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Abstract
Variational representations of f -divergences are
central to many machine learning algorithms, with
Lipschitz constrained variants recently gaining at-
tention. Inspired by this, we define the Moreau-
Yosida approximation of f -divergences with re-
spect to the Wasserstein-1 metric. The corre-
sponding variational formulas provide a gener-
alization of a number of recent results, novel spe-
cial cases of interest and a relaxation of the hard
Lipschitz constraint. Additionally, we prove that
the so-called tight variational representation of f -
divergences can be to be taken over the quotient
space of Lipschitz functions, and give a characteri-
zation of functions achieving the supremum in the
variational representation. On the practical side,
we propose an algorithm to calculate the tight
convex conjugate of f -divergences compatible
with automatic differentiation frameworks. As an
application of our results, we propose the Moreau-
Yosida f -GAN, providing an implementation of
the variational formulas for the Kullback-Leibler,
reverse Kullback-Leibler, χ2, reverse χ2, squared
Hellinger, Jensen-Shannon, Jeffreys, triangular
discrimination and total variation divergences as
GANs trained on CIFAR-10, leading to competi-
tive results and a simple solution to the problem
of uniqueness of the optimal critic.

1. Introduction
Variational representations of divergences between proba-
bility measures are central to many machine learning algo-
rithms, such as generative adversarial networks (Nowozin
et al., 2016), mutual information estimation (Belghazi et al.,
2018) and maximization (Hjelm et al., 2019), and energy-
based models (Arbel et al., 2021). One class of such mea-
sures is the family of f -divergences (Csiszár, 1963; Ali &
Silvey, 1966; Csiszár, 1967), generalizing the well-known
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Kullback-Leibler divergence from information theory. An-
other is the family of optimal transport distances (Villani,
2008), including the Wasserstein-1 metric. In general, varia-
tional representations are supremums of integral formulas
taken over sets of functions, such as the Donsker-Varadhan
formula (Donsker & Varadhan, 1976) for the Kullback-
Leibler divergence or the Kantorovich-Rubinstein formula
(Villani, 2008) for the Wasserstein-1 metric. Informally
speaking, one can implement (Nowozin et al., 2016; Ar-
jovsky et al., 2017) such a formula by constructing a real-
valued neural network called the critic (or discriminator)
taking samples from the two probability measures as inputs,
which is then trained to maximize the integral formula in
order to approximate the supremum, resulting in a learned
proxy to the actual divergence of said probability measures.
Implementing the Kantorovich-Rubinstein formula in such a
way involves restricting the Lipschitz constant of the neural
network (Gulrajani et al., 2017; Petzka et al., 2018; Miyato
et al., 2018; Adler & Lunz, 2018; Terjék, 2020), which ef-
fectively stabilizes the approximation procedure. Recently,
Lipschitz regularization has been incorporated (Farnia &
Tse, 2018; Zhou et al., 2019; Ozair et al., 2019; Song &
Ermon, 2020; Arbel et al., 2021; Birrell et al., 2020) into
learning algorithms based on variational formulas of diver-
gences other than the Wasserstein-1 metric, leading to the
same empirical effect and a number of theoretical benefits.

Inspired by this, we study Lipschitz-constrained variational
representations of f -divergences. We show that existing
instances of such variants are special cases of the Moreau-
Yosida approximation of f -divergences with respect to the
Wasserstein-1 metric. To any divergence and pair of proba-
bility measures corresponds a set of optimal critics, which
are exactly those functions which achieve the supremum
in the variational representation. An optimal critic corre-
sponding to f -divergences is not Lipschitz in general (not
even continuous). Since any function represented by a neu-
ral network is Lipschitz, when a neural network is trained
to approximate such a divergence, its ”target”, an optimal
critic, will never be reached. We show that when the diver-
gence is replaced by its Moreau-Yosida approximation, the
corresponding optimal critics are all Lipschitz continuous
with uniformly bounded Lipschitz constants, leading to a
divergence which is easier to approximate in practice via
neural networks. The approximation is parametrized by a
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pair of real numbers, one of which controls the sharpness
of the approximation and the Lipschitz constant of optimal
critics. The other controls the behavior of the approximation
such that a special case induces a hard Lipschitz constraint
in the variational representation, and other values induce
only a Lipschitz penalty term. While instances of the former
already appeared in the literature, the latter is novel to our
paper. A special case reduces to a novel, unconstrained
variational representation of the Wasserstein-1 metric.

In order to prove these results, we first generalize the so-
called tight variational representation of f -divergences to
be taken over the space of Lipschitz functions or its quotient
space, which is the subspace of functions vanishing at an ar-
bitrary, fixed point. The latter leads to optimal critics being
unique, having practical benefits. We additionally character-
ize the functions achieving the supremum in the variational
representation. To apply the results, we propose an algo-
rithm compatible with automatic differentiation frameworks
to calculate the tight convex conjugate of f -divergences
which in most cases does not admit a closed form, using
Newton’s method in the forward pass and implicit differen-
tiation in the backward pass.

Finally, to demonstrate the usefulness of our results, we
propose the Moreau-Yosida f -GAN, and implement it for
the task of generative modeling on CIFAR-10. The exper-
iments show that it is beneficial to use the Moreau-Yosida
approximation as a proxy for f -divergences, the novel cases
of which often outperform the ones with the hard Lipschitz
constraint. On the other hand, the representation over the
quotient space leads to a simple solution for the problem of
uniqueness of the optimal critic.

To summarize, our contributions are

• a generalization of the tight variational representa-
tion of f -divergences between probability measures
on compact metric spaces along with a characteriza-
tion of functions achieving the supremum,

• a practical algorithm to calculate the tight convex con-
jugate of f -divergences compatible with automatic dif-
ferentiation frameworks,

• variational formulas for the Moreau-Yosida approxima-
tion of f -divergences with respect to the Wasserstein-1
metric, including a relaxation of the hard Lipshcitz con-
straint and an unconstrained variational representation
of the Wasserstein-1 metric, and

• the Moreau-Yosida f -GAN implementing the vari-
ational formulas for the Kullback-Leibler, reverse
Kullback-Leibler, χ2, reverse χ2, squared Hellinger,
Jensen-Shannon, Jeffreys, triangular discrimination
and total variation divergences as GANs trained on
CIFAR-10, leading to competitive performance.

2. Preliminaries
2.1. Notations

Denote the extended reals R = R∪{±∞}, the nonnegative
reals R+, the extended nonnegative reals R+ = R+ ∪∞.
The indicator of a set A is denoted iA with iA(x) = 0
if x ∈ A and iA(x) = ∞ otherwise. Absolute continu-
ity and singularity of measures is denoted � and ⊥, the
Radon-Nikodym derivative of a measure µ with respect to a
nonnegative measure ν such that µ� ν by dµ

dν , the support
of a measure µ by supp(µ), a property to hold almost ev-
erywhere with respect to a measure µ by µ-a.e. The relative
interior of a subset A of a vector space is denoted relintA,
which for subsets of R only differs from the interior for
singletons whose relative interior is the singleton itself.

2.2. Convex analysis (Zalinescu, 2002)

Given a topological vector space X , denote its topolog-
ical dual by X∗, i.e. the set of real-valued continuous
linear maps on X , which is a topological vector space it-
self, and the canonical pairing by 〈·, ·〉 : X × X∗ → R,
which is the continuous bilinear map ((x, x∗)→ 〈x, x∗〉 =
x∗(x)). Given a function f : X → R, the set dom f =
{x ∈ X : f(x) <∞} is the effective domain of f . A func-
tion f is proper if dom f 6= ∅ and f(x) > −∞ for all
x ∈ X , otherwise it is improper. For a convex function
f : X → R, its convex conjugate is f∗ : X∗ → R
defined by f∗(x∗) = supx∈X{〈x, x∗〉 − f(x)}, and its
subdifferential at x ∈ X is the set ∂f(x) = {x∗ ∈
X∗ | ∀x̂ ∈ X : 〈x̂ − x, x∗〉 ≤ f(x̂) − f(x)}. The bi-
conjugate f∗∗ of f is the conjugate of its conjugate f∗, i.e.
f∗∗(x) = supx∗∈X∗{〈x, x∗〉 − f∗(x∗)}, which is equiva-
lent to f if f is proper, convex and lower semicontinuous.
In that case, the supremum of the biconjugate representa-
tion is achieved precisely at elements of ∂f(x). Conversely,
the supremum in the conjugate representation of f∗(x∗) is
achieved at elements of ∂f∗(x∗) = {x ∈ X | ∀x̂∗ ∈ X∗ :
〈x, x̂∗ − x∗〉 ≤ f∗(x̂∗)− f∗(x∗)}.

2.3. f -divergences

Given a proper, convex and lower semicontinuous function1

φ : R→ R, a measure µ and a nonnegative measure ν on a
measurable space X , the f -divergence Dφ(µ‖ν) of µ from
ν is defined (Csiszár, 1963; Ali & Silvey, 1966; Csiszár,
1967; Borwein & Lewis, 1993; Csiszár et al., 1999) as∫

φ ◦ dµc
dν

dν + φ′(∞)µ+
s (X)− φ′(−∞)µ−s (X). (1)

Here, µc � ν, µs ⊥ ν are the absolutely continuous and
singular parts of the Lebesgue decomposition of µ with

1Originally, f is used in place of φ (hence the name), but we
reserve the symbol f for other functions.
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respect to ν, µ+
s , µ

−
s ≥ 0 is the Jordan decomposition of

the singular part, and φ′(±∞) = limx→±∞
φ(x)
x ∈ R. The

well-known variational representation

Dφ(µ‖ν) = sup
f :X→R

{∫
fdµ−

∫
φ∗ ◦ fdν

}
(2)

can be obtained as the biconjugate of the mapping (µ →
Dφ(µ‖ν)). The so-called tight variational representation

Dφ(µ‖ν) = sup
f :X→R

{∫
fdµ

− inf
sup f(X)−φ′(∞)≤γ

{∫
φ∗+ ◦ (f − γ)dν + γ

}}
(3)

with φ+ = φ + iR+ was obtained in Agrawal & Horel
(2020) as the biconjugate of the mapping (µ→ Dφ(µ‖ν) +
iP (X)(µ)) (already considered in Ruderman et al. (2012)),
and is valid for pairs of probability measures µ, ν.

2.4. Wasserstein-1 distance (Villani, 2008)

Given probability measures µ, ν on a metric space (X, d),
the Wasserstein-1 distance of µ and ν is defined as

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
d(x1, x2)dπ(x1, x2), (4)

where Π(µ, ν) is the set of probability measures supported
on the product space X × X with marginals µ and ν.
It has a well-known variational representation called the
Kantorovich-Rubinstein formula

W1(µ, ν) = sup
‖f‖L≤1

{∫
fdµ−

∫
fdν

}
, (5)

where

‖f‖L = sup
x,y∈X,x 6=y

{
|f(x)− f(y)|

d(x, y)

}
(6)

is the Lipschitz norm of f . The supremum is achieved by
the so-called Kantorovich potentials f : X → R, unique
µ, ν-a.e. up to an additive constant.

2.5. Moreau-Yosida approximation

Let (X, d) be a metric space and f : X → R a proper
function, and 0 < λ,α ∈ R constants. The Moreau-Yosida
approximation of index λ and order α of f is defined (Jost
& Li-Jost, 2008; Dal Maso, 1993) as

fλ,α(x) = inf
y∈X
{f(y) + λd(x, y)α}. (7)

It holds that f(x) = supλ>0 fλ,α(x) = limλ→∞ fλ,α(x),
where f is the greatest lower semicontinuous function with
f ≤ f .

3. Lipschitz representation of f -divergences
In this work, we consider the set P (X) of probability mea-
sures on a compact metric space (X, d), which is itself a
compact metric space with the metric W1, metrizing the
weak convergence of measures. We prove that the tight vari-
ational representation of Dφ from Agrawal & Horel (2020)
can be generalized in the sense that the supremum can be
taken over the set Lip(X,x0) of Lipschitz continuous func-
tions on X that vanish at an arbitrary base point x0 ∈ X .
This is a strictly smaller set than the set of bounded and
measurable functions over which the supremum was taken
originally. To apply convex analytic techniques, we con-
sider the duality between vector spaces of measures and
Lipschitz functions. This aspect is detailed in Appendix 8.1.
An important property of the choice of vector spaces is that
the topology on the space of measures generalizes the usual
weak convergence of probability measures (Hanin, 1999).
Proofs and more precise statements of our propositions can
be found in Appendix 8.2.
Proposition 1. Given probability measures µ, ν ∈ P (X)
and a proper, convex and lower semicontinuous function
φ : R → R strictly convex at 1 with φ(1) = 0 and
1 ∈ relint domφ, the f -divergence Dφ has the equivalent
variational representation

Dφ(µ‖ν) = sup
f∈Lip(X)

{∫
fdµ−D∗φ(f‖ν)

}
= sup
f∈Lip(X,x0)

{∫
fdµ−D∗φ(f‖ν)

}
, (8)

with the tight convex conjugate D∗φ(·‖ν) : Lip(X) → R
being

D∗φ(f‖ν) = sup
µ∈P (X)

{∫
fdµ−Dφ(µ‖ν)

}
= min

sup f(X)−φ′(∞)≤γ

{∫
φ∗+ ◦ (f − γ)dν + γ

}
. (9)

The conjugate D∗φ(·‖ν) is a topical function (Mohebi,
2005), meaning that D∗φ(f + C‖ν) = D∗φ(f‖ν) + C and
D∗φ(f1‖ν) ≥ D∗φ(f2‖ν) both hold for ∀C ∈ R and f1 ≥ f2.
Based on the constant additivity property, the substitution
D∗φ(f‖ν) =

∫
fdν +D∗φ

(
f −

∫
fdν‖ν

)
leads to

sup
f∈Lip(X)

{∫
fdµ−

∫
fdν −D∗φ

(
f −

∫
fdν‖ν

)}
,

reinterpreting the variational representation of Dφ(µ‖ν) as
a penalized variant of maximum mean deviation. A closed
form expression for D∗φ(·‖ν) is available for the Kullback-
Leibler divergence with D∗KL(f‖ν) = log

∫
efdν.

We call functions f∗ for which Dφ(µ‖ν) =
∫
f∗dµ −

D∗φ(f∗‖ν) holds, i.e. f∗ ∈ ∂Dφ(µ‖ν), Csiszár potentials of
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µ, ν. This is in analogy with Kantorovich potentials, which
are similarly unique µ, ν-a.e. up to an additive constant. In
the second variational representation in (8), the additive con-
stant is unique since f(x0) = 0 must hold. The following
result is built on Borwein & Lewis (1993, Theorem 2.10).

Proposition 2. Given probability measures µ, ν ∈ P (X),
a function f∗ ∈ Lip(X) is a Csiszár potential of µ, ν, i.e.
Dφ(µ‖ν) =

∫
f∗dµ−D∗φ(f∗‖ν), if and only if there exists

C ∈ R such that the conditions

sup f∗(X) + C ≤ φ′(∞), (10)

dµc
dν

(x) ∈ ∂φ∗+(f∗(x) + C) ν-a.e. (11)

and

supp(µs) ⊂ {x ∈ X : f∗(x) + C = φ′(∞)} (12)

hold. Such f∗ are unique µ, ν-a.e. up to an additive con-
stant.

If φ is of Legendre type (Borwein & Lewis, 1993), then φ+

and φ∗+ are both continuously differentiable on int domφ+

and int domφ∗+, respectively, while φ∗+
′ is increasing, and

invertible where its value is positive with its inverse given by
the strictly increasing φ′+. With these, the second condition
is equivalent to

f∗(x) + C = φ′+

(
dµc
dν

(x)

)
µc-a.e. (13)

Informally, this means that f∗ is the strictly increasing im-
age of the likelihood ratio. One can then deduce from the
Neyman-Pearson lemma (Reid & Williamson, 2011) that
for the binary experiment of discriminating samples from
µ and ν, the statistical test (x → χ[τ,∞](f∗(x))) is a most
powerful test for any threshold τ ∈ R.

Conversely to the above proposition, given ν ∈ P (X)
and f ∈ Lip(X), the same conditions characterize the
set of µ∗ ∈ P (X) for which the supremum is achieved
in the conjugate representation of D∗φ(·‖ν), i.e. µ∗ ∈
∂D∗φ(f‖ν). Denoting the optimal γ in (9) by γφ,ν(f), for
any µ∗ ∈ P (X) satisfying the conditions in Proposition 2
with C = −γφ,ν(f) one has µ∗ ∈ ∂D∗φ(f‖ν). For the
Kullback-Leibler divergence, this reduces to the softmax
µ∗ = 1∫

efdν
ef · ν. In case X is a finite set, this leads to

a family of prediction functions obtained as gradients of
D∗φ(f‖ν) (Blondel et al., 2020).

We propose an algorithm for the practical evaluation of
D∗φ(·‖ν) when no closed form expression is available in the
case when the support of ν is finite2 and φ is such that φ∗+
is twice differentiable on int domφ∗+ with non-vanishing

2Such measures are dense in (P (X),W1).

Algorithm 1 Calculate γφ,ν(f) and∇fγφ,ν(f)

Input: f, ν ∈ Rn, φ : R→ R, 0 < ε, τ ∈ R
if φ′(∞) <∞ then
γ = max(f)− φ′(∞) + ε.

else
γ = 〈ν, f〉

end if
repeat
s =

−〈ν,(φ∗+)′(f−γ)〉+1

〈ν,(φ∗+)′′(f−γ)〉
γ = γ − s

until |s| < τ

∇fγ =
ν�(φ∗+)′′(f−γ)

〈ν,(φ∗+)′′(f−γ)〉

second derivative. Assuming that f achieves its maximum
on the support of ν and that γ achieving the minimum is
unique, finding γ reduces to a finite dimensional problem,
i.e. f, ν can be considered as elements of Rn with n being
the number of elements of the support of ν. Based on
Newton’s method and the implicit function theorem, we
propose Algorithm 1 to calculate γφ,ν(f) and its gradient3.
Then, the conjugate can be calculated as

D∗φ(f‖ν) = 〈ν, φ∗+(f − γφ,ν(f))〉+ γφ,ν(f). (14)

The derivation of the algorithm can be found in Ap-
pendix 8.3, along with the corresponding functions φ+, φ

∗
+

and their derivatives for the Kullback-Leibler, reverse
Kullback-Leibler, χ2, reverse χ2, squared Hellinger, Jensen-
Shannon, Jeffreys and triangular discrimination divergences.
For the Kullback-Leibler divergence, one has the closed
form γφ,ν(f) = log

∫
efdν.

We found that exploiting the constant additivity property by
calculating the conjugate as

D∗φ(f‖ν) = D∗φ(f −max(f)‖ν) + max(f) (15)

is beneficial to avoid numerical instabilities. This can be
seen as a generalization of the log-sum-exp trick.

4. Moreau-Yosida approximation of
f -divergences

Since the mapping (µ→ Dφ(µ‖ν)) from the metric space
(P (X),W1) to R is proper and lower semicontinuous, it is
an ideal candidate for Moreau-Yosida approximation, for
which the infimum is always achieved since (P (X),W1)
is compact if (X, d) is. Given 0 < λ,α ∈ R, the Moreau-
Yosida approximation of index λ and order α of Dφ(·‖ν)
with respect to W1 is therefore defined as

Dφ,λ,α(µ‖ν) = min
ξ∈P (X)

{Dφ(ξ‖ν) + λW1(µ, ξ)α}. (16)

3〈·, ·〉 and � denote the standard dot product and the element-
wise product in Rn.



Moreau-Yosida f -divergences

This is still a divergence in the sense that Dφ,λ,α(µ‖ν) ≥ 0
with equality if and only if µ = ν. The original divergence
can be recovered as Dφ(µ‖ν) = supλ>0Dφ,λ,α(µ‖ν) =
limλ→∞Dφ,λ,α(µ‖ν) for any α > 0. Moreover, for α ≥ 1,
Dφ,λ,α(·‖ν) is Lipschitz continuous with respect to W1. If
α = 1, the Lipschitz constant is exactly λ. In some cases4,
variational representations are available.

Proposition 3. Given probability measures µ, ν ∈ P (X),
λ > 0, α ≥ 1 and a proper, convex and lower semicontinu-
ous function φ : R→ R strictly convex at 1 with φ(1) = 0
and 1 ∈ relint domφ, the divergence Dφ,λ,α(µ‖ν) has the
equivalent variational representation

max
f∈Lip(X,x0),‖f‖L≤λ

{∫
fdµ−D∗φ(f‖ν)

}
(17)

if α = 1, and

max
f∈Lip(X,x0)

{∫
fdµ−D∗φ(f‖ν)

− (α− 1)α
α

1−αλ
1

1−α ‖f‖
α
α−1

L

}
(18)

if α > 1.

In the limit α→ 1, (18) converges to (17) in the sense that
limα→1 (α− 1)α

α
1−αλ

1
1−α ‖f‖

α
α−1

L = 0 if ‖f‖L ≤ λ and
∞ otherwise, providing an unconstrained relaxation of the
hard constraint ‖f‖L ≤ λ.

Choosing φ = i{1} (so that Dφ(·‖ν) = i{ν} and
D∗φ(f‖ν) =

∫
fdν), one has Dφ,λ,α(µ‖ν) = λW1(µ, ν)α,

leading to the following unconstrained variational represen-
tation of W1.

Proposition 4. Given µ, ν ∈ P (X), λ > 0 and α > 1,
W1(µ, ν) has the equivalent unconstrained variational rep-
resentation(

1

λ
max

f∈Lip(X,x0)

{∫
fdµ−

∫
fdν

− (α− 1)α
α

1−αλ
1

1−α ‖f‖
α
α−1

L

}) 1
α

. (19)

The maximum is achieved at αλW1(µ, ν)α−1f∗, with f∗
being a Kantorovich potential of µ, ν.

As stated, subgradients of the mapping (µ→ λW1(µ, ν)α)
are nothing but the Kantorovich potentials f∗ achieving the
supremum in the Kantorovich-Rubinstein formula, scaled by
the coefficient αλW1(µ, ν)α−1. This allows the characteri-
zation of subgradients of the mapping (µ→ Dφ,λ,α(µ‖ν)).

4Since the mapping (ξ → λW1(µ, ξ)
α) is neither convex

nor concave if 0 < α < 1, we could not obtain a variational
representation via Fenchel-Rockafellar duality in this case.

Proposition 5. Given probability measures µ, ν ∈ P (X),
λ > 0, α ≥ 1 and a proper, convex and lower semicontinu-
ous function φ : R→ R strictly convex at 1 with φ(1) = 0
and 1 ∈ relint domφ, let ξ∗ ∈ P (X) be a probability
measure achieving the minimum in (16), i.e. for which
Dφ,λ,α(µ‖ν) = Dφ(ξ∗‖ν) + λW1(µ, ξ∗)

α holds. Then
there exists an f∗ ∈ Lip(X) achieving the maximum in (17)
if α = 1 or (18) if α > 1, which is a Csiszár potential of
ξ∗, ν and αλW1(µ, ξ∗)

α−1 times a Kantorovich potential
of µ, ξ∗ at the same time.

These imply that for any τ ∈ R, the mapping (x →
χ[τ,∞](f∗(x))) is a most powerful test for discriminating
samples from ξ∗ and ν, and that ‖f∗‖L = αλW1(µ, ξ∗)

α−1.
Informally, since ξ∗ is close to µ in W1, the above mapping
can be seen as a Lipschitz regularized version of a most
powerful test for discriminating µ and ν.

2 4 6 8 10 12 14 16
0

2

4
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α

α−1
α
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α−1

Figure 1. Multiplier and exponent of ‖f‖L

Consider the reparametrization λ = 1
αβ
−α, so that (18)

reduces to

Dφ, 1αβ
−α,α(µ‖ν) = max

f∈Lip(X,x0)

{∫
fdµ

−D∗φ(f‖ν)− α− 1

α
(β‖f‖L)

α
α−1

}
. (20)

A plot of the respective values of the multiplier and the expo-
nent for β = 1 and α ∈ [1, 16] are visualized in Figure 1. In
the limit α→∞, the multiplier and exponent both converge
to 1. On the other hand, one has limα→1

α−1
α ‖f‖

α
α−1

L = 0
if ‖f‖L ≤ 1 and∞ otherwise.

An interesting special case is the limit α→∞, resulting in
the minimum of Dφ(ξ‖ν) with ξ ∈ P (X) ranging over the
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Wasserstein-1 ball of radius β centered at µ as

lim
α→∞

Dφ, 1αβ
−α,α(µ‖ν) = min

ξ∈P (X),W1(ξ,µ)≤β
{Dφ(ξ‖ν)}

= max
f∈Lip(X,x0)

{∫
fdµ−D∗φ(f‖ν)− β‖f‖L

}
. (21)

This should be contrasted with (17) corresponding to the
α = 1 case, which also has a hard constraint, but in the dual
formula.

Since the values of the above formulas for a given f are
invariant for constant translations f+C, the supremums can
equivalently be taken over Lip(X) instead of Lip(X,x0)
in all cases.

5. Moreau-Yosida f -GAN
We propose the Moreau-Yosida f -GAN (MYf -GAN) as an
implementation of the variational formula of the Moreau-
Yosida regularization of Dφ with respect to W1. The func-
tion f in (17) or (18) is parametrized by a neural network
called the critic, which is trained to maximize the formula
inside the maximum, providing an approximation of the
exact value of the divergence. One of the measures µ, ν
is represented by the dataset, and the other by a neural
network called the generator. The generator transforms sam-
ples from a fixed noise distribution into ones resembling the
data distribution, and is trained to minimize the divergence
approximated by the critic.

Based on the reparametrized formula (20) with the substi-
tution D∗φ(f‖ν) =

∫
fdν + D∗φ

(
f −

∫
fdν‖ν

)
, the two

minimax games are the following. First let µ be the gener-
ated distribution and ν be the data, resulting in the forward
(→) formulation

min
θg∈Rl

max
θf∈Rk

E(ζn,νn)∼(Pz,Pd)〈gθg#ζn, fθf 〉 − 〈νn, fθf 〉

−D∗φ(fθf − 〈νn, fθf 〉‖νn)

− α− 1

α
(β‖fθf ‖L,gθ̂g#ζn,νn)

α
α−1 . (22)

Now let µ be the data and ν the generated distribution,
leading to the reverse (←) formulation

min
θg∈Rl

max
θf∈Rk

E(µn,ζn)∼(Pd,Pz)〈µn, fθf 〉 − 〈gθg#ζn, fθf 〉

−D∗φ(fθf − 〈gθ̂g#ζn, fθf 〉‖gθ̂g#ζn)

− α− 1

α
(β‖fθf ‖L,µn,gθ̂g#ζn)

α
α−1 . (23)

The notation of the minimax games is the following. The
functions f : X × Rk → R and g : Z × Rl → X are
the critic and generator neural networks parametrized by
weight vectors θf ∈ Rk and θg ∈ Rl, and fθf , gθg are

shorthands for f(·, θf ), g(·, θg). The latent space is Z =
Rm. The sample space X ⊂ Rn is a compact subset of
Euclidean space equipped with the restriction of the metric
induced by the Euclidean norm, e.g. X = [−1, 1]3∗32∗32

for CIFAR-10. Pd ∈ P (X) denotes the data distribution
and Pz ∈ P (Z) the noise distribution, e.g. a standard
normal. Empirical measures (corresponding to minibatches)
are denoted µn ∼ P , meaning that µn = 1

n

∑n
i=1 δxµ,i

with (xµ,i) ⊂ X being a realization of a sequence of n
independent and identical copies of the random variable
corresponding to P . The empirical measure corresponding
to the generated distribution is obtained as the pushforward
gθg#ζn of the latent empirical measure ζn (a minibatch of
noise samples) through the generator gθg . Empirical means
are denoted 〈µn, f〉 = 1

n

∑n
i=1 f(xµ,i). The conjugate

D∗φ is calculated according to (14) using the stabilization
trick (15). By θ̂g we denote a copy of θg, meaning that
θg is not optimized to minimize terms containing the copy,
i.e. the loss function of the generator is ±〈fθf , gθg#ζn〉.
The term ‖fθf ‖L,µn,νn denotes a possibly data-dependent
estimate of ‖fθf ‖L. The minimax games include the case
limα→∞

α−1
α = limα→∞

α
α−1 = 1.

Lipschitz norm estimation. Rademacher’s theorem (Weaver,
2018) states that if ‖f‖L <∞ for f : Rn → R, then ‖(x→
‖∇f(x)‖2)‖∞ = ‖f‖L holds, i.e. that the supremum of
the function mapping x ∈ Rn to the Euclidean norm of the
gradient of f at x is equal to the Lipschitz norm of f . Based
on this and the gradient penalty of Gulrajani et al. (2017),
we propose for ‖fθf ‖L,µn,νn the estimator

Eυn∼U [0,1) max
x∈supp(υnµn+(1−υn)νn)

‖∇fθf (x)‖2 (24)

giving a lower bound to ‖fθf ‖L. Here, U [0, 1) is the uni-
form distribution on [0, 1) from which an empirical measure
υn = 1

n

∑n
i=1 δui is drawn, and unµn + (1 − u)νn =

1
n

∑n
i=1 δuixµ,i+(1−ui)xν,i denotes the corresponding inter-

polation of µn and νn. This clearly biased estimator leaves
room for improvement. Constructing an unbiased estima-
tor would require assuming a distribution for the random
variable representing the value of the gradient norm of the
critic, which we leave for future work.

Relaxation of hard Lipschitz constraint. We implement the
hard constraint case α = 1 by replacing the last term in the
minimax games with the one-sided gradient penalty (Gul-
rajani et al., 2017; Petzka et al., 2018) `Eυn∼U [0,1)〈υnµn +
(1− υn)νn, (max{0, ‖∇fθf (·)‖2 − β−1})2〉 with the coef-
ficient 0 < ` ∈ R controlling the strength of the penalty.
This is a widely used method to enforce the hard constraint
‖fθf ‖L ≤ β−1. We visualize the maximum, mean and min-
imum of minibatches of gradient norms of the critic during
training in Figure 2 for α = 1 with the gradient penalty and
α = 1.05 with the estimator detailed above. The α = 1 case
does not enforce the hard constraint, since only the mean
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Table 1. MYf -GAN performance on CIFAR-10

β = 0 α = 1.05, β = 1 α = 2, β = 1 α =∞, β = 0.5→ 0.2

Dφ IS FID IS FID IS FID IS FID

KULLBACK-LEIBLER
→ 7.16 34.12 8.26 13.22 8.33 14.83
← 8.20 13.85 8.09 13.42 8.20 12.51

REVERSE KULLBACK-LEIBLER
→ 8.33 12.97 8.30 13.27
← 8.34 13.24 8.17 13.13 8.09 15.26

χ2 → 8.18 14.17 8.26 13.36
← 8.37 13.36 8.23 12.95 8.27 13.46

REVERSE χ2 → 8.47 13.89 8.26 14.59
← 8.24 14.04 8.45 12.28 8.11 14.17

SQUARED HELLINGER
→ 8.03 16.41 8.07 16.06
← 8.25 15.89 8.25 13.93 8.52 12.18

JENSEN-SHANNON
→ 7.51 30.17 8.30 14.49 8.34 12.71
← 8.04 16.04 8.37 11.57 8.27 12.58

JEFFREYS
→ 8.09 13.99 8.21 14.46
← 8.25 13.32 8.34 13.04

TRIANGULAR DISCRIMINATION
→ 6.45 43.14 8.42 13.54 8.08 14.68
← 8.15 14.28 8.35 12.21 8.09 15.13

TOTAL VARIATION
→ 7.41 31.09 8.12 15.44 8.28 14.61
← 8.08 13.53 8.12 13.77 8.05 14.60

TRIVIAL 8.07 15.97 8.04 14.75 6.67 36.48

2 4 6 8 10
·104

0.5

1

1.5

2

iteration

α = 1 (GP)
α = 1.05

Figure 2. ‖∇f(X)‖2 with relaxed Lipschitz constraint

of the gradient norms is concentrated around β−1 = 1, and
not their maximum. The α = 1.05 case, being a relaxation
of the hard constraint, empirically behaves very similarly to
an ideal hard constraint implementation, in the sense that
the maximum of the gradient norms is concentrated around
β−1 = 1. This is no surprise in light of Proposition 5,
since ‖f∗‖L = αλW1(µ, ξ∗)

α−1 = β−αW1(µ, ξ∗)
α−1 =

β−(1+ε)W1(µ, ξ∗)
ε is very close to β−1 in practice for small

ε, such as ε = 0.05. We did not observe significant perfor-
mance differences. This particular experiment used ` = 10
and φ corresponding to the Kullback-Leibler divergence,

but we observed identical behavior in other hyperparameter
settings as well with a range of α close to 1. We argue that
using the relaxation with some α = 1 + ε is potentially
beneficial for other applications requiring the satisfaction of
a hard Lipschitz constraint.

Choice of f -divergence. Quantitative results in terms of
Inception Score (IS) and Fréchet Inception Distance (FID)
can be seen in Table 1. Missing values in the unregular-
ized case (β = 0) indicate divergent training, showing that
regularization (β > 0) not only improves performance, but
leads to convergent training even in cases when it does not
seem possible without regularization. The TRIVIAL case
indicates Dφ(·‖ν) = i{ν}, so that the forward and reverse
formulations are identical. In this case, Dφ, 1αβ

−α,α(µ‖ν)

reduces to 1
αβ
−αW1(µ‖ν)α. If α > 1, this leads to an

unconstrained formulation of the Wasserstein GAN corre-
sponding to Proposition 4. The original, constrained Wasser-
stein GAN with gradient penalty led to an IS of 8.09 and
an FID of 13.40 in our implementation. This is marginally
better than the performance of the unconstrained variant as
reported in Table 1. As shown in Figure 2, gradient penalty
leads to a higher gradient norm than required by the hard
constraint, which might lead to the observed marginal per-
formance improvement. Indeed, increasing β leads to better
performance for the unconstrained variant, e.g. β = 0.5
with α = 2 led to and IS of 8.14 and an FID of 13.33, which
is in turn marginally better than the original, constrained
variant. While it is hard to tell from these results which
f -divergence is the best, it is definitely not the TRIVIAL
one.



Moreau-Yosida f -divergences

2 4 6 8 10
·104

−10

−5

0

5

10

iteration

default
quotient

Figure 3. f(X) for default and quotient critic

Quotient critic. To ensure that fθf ∈ Lip(X,x0), we
simply modify the forward pass of the critic to return
fθf (x) − fθf (x0) instead of fθf (x). This induces negligi-
ble computational overhead since fθf (x0) can be calculated
with a minibatch of size 1, with the choice of x0 being
arbitrary, e.g. the zero vector in our implementation. We
call this the quotient critic since Lip(X,x0) is isomorphic
to the quotient space Lip(X)

R . In Figure 3 we visualize the
maximum, mean and minimum of the critic output over
minibatches of generated samples during training. It is clear
that the quotient critic solves the drifting of the output of the
critic, which was found to hurt performance in some cases
(Karras et al., 2018; Adler & Lunz, 2018). We observed
only marginal performance improvement.

Loss function of the generator. The reason for picking
the penalized mean deviation form of the variational for-
mulas for this application is that in the reverse case, we
found that using −〈gθg#ζn, fθf 〉 as the loss function of
the generator leads to superior performance than using
−D∗φ(fθf ‖gθg#ζn), which cripples performance in most
cases. This suggests that gradients of the Csiszár poten-
tial f∗ might be of greater interest than the gradient of the
conjugate D∗φ (f∗‖ν). The latter is a reweighting of the
former, since the gradient of the conjugate is a probability
distribution, such as the softmax for the Kullback-Leibler
divergence.

Optimal critic has bounded Lipschitz constant. Notice that
while the variational formula of f -divergences contains a
supremum, the formula of their Moreau-Yosida approxima-
tions contains a maximum. This means that in the former
case, even if the divergence is finite, the supremum might
not be achieved by a Lipschitz function. The variational
representation (8) only implies that a sequence of Lipschitz

functions converges to a function achieving the supremum,
but the limit is not necessarily Lipschitz continuous, in fact
it might not even be continuous. On the other hand, for the
Moreau-Yosida approximation, the maximum in (17) or (18)
is always achieved by a Lipschitz function. Since any neural
network is Lipschitz continuous, we argue that a trained
critic can provide a better estimate of the Moreau-Yosida
approximation, since its target f∗ is not only a Csiszár po-
tential of ξ∗, ν but a scaled Kantorovich potential of µ, ξ∗
as well, implying that it has a bounded Lipschitz constant.

2,000 4,000 6,000 8,000 10,000
0

1

2

3

4

5

iteration

α = 1.05, β = 1
α = 2, β = 1
α =∞, β = 1

Figure 4. ‖fθf ‖L,µn,νn during training

The α = 2 and α = ∞ cases. Since f∗ is a Kantorovich
potential scaled by the coefficient β−αW1(µ, ξ∗)

α−1 and
the Lipschitz norm of a Kantorovich potential is 1, the case
α > 1 can be seen as adaptive Lipschitz regularization, with
‖f∗‖L decaying during training as µ and ν drift closer and
W1(µ, ξ∗) becomes smaller. We visualized ‖fθf ‖L,µn,νn in
Figure 4 during training with α = 1.05, 2,∞ and β = 1.
Ideally, the Lipschitz norm of the critic would vanish. This
can be observed in the α =∞ case, which leads to finding a
generated distribution with Wasserstein-1 distance of β = 1
from the data distribution, accordingly to (21). The best FID
in Table 1 indicates that it can be beneficial to choose α = 2
even though the Lipschitz norm does not vanish. While the
case α =∞ (where we only consider the case←) leads to
low performance with high values of β and unstable training
with low values of β, we found that decaying β e.g. from
0.5 to 0.2 led to the best IS as can be seen in Table 15. The
TRIVIAL case does not perform well in this setting, which is
not surprising since the exact value of Dφ, 1αβ

−α,α(µ‖ν) is
∞ if ν is not contained in the W1 ball of radius β centered
at µ, and 0 otherwise.

5Numerical instabilities prevented us from evaluating the Jef-
freys divergence in this setting.
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Preliminary experiments showed that other values of α be-
have similarly to the ones we considered, which is why we
restricted our attention to the representative values 1.05, 2
and∞. The implementation was done in TensorFlow, using
the residual critic and generator architectures from Gulrajani
et al. (2017). Training was done for 100000 iterations, with
5 gradient descent step per iteration for the critic, and 1 for
the generator. Additional results, details of the experimental
setup and generated images can be found in Appendix 8.4,
along with toy examples validating our approach for approx-
imating f -divergences through the tight variational repre-
sentations on categorical and Gaussian distributions. The
original f -GAN losses (Nowozin et al., 2016) were partic-
ularly unstable in our implementation. Training the critic
for 1 instead of 5 steps per iteration led to more stability,
but even in this case only the χ2 divergence made it to
100000 iterations without numerical errors, leading to an
IS of 6.49 and an FID of 40.64. Source code to reproduce
the experiments is available at https://github.com/
renyi-ai/moreau-yosida-f-divergences.

6. Related work
In Farnia & Tse (2018), Dφ,1,1 is defined, and a non-tight
variational representation is given for symmetric choices
of Dφ. They also prove that Dφ,1,1 between the data and
generated distributions is a continuous function of the gen-
erator parameters, and provide a dual formula for the case
α = 2 using W2 instead of W1. A future direction is to
prove analogous results for general α, λ and Wp. In Bir-
rell et al. (2020), a generalization of Dφ,1,1 is defined with
arbitrary IPMs instead of W1, but their assumptions on φ
are more restrictive, and they explicitly define Dφ(µ‖ν) to
be∞ if µ� ν does not hold. In Husain et al. (2019), the
Lipschitz constrained version of the non-tight variational
representation of Dφ is shown to be a lower bound to the
Wasserstein autoencoder objective. In Laschos et al. (2019),
it is proved that the supremum in the Donsker-Varadhan
formula can equivalently be taken over Lipschitz contin-
uous functions. In Song & Ermon (2020), based on the
non-tight representation, another generalization of f -GANs
and WGAN is proposed, with the importance weights r
analogous to the gradient of D∗φ(f‖ν) in our case. Connec-
tions to density ratio estimation and sample reweighting are
discussed, which apply to our case as well. In Arbel et al.
(2021), the Lipschitz constrained version of the Donsker-
Varadhan formula is proposed as an objective function for
energy-based models. For representation learning by mutual
information maximization, Ozair et al. (2019) proposes the
Lipschitz constrained version of the Donsker-Varadhan for-
mula as a proxy for mutual information, which is shown to
be empirically superior to the unconstrained formulation. In
Zhou et al. (2019), it is shown that Lipschitz regularization
improves the performance of GANs in general other than

the Wasserstein GAN. The uniqueness of the optimal critic
is investigated, and formulas are proposed for which unique-
ness holds. We solve the uniqueness problem in another
way, by implementing the quotient critic.

To summarize, the recognition of the primal formula be-
ing the Moreau-Yosida regularization of Dφ with respect
to W1 and the case α 6= 1 are novel to our paper. This
includes the unconstrained variational formula for W1. Re-
garding f -divergences, the tight variational representation
over the quotient space Lip(X,x0) and the characterization
of Csiszár potentials are new as well. Additionally, we allow
the same generality in terms of the choice of φ as Agrawal
& Horel (2020). On the practical side, we proposed an al-
gorithm to calculate the tight conjugate D∗φ (f‖ν) and its
gradient. Experimentally, implementations are provided
for GANs based on the tight variational representation not
only of the Kullback-Leibler divergence, but the reverse
Kullback-Leibler, χ2, reverse χ2, squared Hellinger, Jensen-
Shannon, Jeffreys, triangular discrimination and total varia-
tion divergences as well.

7. Conclusions
In this paper, we studied the Moreau-Yosida regularization
of f -divergences with respect to the Wasserstein-1 metric
in a convex duality framework. We presented variational
formulas and characterizations of optimal variables, gen-
eralizing a number of existing results and leading to novel
special cases of interest, and proposed the MYf -GAN as
an implementation of the formulas. Future directions in-
clude finding the variational formulas for Moreau-Yosida
approximation with respect to all Wasserstein-p metrics in-
cluding the case 0 < α < 1, improving the estimation of
the Lipschitz norm of the critic, making use of the fact that
Csiszár-Kantorovich potentials can be seen as Lipschitz-
regularized statistical tests, e.g. for sample reweighting,
and scaling up to higher-dimensional datasets. Additionally,
the results can potentially be applied to learning algorithms
other than GANs, such as representation learning by mutual
information maximization, energy-based models, general-
ized prediction functions and density ratio estimation.
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8. Appendix
8.1. Background

In order to establish the dual formulation of the Moreau-Yosida approximation of f -divergences, we will apply techniques
from convex analysis, for which we need an appropriate pair of vector spaces that are in duality.

8.1.1. FUNCTIONAL ANALYSIS

We recite a number of definitions and results (without proofs) from functional analysis concerning vector spaces of Lipschitz
functions, taken from Cobzaş et al. (2019).

Let (X, d) be a compact metric space, and denote the σ-algebra of its Borel subsets by B(X). A function µ : B(X)→ R
is called a σ-additive measure if µ(

⋃∞
i=0Ai) =

∑∞
i=0 µ(Ai) holds for every family {Ai : i ∈ N} ⊂ B(X) of pairwise

disjoint elements of B(X). Any such measure is of bounded variation, i.e. |µ|(X) <∞ where

|µ|(X) = sup
(Ai)i∈{1,...,m} is a partition ofX,m∈N

{
m∑
i=1

|µ(Ai)|

}
(25)

is the total variation of µ. Denote byM(X) the set of σ-additive measures on B(X).

A function f : X → R is Lipschitz continuous if there exists a number M ∈ [0,∞) such that |f(x)− f(y)| ≤Md(x, y)
for all x, y ∈ X . The Lipschitz norm of such an f is defined as

‖f‖L = sup
x,y∈X,x 6=y

{
|f(x)− f(y)|

d(x, y)

}
. (26)

Denote by Lip(X) the set of Lipschitz continuous functions f : X → R. Fixing an arbitrary element x0 ∈ X , the set
Lip(X,x0) = {f ∈ Lip(X) : f(x0) = 0} is a Banach space with the norm ‖.‖L. For any ξ ∈ R, M(X, ξ) = {µ ∈
M(X) : µ(X) = ξ} is a vector subspace ofM(X). With the Kantorovich-Rubinstein norm

‖µ‖KR = sup
f∈Lip(X,x0),‖f‖L≤1

{∫
fdµ

}
, (27)

the pair (M(X, 0), ‖.‖KR) is a normed vector space.

Theorem. For any f ∈ Lip(X,x0) the functional uf :M(X, 0)→ R defined by uf (µ) =
∫
fdµ is linear and continuous

with ‖uf‖ = ‖f‖L. Moreover, every continuous linear functional v on (M(X, 0), ‖.‖KR) is of the form v(µ) = uf (µ) for
a uniquely determined function f ∈ Lip(X,x0) with ‖v‖ = ‖f‖L. Consequently, the mapping f → uf is an isometric
isomorphism of (Lip(X,x0), ‖.‖L) onto the topological dual (M(X, 0), ‖.‖KR)∗, i.e.

(Lip(X,x0), ‖.‖L) ∼= (M(X, 0), ‖.‖KR)∗. (28)

With the norm
‖f‖max = max {‖f‖L, ‖f‖∞}, (29)

the pair (Lip(X), ‖.‖max) is a Banach space. With the Hanin norm

‖µ‖H = inf
ν∈M(X,0)

{‖ν‖KR + ‖µ− ν‖TV }, (30)

the pair (M(X), ‖.‖H) is a normed vector space. The subspaceM(X, 0) is closed with respect to the topology generated
by ‖.‖H , and the corresponding subspace topology is equivalent to the topology generated by ‖.‖KR.

Theorem. For any f ∈ Lip(X) the functional uf : M(X) → R defined by uf (µ) =
∫
fdµ is linear and continuous

with ‖uf‖ = ‖f‖max. Moreover, every continuous linear functional v on (M(X), ‖.‖H) is of the form v(µ) = uf (µ) for
a uniquely determined function f ∈ Lip(X) with ‖v‖ = ‖f‖max. Consequently, the mapping f → uf is an isometric
isomorphism of (Lip(X), ‖.‖max) onto the topological dual (M(X), ‖.‖H)∗, i.e.

(Lip(X), ‖.‖max) ∼= (M(X), ‖.‖H)∗. (31)
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Integration is bilinear, i.e.
∫

(αf + βg)dµ = α
∫
fdµ + β

∫
gdµ and

∫
fd(αµ + βν) = α

∫
fdµ + β

∫
fdν for any

α, β ∈ R, f, g ∈ Lip(X) and µ, ν ∈M(X).

The set of nonnegative measures is M+(X) = {µ ∈ M(X) | ∀A ∈ B(X) : µ(A) ≥ 0}. The convex set P (X) =
M(X, 1) ∩M+(X) is exactly the set of all Borel probability measures on X . It is a compact and complete metric space
with respect to the Wasserstein-1 metric

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
d(x1, x2)dπ(x1, x2), (32)

where Π(µ, ν) is the set of probability measures on X ×X with marginals µ and ν, i.e. given any A ∈ B(X), the relations
π(A×X) = µ(A) and π(X ×A) = ν(A) hold.

Theorem (Kantorovich-Rubinstein duality). The metric induced by the norm ‖.‖KR on P (X) is equivalent to the
Wasserstein-1 metric as

W1(µ, ν) = sup
f∈Lip(X,x0),‖f‖L≤1

{∫
fdµ−

∫
fdν

}
= ‖µ− ν‖KR (33)

for any µ, ν ∈ P (X).

8.1.2. CONVEX ANALYSIS

We recite a number of definitions and results (without proofs) from convex analysis on general vector spaces, taken from
Zalinescu (2002).

Let X,Y be separated locally convex topological vector spaces with topological duals X∗, Y ∗. For an extended real-valued
function f : X → R, the function f∗ : X∗ → R defined by

f∗(x∗) = sup
x∈X
{〈x, x∗〉 − f(x)} (34)

is the (convex) conjugate of f , where 〈·, ·〉 is the dual pairing. The conjugate g∗ : X → R of a function g : X∗ → R is
defined analogously as

g∗(x) = sup
x∗∈X∗

{〈x, x∗〉 − g(x∗)}, (35)

leading to the notion of the biconjugate (f∗)∗ = f∗∗ of f , which is the greatest lower semicontinuous convex function with
f∗∗ ≤ f .

If 0 < α ∈ R, then
(αf(·))∗(x∗) = αf∗(α−1x∗), (36)

if 0 6= β ∈ R, then
(f(β·))∗(x∗) = f∗(β−1x∗), (37)

if x0 ∈ X , then
(f(x0 + ·))∗(x∗) = f∗(x∗)− 〈x0, x

∗〉, (38)

and the Young-Fenchel inequality states that

∀x ∈ X,∀x∗ ∈ X∗ : f(x) + f∗(x∗) ≥ 〈x, x∗〉. (39)

If (X, ‖ · ‖) and (X∗, ‖ · ‖∗) are normed spaces and f : X → R is defined by f(x) = ‖x‖, then

f∗(x∗) =

{
0 if ‖x∗‖∗ ≤ 1,
∞ otherwise

(40)

is the indicator function of the unit ball of the dual space, and if ψ : R+ → R+ is such that ψ(0) = 0 and f : X → R is
defined by f(x) = ψ(‖x‖), then

f∗(x∗) = ψ#(‖x∗‖∗), (41)
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where ψ# : R+ → R+ is defined by
ψ#(s) = sup

0≤t∈R
{st− ψ(t)}. (42)

Given a function f : X → R, the set
dom f = {x ∈ X : f(x) <∞} (43)

is the effective domain of f . A function f is proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X , otherwise it is improper.
A function f is convex if

∀x, y ∈ X,∀λ ∈ [0, 1] : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (44)

holds, and strictly convex if (44) holds with ≤ replaced by <. An f : R → R is strictly convex at x0 ∈ dom f if
λf(x1) + (1 − λ)f(x2) > f(x0) holds for ∀λ ∈ (0, 1) and ∀x1, x2 ∈ dom f such that λx1 + (1 − λ)x2 = x0, unless
x1 = x2 = x0.

A function f is lower semicontinuous at x0 ∈ X if f(x0) ≤ lim infx→x0 f(x), and f is lower semicontinuous if it is lower
semicontinuous at ∀x0 ∈ X .
Theorem (Fenchel-Moreau biconjugation). Let X be a separated locally convex topological vector space with topological
dual X∗, and f : X → R a function. Then f∗∗ ≤ f , and the relation

f = f∗∗. (45)

i.e. f is equivalent to its biconjugate (the conjugate of its conjugate) holds if and only if either f is proper, lower
semicontinuous and convex, or f is constant ±∞.

Given a function f : X → R and x̂ ∈ X , the subdifferential of f at x̂ is defined as the set

∂f(x̂) = {x∗ ∈ X∗ : ∀x ∈ X : 〈x− x̂, x∗〉 ≤ f(x)− f(x̂)}. (46)

Any x ∈ ∂f(x̂) is called a subgradient of f at x̂. It is possible that ∂f(x̂) = ∅, which is always the case if f(x̂) = ±∞. It
holds that if f is proper and f(x) ∈ R, (39) becomes an equality if and only if x∗ ∈ ∂f(x), or equivalently x ∈ ∂f∗(x∗). It
follows that if f is proper, convex and lower semicontinuous, then

f(x) = f∗∗(x) = sup
x∗∈X∗

{〈x, x∗〉 − f∗(x∗)} = 〈x, x̂∗〉 − f∗(x̂∗) ⇐⇒ x̂∗ ∈ ∂f(x) (47)

and
f∗(x∗) = sup

x∈X
{〈x, x∗〉 − f(x)} = 〈x̂, x∗〉 − f(x̂) ⇐⇒ x̂ ∈ ∂f∗(x∗) (48)

both hold.

The adjoint of a linear map A : X → Y is the linear map A∗ : Y ∗ → X∗ such that 〈Ax, y∗〉 = 〈x,A∗y∗〉 holds for
∀x ∈ X, y∗ ∈ Y ∗.
Theorem. 6 Let A : X → R be a continuous linear map (so that A ∈ X∗) with adjoint A∗ : R→ X∗, and f : X → R, g :
R→ R be proper convex functions, and consider the proper convex function h : X → R defined as h(x) = f(x) + g(Ax).
If dom f ∩A−1(dom g) 6= ∅ and 0 ∈ relint(A(dom f)− dom g), then it holds that

h∗(x∗) = min
γ∈R
{f∗(x∗ −A∗γ) + g∗(γ)} (49)

and
∂h(x) = ∂f(x) +A∗(∂g(Ax)). (50)

Theorem (Fenchel-Rockafellar duality). 7 Let f, g : X → R be proper convex functions for which ∃x0 ∈ dom f ∩ dom g
such that g is continuous at x0. Then it holds that

inf
x∈X
{f(x) + g(x)} = max

x∗∈X∗
{−f∗(x∗)− g∗(−x∗)} (51)

and
∃x̂ ∈ X : inf

x∈X
{f(x) + g(x)} = f(x̂) + g(x̂) ⇐⇒ ∃x̂∗ ∈ X∗ : −x̂∗ ∈ ∂f(x̂) ∧ x̂∗ ∈ ∂g(x̂). (52)

6This theorem is Zalinescu (2002, Theorem 2.8.3(viii)) with Y = R.
7This theorem is Zalinescu (2002, Corollary 2.8.5) and condition Zalinescu (2002, Theorem 2.8.3(iii)) with Y = X , A : X → X the

identity and replacing the dual variable x∗ with −x∗.
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8.1.3. MOREAU-YOSIDA APPROXIMATION

Let (X, d) be a metric space and f : X → R a proper function. Given 0 < λ,α ∈ R, the Moreau-Yosida approximation
(Dal Maso, 1993; Jost & Li-Jost, 2008) of index λ and order α of f is defined as

fλ,α(x) = inf
y∈X
{f(y) + λd(x, y)α}. (53)

It holds that
f(x) = sup

λ>0
fλ,α(x) = lim

λ→∞
fλ,α(x). (54)

where f is the greatest lower semicontinuous function with f ≤ f .
Theorem. If 0 < α ≤ 1, then (fλ1,α)λ2,α = fmin(λ1,λ2),α, and fλ,α is the greatest function among those g ≤ f for which

∀x, y ∈ X : |g(x)− g(y)| ≤ λd(x, y)α (55)

(i.e. g is Hölder continuous with exponent α and Hölder constant λ) holds.

The functions fλ,1 satisfy
∀x, y ∈ X : |fλ,1(x)− fλ,1(y)| ≤ λd(x, y) (56)

(i.e. they are Lipschitz continuous with Lipschitz constant λ).

If α ≥ 1, f is non-negative and 0 < r ∈ R, 0 ≤M ∈ R are constants, then there exists a constant 0 < c(α, λ,M, r) ∈ R
such that for ∀z ∈ X it holds that if fλ,α(z) ≤M , then

∀x, y ∈ X, d(x, z) ≤ r, d(y, z) ≤ r : |fλ,α(x)− fλ,α(y)| ≤ cd(x, y) (57)

(i.e. fλ,α is locally Lipschitz continuous).

8.2. Proofs

Proposition 6. Given ν ∈M+(X) and a proper, convex and lower semicontinuous function φ : R→ R strictly convex at
1 with φ(1) = 0, the function Iφ,ν : (M(X), ‖.‖H)→ R defined by

Iφ,ν(µ) = Dφ(µ‖ν) (58)

is proper, convex and lower semicontinuous, and its conjugate I∗φ,ν : (Lip(X), ‖.‖max)→ R is

I∗φ,ν(f) =

{∫
φ∗ ◦ fdν if f(X) ⊆ [φ′(−∞), φ′(∞)],

∞ otherwise.
(59)

Proof. By Agrawal & Horel (2020, Proposition 4.2.6), one has

sup
µ∈M(X)

{∫
fdµ− Iφ,ν(µ)

}
=

{∫
φ∗ ◦ fdν if f(X) ⊆ [φ′(−∞), φ′(∞)],

∞ otherwise.
(60)

for any bounded and measurable f : X → R. Any f ∈ Lip(X) is bounded and measurable, hence the claimed conjugate
relation. Clearly Iφ,ν is convex and proper. For it to be lower semicontinuous, by (45) we only need to show that I∗∗φ,ν ≥ Iφ,ν ,
i.e. that there exists a sequence (fn) in Lip(X) such that limn→∞

∫
fndµ− I∗φ,ν(fn) ≥ Iφ,ν(µ).

By Borwein & Lewis (1993, Theorem 2.7) and (45), if supp(ν) = X , then

Iφ,ν(µ) = sup
f∈C(X)

{∫
fdµ−

∫
φ∗ ◦ fdν

}
(61)

holds with C(X) being the space of continuous functions on X . By Agrawal & Horel (2020, Lemma 3.2.11), the closure of
domφ∗ is [φ′(−∞), φ′(∞)], so that for

∫
φ∗ ◦ fdν < ∞ to hold, f(X) ⊆ [φ′(−∞), φ′(∞)] is necessary, meaning that

the above supremum is equivalent to

sup
f∈C(X),f(X)⊆[φ′(−∞),φ′(∞)]

{∫
fdµ−

∫
φ∗ ◦ fdν

}
= sup
f∈C(X)

{∫
fdµ− I∗φ,ν(f)

}
, (62)
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i.e. there exists a sequence (fn) in C(X) such that limn→∞
∫
fndµ− I∗φ,ν(fn) = Iφ,ν(µ).

In the general case with supp(ν) ⊂ X , since the support of ν is closed by definition, being a closed subset of a compact
metric space, it is a compact metric space itself with the restriction of the metric d. Consider the decomposition µ = µ1 +µ2

defined as µ1(A) = µ(A ∩ supp(ν)) and µ2(A) = µ(A \ supp(ν)). Then one has

Dφ(µ‖ν) = Dφ(µ1‖ν) + φ′(∞)µ+
2 (X)− φ′(−∞)µ−2 (X), (63)

and by the above considerations there exists a sequence (fn) in C(supp(ν)) such that limn→∞
∫
fndµ1 − I∗φ,ν(fn) =

Iφ,ν(µ1) = Dφ(µ1‖ν) and fn(X) ⊆ [φ′(−∞), φ′(∞)] for ∀n. By the regularity of the measures µ+
2 , µ

−
2 , one has

µ±2 (A) = sup
B∈B(X),B⊆A,B compact

{
µ±2 (B)

}
(64)

for ∀A ∈ B(X), i.e. there exist sequences (B±n ) in B(X) such that limn→∞ µ±2 (Bn) = µ±2 (X) with (B±n ) compact, and
therefore closed. By the definition of µ2, we can assume without loss of generality that B±n ∩ supp(ν) = ∅ for ∀n, and by
the definition of the Jordan decomposition, B+

n ∩B−n = ∅ can be assumed as well. Define f̃n : supp(ν) ∪B+
n ∪B−n → R

as

f̃n =


fn(x) if x ∈ supp(ν),

β+
n if x ∈ B+

n ,

β−n if x ∈ B−n

(65)

with sequences (β±n ) ⊂ R∩ [φ′(−∞), φ′(∞)] such that limn→∞ β±n = φ′(±∞) and ∀n : φ′(−∞) < β±n < φ′(∞). Since
f̃n is clearly continuous, by the Tietze extension theorem, there exists a continuous extension f̂n ∈ C(X) agreeing with f̃n
on supp(ν) ∪B+

n ∪B−n with f̂n(X) ⊆ [φ′(−∞), φ′(∞)], for which one has

lim
n→∞

∫
f̂ndµ− I∗φ,ν(f̂n) = lim

n→∞

∫
f̂ndµ−

∫
φ∗ ◦ f̂ndν

= lim
n→∞

∫
fndµ1 +

∫
f̂ndµ2 −

∫
φ∗ ◦ fndν = Dφ(µ1‖ν) + lim

n→∞

∫
f̂ndµ2

= Dφ(µ1‖ν) + lim
n→∞

β+
n µ

+
2 (B+

n )− β−n µ−2 (B−n ) +

∫
X\B+

n

f̂ndµ
+
2 −

∫
X\B−n

f̂ndµ
−
2 . (66)

If φ′(±∞) are finite, then f̂n is bounded uniformly independent of n, implying that

lim
n→∞

∫
X\B+

n

f̂ndµ
+
2 −

∫
X\B−n

f̂ndµ
−
2 = 0. (67)

If one of φ′(±∞) is infinite, say φ′(∞), then

lim
n→∞

β+
n µ

+
2 (B+

n )− β−n µ−2 (B−n ) +

∫
X\B+

n

f̂ndµ
+
2 −

∫
X\B−n

f̂ndµ
−
2 =

{
∞ if µ+

2 6= 0,

0 otherwise,
(68)

with the case φ′(−∞) = −∞ following similarly. If φ′(±∞) are both infinite, then the above limit is∞ if µ2 6= 0 and 0
otherwise, meaning that in any case

lim
n→∞

β+
n µ

+
2 (B+

n )− β−n µ−2 (B−n ) +

∫
X\B+

n

f̂ndµ
+
2 −

∫
X\B−n

f̂ndµ
−
2 = φ′(∞)µ+

2 (X)− φ′(−∞)µ−2 (X), (69)

so that one has

lim
n→∞

∫
f̂ndµ− I∗φ,ν(f̂n) = Dφ(µ1‖ν) + φ′(∞)µ+

2 (X)− φ′(−∞)µ−2 (X) = Dφ(µ‖ν) = Iφ,ν(µ). (70)

This proves that

Iφ,ν(µ) ≤ sup
f∈C(X)

{∫
fdµ− I∗φ,ν(f)

}
(71)
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holds for ν with supp(ν) ⊂ X . Since X is compact, by the Stone-Weierstrass theorem Lip(X) is dense in C(X), hence

sup
f∈C(X)

{∫
fdµ− I∗φ,ν(f)

}
= sup
f∈Lip(X)

{∫
fdµ− I∗φ,ν(f)

}
= I∗∗φ,ν(µ), (72)

giving the claim Iφ,ν(µ) ≤ I∗∗φ,ν(µ).

We get the non-tight variational representation over Lip(X) as a corollary by (45).

Corollary 1. Given ν ∈M+(X), µ ∈M(X) and a proper, convex and lower semicontinuous function φ : R→ R strictly
convex at 1 with φ(1) = 0, one has

Dφ(µ‖ν) = sup
f∈Lip(X),f(X)⊆[φ′(−∞),φ′(∞)]

{∫
fdµ−

∫
φ∗ ◦ fdν

}
. (73)

Proposition 7. Given ν ∈ P (X) and a proper, convex and lower semicontinuous function φ : R→ R strictly convex at 1
with φ(1) = 0 and 1 ∈ relint domφ, the function Dφ,ν : (M(X), ‖.‖H)→ R defined by

Dφ,ν(µ) = Dφ(µ‖ν) + iP (X)(µ) (74)

is proper, convex and lower semicontinuous, and its conjugate D∗φ,ν : (Lip(X), ‖.‖max)→ R is

D∗φ,ν(f) = min
γ∈R,γ≥sup f(X)−φ′(∞)

{∫
φ∗+ ◦ (f − γ)dν + γ

}
, (75)

for which D∗φ,ν(f +C) = D∗φ,ν(f) +C and D∗φ,ν(f1) ≤ D∗φ,ν(f2) holds for ∀C ∈ R and f1 ≤ f2, meaning that D∗φ,ν is a
topical function.

Proof. By Agrawal & Horel (2020, Lemma 4.3.1), one has Dφ,ν(µ) = Iφ+,ν(µ) + i{1}(µ(X)) with φ+ = φ+ iR+
. For

the constant function 1 ∈ Lip(X), the map (µ→ µ(X) = 〈µ, 1〉 =
∫
X

1dµ) :M(X)→ R is linear and continuous, and
its adjoint is clearly (γ → (x→ γ)) : R→ Lip(X), mapping constants in R to the corresponding constant functions in
Lip(X). Since i{1} : R → R is the indicator function of the set {1} with its conjugate i∗{1} = (s → supt∈{1} {st} = s)
being the identity function, by (49) one has

D∗φ,ν(f) = min
γ∈R
{I∗φ+,ν(f − γ) + γ}, (76)

where the minimum can be equivalently taken over those γ ∈ R for which I∗φ+,ν
(f − γ) can be finite, i.e. for which

∀x ∈ X : φ′+(−∞) ≤ f(x) − γ ≤ φ′+(∞) holds for ∀x ∈ X , with the first half being vacuous since φ′+(−∞) = −∞,
leading to the claimed conjugate relation. Since Dφ,ν is the sum of two lower semicontinuous functions, it is itself lower
semicontinuous. It is clearly proper and convex as well.

To see that the conditions of (49) hold, notice that ν ∈ dom Iφ+,ν always holds, while dom i{1} = {1} so that P (X) ⊂
(µ → µ(X))−1 dom i{1} = {µ ∈ M(X) : µ(X) = 1}, meaning that ν ∈ dom Iφ+,ν ∩ (µ → µ(X))−1 dom i{1} 6= ∅.
Since 1 ∈ relint domφ by assumption, either domφ = {1}, or domφ contains a neighborhood of 1. In the former case,
φ = i{1}, and one has dom Iφ+,ν ∩ (µ → µ(X))−1 dom i{1} = {ν}, so that (µ → µ(X)) dom Iφ+,ν − dom i{1} =
{1} − {1} = {0}, for which relint{0} = {0}, and the condition holds.

For other choices of φ, there exists 0 < a ∈ R such that (1 − a, 1 + a) ⊆ domφ, and one has for ∀b ∈ (1 − a, 1 + a)
that Iφ+,ν(bν) =

∫
φ+(b)dν = φ+(b) < ∞, so that {bν : b ∈ (1 − a, 1 + a)} ⊆ dom Iφ+,ν . This implies that

(1− a, 1 + a) ⊆ (µ→ µ(X)) dom Iφ+,ν , further implying that (−a, a) ⊆ (µ→ µ(X)) dom Iφ+,ν − domφ+, for which
0 ∈ relint(µ→ µ(X)) dom Iφ+,ν − domφ+ clearly holds, proving that the conditions of (49) hold.

The constant additivity property follows from

D∗φ,ν(f + C) = sup
µ∈M(X)

∫
(f + C)dµ−Dφ,ν(µ) = sup

µ∈P (X)

∫
(f + C)dµ−Dφ,ν(µ)

= sup
µ∈P (X)

∫
fdµ+

∫
Cdµ−Dφ,ν(µ) = sup

µ∈P (X)

∫
fdµ+ C −Dφ,ν(µ) = D∗φ,ν(f) + C, (77)
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and the other from
f1 ≤ f2 =⇒

∫
f1dµ−Dφ,ν(µ) ≤

∫
f2dµ−Dφ,ν(µ) (78)

for ∀µ ∈ P (X). These properties define topical functions (Mohebi, 2005).

Proposition 8. Given ν ∈ P (X), ω ∈ M(X) with ω(X) = 1 and a proper, convex and lower semicontinuous function
φ : R→ R strictly convex at 1 with φ(1) = 0 and 1 ∈ relint domφ, the function Dφ,ν,ω : (M(X, 0), ‖.‖KR)→ R defined
by

Dφ,ν,ω(µ) = Dφ(µ+ ω‖ν) + iP (X)(µ+ ω) (79)

is proper, convex and lower semicontinuous, and its conjugate D∗φ,ν,ω : (Lip(X,x0), ‖.‖L)→ R is

D∗φ,ν,ω(f) = min
γ∈R,γ≥sup f(X)−φ′(∞)

{∫
φ∗+ ◦ (f − γ)dν + γ

}
−
∫
fdω. (80)

Proof. By the previous proposition and (38), the conjugate relation

(µ→ Dφ,ν(µ+ ω))∗ =

(
f → D∗φ,ν(f)−

∫
fdω

)
(81)

holds. Notice that for Dφ,ν(µ+ ω) to be finite, µ(X) = 0 must hold, since (µ+ ω)(X) = 1 is needed, and ω(X) = 1 by
assumption, hence for f ∈ Lip(X), one has

sup
µ∈M(X)

{∫
fdµ−Dφ,ν(µ+ ω)

}
= sup
µ∈M(X,0)

{∫
fdµ−Dφ,ν(µ+ ω)

}
, (82)

which is exactly the definition of the value at f of the conjugate of the restriction of (µ→ Dφ,ν(µ+ ω)) toM(X, 0). This
restriction is clearly proper and convex, and lower semicontinuous as well by being the restriction of a lower semicontinuous
function to a closed subspace.

As a corollary, we get the following dual representation of Dφ on the space of probability measures, which is the tightest to
date, in the sense that the supremum is taken over a set of functions that is a proper subset of those of the previous dual
representation (Agrawal & Horel, 2020), which included all bounded and measurable functions. Our representation is over
the space of Lipschitz functions vanishing at an arbitrary base point.

Corollary 2. Given µ, ν ∈ P (X) and a proper, convex and lower semicontinuous function φ : R→ R strictly convex at 1
with φ(1) = 0 and 1 ∈ relint domφ, Dφ(µ‖ν) has the equivalent variational representation

sup
f∈Lip(X,x0)

{∫
fdµ− min

γ∈R,γ≥sup f(X)−φ′(∞)

{∫
φ∗+ ◦ (f − γ)dν + γ

}}
. (83)

Proof. Let µ ∈ P (X). By (45) and the previous proposition,

Dφ,ν,ω(µ− ω) = D∗∗φ,ν,ω(µ− ω)

= sup
f∈Lip(X,x0)

{∫
fd(µ− ω)− min

sup f(X)−φ′(∞)≤γ

{∫
φ∗+ ◦ (f − γ)dν + γ

}
+

∫
fdω

}
(84)

holds, giving the claim.

Proposition 9. Given µ, ν ∈ P (X) and a proper, convex and lower semicontinuous function φ : R→ R strictly convex at 1
with φ(1) = 0 and 1 ∈ relint domφ, the relation

Dφ(µ‖ν) =

∫
f∗dµ− min

γ∈R,γ≥sup f∗(X)−φ′(∞)

{∫
φ∗+ ◦ (f∗ − γ)dν + γ

}
(85)

holds for f∗ ∈ Lip(X) if and only if there exists C ∈ R such that the conditions

sup f∗(X) + C ≤ φ′(∞), (86)
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dµc
dν

(x) ∈ ∂φ∗+(f∗(x) + C) almost everywhere with respect to ν (87)

and
supp(µs) ⊂ {x ∈ X : f∗(x) + C = φ′(∞)} (88)

hold. If φ is of Legendre type, the second condition is equivalent to

f∗(x) + C = φ′+

(
dµc
dν

(x)

)
almost everywhere with respect to µc. (89)

Proof. By Borwein & Lewis (1993, Theorem 2.10), given µ ∈M(X) and ν ∈M+(X) with supp(ν) = X , one has

Dφ(µ‖ν) +

∫
φ∗ ◦ f∗dν =

∫
f∗dµ (90)

for f∗ : X → R continuous if and only if

f∗(x) ∈ [φ′(−∞), φ′(∞)] for ∀x ∈ X, (91)

dµc
dν

(x) ∈ ∂φ∗(f∗(x)) almost everywhere with respect to ν, (92)

suppµ−s ⊂ {f∗(x) = φ′(−∞)} (93)

and
suppµ+

s ⊂ {f∗(x) = φ′(∞)} (94)

hold.

In the general case with supp(ν) ⊂ X , since the support of ν is closed by definition, it is a compact metric space itself with
the restriction of the metric d. Consider again the decomposition µ = µ1 + µ2 defined as µ1(A) = µ(A ∩ supp(ν)) and
µ2(A) = µ(A \ supp(ν)). Then one has

Dφ(µ‖ν) = Dφ(µ1‖ν) + φ′(∞)µ+
2 (X)− φ′(−∞)µ−2 (X), (95)

while the optimality conditions above imply that

Dφ(µ1‖ν) +

∫
φ∗ ◦ f∗dν =

∫
f∗dµ1 (96)

for f∗ : X → R continuous if and only if

f∗(x) ∈ [φ′(−∞), φ′(∞)] for ∀x ∈ supp(ν), (97)

dµ1c

dν
(x) ∈ ∂φ∗(f∗(x)) almost everywhere with respect to ν, (98)

suppµ−1s ⊂ {f∗(x) = φ′(−∞)} (99)

and
suppµ+

1s ⊂ {f∗(x) = φ′(∞)} (100)

hold. For
Dφ(µ‖ν) +

∫
φ∗ ◦ f∗dν =

∫
f∗dµ (101)

to hold, one needs additionally that

φ′(∞)µ+
2 (X)− φ′(−∞)µ−2 (X) =

∫
f∗dµ2, (102)
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which holds exactly if
suppµ−2s ⊂ {f∗(x) = φ′(−∞)} (103)

and
suppµ+

2s ⊂ {f∗(x) = φ′(∞)} (104)

hold. To summarize, since µ1c = µc and µ1s + µ2s = µs, the optimality conditions for µ ∈M(X) and ν ∈M+(X) with
ν not necessarily having full support are the same as cited above from (Borwein & Lewis, 1993).

Now consider the tight representation, which follows by taking the conjugate of (µ→ Dφ(µ‖ν)+iP (X)(µ) = Dφ+
(µ‖ν))+

i{1}(
∫

1dµ) through (49). Substituting into (50), one has

∂

(
Dφ+

(·‖ν) + i{1}

(∫
1d·
))

(µ) = ∂Dφ+
(·‖ν)(µ) + (γ → (x→ γ))

(
∂i{1}

(∫
1dµ

))
, (105)

which gives the claim since ∂i{1}(1) = R, φ′+(−∞) = −∞, φ′+(∞) = φ′(∞), µ−s = 0 and subdifferentials are exactly
those f∗ for which the supremum is achieved.

If φ is of Legendre type (Borwein & Lewis, 1993), then φ+ and φ∗+ are both continuously differentiable on their respective
domains, while φ∗+

′ is increasing, and invertible on the subset of domφ∗+ where its value is positive with its inverse given
by the strictly increasing φ′+ by Borwein & Lewis (1993, Lemma 2.6). With these, the second condition is equivalent to

f∗(x) + C = φ′+

(
dµc
dν

(x)

)
µc-a.e. (106)

Since we only consider the case of compact sample spaces, the infimum defining the Moreau-Yosida approximation turns
into a minimum.

Proposition 10. If the metric space (X, d) is compact, the infimum defining the Moreau-Yosida approximation of any
f -divergence with respect to the Wasserstein-1 distance is always achieved as

inf
ξ∈P (X)

{Dφ(ξ‖ν) + λW1(µ, ξ)α} = min
ξ∈P (X)

{Dφ(ξ‖ν) + λW1(µ, ξ)α} (107)

for any 0 < λ,α ∈ R.

Proof. If (X, d) is compact, then (P (X),W1) is compact as well. Since (ξ → Dφ(ξ‖ν)) is lower semicontinuous and
(ξ →W1(µ, ξ)) is continuous, the sum (ξ → Dφ(ξ‖ν) + λW1(µ, ξ)α) is lower semicontinuous. The proposition follows
from the fact that a lower semicontinuous function on a compact metric space always has a minimum.

A number of properties follow from the theory of Moreau-Yosida approximation.

Proposition 11. For any 0 < α ∈ R, one has Dφ(µ‖ν) = supλ>0Dφ,λ,α(µ‖ν) = limλ→∞Dφ,λ,α(µ‖ν). Moreover,

• if 0 < α < 1, then Dφ,λ,α(·‖ν) is Hölder continuous with respect to W1 with exponent α and Hölder constant λ,

• if α = 1, Dφ,λ,α(·‖ν) is Lipschitz continuous with respect to W1 with Lipschitz constant λ, and

• if α > 1, then Dφ,λ,α(·‖ν) is locally Lipschitz continuous with respect to W1, hence by (P (X),W1) being compact
Dφ,λ,α(·‖ν) is (globally) Lipschitz continuous.

Proof. The proposition follows from Theorem 8.1.3.

To obtain the dual representations of the Moreau-Yosida approximations of Dφ(·‖ν) with respect to the Wasserstein-1
distance, we need the convex conjugates of the functions mapping probability measures ξ + ω to λ times the αth power
of their Wasserstein-1 distance from a given probability measure µ, which by (33) is equivalent to λ‖ξ + ω − µ‖αKR. We
consider the cases 0 < α < 1, α = 1 and α > 1 separately.

We will need the following lemma.



Moreau-Yosida f -divergences

Lemma 1. Let ψ : R+ → R be such that
ψ(t) = λtα. (108)

If 1 < α ∈ R, then
ψ#(s) = (α− 1)α

α
1−αλ

1
1−α s

α
α−1 , (109)

and if 0 < α < 1, then

ψ#(s) =

{
0 if s = 0,
∞ otherwise.

(110)

Proof. By (42), ψ#(s) = sup0≤t∈R {st− λtα}. Since ∂
∂tst − λt

α = s − αλtα−1 and ∂
∂t

2
st − λtα = (1 − α)αλtα−2,

one has an extremum at t = s
αλ

1
α−1 by letting ∂

∂t = 0, which is a maximum if 1 < α ∈ R and a minimum if 0 < α < 1 by
the second derivative test. This implies the proposition.

Remark 1 (The case 0 < α < 1). By (110) and (41), it holds that

(ξ → λ‖ξ + ω − µ‖αKR)∗ =

(
f →

{
0 if ‖f‖L = 0,

∞ otherwise

)
, (111)

which implies that the mapping (ξ → λ‖ξ + ω − µ‖αKR)∗ is not convex by (45) (as it is clearly continuous and proper).
Hence it is not possible to obtain a dual representation of infξ∈P (X) {D(ξ‖ν) + λW (µ, ξ)α} by Fenchel-Rockafellar
duality when 0 < α < 1. Another approach would be to use Toland-Singer duality, which would require the mapping
(ξ → λ‖ξ + ω − µ‖αKR)∗ to be concave, but this is also not the case, since it is the composition of a convex and a concave
nondecreasing function (Boyd & Vandenberghe, 2014, Section 3.2.3).

Proposition 12. Given µ, ω ∈ P (X) and 0 < λ ∈ R, let the function Wµ,ω,λ,1 : (M(X, 0), ‖.‖KR)→ R be defined by

Wµ,ω,λ,1(ξ) = λ‖ξ + ω − µ‖KR. (112)

Then, the function Wµ,λ,1 is proper, convex and continuous, and its convex conjugate W ∗µ,ω,λ,1 : (Lip(X,x0), ‖.‖L)→ R
is

W ∗µ,ω,λ,1(f) =

{∫
fd(µ− ω) if ‖f‖L ≤ λ,
∞ otherwise.

(113)

Proof. By (40),

(ξ → ‖ξ‖KR)∗ =

(
f →

{
0 if ‖f‖L ≤ 1,
∞ otherwise

)
. (114)

By (38),

(ξ → ‖ξ + ω − µ‖KR)∗ =

(
f →

{
−
∫
fd(ω − µ) if ‖f‖L ≤ 1,

∞ otherwise

)
. (115)

By (36),

(ξ → λ‖ξ + ω − µ‖KR)∗ =

(
f →

{
−λ
∫
λ−1fd(ω − µ) if ‖λ−1f‖L ≤ 1,

∞ otherwise

)
, (116)

which is equivalent to the proposed conjugate.

Proposition 13. Given µ, ω ∈ P (X), 1 < α ∈ R and 0 < λ ∈ R, let the function Wµ,ω,λ,α : (M(X, 0), ‖.‖KR → R be
defined by

Wµ,ω,λ,α(ξ) = λ‖ξ + ω − µ‖αKR. (117)

Then, the function Wµ,ω,λ,α is proper, convex and continuous, and its convex conjugate W ∗µ,ω,λ,α : (Lip(X,x0), ‖.‖L)→ R
is

W ∗µ,ω,λ,α(f) =

∫
fd(µ− ω) + α

α
1−αλ

1
1−α (α− 1)‖f‖

α
α−1

L . (118)
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Proof. By (109) and (41), it holds that

(ξ → λ‖ξ‖αKR)∗ =
(
f → (α− 1)α

α
1−αλ

1
1−α ‖f‖

α
α−1

L

)
. (119)

By (38),

(ξ → λ‖ξ + ω − µ‖αKR)∗ =

(
f → (α− 1)α

α
1−αλ

1
1−α ‖f‖

α
α−1

L −
∫
fd(ω − µ)

)
, (120)

which is equivalent to the proposed conjugate.

We obtain the unconstrained variational representation of W1 as a corollary.

Corollary 3. Given µ, ν ∈ P (X), 1 < α ∈ R and 0 < λ ∈ R, one has the variational representation

λW1(µ, ν)α = sup
f∈Lip(X,x0)

{∫
fdµ−

∫
fdν − α

α
1−αλ

1
1−α (α− 1)‖f‖

α
α−1

L

}
, (121)

where the supremum is achieved by αλW1(µ, ν)α−1f∗ with f∗ being a Kantorovich potential of µ, ν.

Proof. The variational representation follows from the previous proposition and (45). For the other claim, one has

sup
f∈Lip(X,x0)

{∫
fdµ−

∫
fdν − α

α
1−αλ

1
1−α (α− 1)‖f‖

α
α−1

L

}
= sup
β∈R+,f∈Lip(X,x0),‖f‖L=1

{∫
βfdµ−

∫
βfdν − α

α
1−αλ

1
1−α (α− 1)‖βf‖

α
α−1

L

}

= sup
β∈R+

{
β sup
f∈Lip(X,x0),‖f‖L=1

{∫
fdµ−

∫
fdν

}
− α

α
1−αλ

1
1−α (α− 1)β

α
α−1

}
= sup
β∈R+

{
βW1(µ, ν)− α

α
1−αλ

1
1−α (α− 1)β

α
α−1

}
. (122)

Equating the derivative with respect to β to 0 and solving the resulting equation gives β = αλW1(µ, ν)α−1.

Now we have all the information we need in order to invoke Fenchel-Rockafellar duality to obtain the dual representations.

Proposition 14. Given µ, ν ∈ P (X), 0 < λ ∈ R and a proper, convex and lower semicontinuous function φ : R → R
strictly convex at 1 with φ(1) = 0 and 1 ∈ relint domφ, one has

min
ξ∈P (X)

{Dφ(ξ‖ν) + λW1(µ, ξ)}

= max
f∈Lip(X,x0),‖f‖L≤λ

{∫
fdµ− min

sup f(X)−φ′(∞)≤γ

{∫
φ∗+ ◦ (f − γ)dν + γ

}}
, (123)

and for ξ∗ ∈ P (X) such that minξ∈P (X) {Dφ(ξ‖ν) + λW1(µ, ξ)} = Dφ(ξ∗‖ν) + λW1(µ, ξ∗), there exists f∗ ∈
Lip(X,x0) achieving the maximum such that f∗ is a Csiszár potential of ξ∗, ν and λ times a Kantorovich potential
of µ, ξ∗.

Proof. Substituting Dφ,ν,ω, D∗φ,ν,ω, Wµ,ω,λ,1 and W ∗µ,ω,λ,1 into (51), for which the condition ∃ξ0 ∈ domDφ,ν,ω ∩
domWµ,ω,λ,1 and Wµ,ω,λ,1 is continuous at ξ0 clearly holds with ξ0 = ν − ω, gives

inf
ξ∈M(X,0)

{Dφ,ν,ω(ξ) +Wµ,ω,λ,1(ξ)} = max
f∈Lip(X,x0)

{
−D∗φ,ν,ω(f)−W ∗µ,ω,λ,1(−f)

}
. (124)

Since Wφ,ν,ω(ξ) =∞ unless ξ + ω ∈ P (X), the infimum is equivalent to

inf
ξ∈P (X)−ω

{Dφ(ξ + ω‖ν) + λ‖ξ + ω − µ‖KR}, (125)
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which is further equivalent to
inf

ξ∈P (X)
{Dφ(ξ‖ν) + λ‖ξ − µ‖KR}. (126)

Since D∗µ,ω,λ,1(f) =∞ unless ‖f‖L ≤ λ, the maximum is equivalent to

max
f∈Lip(X,x0),‖f‖L≤λ

{
− min

sup f(X)−φ′(∞)≤γ

{∫
φ∗+ ◦ (f − γ)dν + γ

}
+

∫
fdω −

∫
−fd(µ− ω)

}
. (127)

These, together with (33) and (107) give the claim.

By (52), there exists f∗ ∈ Lip(X,x0) such that f∗ is a Csiszár potential of ξ∗, ν and λ times a Kantorovich potential of
µ, ξ∗. It achieves the maximum since

∫
f∗dµ−minsup f∗(X)−φ′(∞)≤γ

{∫
φ∗+ ◦ (f∗ − γ)dν + γ

}
=
∫
f∗dµ−

∫
f∗dξ∗ +∫

f∗dξ∗ −minsup f∗(X)−φ′(∞)≤γ
{∫

φ∗+ ◦ (f∗ − γ)dν + γ
}

= λW1(µ, ξ∗) +Dφ(ξ∗‖ν).

Proposition 15. Given µ, ν ∈ P (X), 1 < α ∈ R, 0 < λ ∈ R and a proper, convex and lower semicontinuous function
φ : R→ R strictly convex at 1 with φ(1) = 0 and 1 ∈ relint domφ, one has

min
ξ∈P (X)

{Dφ(ξ‖ν) + λW (µ, ξ)α}

= max
f∈Lip(X,x0)

{∫
fdµ− min

sup f(X)−φ′(∞)≤γ

{∫
φ∗+ ◦ (f − γ)dν + γ

}
− (α− 1)α

α
1−αλ

1
1−α ‖f‖

α
α−1

L

}
, (128)

and for ξ∗ ∈ P (X) such that minξ∈P (X) {Dφ(ξ‖ν) + λW1(µ, ξ)α} = Dφ(ξ∗‖ν) + λW1(µ, ξ∗)
α, there exists f∗ ∈

Lip(X,x0) achieving the maximum such that f∗ is a Csiszár potential of ξ∗, ν and αλW1(µ, ξ∗)
α−1 times a Kantorovich

potential of µ, ξ∗.

Proof. Substituting Dφ,ν,ω, D∗φ,ν,ω, Wµ,ω,λ,α and W ∗µ,ω,λ,α into (51), for which the condition ∃ξ0 ∈ domDφ,ν,ω ∩
domWµ,ω,λ,α and Wµ,ω,λ,α is continuous at ξ0 clearly holds with ξ0 = ν − ω, gives

inf
ξ∈M(X,0)

{Dφ,ν,ω(ξ) +Wµ,ω,λ,α(ξ)} = max
f∈Lip(X,x0)

{
−D∗φ,ν,ω(f)−W ∗µ,ω,λ,α(−f)

}
. (129)

Since Dφ,ν,ω(ξ) =∞ unless ξ + ω ∈ P (X), the infimum is equivalent to

inf
ξ∈P (X)−ω

{Dφ(ξ + ω‖ν) + λ‖ξ + ω − µ‖αKR}, (130)

which is further equivalent to
inf

ξ∈P (X)
{Dφ(ξ‖ν) + λ‖ξ − µ‖αKR}. (131)

These, together with (33) and (107) give the claim. The function f∗ ∈ Lip(X,x0) achieving the maximum follows similarly
as in the proof of the previous proposition.

8.3. Practical evaluation and differentiation of γφ,ν(f)

Postponing the general case as future work, we restrict our attention to evaluating γφ,ν(f) when the support of ν is discrete,
i.e. there exists n ∈ R, {ai : 1 ≤ i ≤ n,

∑
i ai = 1} ⊂ [0, 1] and supp ν = {xi : 1 ≤ i ≤ n} ⊂ X such that ν =

∑
i aiδxi

can be expressed as a convex combination of Dirac measures. Given f ∈ Lip(X,x0), we represent ν as a vector in the
n-dimensional simplex in Rn defined by (ai), and f as a vector in Rn defined by (f(xi)). The minimization problem is
then reduced to

min
max(f)−φ′(∞)≤γ

{
〈ν, φ∗+(f − γ)〉+ γ

}
(132)

with φ∗+ being applied element-wise and 〈·, ·〉 being the standard dot product. The first derivative test gives

−〈ν, (φ∗+)′(f − γ)〉+ 1 = 0. (133)

Assuming the solution is unique, we define γφ,ν(f) implicitly as

γφ,ν(f) = γ′ ⇐⇒ −〈ν, (φ∗+)′(f − γ′)〉+ 1 = 0. (134)
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Two cases offer closed-form solution. One is the Kullback-Leibler divergence φ(x) = x log x, for which we get
γ(x→x log x),ν(f) = log〈ν, ef 〉, i.e. the term from the Donsker-Varadhan formula. The other is the total variation di-
vergence corresponding to φ(x) = |x− 1|, for which the mapping

γ → 〈ν,−χ(−∞,−1)(f − γ) + (f − γ)χ[−1,1](f − γ)〉+ γ (135)

is nondecreasing for γ ≥ max(f) − 1 by its derivative 〈ν,−χ[−1,1](f − γ)〉 + 1 being nonnegative, implying that the
optimal value is γ(x→|x−1|),ν(f) = max(f)− 1, and the conjugate is D(x→|x−1|)(f‖ν) = 〈ν,−χ(−∞,−1)(f −max(f) +
1) + (f −max(f) + 1)χ[−1,1](f −max(f) + 1)〉+ max(f)− 1.

For other choices of φ considered, it seems that no closed-form solution is available. Instead, we calculate γφ,ν(f) by
Newton’s method, for which we need the derivative of the function whose zeroes define the values of γφ,ν(f), which is

〈ν, (φ∗+)′′(f − γ)〉. (136)

Then, Newton’s method suggests that the iteration

γn+1 = γn −
−〈ν, (φ∗+)′(f − γ)〉+ 1

〈ν, (φ∗+)′′(f − γ)〉
(137)

converges to γφ,ν(f). For the initial value, the choice γ0 = max f −φ′(∞) + ε works for some small ε > 0 tuned manually
if φ′(∞) <∞. The the other cases with φ′(∞) =∞, we found the choice γ0 = 〈ν, f〉 to work just fine.

To integrate this implicit function into automatic differentiation frameworks, we need to be able to compute the gradients
∇fγφ,ν(f). Instead of the potentially unstable method of backpropagating through the iterations of Newton’s method, we
use the implicit function theorem (Tao, 2016), which tells us that

∇fγφ,ν(f) =
−∇f (−〈ν, (φ∗+)′(f − γ′)〉+ 1)
d
dγ (−〈ν, (φ∗+)′(f − γ′)〉+ 1)

=
ν � (φ∗+)′′(f − γ)

〈ν, (φ∗+)′′(f − γ)〉
(138)

with � denoting element-wise product in Rn. Notice that in all cases, ∇fγφ,ν(f) is in the standard simplex, e.g. for the
Kullback-Leibler divergence one has the softmax∇fγφ,ν(f) = ν�ef

〈ν,ef 〉 as the gradient.

We implemented the implicit functions with Newton’s method in the forward pass and the backward pass formula given
by the implicit function theorem for the Kullback-Leibler, reverse Kullback-Leibler, χ2, reverse χ2, squared Hellinger,
Jensen-Shannon, Jeffreys and triangular discrimination divergences. To test the validity of the approach, we optimized an
f ∈ Rn with gradient descent to maximize the corresponding variational formulas with random categorical distributions
µ, ν over an alphabet of size n, and found that the resulting value for the divergences matched that of the closed-form
solution with high accuracy. We found that calculating γφ,ν(f) as γφ,ν(f) = γφ,ν(f −max(f)) + max(f) is beneficial to
avoid numerical instabilities, which can be seen as a generalization of the log-sum-exp trick. We detail the functions derived
from φ corresponding to the listed f -divergences defined by functions of Legendre type below, as well as the corresponding
Csiszár potentials.

8.3.1. KULLBACK-LEIBLER DIVERGENCE

φ+(x) =

{
x log(x)− x+ 1 if x ≥ 0,
∞ otherwise.

(139)

∂φ+(x) =

{
{log(x)} if x > 0,
∅ otherwise.

(140)

φ′(∞) =∞ (141)

φ∗+(x) = ex − 1 (142)

φ∗+
′(x) = ex (143)
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φ∗+
′′(x) = ex (144)

f∗(x) + C = log

(
dµc
dν

(x)

)
almost everywhere with respect to µc (145)

8.3.2. REVERSE KULLBACK-LEIBLER DIVERGENCE

φ+(x) =

{
x− 1− log(x) if x ≥ 0,
∞ otherwise.

(146)

∂φ+(x) =

{{
x−1
x

}
if x > 0,

∅ otherwise.
(147)

φ′(∞) = 1 (148)

φ∗+(x) =

{
− log(1− x) if x ≤ 1,
∞ otherwise.

(149)

φ∗+
′(x) =

1

1− x
(150)

φ∗+
′′(x) =

1

(1− x)2
(151)

f∗(x) + C =


dµc
dν (x)−1
dµc
dν (x)

almost everywhere with respect to µc,

1 if x ∈ supp(µs)
(152)

8.3.3. χ2 DIVERGENCE

φ+(x) =

{
(x− 1)2 if x ≥ 0,
∞ otherwise.

(153)

∂φ+(x) =

{
{2x− 2} if x ≥ 0,
∅ otherwise.

(154)

φ′(∞) =∞ (155)

φ∗+(x) =

{
1
4x

2 + x if x ≥ −2,

−1 otherwise.
(156)

φ∗+
′(x) =

{
1
2x+ 1 if x ≥ −2,

0 otherwise.
(157)

φ∗+
′′(x) =

{
1
2 if x ≥ −2,

0 otherwise.
(158)

f∗(x) + C = 2
dµc
dν

(x)− 2 almost everywhere with respect to µc (159)
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8.3.4. REVERSE χ2 DIVERGENCE

φ+(x) =

{
1
x + x− 2 if x ≥ 0,
∞ otherwise.

(160)

∂φ+(x) =

{{
1− 1

x2

}
if x > 0,

∅ otherwise.
(161)

φ′(∞) = 1 (162)

φ∗+(x) =

{
2− 2

√
1− x if x ≤ 1,

∞ otherwise.
(163)

φ∗+
′(x) =

1√
1− x

(164)

φ∗+
′′(x) =

1

2
√

1− x3 (165)

f∗(x) + C =

1− 1

( dµcdν (x))
2 almost everywhere with respect to µc,

1 if x ∈ supp(µs)
(166)

8.3.5. SQUARED HELLINGER DIVERGENCE

φ+(x) =

{
(
√
x− 1)2 if x ≥ 0,

∞ otherwise.
(167)

∂φ+(x) =

{{
1− 1√

x

}
if x > 0,

∅ otherwise.
(168)

φ′(∞) = 1 (169)

φ∗+(x) =

{
x

1−x if x ≤ 1,
∞ otherwise.

(170)

φ∗+
′(x) =

1

(1− x)2
(171)

φ∗+
′′(x) =

2

(1− x)3
(172)

f∗(x) + C =

{
1− 1√

dµc
dν (x)

almost everywhere with respect to µc,

1 if x ∈ supp(µs)
(173)
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8.3.6. JENSEN-SHANNON DIVERGENCE

φ+(x) =

{
x log(x)− (x+ 1) log(x+1

2 ) if x ≥ 0,
∞ otherwise.

(174)

∂φ+(x) =

{
{log(x)− log(x+ 1) + log(2)} if x > 0,
∅ otherwise.

(175)

φ′(∞) = log(2) (176)

φ∗+(x) =

{
− log(2− ex) if x ≤ log(2),
∞ otherwise.

(177)

φ∗+
′(x) =

1

2e−x − 1
(178)

φ∗+
′′(x) =

2ex

(ex − 2)2
(179)

f∗(x) + C =

{
log
(
dµc
dν (x)

)
− log

(
dµc
dν (x) + 1

)
+ log(2) almost everywhere with respect to µc,

log(2) if x ∈ supp(µs)
(180)

8.3.7. JEFFREYS DIVERGENCE

φ+(x) =

{
(x− 1) log(x) if x ≥ 0,
∞ otherwise.

(181)

∂φ+(x) =

{{
log(x)− 1

x + 1
}

if x > 0,
∅ otherwise.

(182)

φ′(∞) =∞ (183)

φ∗+(x) = x+W (e1−x) +
1

W (e1−x)
− 2 (184)

φ∗+
′(x) =

1

W (e1−x)
(185)

φ∗+
′′(x) =

1

W (e1−x)
− 1

W (e1−x) + 1
(186)

f∗(x) + C = log

(
dµc
dν

(x)

)
− 1

dµc
dν (x)

+ 1 almost everywhere with respect to µc (187)

W denotes the principal branch of the Lambert W function, also called the product logarithm, defined implicitly by the
relation W (x)eW (x) = x. Similarly to the proposed conjugates, it is computed by Newton’s method and its gradient by the
implicit function theorem.
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8.3.8. TRIANGULAR DISCRIMINATION DIVERGENCE

φ+(x) =

{
(x−1)2

x+1 if x ≥ 0,
∞ otherwise.

(188)

∂φ+(x) =

{{
(x−1)(x+3)

(x+1)2

}
if x ≥ 0,

∅ otherwise.
(189)

φ′(∞) = 1 (190)

φ∗+(x) =


−1 if x < −3,
(
√

1− x− 1)(
√

1− x− 3) if −3 ≤ x ≤ 1,
∞ otherwise.

(191)

φ∗+
′(x) =

{
0 if x < −3,

2√
1−x − 1 if −3 ≤ x ≤ 1

(192)

φ∗+
′′(x) =

{
0 if x < −3,

1
(
√

1−x)3
if −3 ≤ x ≤ 1

(193)

f∗(x) + C =


( dµcdν (x)−1)( dµcdν (x)+3)

( dµcdν (x)+1)
2 almost everywhere with respect to µc,

1 if x ∈ supp(µs)
(194)

8.4. Experiments

8.4.1. MYf -GAN ON CIFAR-10

The implementation was done in TensorFlow based on the official codebase of Adler & Lunz (2018), with the critic and
generator architectures being faithful reimplementations of the residual architecture from Gulrajani et al. (2017). We
used both the train and test parts of the CIFAR-10 dataset with randomly flipping images and adding uniform noise as
augmentation. Minibatch size was 128, which for the critic included 64 real and 64 generated samples. We used the ADAM
optimizer with parameters β1 = 0, β2 = 0.9 and constant learning rate 2×10−4, and trained the model for 100000 iterations
with 5 gradient descent step per iteration for the critic, and 1 for the generator. We monitored performance by evaluating
the Inception Score at every 1000 iteration during training on 10000 generated samples, and once at the end of training on
100000 generated samples, as well as the FID on 50000 generated and 50000 real samples at the end of training. We applied
exponential moving averaging to the generator weights θg with coefficient 0.9999. The Lambert W function implementation
was based on https://github.com/jackd/lambertw. Trainings were done on GeForce 2080Ti GPUs running at 200-250W and
took around 12 hours to complete, leading to an estimated 2.4-3kWh power consumption. Computing the conjugates via the
proposed algorithm introduced a computational overhead that induced 15% longer training time at worst (for the Jeffreys
divergence) compared to closed-form conjugates. Due to the large number of hyperparameters, we ran each setting once.
Generated images can be seen in Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13
and Figure 14, with missing images denoting failed training such as discriminator collapse or numerical instabilities.

8.4.2. 1D GAUSSIAN DISTRIBUTIONS

For a pair N (µ1, σ1),N (µ2, σ2) of 1-dimensional Gaussian distributions, the corresponding probability distribution
functions are the Radon-Nikodym derivatives with respect to the Lebesgue measure, hence by the chain rule one has

dN (µ1, σ1)

dN (µ2, σ2)
(x) =

σ2

σ1
e

1
2

((
x−µ2
σ2

)2
−
(
x−µ1
σ1

)2
)
, (195)

so that Csiszár potentials can be calculated in closed form if φ is of Legendre type. We have implemented a toy example to
demonstrate that the proposed algorithm for calculating the conjugates enables training neural networks to approximate

https://github.com/jackd/lambertw
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(a) → β = 0 (b) → α = 1.05, β = 1 (c) → α = 2, β = 1

(d) ← α = 1.05, β = 1 (e) ← α = 2, β = 1 (f) ← α =∞, β = 0.5→ 0.2

Figure 5. MYf -GAN generated images with Dφ being the Kullback-Leibler divergence

f -divergences based on the tight variational representations in the sense that the trained neural network closely approximates
the corresponding Csiszár potential in the case of 1-dimensional Gaussian distributions. Results are visualized in Figure 15,
showing the probability distribution functions of the two Gaussians, the exact Csiszár potential and the output of the trained
neural network. For the Jeffreys divergence, numerical instabilities prevented us from obtaining the desired result, so that
only the exact Csiszár potential is visualized. Close approximation of the exact Csiszár potential is evident in areas of higher
density. It must be emphasized that the neural network is not explicitly trained to approximate the Csiszár potential, only
implicitly, by maximizing the tight variational formula, so that this experiment could be seen as a validation of both the
algorithm for computing the conjugates and of the characterization of Csiszár potentials.

8.4.3. CATEGORICAL DISTRIBUTIONS

For a pair µ, ν of categorical distributions over an alphabet of size n, the potential f can be considered an element of Rn.
We implemented a toy example to approximate Dφ in this case by optimizing an f ∈ Rn to maximize the formula inside the
supremum in the tight variational representation, and found that the approximation accurately recovers the exact value of the
divergence to at least 4 decimals, except for the reverse χ2 divergence for which the approximation procedure is slightly less
accurate. For the Kullback-Leibler and total variation divergences even though the conjugates are available in closed form,
we implemented the proposed algorithm as well, and found that it works as well as the closed forms in this scenario. The
generalized log-sum-exp trick is necessary in some cases to stabilize the algorithm.
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(a) → β = 0 (b) → α = 1.05, β = 1 (c) → α = 2, β = 1

(d) ← α = 1.05, β = 1 (e) ← α = 2, β = 1 (f) ← α =∞, β = 0.5→ 0.2

Figure 6. MYf -GAN generated images with Dφ being the reverse Kullback-Leibler divergence
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(a) → β = 0 (b) → α = 1.05, β = 1 (c) → α = 2, β = 1

(d) ← α = 1.05, β = 1 (e) ← α = 2, β = 1 (f) ← α =∞, β = 0.5→ 0.2

Figure 7. MYf -GAN generated images with Dφ being the χ2 divergence
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(a) → β = 0 (b) → α = 1.05, β = 1 (c) → α = 2, β = 1

(d) ← α = 1.05, β = 1 (e) ← α = 2, β = 1 (f) ← α =∞, β = 0.5→ 0.2

Figure 8. MYf -GAN generated images with Dφ being the reverse χ2 divergence
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(a) → β = 0 (b) → α = 1.05, β = 1 (c) → α = 2, β = 1

(d) ← α = 1.05, β = 1 (e) ← α = 2, β = 1 (f) ← α =∞, β = 0.5→ 0.2

Figure 9. MYf -GAN generated images with Dφ being the squared Hellinger divergence
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(a) → β = 0 (b) → α = 1.05, β = 1 (c) → α = 2, β = 1

(d) ← α = 1.05, β = 1 (e) ← α = 2, β = 1 (f) ← α =∞, β = 0.5→ 0.2

Figure 10. MYf -GAN generated images with Dφ being the Jensen-Shannon divergence
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(a) → β = 0 (b) → α = 1.05, β = 1 (c) → α = 2, β = 1

(d) ← α = 1.05, β = 1 (e) ← α = 2, β = 1 (f) ← α =∞, β = 0.5→ 0.2

Figure 11. MYf -GAN generated images with Dφ being the Jeffreys divergence
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(a) → β = 0 (b) → α = 1.05, β = 1 (c) → α = 2, β = 1

(d) ← α = 1.05, β = 1 (e) ← α = 2, β = 1 (f) ← α =∞, β = 0.5→ 0.2

Figure 12. MYf -GAN generated images with Dφ being the triangular discrimination divergence
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(a) → β = 0 (b) → α = 1.05, β = 1 (c) → α = 2, β = 1

(d) ← α = 1.05, β = 1 (e) ← α = 2, β = 1 (f) ← α =∞, β = 0.5→ 0.2

Figure 13. MYf -GAN generated images with Dφ being the total variation divergence

(a) α = 1.05, β = 1 (b) α = 2, β = 1 (c) α =∞, β = 0.5→ 0.2

Figure 14. MYf -GAN generated images with Dφ being the trivial divergence
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(a) Kullback-Leibler (b) Reverse Kullback-Leibler (c) χ2

(d) Reverse χ2 (e) Squared Hellinger (f) Jensen-Shannon

(g) Jeffreys (h) Triangular discrimination

Figure 15. Csiszár potentials and trained critics ofN (−1, 0.3),N (0.5, 0.6)


