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1. Notations and definitions

Let (X, X) be a measurable space. A Markov kernel N on X x X is amapping N : X x X — [0, 1] satisfying the following
conditions:

(i) for every x € X, the mapping N(z,-) : A — N(z, A) is a probability of on X,
(ii) for every A € X, the mapping N (-, A) :  — N(z, A) is a measurable function from (X, X) to ([0, 1], B([0, 1]),
where B([0, 1]) denotes the borelian sets of [0, 1].

Let A be a positive o-finite measure on (X, X) and n : X x X — R be a nonnegative function, measurable with respect to
the product o-field X ® X'. Then, the application N defined on X x X" by

N(x, A) = /A n(z, »)A(dy) |

is a kernel. The function n is called the density of the kernel N w.r.t. the measure A. The kernel N is Markovian if and
only if [, n(x,y)A(dy) = 1forall z € X.

Let N be a kernel on X x & and f be a nonnegative function. A function N f : X — R is defined by setting, for = € X,

Nf(z) = /X Nz, dy) f(y)

Let 1 be a probability on (X, X). For A € X, define

HN(4) = / j(de) Nz, A).

If N is Markovian, then uN is a probability on (X, X').

2. Experiences
2.1. Toy example
We first describe additional experiments on the toy dataset introduced in Section

Recall that we generate some i.i.d. data z = (z;))Y.; € R from the i.i.d. latent variables z = (z;)¥; € R*" as follows
forn > 0: z; ~ N(0;1d) and z; | z; ~ N(n- (||z:]| + €), 02) = po (i | 2)-

This example, presented for z € R2, easily extends to the case where z lies in R?, with d increasing from 2 to 300. We
tackle here the problem at estimating the parameter § = (7, ¢) when d varies.

We show in Figurethe error || — 6|2 for the different methods. The increased flexibility of the posterior proves more
effective for estimating the true parameters of the generative model.
2.2. Probabilistic Principal Component Analysis

We detail the impact of the learnable reverse kernels on the variance of the estimator and looseness of the ELBO. In our
experiments, reverse kernels were given by fully-connected neural networks. We train K different reverse kernels {! k}fgol



1.4 x 10!
1.3 x 10}
1.2 x 10
1.1 x 10* —o— VAE
—8— IWAE
10* 4 —&— L-MCVAE
A-MCVAE
0% 109 —&— RealNVP
X
T T T T T T T
0 50 100 150 200 250 300

Figure S1. Squared error for parameter’s estimates, obtained using different models.

for the K transitions, each given by a separate neural network, and amortized over the observation z, similarly to
et al.l 2015} [Huang et al., 2018). Given the parameters (6, ¢), we train these kernels for a large number of epochs using
the SIS objective (14) and the Adam optimizer (Kingma & Ba, [2014). In particular, we display in Figure[S2] the different
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Figure S2. Representation of the different estimators (left) and their gradient (right) of the true log likelihood. From left to right, a/
L-MCVAE, K = 5, b/ L-MCVAE, K = 10, ¢/ L-MCVAE, K = 1, learnable reverse, d/ L-MCVAE, K = 2 learnable reverse, e/
A-MCVAE, K = 5, f/ AAMCVAE, K = 10, g/ A-MCVAE, K = 5 with control variates.

estimators to be compared. It is easily seen that reverse kernels can not provide reasonable and stable density estimates.
At the same time, we observe the variance of the gradient is higher in those models than in the ones we present in the main
text. This motivates our approach bypassing the optimization of the reverse kernels.

2.3. Additional experimental results

We display in this section the full results on MNIST, CelebA and CIFAR respectively of the different models as well as the
effect of the different annealing schemes (respectively in Table[I] Table 2] and 3).
3. Proofs

3.1. Proof of SIS and AIS Identities

Proposition S1. Let {T'; }1< be a sequence of distributions on (R?, B(R®)), { My} K_, and { Ly} —,' be Markov kernels.
Assume that for each k € {0, ..., K — 1}, there exists a positive measurable function wy, : R x R? + R such that

Ly (dzg) Li—1(2k, dzp—1) = Tr—1(dzp—1) My (2k—1, dzi)wi (261, 2k) - (S1)



Table 1. Results of the different models on MNIST with different annealing schemes.

number of epoches ELBO: 10 30 100 NLL: 10 30 100
VAE 95.26 £ 0.5 91.58 £0.27 | 89.7 +£0.19 89.83 +£0.59 | 86.86 + 0.26 | 85.22 4+ 0.07
IWAE, K= 10 91.42 £0.21 | 88.56 =0.07 | 87.17 £0.19 | 88.54 £ 0.27 | 86.07 £ 0.1 84.82 + 0.1
IWAE, K= 50 90.34 £ 0.27 | 87.5+0.16 86.05 £0.11 | 89.4 £ 0.25 86.54 £ 0.15 | 85.05 £0.1
L-MCVAE Fixed, K= 5 96.6 + 3.51 88.8 £ 0.46 87.77 £0.12 | 90.63 +2.19 | 85.85 + 0.27 | 85.07 + 0.04
L-MCVAE Sigmoidal, K=5 9548 £2.29 | 88.87 £0.82 | 87.81 = 0.53 | 90.05 +1.63 | 85.92 +£0.62 | 85.16 + 0.38
L-MCVAE All learnable, K= 5 96.62 = 3.24 | 88.58 £0.75 | 87.51 £0.41 | 90.59 +=2.01 | 85.68 ==0.49 | 84.92 £ 0.24
L-MCVAE Fixed, K= 10 95.98 +3.91 | 88.36 £ 0.7 87.38 £0.35 | 90.5 £2.23 85.75+£0.33 | 85.0£0.11
L-MCVAE Sigmoidal, K= 10 96.78 £0.47 | 88.35+0.63 | 87.17+0.52 | 91.13 £ 0.27 | 85.72 £ 0.31 | 84.84 +£0.26
L-MCVAE All learnable, K= 10 | 96.78 + 1.06 | 87.99 +£0.71 | 86.8 + 0.66 91.33 £0.61 | 8547 +£0.46 | 84.58 + 0.39
A-MCVAE Fixed, K=3 96.21 ==3.43 | 88.64 £0.78 | 87.63 =042 | 90.42 +2.34 | 85.77 = 0.65 | 85.02 £ 0.37
A-MCVAE Sigmoidal, K= 3 96.59 +2.31 | 88.96 £ 0.4 87.86 £0.06 | 90.85 +1.62 | 8597 +0.34 | 85.17 £ 0.1
A-MCVAE All learnable, K= 3 9544 +£2.68 | 88.79 £0.63 | 87.78 + 0.37 | 89.9 + 1.68 85.96 +£0.59 | 85.23 +0.41
A-MCVAE Fixed, K= 5 95.55+2.96 | 87.99 +£0.57 | 87.03 +£0.27 | 90.39 +2.21 | 85.6 + 0.67 84.84 + 0.38
A-MCVAE Sigmoidal, K=5 96.56 +2.02 | 88.51 £0.31 | 87.46 +0.48 | 91.62 +1.55 | 85.96 & 0.06 | 85.15 £ 0.21
A-MCVAE All learnable, K= 5 95.81 £1.72 | 88.11 £0.13 | 87.14 £ 0.18 | 90.79 &= 1.14 | 85.71 == 0.28 | 84.95 £ 0.04
VAE with ReaNVP 9523 £0.33 | 91.69 £ 0.15 | 89.62 +0.17 | 89.98 + 0.24 | 86.88 +0.05 | 85.23 +£0.18
Table 2. Full results of the different models on CelebA. All scores must be added 11400 in this table.
number of epoches ELBO: 10 30 100 NLL: 10 30 100
VAE 2378 £1.95 | 17.99 £ 04 1472 £0.16 | 1735+ 1.7 12.68 £0.62 | 10.11 +£0.32
IWAE, K= 10 20.59 £0.71 | 1545+£0.52 | 122403 18.25 £ 0.6 13.18 £0.42 | 10.14 +0.31
IWAE, K= 50 19.05 £0.39 | 13.59 £ 0.5 1048 £0.89 | 19.08 £0.42 | 13.17 £ 0.54 | 10.12 & 0.86
L-MCVAE Fixed, K=5 2193 +£1.34 | 13,12+ 1.27 | 1203 +1.21 | 16.65+1.55 | 10.12 4+ 1.38 | 9.14 + 1.27
L-MCVAE Sigmoidal, K= 5 21.61 =1.48 | 12.72 £0.43 | 11.6 £0.37 1642 £1.47 | 9.62 +0.47 8.72+ 04
L-MCVAE All learnable, K= 5 20.75 £ 0.65 | 12.99 £ 0.7 1191 £0.61 | 16.16 £0.93 | 10.01 £0.72 | 9.03 £ 0.64
L-MCVAE Fixed, K= 10 2149 £0.03 | 12.83 £0.57 | 11.76 £ 0.56 | 17.67 £ 0.75 | 10.26 0.9 9.24 + 0.79
L-MCVAE Sigmoidal, K= 10 1944 £0.82 | 11.81 £045 | 10.7 £ 04 15.67 £1.48 | 9.24 +£0.8 8.24 +£0.73
L-MCVAE All learnable, K= 10 | 20.7 £ 1.15 11.81 £0.34 | 10.6 4+ 0.23 17.0 + 1.87 9.29 +0.73 8.26 +£ 0.52
A-MCVAE Fixed, K= 3 21.59 £ 1.5 13.94 £0.42 | 12.84 £0.3 16.64 +1.37 | 1098 £0.48 | 9.95 £0.3
A-MCVAE Sigmoidal, K= 3 23.63 +£1.19 | 14.17+£0.26 | 1296 +0.18 | 18.0 £ 0.54 11.09 £ 0.2 10.11 £0.13
A-MCVAE All learnable, K= 3 2211 £1.66 | 1462 +0.35 | 13.54+0.18 | 17.38 +1.54 | 11.68 +0.33 | 10.67 £ 0.16
A-MCVAE Fixed, K=5 20.13 £ 1.11 | 13.11 £0.38 | 11.99 +0.56 | 16.71 +=1.47 | 10.64 +0.24 | 9.63 4+ 0.32
A-MCVAE Sigmoidal, K= 5 2095 £ 1.18 | 1242 +£042 | 11.13+0.37 | 1742+ 1.49 | 9.97 + 0.59 8.82 £ 0.57
A-MCVAE All learnable, K= 5 2217 £0.17 | 1273 £0.09 | 11.46 £ 0.15 | 1897 +=1.04 | 10.41 0.28 | 9.22 +0.16
VAE with RealNVP 15.56 £0.29 | 13.60 +£0.35 | 12.21 +£0.27 | 10.69 4+ 0.19 | 9.09 + 0.26 8.98 £0.2




Table 3. Results of the different models on CIFAR-10 with different annealing schemes. All scores must be added 2800 in this table.

number of epoches ELBO: 10 30 100 NLL: 10 30 100
VAE 69.57 £ 0.08 | 69.55 +0.51 | 68.84 +0.06 | 68.51 £0.07 | 68.41 £0.33 | 67.9 + 0.03
IWAE, K= 10 69.82 +0.03 | 69.35+0.03 | 69.36 + 0.36 | 68.56 £ 0.03 | 68.0 £ 0.03 68.02 = 0.4
IWAE, K= 50 69.94 + 0.08 | 69.55+0.04 | 69.43 £0.03 | 69.15+0.15 | 68.37 £0.18 | 67.93 + 0.02
L-MCVAE Fixed, K=5 70.86 & 0.53 | 68.44 +0.18 | 68.12 £ 0.11 | 69.37 £0.37 | 67.78 £ 0.1 67.53 = 0.07
L-MCVAE Sigmoidal, K=5 70.9 £ 0.59 68.46 £ 0.13 | 68.12 £ 0.11 | 69.42+0.39 | 67.77 £ 0.11 | 67.51 £0.08
L-MCVAE All learnable, K= 5 70.62 + 0.41 | 68.55+0.18 | 68.09 £ 0.1 69.15+0.38 | 67.73 £0.07 | 67.5 £0.07
L-MCVAE Fixed, K= 10 70.67 £ 0.42 | 68.37 £0.06 | 69.07 £1.49 | 69.62 +0.54 | 67.78 £ 0.06 | 67.51 + 0.03
L-MCVAE Sigmoidal, K= 10 70.99 + 0.59 | 68.36 =0.04 | 68.03 £0.0 69.8 £ 0.67 67.76 £ 0.04 | 67.51 +0.03
L-MCVAE All learnable, K= 10 | 71.19 £0.79 | 68.36 = 0.03 | 68.01 +0.04 | 69.95 +0.62 | 67.78 + 0.07 | 67.5 &+ 0.05
A-MCVAE Fixed, K=3 69.97 +£0.99 | 68.48 £0.29 | 68.18 £0.16 | 69.26 +0.76 | 67.77 £0.18 | 67.55 + 0.1
A-MCVAE Sigmoidal, K= 3 70.5 £ 1.18 68.45 +0.28 | 68.19 £0.18 | 69.18 = 0.8 67.77 £0.19 | 67.56 £0.11
A-MCVAE All learnable, K=3 | 70.69 £+ 1.23 | 68.44 £ 0.3 68.17 +0.18 | 69.36 = 0.89 | 67.76 + 0.2 67.55 £ 0.11
A-MCVAE Fixed, K=5 70.37 +1.04 | 68.31 = 0.21 | 68.04 £ 0.1 69.36 = 0.87 | 67.73 £0.17 | 67.51 = 0.08
A-MCVAE Sigmoidal, K= 5 70.89 £ 0.38 | 68.4 £ 0.05 68.07 = 0.04 | 69.71 = 0.33 | 67.8 =0.04 67.53 = 0.02
A-MCVAE All learnable, K=5 | 70.1 & 0.89 68.28 = 0.2 68.01 +£0.08 | 69.23 £0.75 | 67.71 £0.15 | 67.5 £ 0.07
VAE with RealNVP 70.01 +0.12 | 69.51 = 0.07 | 69.19 £ 0.13 | 68.73 £0.05 | 68.35 £0.05 | 68.05 £ 0.02
Then,
K K 1
Fo(dZO) H Zk 1,d2’k H Zk 1,Zk FK(dZK) H Lk_l(zk,dzk_l) . (Sz)
k=1 k=1 k=K
Proof. We prove by induction that for k € {1,..., K},
k k 1
F()(dZo) H Mi(zi,l, dZZ) H wi(zi,l, Zl) = I‘k(dzk) H Li,1 (Zi7 dZi,1) . (S3)

i=1

Eq. (S3) is satisfied for k& = 1 by (ST). Assume that (S3) is satisfied for & <

1

Prii(dzesn) [ Lici(zidzion)

i=k+1

which concludes the proof.
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i=k
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K — 1. By (S]),

= Tiq1(dzrs1) L (2k41, dzi) H Li_1(2,dzi—1)

1

Di(dzr) Myt (21, dzpg1)we1 (2k 2641 H i—1(zi,dzi—1)

= Mp11(2k, d2kt1) w1 (28, 2e+1)To(d20) H

We now highlight conditions under which (ST)) is satisfied.

1. Assume that {T';}5

the kernels {M;}_ | and {Lp}r—y!
Li—1 (2, dzp—1) = lp—1 (21, 2p—1)dzp—1, k € {1,...,

W (21, 2k) =

Vi (2k ) k-1 (285 2 —1)

Ve—1 (Zk—l)mk(zk—la Zk)

~

=1

k
Zt 17d2 Hwi(zi—la Zl)

have positive densities w.r.t. to the Lebesgue measure, i.e. I'y(dz;) = T'k(2r)dz; and that
have positive transition densities My (zx—1,dzr) = mg(zk—1, 2k)dzr and
K}. Then,



2. Assume that for k € {1,..., K}, Tx(dzg—1)My(2zk—1,dzx) = Tk(dzk)Lr—1(2k,dzk—1), and that there exists a
positive measurable function such that I'y (dzp—1) = Wk (2k—1)Tk—1(dzk—1). Then,

Ii(dzi) Li—1 (2K, dzig—1) = Tr(dzp—1) My (2k—1,d2r) = Or(2p—1)Tk—1(d2p—1) My (2K—1,dzx) -

Hence, (ST) is satisfied with wg, (251, 2,) = Wk (2k—1). In particular, if forall k € {0, ..., K}, Tx(zx) = & (2x)d 2k,
where ~, is a positive p.d.f., then Wy (zx) = Y& (2k)/Ve—1(2k—1)-

3. Assume that for & € {1,...,K}, My is reversible wrt. Ty, ie Tp(dzp—1)Mi(zp—1,dzr) =
Ty (dzk) My (2x,dzx—1), and that there exists a positive measurable function such that Ty(dzx—1) =
W (2k—1)Tk—1(dzg—1). Then, setting L1 = My, (SI) is satisfied.
3.2. Proof of (T4)

Fork € {1,...,K}, 21 € R, denote by G,z , the mapping uy — Ty, (2x—1). Our derivation below rely on the

fact that for k € {1,..., K}, zx_1 € RY, Gz, 152 C!-diffeomorphism. This is the case for the Langevin mappings.

Note, similarly to the density considered in Section that mg (2k—1, 2x) = @(G,, ik . (Zk-))JG’:I (z). When K = 1,
©Zk—1

we have
/10g(w1(20721))q41>(20:1 | 2)dz20.1 = /10g(w1(20721))q¢(20 | m)JG;;O(Zl)@(Giio(Zl))dZO:l
_ / log (11 (20 T, (20))) g (20 | )p(ur)dzodlus |

where we have performed the change of variables u; = Gl_;o (z1), hence z1 = G1 ., (u1) = T1 4, (20). Let now K be in
N*. In general, we write

K K K
Lsis = /log (H wk(zkl,zk)> Qf(ZO:K | 2)dzo.c = /log (H Wi (2k-1, 2k) > q4(20 | @) H k(2k—1, 21)d20: k12K
k=1 k=1 k=1
K K—1
= /log (H wk(zk—1,zk)> as(20 | 2) [ mk(zk—laZk)@(GI_{}zK,l(ZK))JGKlzK 1(ZK)dZO:K—1dZK
k=1 k=1
K—1
/log (H Wi (2k—1, 2k) Wik (2K -1, Tuy (26-1)) 09 (20 | © ) H mi(2k—1, 2 )p(ur )dzo.x —1duk
k=1

using the change of variables ux = G;&ZK*I (2K ). By an immediate backwards induction, we write

k

K k=1
Lsis = /log (H wi( quu (20), OlTLu (Zo))> q¢(20 | 7)p(ur.r)dzodur ke -
k=1 =

i=

3.3. Proof of Lemmal(l]

Letn < L™! and u € RP. First we show that TMALA s invertible. Consider, for each (y,u) € R2?, the mapping
Hy u(2) =y — /2nu — nVlog 7(z). We have, for 21, 22 € RY,

[ Hyu(21) = Hyu(z2)|| < 0l[Viegm(z1) = Viogm(z2)]| < nlLlz1 — 2|l

and 7L < 1. Hence H, ,, is a contraction mapping and thus has a unique fixed point z,, ,,. Hence, for all (y,u) € R4 there
exists a unique z, ,, satisfying

Hyw(zyu) = 2y = Yy = 2y + NV log m(zy0) + /2nu = TuMALA(Zy,u)-

This establishes the invertibility of TMALA The fact that the inverse of TMALA js C! follows from a simple application of
the local inverse function theorem.



4. ELBO AIS

4.1. Construction of the control variates

We prove in this section that the variance reduced objective we consider is valid. Sample now n samples upn kS Pd,K+1-

For an index i € {1,...,n}, given the initial point 2§ = V,, ,(u}) and the innovation noise u}_ -, we sample the A/R
booleans a}. ;. We introduce, in the main text, fori € {1,...,n}
Wi = — ZW (Voo (uh)s af. g vl i)
Jj#i

W; provides a reasonable estimate of the AIS ELBO but is independent from the i-th trajectory. We use this quantity as a
control variate to reduce the variance of our gradient estimator by introducing

Vatsn =13 VW (Vo (), e, )

i=1
- Z { (Vi (1), a1 c, i) — Wm]
X VIOg A(V¢,w(uo)»a1:K7U§:K) . (S4)

Proving its unbiasedness boils down to proving that the term n =" 327" | W, ;V log A(V . (u}), al. ¢, ul. ) has expecta-
tion zero. Let us compute fori € {1...,n},

/Z Pd,K+1 (U(Z)K)A(V¢7$ (UB), aé:K? ule)Wn,Zv IOg A(V¢7$ (u6)7 aé:K? ule)duE)K =

al.x
K K-1
/Z K +1 () H Zk 1 Wi VZlogak z(Zk 1 +ZV10gaK P (ZK 1) dug.
aj g1 k=1 k=1 al
denoting 2z} = V.(u)), zi = OL 1Tazuz(zf)) by simplicity of notation. Yet, Zal oz Ko (2i_1) = 1 ex-
actly, thus Za (;(Ku (2 _ 1)V10ga ui (2%_,) = 0. We can thus show by an immediate induction that

fz <pd Ul 1 ) WiV log A(Vy o (ud), al > Ut g )dul, - = 0,as W, ; is a constant in that integral by independence of
the samples fori € {1...,n}. Moreover, as

/ZZWn leOgA(Vaﬁx(Uo) aj g Ui H@d K+1(Uo x)dug =

ai 7;( =1 =1
/Z 3 / S W oV log AV (1), 04, 810 P41 0 ) i | T @i (i)
i=1 gt at g 0

then n=2 37" W, ;Vlog A(Vy o (uh), al. e, ul.x) is of zero expectation, and (S3) is an unbiased estimator of the gradi-
ent.

4.2. Discussion of (Wu et al., [2020)

In (Wu et al., |2020), authors consider a MCMC VAE inspired by AIS. The model used however is quite different in spirit
to what is performed in this work. (Wu et al., |2020) use Langevin mappings and accept reject steps in their VAE. Note
however that the A/R probabilities defined are written as

a(z,y) =1An(y)/m(x)



different from ). Moreover, even though accept/reject steps are considered, the score function estimator (23 is not taken
into account.

Finally, the initial density of the sequence is not taken to be some variational mean field initialization but directly the prior
in the latent space. As a result, the scores obtained by the MCMC VAE are less competitive than that of the RNVP VAE
presented in (Wu et al., 2020, Table 3.), contrary to what is presented here.
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