
Resource Allocation in Multi-armed Bandit Exploration

A. Properties of the Scaling Function λ
We will prove and discuss some basic properties of λ that will provide intuition for the setting and also be used in the later
proofs.

Lemma 4. Let α ∈ R+. If α ≤ 1, then λ(αm) ≥ αλ(m). If α ≥ 1, then λ(αm) ≤ αλ(m).

Proof. By concavity,

λ(αm) = λ(αm+ (1− α)0) ≥ αλ(m)

To prove the second part, observe that:

λ(m) = λ

(
1

α
αm

)
≥ 1

α
λ(αm) =⇒ λ(αm) ≤ αλ(m)

The first part is applied above since α ≥ 1.

If we divide both sides of each inequality by αm, then each side represents the average time per arm pull when the system
executes αm and m arm pulls, respectively. Intuitively, the average time per arm pull should decrease as the number of
parallel arm pulls increases.

Lemma 5. For all m1,m2 > 0,

λ (m1 +m2) ≤ λ (m1) + λ (m2) ,

Proof. We can apply Inequality 2:

λ(m1 +m2)− λ(m1)

m2
≤ λ(m2)− λ(0)

m2
=⇒ λ (m1 +m2) ≤ λ (m1) + λ (m2)

This property implies that the fastest way to schedule m arm pulls is to run them all in parallel instead of executing m1 and
then m−m1.

B. Proof of the Upper Bound in the Fixed Confidence Setting
We will upper bound the time complexity of Algorithm 1 and show that it outputs the top arm with probability at least 1− δ.
Bounding the time complexity is challenging, as we must show that the algorithm does not waste too much time as it ramps
up its parallelism during execution. If it takes too long to find an appropriate level of parallelism, then it may be significantly
longer than T ?. However, if it ramps up too fast, it may overshoot by unnecessarily pulling arms that should have been
eliminated much sooner. For example, if arm i could safely be eliminated after 10 more pulls, but the algorithm pulls each
surviving arm 1000 times in parallel in a round, then the algorithm has wasted time pulling arm i more than necessary. As
the pulls are executed in parallel, any information is only acquired after they all finish (at the same time). This behavior can
be costly if a particular round of Algorithm 1 pulls many arms that could be eliminated soon excessively. We will use an
analysis that carefully defines these overshooting events and shows that the extremely costly events do not occur often, and
the less costly ones cannot significantly impact the overall runtime.

B.1. Confidence Intervals
In this section, we will state some results from Jun et al. (2016) to bound the error probability. We will first define some
notation. Let Ei(δ) = {∀r ≥ 1, Li(r, δ) ≤ µi ≤ Ui(r, δ)}, which is the event that the confidence bounds capture the true
mean of arm i at all rounds of the algorithm. Let ω =

√
δ/(6n). Define N̄i := 1 +

⌊
64∆−2

i log((2/ω) log2(192∆−2
i /ω))

⌋
.

We will use the following results from Jun et al. (2016) to show that the confidence intervals in (5) trap the true means.
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Lemma 6. [Jun et al. (2016), Lemma 1] (non-asymptotic law of the iterated logarithm). Let X1, X2, . . . be i.i.d. zero-mean
sub-Gaussian random variables with scale σ > 0; i.e. E exp (λXi) ≤ exp

(
λ2σ2

2

)
. Let ω ∈ (0,

√
1/6). Then,

Pr

[
∀τ ≥ 1,

∣∣∣∣∣
τ∑
s=1

Xs

∣∣∣∣∣ ≤ 4σ
√
τ log log2 2τ/ω

]
≥ 1− 6ω2

This lemma is a simplification of Lemma 1 from Jamieson et al. (2014). Observe that a random variable bounded a.s. in
[0, 1] is sub-Gaussian with scale 1/2. By Lemma 6, Pr [∩ni=1Ei(δ)] ≥ 1− δ. Hereafter, we will assume ∩ni=1Ei(δ) and show
that the algorithm always outputs the top arm in this event and bound its runtime. Furthermore, we introduce the following
result from Jun et al. (2016).

Lemma 7. [Jun et al. (2016), Lemma 2] Assume ∩ni=1Ei(δ). In Algorithm 2, let N ′(r) = mini∈Sr Ni(r). Then,

∀r, ∀i > 1,

(
N ′(r) ≥ N̄i =⇒ Ui(r, δ) < max

j∈Sr
Lj(r, δ)

)
(8)

∀r, i = 1,

(
N ′(r) ≥ N̄i =⇒ Li(r, δ) >

(2)
max
j∈Sr

Uj(r, δ)

)
(9)

So, as long as P(∩ni=1Ei) ≥ 1− δ, the algorithm will output the correct set of arms after each surviving arm has been pulled
N̄i times with probability at least 1− δ.

B.2. Proof of Theorem 1
In this proof, we will assume ∩ni=1Ei(δ), which we know by Lemma 6 to have probability at least 1− δ.

Correctness: If an arm i is returned by the algorithm as the best arm, then the other surviving arms have true means less
than µi, because ∩ni=1Ei(δ) implies that the confidence bounds capture the true means, and the algorithm will only accept
arm i if its lower confidence bound (LCB) is greater than the other arms’ upper confidence bounds (UCB). The same
argument follows for arms that are rejected. So, when ∩ni=1Ei(δ) occurs, arms cannot be erroneously returned or rejected.
So, the algorithm outputs the correct arm with probability at least 1− δ.

Time Complexity: Recall that the dynamic program T2

(
{N̄i}ni=2}

)
is the runtime of an algorithm that operates in stages

to eliminate arms. This algorithm knows the arm gaps, but not the arm orderings. We will refer to this algorithm hereafter
as the oracle algorithm. The oracle algorithm consists of r̃ ≤ n − 1 stages, and eliminates ñi arms in stage i, which is
possible with probability at least 1 − δ. Define N̄n+1 = 0. Also define ñi,tot =

∑i
j=1 ñj (number of arms eliminated

by round i, with ñ0,tot = 0), ∆Ñi = N̄n−ñi,tot+1 − N̄n−ñi−1,tot+1 (pulls per surviving arm in oracle stage i), and

T̃ ?i = λ
(

(n− ñi−1,tot)∆Ñi

)
(time for oracle stage i). Then,

T̃ ? = T2

(
{N̄i}ni=2}

)
=

r̃∑
i=1

λ
(
(n− ñi−1,tot)(N̄n−ñi,tot+1 − N̄n−ñi−1,tot+1)

)
=

r̃∑
i=1

λ
(

(n− ñi−1,tot)∆Ñi

)
=

r̃∑
i=1

T̃ ?i

Now, assign each pull in oracle stage 1 a unique index from {1, . . . ,∆Ñ1}. For each pull in oracle stage 2, assign a unique
index from {∆Ñ1 + 1, . . .∆, Ñ2}. Assign indices for the remaining pulls accordingly. Now, define the function R̃ that
outputs which oracle stage a pull index corresponds to. That is,

R̃(q) =

{
maxi∈[r̃] i s.t. q ≤ N̄n−ñi,tot+1 if q ≤ N̄2

r̃ + 1 if q > N̄2
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In general, symbols with a tilde are associated with the oracle algorithm in this proof.

Define stage 1 of Algorithm 1 (and not the oracle algorithm) to be the rounds of the algorithm up to and including the round
that results in the first arm elimination. Define stage 2 to be from the next round until the next eliminations unless multiple
arms were eliminated at the same time as the first elimination. If the second arm was eliminated at the same time as the
first arm, define a dummy stage 2 that takes 0 rounds. Define additional dummy stages for each additional arm that was
eliminated in the first elimination round. Define stage i similarly. Observe that there are always n− 1 stages now, so during
stage i, n− i+ 1 arms remain.

Let `i be the number of rounds in stage i and let ¯̀
i =

∑i
j=1 `j (rounds in first j stages). Similarly, let q̄j =

∑j
i=1 qi (pulls

per surviving arm after round j) and t̄j =
∑j
i=1 ti (sum of time allocations in first j rounds) where ti = βi−1t1. Define

Ti =
∑¯̀

i

j=¯̀
i−1+1 λ(|Sj |qj) ≤

∑¯̀
i

j=¯̀
i−1+1 tj (time for stage i).

Let us discuss a few easily-verified facts about the algorithm before proceeding.

Fact 8. Suppose Algorithm 1 takes l rounds. Then its runtime is at most βl

β−1 t1.

The above property suggests that adding an additional round to the algorithm will increase its runtime by a factor of β.

Fact 9. λ(qj |Sj |) = λ
(⌊

λ−1(tj)
|Sj |

⌋
|Sj |

)
≤ tj = βj−1t1 ≤ λ(2qj |Sj |) ≤ 2λ(qj |Sj |)

The second to last inequality follows because qj ≥ 1 for all j ≥ 1.

Stage i could fall into one of 5 cases. We will first handle 3 cases which are easier to analyze, and then turn to two more
challenging cases.

Case 1: Suppose `i ≥ 2. Define s̃0 = R̃(q̄¯̀
i−2 + 1) and s̃f = R̃(q̄¯̀

i−1). This means that stage i took at least 2 rounds
and the pull indices in its second to last round of stage i fall between the oracle algorithm’s stage s̃0 and s̃f , respectively.
Because the pull indices of round ¯̀

i − 1 fall within the oracle algorithm’s stages s̃0, . . . , s̃f , the oracle algorithm must have
more pulls per arm across these stages than round ¯̀

i − 1 of Algorithm 1 does. That is,

q¯̀
i−1 ≤

s̃f∑
k=s̃0

∆Ñk

This implies that:

(n− i+ 1)q¯̀
i−1 ≤

s̃f∑
k=s̃0

(n− i+ 1)∆Ñk

≤
s̃f∑
k=s̃0

(n− ñk−1,tot)∆Ñk (10)

The second inequality uses the fact that ñs̃0−1,tot ≤ ñs̃f−1,tot ≤ i− 1. Each surviving arm after round q̄¯̀
i−1 of Algorithm 1

has been pulled at least N̄n−ñs̃f−1+1 times (because s̃f = R̃(q̄¯̀
i−1)), guaranteeing that at least ñs̃f−1 arms were eliminated

after this round (Lemma 7).

Let us now use these facts to bound the runtime of the first i stages of Algorithm 1.

i∑
k=1

Tk ≤
¯̀
i∑

r=1

tr

=

¯̀
i∑

r=1

βr−1t1

≤ β2

β − 1
β

¯̀
i−2t¯̀

1
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≤ 2
β2

β − 1
λ((n− i+ 1)q¯̀

i−1)

≤ 2
β2

β − 1
λ

 s̃f∑
k=s̃0

(n− ñk−1,tot)∆Ñk


≤ 2

β2

β − 1

s̃f∑
k=s̃0

λ((n− ñk−1,tot)∆Ñk)

= 2
β2

β − 1

s̃f∑
k=s̃0

T̃ ?k

The first inequality uses Fact 9. The second inequality uses Fact 8. The third inequality again uses Fact 9. The fourth
inequality uses Inequality 10, and the fifth inequality applies Lemma 5. The last equality uses the definition of T̃ ?k .

Case 2: Suppose `i = 1 and suppose that R̃(q̄¯̀
i−1

+ 1) = R̃(q̄¯̀
i
) = s̃. That is, stage i takes a single round and has pull

indices that are completely contained in oracle stage k. By almost the same argument as above:

q¯̀
i
≤ ∆Ñs̃

As before, this implies

(n− i+ 1)q¯̀
i
≤ (n− i+ 1)∆Ñs̃

≤ (n− ñs̃−1,tot)∆Ñs̃ (11)

The second inequality uses the fact that ñs̃−1,tot ≤ i− 1. Each surviving arm after round q̄¯̀
1−1 of Algorithm 1 has been

pulled at least N̄n−ñs̃−1+1 times (because s̃ = R̃(q̄¯̀
i−1 + 1)), guaranteeing that at least ñs̃−1 arms were eliminated after

this round (Lemma 7). Note that this implies that overshooting did not occur. Again, as before

i∑
k=1

Tk ≤
¯̀
i∑

r=1

tr

=

¯̀
i∑

r=1

βr−1t1

≤ β

β − 1
β

¯̀
i−1t¯̀

1

≤ 2
β

β − 1
λ((n− i+ 1)q¯̀

i
)

≤ 2
β

β − 1
λ
(

(n− ñk−1,tot)∆Ñs̃

)
= 2

β

β − 1
T̃ ?s̃

This result is missing a factor of β compared to Case 1, since in the prior case we used the second to last round in stage i to
achieve the bound on the first i stages, whereas here we can use the last (and only) round.

Case 3: Suppose `i = 0. This means that the i-th elimination occurred in the same round as the i− 1-th elimination. The
time taken for these stages is 0.

Discussion of Cases 1-3: Let stage if be the last stage of Algorithm 1 that falls into either cases 1 or 2 above. Then, stages
1, . . . , if take at most 2 β2

β−1 T̃
? time. The remaining stages all consist of a single round, and they may potentially pull arms
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excessively due to overshooting (excessively pulling arms that would have been eliminated after a few pulls in the round).
We must now argue that overshooting does not result in a significant increase in runtime. Observe that naively bounding
the up to n − 1 remaining stages by a factor of βn−1 results in a very expensive runtime. However, we will use a more
aggressive analysis by defining events where excessive overshooting occurs, and bounding the number of these events.

We will discuss 2 cases for the remaining stages now. If some stage i ∈ [if ] falls in cases 4 and 5, we already have a runtime
bound for the first if cases and therefore do not need to bound the runtime of these stages.

Let f = β−
√

logβ(n). Ignore the very last stage for now, which can only add a factor of β to the total runtime. Each of the
remaining stages fall into one of two cases:

Case 4: Define s̃0 = R̃(q̄¯̀
i−1

+ 1) and s̃f = R̃(q̄¯̀
i
). Suppose stage i eliminates at least 1 − f fraction of the surviving

arms, `i = 1, and s̃0 < s̃f . That is, stage i of Algorithm 1 takes a single round, S¯̀
i+1 ≤ fS¯̀

i
, and has pull indices that

span multiple oracle stages. This can occur at most
⌈√

logβ(n)
⌉
≤ 2
√

logβ(n) times, because β ≤ n. Each one of these
occurrences adds a factor of β to the runtime of the stages prior to it. The worst increase occurs if this case happens at the
very last stages. So, even if this case occurred the maximum number of times after all other stages, this would add a factor
of β2

√
logβ(n) to the runtime by Fact 8.

Case 5: Define s̃0 = R̃(q̄¯̀
i−1

+ 1) and s̃f = R̃(q̄¯̀
i
). Suppose stage i eliminates less than 1 − f fraction of the arms,

`i = 1 and s̃0 < s̃f . That is, stage i of Algorithm 1 takes a single round, S¯̀
i+1 > fS¯̀

i
, and has pull indices that span

multiple oracle stages (which could mean overshooting). This can occur up to n− 1 times, and at the end of stage i, at least
f(n− i+ 1) ≤ (n− ñy−1,tot) ≤ (n− ñx−1,tot) arms remain (Lemma 7). Therefore,

(n− i+ 1)q¯̀
i
≤

y∑
k=x

(n− i+ 1)∆Ñk (12)

We can use this fact as before to show the following:

Ti = λ((n− i+ 1)q¯̀
i
)

≤
s̃f∑
k=s̃0

λ((n− i+ 1)∆Ñk)

≤
s̃f∑
k=s̃0

λ

(
1

f
(n− ñk−1,tot)∆Ñk

)

≤ 1

f

s̃f∑
k=s̃0

λ
(

(n− ñk−1,tot)∆Ñk

)

≤ 1

f

s̃f∑
k=s̃0

T̃ ?k

The first inequality follows by applying Inequality 12 followed by Lemma 5. The third inequality applies Lemma 4, since
β ≤ n =⇒ 1/f ≥ 1.

While this case can happen up to n − 1 times, each stage in the oracle algorithm can only be covered by at most 2 such
stages from Algorithm 1, because each stage in this case has pull indices intersecting with at least 2 oracle stages. So, even
if all stages fell in this case, this would add 2

f T̃
? = 2β2

√
logβ(n)T̃ ? to the runtime.

Putting together the pieces: The runtime up to stage if is at most 2 β2

β−1 T̃
?. Case 4 can add up to a factor of β2

√
logβ(n) to

the runtime and case 5 can add up to 2β2
√

logβ(n)T̃ ? to the runtime. It is possible that cases 4 and 5 will interchange. Since
1
f ≥ 1 and β ≥ 1, the sequence with the worst runtime has Case 5 occurring maximally before Case 4 occurs. The final
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stage, which we ignored earlier, can add an additional factor of β. So,

T ≤ 2

(
β2

β − 1
+ 2β2

√
logβ(n)

)
β2
√

logβ(n)βT̃ ?

≤ 2

(
β2

β − 1
+ 2

)
β4
√

logβ(n)βT̃ ?

≤ 4
β3

β − 1
β4
√

logβ(n)T̃ ?

This completes the proof of the first claim of the theorem. Now, let us relate T̃ ? to T ? whose proof is given below.

Lemma 10. T̃ ? = T2

(
{N̄i}ni=2}

)
≤ (128 log((2/ω) log2(192∆−2

2 /ω) ∨ 2))T ?

By applying Lemma 10, we have that

T ≤ 4
β3

β − 1
β4
√

logβ(n)T̃ ?

≤ 4
β3+4

√
logβ(n)

β − 1
(128 log((2/ω) log2(192∆−2

2 /ω)) ∨ 2)T ?

≤ 512
β3+4

√
logβ(n)

β − 1

(
log((2/ω) log2(192∆−2

2 /ω)) ∨ 1/64
)
T ?

Proof of Lemma 10:

In this proof alone, we will abuse notation by letting r̃ and ñi be a feasible point for the dynamic program minimization
problem and not an optimal solution that achieves T̃ ? runtime. By first applying the definition of T̃ ?, we have

T̃ ? = min
r̃,ñi

r̃∑
i=1

λ
(
(n− ñi−1,tot)(N̄n−ñi,tot+1 − N̄n−ñi−1,tot+1)

)
= min

r̃,ñi
λ
(
n(N̄n−ñ1,tot+1)

)
+

r̃∑
i=2

λ
(
(n− ñi−1,tot)(N̄n−ñi,tot+1 − N̄n−ñi−1,tot+1)

)
= min

r̃,ñi
λ
(
n
(

1 + 64∆−2
n−ñ1,tot+1 log((2/ω) log2(192∆−2

n−ñ1,tot+1/ω))
))

+

r̃∑
i=2

λ((n− ñi−1,tot)(64∆−2
n−ñi,tot+1 log((2/ω) log2(192∆−2

n−ñi,tot+1/ω))

− 64∆−2
n−ñi−1,tot+1 log((2/ω) log2(192∆−2

n−ñi−1,tot+1/ω))))

≤ λ (n) + min
r̃,ñi

λ
(

64n∆−2
n−ñ1,tot+1 log((2/ω) log2(192∆−2

2 /ω))
)

+

r̃∑
i=2

λ(64 log((2/ω) log2(192∆−2
2 /ω))(n− ñi−1,tot)(∆

−2
n−ñi,tot+1 −∆−2

n−ñi−1,tot+1))

= λ (n) + min
r̃,ñi

r̃∑
i=1

λ(64 log((2/ω) log2(192∆−2
2 /ω))(n− ñi−1,tot)(∆

−2
n−ñi,tot+1 −∆−2

n−ñi−1,tot+1))

≤ λ (n) + (64 log((2/ω) log2(192∆−2
2 /ω)) ∨ 1) min

r̃,ñi

r̃∑
i=1

λ((n− ñi−1,tot)(∆
−2
n−ñi,tot+1 −∆−2

n−ñi−1,tot+1))

= λ(n) + (64 log((2/ω) log2(192∆−2
2 /ω)) ∨ 1)T ?
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≤ (1 + (64 log((2/ω) log2(192∆−2
2 /ω)) ∨ 1))T ?

≤ (128 log((2/ω) log2(192∆−2
2 /ω)) ∨ 2)T ?

The second equation uses N̄n+1 = 0 and ñ0 = 0. The third equation plugs in N̄i. The fourth equation applies Lemma 5 to
the first term before pulling it out of the optimization problem and uses ∆2 ≤ ∆i in the remaining terms. The fifth equation
rearranges terms by placing the second term back in the sum, using ñ0 = 0. The sixth equation uses Lemma 4. The seventh
equation uses the definition of T ?. The eighth equation uses the fact that each arm must be pulled at least once before
elimination, so λ(n) ≤ T ?. The final equation bounds the sum by a factor of 2.

Fact 11. The factor β4
√

logβ(n) grows slower than nα for any α > 0. To view this, observe that

lim
n→∞

β4
√

logβ(n)

nα
= β

limn→∞ logβ

 β
4
√

logβ(n)

nα



= βlimn→∞ 4
√

logβ(n)−α logβ(n)

= β
limn→∞ logβ(n)

(
4√

logβ(n)
−α
)

= β−∞

= 0

By a similar proof, it can be shown that the function grows faster than any polylogarithmic function.

Remark 1. APR can be easily modified for top-k arm identification as in (Jun et al., 2016) by eliminating arms when their
UCB is below the k-th highest LCB. Arms are additionally thrown into an acceptance set (and not sampled anymore) if their
LCB is higher than the k + 1-th highest UCB. When k arms have been accepted, the algorithm terminates. By redefining the
∆i values in terms of the means of the k-th and k + 1-th best arms, we can obtain an identical runtime bound with the same
error probability.

C. Proof of the Lower Bound in the Fixed Confidence Setting
In this section, we will prove the lower bound (Theorem 2) in the fixed confidence setting. Throughout this section, we will
assume, without loss of generality, that the samples for each arm k ∈ [n] are generated upfront and each time we pull an
arm, these observations are revealed in order.

Our first result below shows that it is sufficient to consider algorithms which do not wait for some time before executing
arm pulls (thereby resulting in idle resources), unless it waits for some arm pulls to complete at some point in the future
(possibly to incorporate that information before planning future pulls). For this, recall from Section 3.3 that Aδ,λ is the
class of algorithms that which can identify the best arm with probability at least 1− δ for the given scaling function λ on
any set of distributions θ ∈ Θ. Let Ãδ,λ denote the subset of algorithms in Aδ,λ, where the algorithm starts a new set of
arm pulls at time 0 or precisely at the same time when a previous set of pulls are completed; i.e for an algorithm in Ãδ,λ, if
ts1 ≤ ts2 ≤ . . . denote the times at which new arm pulls are started, and if 0 < te1 ≤ te2 ≤ . . . denote the times at which
previous pulls ended, then, ts1 = 0 and for all i ≥ 2, tsi = tej for some tej . We have the following result.

Lemma 12. Let A ∈ Aδ,λ. Then, there exists Ã ∈ Ãδ,λ such that Ã outputs the same arm as A and T (Ã, θ) ≤ T (A, θ) a.s.

Proof. For the given A ∈ Aδ,λ, let t′1 denote the first time instant at which some arm pulls are started in A and when a
previous set of arm pulls were not completed. Let A1 be the algorithm that shifts the arm pulls at t′1 forward to t′′1 defined as
follows,

t′′1 = max{t ≤ t′1; some pulls were completed at time t in A}.

As A has the same information at t′′1 as it has at t′1, and since the resources used for the pulls at t′1 are also available at t′′1 , A1

can execute the same decisions, and moreover by the assumptions at the beginning of this section, it will observe the same
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rewards. Hence, it will output the same arm as A. Moreover, since none of the arm pulls in A1 are started later than in A, it
will not complete later than A.

The above transformation of the algorithm A, achieves the same output as A and finishes no later than A. We can now keep
repeating this transformation. For example, t′2 can denote the first time instant in which some arm pulls are started in A1 and
when a previous set of arm pulls were not completed. Let A2 be the resulting algorithm after shifting it forward as described
above. Since there are at most finitely many arm pulls in A, the above procedure should terminate in some algorithm Ã,
which achieves the same output as A and finishes no later than A. Moreover, this algorithm, by definition, lies in Aδ,λ.

Lemma 12 establishes that the algorithm which achieves the lowest expected time is in Ãδ,λ, and therefore, we can restrict
our attention to this subclass. For such an algorithm, we can index the times at which decisions were made by r ∈ N and
let {tr}r∈N denote the corresponding times so that 0 = t0 < t1 < t2 < . . . . For r ≥ 0, let ar denote the action taken by
the algorithm in round r, where each action is a multiset of (i, α) pairs for each arm pull started by the algorithm at time
tr; here, i ∈ [n] is an arm that was chosen for evaluation and α ∈ [0, 1] is the fraction of the resource assigned to that arm
pull. Similarly, for r ≥ 1, let Or denote the observations received at time tr, where Or is a multiset of (i, Y ) tuples with
i ∈ [n] being an arm that was chosen for evaluation at some previous time and Y is the observed reward from this pull. An
algorithm A ∈ Ãδ,λ can be completely characterized by the action rule, the stopping rule, and the recommendation rule,
defined below.

1. The action rule is a method to select new arms to evaluate and the amount of resources to assign to each of them. ar is
Fr measurable, where Fr = σ({Or′}rr′=1) is the sigma-algebra generated by past observations.

2. The stopping rule ρ, is when the algorithm decides to stop executing more arm pulls. It is a stopping time with respect
to {Fr}r∈N satisfying P(ρ <∞) = P(tρ <∞) = 1.

3. The recommendation rule is the arm in [n] chosen by the algorithm as the best arm. It is a Fρ-measurable.

Next, recall, our notation from Section 3.3, where parenthesized subscripts θ(k) index the arms while subscripts without
parentheses θk are the distributions ordered in decreasing order of mean value. Similarly let µ(k), µk denote the means of
θ(k), θk respectively and recall that µ1 < µ2 ≤ µ3 · · · ≤ µn. For r ∈ N and k ∈ [n], we will let N(k)(r) denote the number
of completed arm pulls for arm (k) from time 0 to time tr. Let N(r) =

∑
k∈[n]N(k)(r) denote the number of completed

arm pulls of all the arms from time 0 to time tr. Finally, we may define the gaps for a set of n distributions θ ∈ Θ as follows.
This is consistent with our previous definition (1).

∆(k) = µ1 − µ2 if θ(k) = θ1, ∆(k) = µ1 − µ(k) otherwise.

Our proof of the lower bound first establishes lower bounds on the sample complexity for BAI and then translates these lower
bounds to a lower bound on the runtime for an algorithm in our setting. We will prove this hardness result for problems
in Θ with Gaussian reward distributions, although it is straightforward to generalise it to distributions for which the KL
divergence satisfies KL(ν‖ν′) � (µ − µ′)2 where µ, µ′ are respectively the means of ν, ν′. The following result is an
adaptation of a well-known hardness result for BAI to algorithms in in Ãδ,λ. We have given its proof in Appendix C.2.

Lemma 13. Let θ ∈ Θ such that the reward distribution θ(k) is Gaussian with unit variance for all k ∈ [n]. Then, any
A ∈ Ãδ,λ satisfies,

E[N(k)(ρ)] ≥ 2

∆2
(k)

log

(
1

2.4δ

)
.

We will prove the lower bound for scaling functions λ which satisfy, for some α1, α2 > 0,

α1m ≤ λ(m) ≤ α2m for all m ≥ 1. (13)

If λ(n) = β1m + β2λ
′(m), where λ′(m) ∈ o(m) and is concave with λ′(0) = 0, then λ satisfies all the properties in

Section 3 and satisfies the above conditions for α1 = β1 and α2 = β1 + β2λ
′(1). Note that since we are assuming λ is

increasing and concave, the upper bound in (13) is already implied by Lemma 4; in particular, λ(m) ≤ λ(1)m for all m ≥ 1.
While the λ(m) ≥ α1m condition means that the proposed algorithm is optimal only for a limited class of scaling functions,
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it is worth noting that it also captures a practically meaningful use case. To see this, note that the above conditions imply
limm→∞

λ(m)
m ≥ α1. This states that even when the resource is used most efficiently as possible (i.e. at the maximum

possible throughput), a minimum amount of ‘work’ needs to be done to execute one arm pull.

We shall now prove the lower bound for scaling functions which satisfy (13) and for reward distributions which satisfy the
conditions in Lemma 13.

C.1. Proof of Theorem 2
In this proof, without loss of generality, we will assume that the arms are ordered so that µ(1) > µ(2) ≥ µ(3) ≥ . . . µ(n). Let
A ∈ Ãδ,λ be arbitrary and let ρ denote the round at which the algorithm A decided to stop and recommend an arm. The
minimum time taken to execute these arm pulls can be upper bound as follows.

T (A, θ) ≥ λ

(
n∑
k=1

N(k)(ρ)

)
≥ α1

(
n∑
k=1

N(k)(ρ)

)
.

Here, the first step simply assumes that all arms were pulled exactly N(k)(ρ) times in the first set of pulls and the second
uses (13). Now define Ñ(k)(r) recursively as follows for all r ∈ N,

Ñ(1)(r) = N(1)(r), Ñ(k)(r) = min
(
Ñ(k−1)(r), N(k)(r)

)
for k ≥ 2.

Next, denote K(A) = {2} ∪ {3 ≤ k ≤ n; Ñ(k)(ρ) = N(k)(ρ)} ∪ {n+ 1}. Write K(A) = {k1, k2, . . . , kp̃, kp̃+1} so that
the ki’s are in ascending order, i.e. 2 = k1 < k2 < · · · < kp̃ < kp̃+1 = n + 1. Observe that, by definition, we have
N(k)(ρ) ≥ N(ki)(ρ) for k = ki, . . . , ki+1 − 1. We can now upper bound E[T (A, θ)] as follows.

E[T (A, θ)] ≥ α1

EN(1)(ρ) +

k2−1∑
k=k1

EN(k)(ρ) +

k3−1∑
k=k2

EN(k)(ρ) + · · ·
kp̃+1−1∑
k=kp̃

EN(k)(ρ)


≥ α1

(
EN(1)(ρ) + (k2 − k1)EN(2)(ρ) + (k3 − k2)EN(k2)(ρ) + · · ·+ (kp̃+1 − kp̃)EN(kp̃)(ρ)

)
≥ 2α1 log

(
1

2.4δ

)(
(k2 − 1)

1

∆2
2

+ (k3 − k2)
1

∆2
k2

+ (k4 − k3)
1

∆2
k3

+ . . . (kp̃+1 − kp̃)
1

∆2
kp̃

)
(14)

≥ 2α1 log

(
1

2.4δ

)(
(k2 − 1)

(
1

∆2
2

− 1

∆2
k2

)
+ (k3 − 1)

(
1

∆2
k2

− 1

∆2
k3

)
+ . . .

+ (kp̃ − 1)

(
1

∆2
kp̃−1

− 1

∆2
kp̃

)
+ n

1

∆2
kp̃

)

≥ 2α1

α2
log

(
1

2.4δ

)(
λ

(
(k2 − 1)

(
1

∆2
2

− 1

∆2
k2

))
+ λ

(
(k3 − 1)

(
1

∆2
k2

− 1

∆2
k3

))
+ . . .

+ λ

(
(kp̃ − 1)

(
1

∆2
kp̃−1

− 1

∆2
kp̃

))
+ λ

(
n

1

∆2
kp̃

))
Here, the second step uses the definition of K(A) = {k1, k2, . . . , kp̃}. In the third step, first we have used Lemma 13, while
observing that ∆1 = ∆2; then, we have used the fact that k1 = 2, and therefore k2 − k1 + 1 = k2 − 1. The third step can
be obtained via the following series of manipulations. First observe that we can write

(k2 − 1)
1

∆2
2

+ (k3 − k2)
1

∆2
k2

= (k2 − 1)

(
1

∆2
2

− 1

∆2
k2

)
+ (k3 − 1)

1

∆2
k2

.

We then apply the same manipulation to (k3− 1) 1
∆2
k2

and the next term in the summation in (14). Proceeding in this fashion,

the coefficient for the last term will be kp̃+1 − kp̃ + (kp̃ − 1) = (n+ 1)− 1 = n. Finally, the last step uses (13).

The above bound is a lower bound on the run time of algorithm A in terms of K(A). To lower bound the run time of
any algorithm, it is sufficient to lower bound the above expression over all values of (k2, . . . , kp̃), where p̃ ≤ n − 1 and
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3 ≤ k2 < . . . kp̃ ≤ n. Writing α1/α2 = cλ, we have,

inf
A∈Ãδ,λ

E[T (A, θ)] ≥ 2cλ log

(
1

2.4δ

)
min

(k2,...,kp̃)

(
λ

(
(k2 − 1)

(
1

∆2
2

− 1

∆2
k2

))
+ λ

(
(k3 − 1)

(
1

∆2
k2

− 1

∆2
k3

))
+

· · ·+ λ

(
(kp̃ − 1)

(
1

∆2
kp̃−1

− 1

∆2
kp̃

))
+ λ

(
n

1

∆2
kp̃

))

= 2cλ log

(
1

2.4δ

)
T ?.

Here, we have observed that the expression in the RHS inside the minimum is simply the expansion of the dynamic
program T2

(
{∆−2

i }ni=2

)
, see (3) and (4). The proof is completed by Lemma 12, which implies that infA∈Ãδ,λ E[T (A, θ)] =

infA∈Aδ,λ E[T (A, θ)]. �

C.2. Proof of Lemma 13
Our proof of Lemma 13 uses essentially the same argument as Kaufmann et al. (2016). However, due to the differences
in our set up, we need to verify that the same proof carries through. For this, consider two sets of distributions θ, θ′ ∈ Θ
such that for all k ∈ [n], θ(k) and θ′(k) are absolutely continuous with respect to each other. This means, for each k ∈ [n],
there exists a measure such that θ(k) and θ′(k) have densities fk, f ′k with respect to this measure. Let {(Ks, Zs)}Ns=1 be a

sequence of arm-observation pairs received in order when executing algorithm A ∈ Ãδ,λ. Define the log-likelihood ratio
LN after the first N observations as shown below. Let L†r denote the log likelihood ratio using the observations up to round
r, i.e the first N(r) observations. We have:

LN = LN
(
{(Ks, Zs)}Ns=1

)
=

n∑
k=1

N∑
s=1

1(Ks = k) log

(
fk(Zs)

f ′k(Zs)

)
, L†r = LN(r)

(
{(Ks, Zs)}N(r)

s=1

)
. (15)

The following result, from Kaufmann et al. (2016) upper bounds the log likelihood ratio at the stopping time.

Lemma 14 (Lemma 19 (Kaufmann et al., 2016)). Let θ, θ′ ∈ Θ be sets of distributions such that θ(k) and θ′(k) are absolutely

continuous with respect to each other for all k ∈ [n]. Let A ∈ Ãδ,λ and ρ be any almost surely finite stopping time with
respect to {Fr}r∈N. Let L†r be as defined in (15). For every event E ∈ Fρ (i.e. E such that E ∩ (ρ = r) ∈ Fr),

Eθ[L†ρ] ≥ d(Pθ(E),Pθ′(E)).

Here, d(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)).

Proof. The first challenge in adapting the above result from Kaufmann et al. (2016) for the sequential setting to ours is
to show the following technical result: Let Zs, LN be as defined above. Then, for all N ≥ 0, and for all measurable
g : RN → R, Eθ′

[
g
(
{Zs}Ns=1

)]
= Eθ

[
g
(
{Zs}Ns=1

)
exp (−LN )

]
. This claim can be proved using the same induction

argument in Lemma 18 of Kaufmann et al. (2016), where the base case uses the fact that the algorithm’s initial action does
not depend on any observations and the induction step notes that Eθ′

[
g
(
{Zs}N+1

s=1

)
|
(
{(Ks, Zs)}Ns=1

)]
is a measurable

function mapping RN to R.

Now, let F ′N = σ({(Ks, Zs)}Ns=1)). The above result implies, in particular, that for all N ≥ 1 and any event E′ ∈ F ′N , we
have Eθ′ [1E′ ] = Eθ[1E′ exp(−LN )]. Now, let E and ρ be as given in the theorem statement.

Pθ′(E) = Eθ′ [1E ] =

∞∑
r=1

Eθ′ [1(E ∩ {ρ = r})︸ ︷︷ ︸
∈Fr=F ′

N(r)

] =

∞∑
r=1

Eθ′ [1(E ∩ {ρ = r}) exp(−LN(r))] = Eθ[1E exp(−L†ρ)].

Given this result, the remainder of the proof is identical to the proof of their Lemma 19.

We are now ready to prove Lemma 13.
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Proof of Lemma 13. Recall from the beginning of this section that we assume the samples for each arm are generated
upfront and then revealed in order; let {Yk,s}s≥1 denote the sequence of these observations for arm k. We can write the
log-likelihood ration L†r as follows,

L†r =

n∑
k=1

N(k)(r)∑
s=1

log

(
fk(Yk,s)

f ′k(Yk,s)

)
.

We can now conclude, for any event E ∈ Fρ,

d(Pθ(E),Pθ′(E)) ≤ Eθ[L†ρ] = Eθ

 n∑
k=1

N(k)(r)∑
s=1

log

(
fk(Yk,s)

f ′k(Yk,s)

) =

n∑
k=1

Eθ[N(k)(r)]KL(θk‖θ′(k)) (16)

Here, the first step uses Lemma 14, the second step uses the expression for L†ρ above, and the last step uses Wald’s identity.

Let k ∈ [n] be given and assume θ(k) is not the best arm, i.e. µ(k) 6= µ1; we will handle the case where θ(k) is the best arm
later. Now fix α > 0 and let θ′ be an alternative model where θ′(j) = θj for j 6= k and θ′(k) = N (µ1 + α, 1). Let E denote
the event that the recommended arm is k. Since A ∈ Aδ,λ, we have Pθ′(E) ≥ 1− δ and Pθ(E) ≤ 1− δ. Therefore,

log

(
1

2.4δ

)
≤ d(δ, 1− δ) ≤ d(Pθ(E),Pθ′(E)) ≤

n∑
j=1

Eθ[N(j)(r)]KL(θj‖θ′(j)) = Eθ[N(k)(r)]
(∆(k) + α)2

2
.

Here, the first step uses the algebraic identity d(δ, 1 − δ) ≥ log(1/(2.4δ)), the second step uses the fact that d(x, y) is
increasing in x for x > y and decreasing when x < y, and the third step uses (16). The last step first observes that the KL
divergence between all arms is zero except between θ(k) and θ′(k); moreover, as the KL divergence between two Gaussians can
be expressed as KL(N (µ1, 1)‖N (µ2, 1)) = (µ1−µ2)2/2, we have KL(θk‖θ′(k)) = (µ1 +α−µ(k))

2/2 = (∆(k) +α)2/2.
Therefore, E[N(k)(ρ)] ≥ 2

(∆(k)+α)2 log
(

1
2.4δ

)
. The statement is true for all α > 0, so letting α→ 0 yields the claim for all

θ(k) that are not the best arm.

The proof for when θ(k) is the best arm can be obtained by considering a model θ′ where θ′(j) = θ(j) for j 6= k and
θ′(k) = N (µ2 − α, 1) and following a similar argument.

D. Proof of Upper Bound in the Fixed Deadline Setting
D.1. Proof of Theorem 3
In this section, we will prove Theorem 3. The analysis will borrow techniques from the proof for sequential halving Karnin
et al. (2013). We will utilize the following lemmas in the proof. Let p̂ri be the empirical mean of arm i at round r. The
following lemma is a direct application of Hoeffding’s inequality on the difference of empirical means p̂r1 − p̂ri .

Lemma 15. Assume that the best arm was not eliminated prior to round r. Then, for any arm i ∈ Sr,

Pr[p̂r1 < p̂ri ] ≤ exp

(
−1

2
tr∆

2
i

)

The following lemma is a version of Lemma 4.3 from Karnin et al. (2013). We will use this lemma with the union bound to
bound the probability of eliminating an arm at a given stage.

Lemma 16. Suppose S arms remain and each arm was pulled t times. The probability that
⌈
|S|
2

⌉
of the arms have greater

empirical mean than the best arm is at most:

3 exp

(
−1

2
t∆2

iS

)

where iS =
⌈

1
2

⌈
|S|
2

⌉⌉
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Proof. Define S′ as the set of arms in S minus the arms with the top
⌈

1
2

⌈
|S|
2

⌉⌉
true means. In order for half of the arms to

have higher empirical mean than the best arm, at least
⌈
|S|
2

⌉
−
⌈

1
2

⌈
|S|
2

⌉⌉
+ 1 =

⌈
|S|
2

⌉
−
⌈

1
2

⌊
|S|
2

⌉⌉
≥ |S|4 arms in S′ must

have greater empirical mean than the best arm. Since S′ has size |S| −
⌈

1
2

⌈
|S|
2

⌉⌉
≤ 3

4 |S|, at least 1
3 -rd of the arms in S′

need to have higher empirical mean than the best arm’s empirical mean. Let us first upper bound N , the number of arms in
S′ that have higher empirical mean than the top arm.

E [N ] =
∑
i∈S′

Pr[p̂1 < p̂i]

≤
∑
i∈S′

exp

(
−1

2
t∆2

i

)
≤ |S′|max

i∈S′
exp

(
−1

2
t∆2

i

)
≤ |S′| exp

(
−1

2
t∆2

iS

)

Now, let’s use Markov’s inequality to bound the desired probability:

Pr
[
N >

1

3
S′
]
≤ 3

E[N ]

S′

≤ 3 exp

(
−1

2
t∆2

iS

)

In the following lemma, we will lower bound the number of pulls each surviving arm receives, and show that it increases by
a factor of 2k each stage.

Lemma 17. The number of pulls per arm at stage r of Algorithm 2, tr, is greater than:

2rk(2k − 1)x(k)

Proof. We will show this by induction. Let r = 0.

(2k − 1)x(k) = (2k − 1)

 λ−1
(

T
dlog

2k
(n)e

)
2kdlog

2k
(n)e(2k − 1)


≤ (2k − 1)

λ−1
(

T
dlog

2k
(n)e

)
n(2k − 1)


≤

λ−1
(

T
dlog

2k
(n)e

)
n


= t0

Suppose this lemma holds for some r. Then,

2(r+1)k(2k − 1)x(k) = 2(r+1)k(2k − 1)

 λ−1
(

T
dlog

2k
(n)e

)
2kdlog

2k
(n)e(2k − 1)
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≤ 2(r+1)k

λ−1
(

T
dlog

2k
(n)e

)
2kdlog

2k
(n)e


≤

2(r+1)kλ−1
(

T
dlog

2k
(n)e

)
2kdlog

2k
(n)e


Suppose n is a factor of 2k. Then |Sr| = n

2rk
.2(r+1)kλ−1
(

T
dlog

2k
(n)e

)
2kdlog

2k
(n)e

 =

2(r+1)kλ−1
(

T
dlog

2k
(n)e

)
n


=

λ−1
(

T
dlog

2k
(n)e

)
|Sr+1|


= tr

Suppose n is not a factor of 2k. Then, |Sr| ≤ n
2(r−1)k .2(r+1)kλ−1
(

T
dlog

2k
(n)e

)
2kdlog

2k
(n)e

 ≤
2rkλ−1

(
T

dlog
2k

(n)e

)
n


≤

λ−1
(

T
dlog

2k
(n)e

)
|Sr+1|


= tr

Now, we will use the previous lemmas to prove a lemma that bounds the probability of elimination in a given stage.

Lemma 18. Assume the best arm has not been eliminated by round r. If |Sr| ≥ 2k, the probability that the best arm is
eliminated in round r is at most:

3k exp

(
−nx(k)

8H2

)
Otherwise, the probability that the best arm is eliminated is at most

3dlog2(|Sr|)e exp

(
−nx(k)

8H2

)
Proof. Let’s assume |Sr| ≥ 2k. In round r, each arm is sampled tr ≥ 2rk(2k − 1)x(k) times. We only keep the top 1

2k
(by

their empirical means) fraction of the arms in Sr. Suppose we eliminate arms in the following fashion: first we eliminate the
lowest

⌊
|Sr|

2

⌋
arms, then the next

⌊
|Sr|

4

⌋
, and so on (k times). Call the event that the best arm is eliminated in the i-th such

elimination procedure Bi. Call the set of arms that survived until the i-th event Sr,i We thus want to upper bound:

P

 k⋃
j=1

Bj

 ≤ k∑
j=1

P (Bj)
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≤ 3

k∑
j=1

exp

(
−1

2
tr∆

2
iSr,j

)

≤ 3

k∑
j=1

exp

(
−1

2
2rk(2k − 1)x(k)∆2

iSr,j

)

≤ 3

k∑
j=1

exp

(
−1

2
2rk+j−1x(k)∆2

iSr,j

)
The first line follows from the union bound. The second line follows via application of Lemma 16. The third step follows
since tr ≥ 2rk(2k − 1)x(k) by Lemma 17. The last step applies 2j−1 ≤ 2k − 1.

Observe that iSr,i ≥ n
2rk+i+1 . So,

3

k∑
j=1

exp

(
−1

2
2rk+j−1Xk∆2

iSr,j

)
≤ 3

k∑
j=1

exp

(
−1

8
2rk+j+1x(k)∆2

iSr,j

)

≤ 3

k∑
j=1

exp

(
−n

8

∆2
iSr,j

iSr,i

)

≤ 3k exp

(
−nx(k)

8H2

)
The second line uses the bound on iSr,i , and the third line maximizes the expression in the sum over i (recall that
H2 = maxi 6=1 i∆

−2
i ).

The proof of the second half of the lemma follows by replacing k with dlog2(|S|)e in the previous steps.

We are now ready to prove Theorem 3.

Proof of Theorem 3:

Proof. The algorithm always terminates in T time, as it takes dlog2k(n)e stages that each take at most T/ dlog2k(n)e time.
So, let’s upper bound the probability of error.

To select the best arm, it must survive all
⌈

log2(n)
k

⌉
rounds, after which it will be the last arm remaining. Using the union

bound with Lemma 18, we can upper bound the probability of elimination of the best arm by:

blog2(n)/kc∑
r=0

3k exp

(
−nx(k)

8H2

)
+ 3dlog2(|Srf−1|)e exp

(
−nx(k)

8H2

)
= 3dlog2(n)e exp

(
−nx(k)

8H2

)
(17)

Remark 2. Applying Theorem 3 with k = 1, and λ(m) = m−1, assuming n is a power of 2 (for simplicity), and that 1 is
evenly divisible by n log2(n)

T , we recover the error probability upper bound of sequential halving (Karnin et al., 2013):

3 log2(n) exp

(
− nT

8H2 log2(n)

)
Remark 3. The naive extension of sequential halving (which is Algorithm 2 with k = 1) has a higher bound on the
error probability than Algorithm 2 with k = k?. This is because x(k?) ≥ x(1) and the error probability upper bound
(Equation 17) is decreasing in x(k).



Resource Allocation in Multi-armed Bandit Exploration

Figure 5. Cosmological Parameter Estimation Experiment: Left: From a total pool of 40 processes allowed per arm pull, we plot
the empirical scaling function averaged over 10 runs of the likelihood computation procedure and plot λ(m) ∝ m−q for q ∈ {0.5, 1}
after calibrating λ(1) (which corresponds to using 40 processes). The behavior of the empirical scaling function is initially linear but
becomes close to inverse square-root after 7 processes. Right: We evaluate SSH on a cosmological parameter estimation task with 64
arms, T = 0.56, and vary the total number of processes available. We present the mean and standard error across 60 runs. Although the
scaling function is good (q ≈ 0.5), SSH appears to consistently do as well or better than SH, especially when resources are very limited.

D.2. Lower bounding x(k) for λ(m) = mq

In this section, we will lower bound x(k), which will allow us to upper bound the error probability of Algorithm 2 when
contextualizing the results for different values of k.

Assuming x(k) ≥ 1 and 2k ≤ n:

x(k) =

 λ−1
(

T
dlog

2k
(n)e

)
2kdlog

2k
(n)e(2k − 1)


=
λ−1

(
T

dlog
2k

(n)e

)
2kn(2k − 1)

≥
λ−1

(
T

dlog
2k

(n)e

)
4kn

≥ 1

4kn

(
T

dlog2k(n)e

)1/q

≥ 1

4kn

(
Tk

2 log2(n)

)1/q

In the second line, we upper bound the first term in the denominator, which may be greater by a factor of 2k. In the fourth
line, we plug in λ−1(t) = t1/q . In the last step, we upper bound the ceil using 2k ≤ n.

E. Physical experiment: Estimation of cosmological parameters
We evaluate Algorithm 2 on a variant of a problem in Kandasamy et al. (2019), where the goal is to estimate the Hubble
constant, dark matter fraction, and dark energy fraction from data on Type Ia supernova via maximum likelihood estimation,
using data from Davis et al. (2007). We focus on the fixed budget setting in this experiment as algorithms in the fixed budget
settings are more practical and easier to adapt to real problems (Karnin et al., 2013). The likelihood is computed using the
method from Shchigolev (2017), and involves numerically evaluating integrals for each data point before a serial portion. We
discretize the continuous parameter space into 64 candidates (arms). We treat the likelihood of a parameter when computed
using all 192 points in the dataset as the mean of an arm. When sampling an arm, we compute the likelihood using 50 points
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sampled with replacement from the dataset. Each arm pull can be allocated a number of processes to parallelize the set of
numerical integrals that must be computed. First, we approximately compute the scaling function of the arm sampling as
a function of its number of processes. In this particular scenario, the communication and synchronization costs are very
limited, which results in fairly good scaling. Nevertheless, we plot the empirically estimated scaling function (Figure 5(a))
and observe that the scaling function is close to λ(m) = m−0.5. When computing k?, we approximately compute λ−1(t) by
finding the smallest m such that λ(m) ≤ t. Additional experimental details for this experiment can be found in Section E.
In this experiment, we fix the time budget to be 0.56 seconds. In this setting, k? = 2, so each stage takes 0.28 seconds,
which requires at least 7 processes per pull to complete pulls in time. Sequential halving, which has 0.14 seconds/stage,
requires 25 processes per pull to complete pulls in time. We observe that Algorithm 2 consistently matches or outperforms
sequential halving in this setting (Figure 5(b)).

F. Baseline hyperparameters
APR and BatchRacing: Empirically, we found that the deviation function used in the confidence intervals of Algorithm 1
and the baselines is very conservative, so we scale the deviation by 0.2 for all algorithms. Scaling confidence intervals this
way is a common technique in applied UCB-style bandit work (Kandasamy et al., 2015; Wang et al., 2017). Despite this
scaling, all algorithms almost always identify the best arm in the synthetic experiments.

UCB-E: UCB-E (Audibert & Bubeck, 2010) requires a scale hyperparameter for the confidence bounds. Specifically, the
confidence bounds are computed as (µ̂− a√

n
, µ̂+ a√

n
), where µ̂ is the empirical mean, n is the number of times the arm

has been pulled, and a is the scale parameter. We tune a via grid search, and find that when q = 0.9, a = 1 performs best
empirically. For all other experiments, no value of a helps, as the time budgets are too small for a sequential algorithm to
make sufficient progress.


