo

Theorem 5.2 demonstrates that when the weight function
w(z) and the quantile function §q,, (), §a,,(x) are esti-
mated well (C1-C2), the returned coverage T-SCI has a
lower bound guarantee. Combining Theorem 5.1 and Theo-
rem 5.2 leads to a “nearly perfect” guaranteed coverage for
T-SCIL

6. Experiments

This section aims at verifying some key arguments: (1) T-
SCI returns valid coverage with small length interval; (2)
Weight plays an essential role in the algorithm; (3) Cen-
soring is more challenging than uncensoring settings. The
results support these arguments both in synthetic data and
real-world data, see Table 1 and 2.

6.1. Setup

Datasets and Environment. We conduct extensive exper-
iments to test the efficiency of the algorithm. We use one
synthetic dataset RRNLNPH (from Kvamme et al. (2019))
and two real-world datasets, METABRIC and SUPPORT
(See Appendix B for more details). For each dataset, we
test several baseline algorithms along with our proposed
algorithms. In each run, 80% data are randomly sampled
as the training data, and the two halves of the rest are ran-
domly split as calibration data and test data. We run the

experiments 100 times for each algorithm. Moreover, we
collect the results under different as.

Algorithms. We choose the linear Cox regression (labeled
as Cox Reg.) as a baseline. Besides, we conduct CoxPH
(Katzman et al., 2018) and CoxCC (Kvamme et al., 2019)
(both belong to Cox-MLP) using S(t) to return confidence
band although they do not contain a theoretical guarantee.
We also choose a kernel-based non-Cox method, (Chen,
2020) (labeled as Kernel). Besides, we conduct RSF (Ish-
waran et al., 2008) (labeled as Random Survival Forest),
Nnet-Survival (Gensheimer & Narasimhan, 2019) (Iabeled
as Nnet-Survival), and MTLR (Yu et al., 2011) (labeled as
MTLR) as benchmarks. We emphasize that these methods
are different approaches since our method is Cox-based.

We integrate our proposed algorithms WCCI and T-SCI with
CoxPH and CoxCC, labeled as CoxPH/CoxCC + WCCI/T-
SCI. Besides, to ensure that the weights in WCCI and T-SCI
are helpful, we test the unweighted version of WCCI and T-
SCI, where we set all weights to 1 in WCCI and T-SCI. We
summarize all the experimental results under significance
level & = 95% in Table 1. Ideally, a perfect method returns
coverage slightly larger to 95% with small interval length
while being balanced in censored and uncensored data.

Metrics. In the synthetic dataset, our core metric is empiri-
cal coverage (EC), defined as the fraction of testing points
whose survival time falls in the predicted confidence band.
Besides, we calculate the average interval length of the
returned band. Given confidence level «, a perfect confi-
dence band is expected to return empirical coverage larger
than 1 — « with a small interval length. In the real-world
dataset, we use surrogate empirical coverage (SEC) instead
of empirical coverage due to the lack of survival time. SEC
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Table 2. Model Comparison on SUPPORT

Method Total Censored Uncensored Interval Length
Mean Std. Mean Std. Mean @ Std. Mean Std.
Cox Reg. 0.999 0.001 / / / / 2026.68 1.03
Random Survival Forest (Ishwaran et al., 2008) 0.981 0.003 / / / / 1890.11 10.75
Nnet-Survival (Gensheimer & Narasimhan, 2019) 0.995 0.002 0.988 0.005 0.998 0.001 1928.57 15.58
MTLR (Yuetal., 2011) 0.994 0.003 0.986 0.006 0.998 0.002 1921.65 37.69
CoxPH (Katzman et al., 2018) 0.981 0.002 0.992 0.004 0.975 0.002 2029.00 0.10
CoxCC (Katzman et al., 2018) 0.981 0.002 0.992 0.004 0.975 0.003 2553.32 943
CoxPH+WCCI 0.982 0.007 0.838 0.032 0.984 0.006 1940.85 1641
CoxPH+T-SCI 0.993 0.004 0.923 0.026 0.993 0.003 2001.08 10.09
CoxCC+WCCI 0.980 0.008 0.829 0.047 0.983 0.008 1941.50 16.24
CoxCC+T-SCI 0.992 0.005 0916 0.034 0.992 0.004 2001.69 10.67
CoxPH+WCClI(unweigted) 0.825 0.023 0.543 0.054 0.957 0.010 988.06 50.67
CoxPH+T-SCI(unweighted) 0.944 0.018 0.831 0.054 0.996 0.005 1712.76 83.19
CoxCC+WCCI(unweigted) 0.823 0.020 0.539 0.042 0.956 0.009 99491 62.72
CoxCC+T-SCI(unweighted) 0.942 0.021 0.825 0.063 0.997 0.004 1705.41 75.66
Kernel (Chen, 2020) 0.988 0.020 0.936 0.178 0.988 0.038 2027.70 30.27
0.98 100 == %‘
' T 'E T ! ¢
T o =2 T = 1
0.95
% 0.94- ¢ 0.90-
5 T 5
é 0.92 1 L l‘ J» 5 l é 0.85 T J L J
0.9 T
‘|:‘ 1 weighted 0.801 . ~ [ censored
0.88 1 1 unweighted s l [ 1 uncensored
CoxPH+WCCI CoxPH+T-SCI CoxCC+WCCI CoxCC+T-SCI CoxPH+WCCI  CoxPH+T-SCI  COXCCH+WCCI  CoxCC+T-SCI
Algorithm Algorithm

Figure 4. Weight Rationality. We compare the weighted version
(green) with its corresponding unweighted version (yellow). The
weighted versions contain less bias for WCCI (closer to the ex-
pected 95%) and less variance for T-SCI (shorter boxes).

calculates the number when the censoring time is no larger
than the band’s upper bound for censored data, which is
the upper bound of EC. Formally, let Z.; be the training
set index and C'(X;) = [T'(X;), T"(X;)] be the returned
confidence band.. When the test set have the survival time
T;, namely, (X, T;) in the test set, its empirical coverage
(EC) is defined as:

> LT € C(Xy).

| test| i€Ts00t

When the test set have only the observed time Y;, namely,
(X;,Y;, A;) in the test set, its surrogate empirical coverage

“The survival time of censored data is accessible in the syn-
thetic dataset.

Figure 5. Censoring comparison. We compare model perfor-
mances on censored (green) and uncensored (uncensored) data
separately. All the algorithms show a larger coverage and less
variance on censored data.

(SEC) is defined as:

1

SEC & ]I(Yi e C(Xy),A; =1)
|Itest| i€,
+ > I(Y; <TU(X.), Ay =0)
1€L¢est
6.2. Analysis

We summarize the experimental results of RRNLNPH in
Table 1 and results of SUPPORT in Table 2, and we defer
the results on METABRIC to Appendix B. Our analysis is
mainly based on synthetic data RRNLNPH (the experiments
on real-world datasets show similar trends).
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(a) Coverage Comparison
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(b) Interval Length Comparison

Figure 6. Comparison under different confidence level (1 — o). CoxCC+T-SCI (purple) and CoxPH+T-SCI (grey) returns guaranteed
coverage under different confidence level without much increase of interval length (CoxCC+T-SCI and CoxPH+T-SCI overlap).

Coverage and Interval Length. Figure 6 shows the em-
pirical coverage and the interval length of the confidence
band returned by algorithms under different confidence lev-
els. Ideally, the confidence band should have large coverage
with a small interval length. Notice that WCCI and T-SCI
based algorithms outperform their original versions, show-
ing that the proposed algorithms work well. Furthermore,
T-SCI is more conservative than WCCI, where T-SCI has
larger coverage and interval length. We further remark that
T-SCI returns guaranteed coverage (larger than 1 — «) under
different confidence levels.

The rationality of weight w(z). We show the comparison
between weighted and unweighted versions in Figure 4. For
WCCT algorithms, the weighted version has coverage closer
to 1 — a. For T-SCI algorithms, the weighted version has
lower variance. These results show that weighted versions
outperform the unweighted versions, which validates the
importance of weight w(x).

The difficulty in censoring. Figure 5 shows the algorithms’
performance on censored and uncensored data, respectively.
All the algorithms perform larger coverage and less variance
on the uncensored data, meaning that censored data is more
challenging to deal with than uncensored data. Besides, we
emphasize that although the unweighted versions may be
closer to 95% in some cases, they lack theoretical guaran-
tees and are imbalanced, meaning that it performs pretty
differently on censored and uncensored data.

Analysis of Table 1. We show RRNLNPH results in Ta-
ble 1, and results of SUPPORT and METABRIC perform
similarly. Firstly, notice that WCCI does not reach the ex-

pected coverage mainly due to the inaccurate estimation on
the weight, while T-SCI reaches it due to milder require-
ments in Theorem 5.1 (double robustness). Secondly, notice
that Cox Reg., CoxPH, CoxCC (they all lack theoretical
guarantee) all fail to return the proper coverage. Thirdly,
unweighted versions all suffer from poor performances on
censored data due to the lack of weight, showing that weight
is vital in covariate shift. Finally, we emphasize that the
Kernel method suffers from large interval length and large
variance despite the moderate coverage. As a comparison,
WCCT and T-SCI often perform more stably.

7. Conclusion

In this paper, we derive confidence band for Cox-based
models. We first introduce WCCI by proposing a new non-
conformity score. We then propose T-SCI, a two-stage
conformal inference applying WCCI as input. Theoretical
analysis shows that T-SCI returns nearly perfect coverage,
meaning both lower and upper bound guarantee. We conduct
extensive experiments on both synthetic data and real-world
data to show the proposed algorithm’s correctness.

Acknowledgements

This work has been partially supported by National Key
R&D Program of China (2019AAA0105200), Zhongguan-
cun Haihua Institute for Frontier Information Technol-
ogy and the Institute Guo Qiang, Tsinghua University
(2019GQG1002). We gratefully thank Lihua Lei, Jianhao
Ma, Yuhao Wang and Dinghuai Zhang for their kind and
constructive comments.



T-SCI: A Two-Stage Conformal Inference Algorithm with Guaranteed Coverage for Cox-MLP

References

Akritas, M. G., Murphy, S. A., and Lavalley, M. P. The
theil-sen estimator with doubly censored data and appli-
cations to astronomy. Journal of the American Statistical
Association, 90(429):170-177, 1995.

Angelopoulos, A., Bates, S., Malik, J., and Jordan, M. L.
Uncertainty sets for image classifiers using conformal
prediction. arXiv preprint arXiv:2009.14193,2020.

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani,
R. J. Conformal prediction under covariate shift. arXiv
preprint arXiv:1904.06019, 2019a.

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani,
R.J. The limits of distribution-free conditional predictive
inference. arXiv preprint arXiv:1903.04684, 2019b.

Bellotti, T. and Crook, J. Credit scoring with macroeco-
nomic variables using survival analysis. Journal of the
Operational Research Society, 60(12):1699-1707, 2009.

Berrett, T. B., Wang, Y., Barber, R. F., and Samworth, R. J.
The conditional permutation test for independence while
controlling for confounders. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 82(1):
175-197, 2020.

Bostr, H., Asker, L., Gurung, R., Karlsson, 1., Lindgren, T.,
Papapetrou, P, et al. Conformal prediction using random
survival forests. In 2017 16th IEEE International Con-
ference on Machine Learning and Applications (ICMLA),
pp- 812-817. IEEE, 2017.

Bostrom, H., Johansson, U., and Vesterberg, A. Predicting
with confidence from survival data. In Conformal and
Probabilistic Prediction and Applications, pp. 123-141,
2019.

Breslow, N. E. Analysis of survival data under the pro-
portional hazards model. [International Statistical Re-
view/Revue Internationale de Statistique, pp. 45-57,
1975.

Candes, E. J., Lei, L., and Ren, Z. Conformalized survival
analysis. arXiv preprint arXiv:2103.09763, 2021.

Chen, G. H. Deep kernel survival analysis and subject-
specific survival time prediction intervals. In Ma-
chine Learning for Healthcare Conference, pp. 537-565.
PMLR, 2020.

Cox, D. R. Regression models and life-tables. Journal of
the Royal Statistical Society: Series B (Methodological),
34(2):187-202, 1972.

Feldmann, R. Leo-py: Estimating likelihoods for correlated,
censored, and uncertain data with given marginal distri-
butions. Astronomy and Computing, 29:100331, 2019.

Gensheimer, M. F. and Narasimhan, B. A scalable discrete-
time survival model for neural networks. PeerJ, 7:¢6257,
2019.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., Lauer,
M. S., et al. Random survival forests. Annals of Applied
Statistics, 2(3):841-860, 2008.

Kaplan, E. L. and Meier, P. Nonparametric estimation from
incomplete observations. Journal of the American statis-
tical association, 53(282):457-481, 1958.

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang,
T., and Kluger, Y. Deepsurv: personalized treatment rec-
ommender system using a cox proportional hazards deep
neural network. BMC medical research methodology, 18
(1):1-12, 2018.

Klein, J. P. and Moeschberger, M. L. Survival analysis:
techniques for censored and truncated data. Springer
Science & Business Media, 2006.

Kvamme, H., Borgan, ., and Scheel, 1. Time-to-event pre-
diction with neural networks and cox regression. Journal
of machine learning research, 20(129):1-30, 2019.

Lee, C., Zame, W., Yoon, J., and van der Schaar, M. Deep-
hit: A deep learning approach to survival analysis with
competing risks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Lei, J. and Wasserman, L. Distribution-free prediction bands
for non-parametric regression. Journal of the Royal Sta-
tistical Society: Series B: Statistical Methodology, pp.
71-96, 2014.

Lei, J., Robins, J., and Wasserman, L. Distribution-free
prediction sets. Journal of the American Statistical Asso-
ciation, 108(501):278-287, 2013.

Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., and
Wasserman, L. Distribution-free predictive inference for
regression. Journal of the American Statistical Associa-
tion, 113(523):1094-1111, 2018.

Lei, L. and Candes, E. J. Conformal inference of counter-
factuals and individual treatment effects. arXiv preprint
arXiv:2006.06138, 2020.

Li, A. H. and Bradic, J. Censored quantile regression forest.
In International Conference on Artificial Intelligence and
Statistics, pp. 2109-2119. PMLR, 2020.

Nakagawa, S. and Freckleton, R. P. Missing inaction: the
dangers of ignoring missing data. Trends in ecology &
evolution, 23(11):592-596, 2008.



T-SCI: A Two-Stage Conformal Inference Algorithm with Guaranteed Coverage for Cox-MLP

Nouretdinov, I., Costafreda, S. G., Gammerman, A., Chervo-
nenkis, A., Vovk, V., Vapnik, V., and Fu, C. H. Machine
learning classification with confidence: application of
transductive conformal predictors to mri-based diagnos-
tic and prognostic markers in depression. Neuroimage,
56(2):809-813, 2011.

Robins, J. M. and Finkelstein, D. M. Correcting for noncom-
pliance and dependent censoring in an aids clinical trial
with inverse probability of censoring weighted (ipcw)
log-rank tests. Biometrics, 56(3):779-788, 2000.

Romano, Y., Patterson, E., and Candes, E. J. Conformalized
quantile regression. arXiv preprint arXiv:1905.03222,
2019.

Romano, Y., Sesia, M., and Candes, E. J. Classifica-
tion with valid and adaptive coverage. arXiv preprint
arXiv:2006.02544, 2020.

Sadinle, M., Lei, J., and Wasserman, L. Least ambiguous
set-valued classifiers with bounded error levels. Journal
of the American Statistical Association, 114(525):223—
234,2019.

Sargent, D. J. Comparison of artificial neural networks with
other statistical approaches: results from medical data
sets. Cancer: Interdisciplinary International Journal of
the American Cancer Society, 91(S8):1636-1642, 2001.

Shafer, G. and Vovk, V. A tutorial on conformal prediction.
Journal of Machine Learning Research, 9(Mar):371-421,
2008.

Tibshirani, R. and Foygel, R. Conformal prediction under
covariate shift. Advances in neural information process-
ing systems, 2019.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world. Springer Science & Business
Media, 2005.

Wang, P, Li, Y., and Reddy, C. K. Machine learning for
survival analysis: A survey. ACM Computing Surveys
(CSUR), 51(6):1-36, 2019.

Weli, L.-J. The accelerated failure time model: a useful al-
ternative to the cox regression model in survival analysis.
Statistics in medicine, 11(14-15):1871-1879, 1992.

Xiang, A., Lapuerta, P., Ryutov, A., Buckley, J., and Azen,
S. Comparison of the performance of neural network
methods and cox regression for censored survival data.
Computational statistics & data analysis, 34(2):243-257,
2000.

Yu, C.-N., Greiner, R., Lin, H.-C., and Baracos, V. Learn-
ing patient-specific cancer survival distributions as a se-
quence of dependent regressors. Advances in Neural
Information Processing Systems, 24:1845-1853, 2011.

Zhu, R. and Kosorok, M. R. Recursively imputed survival
trees. Journal of the American Statistical Association,
107(497):331-340, 2012.



