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A. Section 2
Lemma 1 (Dynamics of BYOL/SimSiam). For objective (f1 = Wx1 and f2a = Wax2 where Wa is EMA weight):

J(W,Wp) :=
1

2
Ex⇠p(·), x1,x2⇠paug(·|x)

⇥
kWpf1 � StopGrad(f2a)k22

⇤
(20)

Let X = E [x̄x̄|] where x̄(x) := Ex0⇠paug(·|x) [x
0] is the average augmented view of a data point x and X

0 =

Ex

⇥
Vx0|x[x

0]
⇤

is the covariance matrix Vx0|x[x
0] of augmented views x0

conditioned on x, subsequently averaged over

the data x. The dynamics is the following:

Ẇp = � @J

@Wp
= �WpW (X +X

0)W | +WaXW
| (21)

Ẇ = � @J

@W
= �W

|
p WpW (X +X

0) +W
|
p WaX (22)

Proof. Note that

(Wpf1 � f2a)
|(Wpf1 � f2a) (23)

= f|
1 W

|
p Wpf1 � f|

2aWpf1 � f|
1 W

|
p f2a + f|

2af2a (24)
= tr(W |

p Wpf1f
|
1 )� tr(Wpf1f

|
2a)� tr(W |

p f2af
|
1 ) + tr(f2af

|
2a) (25)

Let F1 = E [f1f
|
1 ] = W (X + X

0)W | where X = Ex [x̄x̄|] and X
0 = Ex

⇥
Vx0|x[x

0]
⇤
, F1,2a = E [f1f

|
2a], F2a,1 =

E [f2af
|
1 ] = F

|
1,2a and F2a = E [f2af

|
2a]. This leads to:

J(W,Wp) =
1

2

⇥
tr(W |

p WpF1)� tr(WpF1,2a)� tr(F1,2aWp) + tr(F2a)
⇤

(26)

Taking partial derivative with respect to Wp and we get the gradient update rule:

Ẇp = � @J

@Wp
= �WpF1 + F

|
1,2a (27)

Now we take the derivative with respect to W . Note that we have stop-gradient in f2a, so we would like to be careful when
taking derivatives. We first compute @J/@F1 and @J/@F1,2a. Note that both F1 and F1,2a contains W , due to the fact that
we have stop gradient, F1 is a quadratic form of W but F1,2a is a linear form of W . This is critical.

@J

@F1
=

1

2
W

|
p Wp (28)

@J

@F1,2a
= �W

|
p (29)

Let W = [wij ] and X = E [x̄x̄|] (Xtot and X
0 are defined similarly). We have F1 = W (X + X

0)W | and F1,2a =
WXW

|
a . So we have:

@J

@wij
=
X

kl


@J

@F1

�

kl

@[F1]kl
@wij

+
X

kl


@J

@F1,2a

�

kl

@[F1,2a]kl
@wij

(30)
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Let C = X +X
0, here we have:

X

kl


@J

@F1

�

kl

@[F1]kl
@wij

=
X

kl


@J

@F1

�

kl

X

mn

@wkmcmnwln

@wij
(31)

=
X

kl


@J

@F1

�

kl

 
�(i = k)

X

n

cjnwln + �(i = l)
X

m

wkmcmj

!
(32)

=
X

l


@J

@F1

�

il

X

n

cjnwln +
X

k


@J

@F1

�

ki

X

m

wkmcmj (33)

=


@J

@F1
WC

| +
@J

@F
|
1

WC

�

ij

(34)

Similarly (note that we don’t take derivative with respect to Wa):

X

kl


@J

@F1,2a

�

kl

@[F1,2a]kl
@wij

=


@J

@F1,2a
WaX

|
�

ij

(35)

So we have:
Ẇ = � @J

@W
= �W

|
p WpW (X +X

0) +W
|
p WaX (36)

After some manipulation, we finally arrive at the following gradient update rule:

Ẇp = [�WpW (X +X
0) +WaX]W | � ⌘Wp (37)

Ẇ = W
|
p [�WpW (X +X

0) +WaX]� ⌘W (38)

Remarks. For symmetric loss:

J(W,Wp) :=
1

4
Ex⇠p(·), x1,x2⇠paug(·|x)

⇥
kWpf1 � StopGrad(f2a)k22 + kWpf2 � StopGrad(f1a)k22

⇤
(39)

The update rule is done by swapping subscript 1 and 2 in the update rule of Wp (here F2 = E [f2f
|
2 ]):

Ẇp = � @J

@Wp
= �1

2
Wp(F1 + F2) +

1

2
(F2a,1 + F1a,2) (40)

Under the large batch limit, it is the same as Eqn. 37.
Theorem 1 (Invariance of the Gradient Update). The gradient update rules (Eqn. 2 and Eqn. 3) has the following invari-

ance (where the symmetric matrix C depends on initialization):

W (t)W |(t) = W
|
p (t)Wp(t) + e

�2⌘t
C (41)

Proof. From Eqn. 38 and Eqn. 37, we know that

↵
�1
p W

|
p Ẇp + ↵

�1
p ⌘W

|
p Wp = ẆW

| + ⌘WW
| (42)

Taking transpose and we have:
↵
�1
p Ẇ

|
p Wp + ↵

�1
p ⌘W

|
p Wp = WẆ

| + ⌘WW
| (43)

Adding them together and multiply both side with e
2⌘t:

↵
�1
p

d

dt
(e2⌘tW |

p Wp) =
d

dt
(e2⌘tWW

|) (44)

This leads to ↵
�1
p e

2⌘t
WW

| = e
2⌘t

W
|
p Wp + C, or WW

| = ↵
�1
p W

|
p Wp + e

�2⌘t
C.
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Lemma 2 (Dynamics of a negative definite system). Let H(t) be d-by-d time-varying positive definite (PD) matrices

whose minimal eigenvalues are bounded away from 0: inft�0 �min(H(t)) � �0 > 0, then the following dynamics:

dw(t)

dt
= �H(t)w(t) (45)

satisfies kw(t)k2  e
��0tkw(0)k2, which means that w(t) ! 0.

Proof. Construct the following Lyapunov function V (w) := 1
2kwk22. For V (w(t)) we have:

dV

dt
=

dV

dw

dw

dt
= �w|(t)H(t)w(t) (46)

Note that H(t) has eigen-decomposition: H(t) =
P

j �j(t)uj(t)u
|
j (t) with all �j(t) � �0 and [u1(t),u2(t), . . . ,ud(t)]

forming an orthonormal bases. Therefore:

w|
Hw =

X

j

�jw
|uju

|
jw � �0w

|

2

4
X

j

uju
|
j

3

5w = �0kwk22 (47)

Therefore, we have:
dV

dt
 ��0kw(t)k22 = �2�0V (48)

which leads to V (t)  e
�2�0tV (0). That is kw(t)k2  e

��0tkw(0)k2.

Theorem 2 (No-stop gradient will not work). With Wa = W (SimSiam case), removing the stop-gradient signal yields a

gradient update for W given by positive semi-definite (PSD) matrix H(t) := X
0 ⌦ (W |

p Wp + I) + X ⌦ W̃
|
p W̃p (here

W̃p := Wp � I and ⌦ is the Kronecker product):

d

dt
vec(W ) = �H(t)vec(W ). (49)

If inft�0 �min(H(t)) � �0 > 0, then W (t) ! 0.

Proof. Note that if we don’t have stop gradient and Wa = W , then we have additional terms (and we also need to compute
@J/@F2). Let W̃p = Wp � In2 and we have:

Ẇ = � @J

@W
= �W

|
p WpW (X +X

0) + (W |
p +Wp)WX �W (X +X

0)� ⌘W (50)

= �(W |
p Wp + I)WX

0 � (W |
p Wp �W

|
p �Wp + I)WX � ⌘W (51)

= �(W |
p Wp + I)WX

0 � (Wp � I)|(Wp � I)WX � ⌘W (52)

= �(W |
p Wp + I)WX

0 � W̃
|
p W̃pWX � ⌘W (53)

With vec(AXB) = (B| ⌦A)vec(X) and we see:

d

dt
vec(W ) = �

h
X

0 ⌦ (W |
p Wp + I) +X ⌦ W̃

|
p W̃p + ⌘In1n2

i
vec(W ) (54)

If inft�0 �min(H(t)) � �0 > 0, then applying Lemma 2 and we have kvec(W (t))k2  e
��0tkvec(W (0))k2 ! 0, and

there is no chance for W to learn any meaningful features.

Remark. Note that if Wa = W and we choose not to use the predictor (Wp = I), then no matter whether we choose to
use stop-gradient or not, W (t) always goes to 0. The theorem above already proved that without stop gradient, it is the
case. When there is stop gradient, from Eqn. 3, we have:

Ẇ = �(X 0 + ⌘I)W (55)

Note that X 0 + ⌘I is a PD matrix and with similar arguments, W (t) ! 0.
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Figure 7. Check the validity of EMA assumption (Assumption 1) with different EMA coefficients �a for BYOL dynamics with X = I
and X 0 = �2I (Assumption 2). � = 0.03. All experiments are run 10 times to get mean and standard derivation (shaded area). We could
see the EMA assumption is largely correct. Even at the region with �a close to 1 (e.g., 0.996) and large ⌘, the normalized correlation
between Wa and W are still high (⇠ 0.9). Note that throughout our analysis, the initial value of Wa(0) = 0. Left: weight decay ⌘ = 0,
Middle: ⌘ = 0.01, Right: ⌘ = 0.1.

B. Section 3
Isometric assumptions. Now we use the assumption that X = I and X

0 = �
2
I , which leads to

Ḟ = ẆXW
| +WXẆ

| = �(1 + �
2)(W |

p WpF + FW
|
p Wp) +W

|
p WaW

| +WW
|
a Wp (56)

here F = WXW
| = WW

|. If we also have weight decay �⌘W for W , then we have:

Ḟ = �(1 + �
2)(W |

p WpF + FW
|
p Wp) +W

|
p WaW

| +WW
|
a Wp � 2⌘F (57)

or using anticommutator {A,B} := AB +BA:

Ḟ = �(1 + �
2){F,W |

p Wp}+W
|
p WaW

| +WW
|
a Wp � 2⌘F (58)

Similarly, for Wp we have:
Ẇp = �↵p(1 + �

2)WpF + ↵p⌧F � ⌘Wp (59)

EMA assumption (Assumption 1). Now we further study the effect of EMA. To model it, we just let Wa = ⌧W where
⌧ < 1 is a coefficient that measure how much EMA attenuates W . If ⌧ = 1 then Wa = W and there is no EMA. Note that
⌧ is not the same as the EMA parameter 1� �a, which is often set to be a fixed 0.004 (or 1� 0.996). Instead, ⌧ = ⌧(t) is
a changing parameter depends on how quickly W = W (t) grows over time. If W remains stable, then ⌧ ⇡ 1; if W grows
rapidly, then ⌧ becomes small.

Fig. 7 shows that this assumption is largely correct.

Under this condition, using F = WXW
| = WW

|, the dynamics becomes (Now we also put weight decay for Wp):

Ẇp = �↵p(1 + �
2)WpF + ↵p⌧F � ⌘Wp (60)

Ḟ = �(1 + �
2)(W |

p WpF + FW
|
p Wp) + ⌧(W |

p F + FWp)� 2⌘F (61)

Derivation of Fixed point of Eqn. 2. Given the dynamics Eqn. 60 we now want to check its fixed point:

�↵p(1 + �
2)WpF + ↵p⌧F � ⌘Wp = 0 (62)

for some PSD matrix F . For convenience, let ⌘0 = ⌘/↵p. Since F is always PSD, we have eigendecomposition F =
U⇤U|. Left-multiplying U and right-multiplying U

|, we have:

(1 + �
2)W̄p⇤+ ⌘

0
W̄p = ⌧⇤ (63)

where W̄p := U
|
WpU . Let ⇤0 = (1 + �

2)⇤ + ⌘
0
I is a diagonal matrix with all positive diagonal element since ⌘

0
> 0.

Therefore, we have:
W̄p⇤

0 = ⌧⇤ (64)
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and thus W̄p = ⌧⇤(⇤0)�1 is a symmetric matrix and so does Wp = UW̄pU
|. When ⌘ = 0 and F has zero eigenvalues,

Wp can have infinite solutions (or fixed points), and some of them might not be symmetric.

Symmetrization of Wp. Now we need to assume Wp is symmetric and also symmetrize its dynamics, which yields (here
{A,B} := AB +BA):

Ẇp = �↵p

2
(1 + �

2){Wp, F}+ ↵p⌧F � ⌘Wp (65)

Ḟ = �(1 + �
2){W 2

p , F}+ ⌧{Wp, F}� 2⌘F

Note that the asymmetric dynamic might be interesting and we will leave it later.

B.1. Section 3.1

Theorem 3 (Alignment of Eigenspace). Under the dynamics of Eqn. 65, the commutator [F,Wp] := FWp�WpF satisfies:

d

dt
[F,Wp] = �[F,Wp]K �K[F,Wp] (66)

where

K = K(t) = (1 + �
2)


↵p

2
F (t) +W

2
p (t)�

⌧

1 + �2
Wp(t)

�
+

3

2
⌘I (67)

If maxt�0 �min[K(t)] = �0 > 0, then the commutator k[F (t),Wp(t)]kF  e
�2�0tk[F (0),Wp(0)]kF ! 0, i.e., the

eigenspace of Wp gradually aligns with F .

Proof. Let’s compute the commutator L := [F,Wp] := FWp �WpF and its time derivative. First we have:

FẆp � ẆpF = �↵p

2
(1 + �

2)(FL+ LF )� ⌘L (68)

Then we have
ḞWp �WpḞ = �(1 + �

2)(W 2
pL+ LW

2
p ) + ⌧(WpL+ LWp)� 2⌘L (69)

So we have
L̇ = FẆp + ḞWp � (WpḞ + ẆpF ) = �KL� LK (70)

where

K = K(t) = (1 + �
2)


↵p

2
F +W

2
p � ⌧

1 + �2
Wp

�
+

3

2
⌘I (71)

is a symmetric matrix. We can write the dynamics of L(t):

dvec(L(t))

dt
= � [K(t)�K(t)] vec(L(t)) (72)

where K(t)�K(t) := I ⌦K(t) +K(t)⌦ I is the Kronecker sum and is a PSD matrix if K is PSD.

If inft�0 �min(K(t)) � �0 > 0 for all t, then inft�0 �min[K(t)�K(t)] � 2�0. Applying Lemma 2 and we have:

kvec(L)k2  e
�2�0tkvec(L(0))k2 ! 0 (73)

This means that Wp and F can commute, and the eigen space of Wp and F will gradually align.

Remark. Fig. 9 shows numerical simulation of the symmetrized dynamics (Eqn. 65). If K(t) has negative eigenvalues,
then even if Wp and F have already approximately aligned, the dynamics is also unstable and might diverge due to noise
and/or numerical instability.

Fig. 8 shows a numerical simulation of Eqn. 60 (dynamics with Assumption 1 and Assumption 2 but without the symmetric
dynamics). We can clearly see that the asymmetric component converges to zero.
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Figure 8. Dynamics of the symmetric A := (Wp + W |
p )/2 and asymmetric part B := (Wp � W |

p )/2 of Wp under different time-

independent ⌧ of Eqn. 60. Each row is a different weight decay ⌘ (i.e., ⌘ = 0.001, 0.01 and 0.05). When ⌘ is large and/or ⌧ is small,
kAkF can also be dragged to zero, which is consistent with analysis in Sec. 3.2 (Obs#4 and Obs#5). On the other hand, kBkF always
seems to vanish over time. In this numerical simulation, we set F = W |

pWp following invariant in Theorem 1 with C = 0.

Figure 9. The norm of the communicator [F,Wp] over time under different hyper-parameters (different time-independent ⌧ and different
weight decay ⌘) in symmetrized dynamics Eqn. 65. When weight decay is small or zero, and/or ⌧ is large, the norm of the communicator
k[F,Wp]kF can shoot up (no eigenspace alignment).
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When eigenspace aligns exactly. Let U be the common eigenvectors. Wp = U⇤WpU
| where ⇤Wp =

diag[p1, p2, . . . , pd], F = U⇤FU
| where ⇤F = diag[s1, s2, . . . , sd].

In this case, the time derivatives Ẇp and Ḟ can all be written as decoupled form: Ẇp = UG1U
| and Ḟ = UG2U

| where
G1 and G2 are diagonal matrices. In other words, they are both decoupled into each eigen mode, and so does the future
value of Wp and F . Then U won’t change over time.

To see why, we consider the general case where we have a symmetric matrix M(t) with eigen decomposition M(t) =
U(t)D(t)U|(t). M follows Ṁ = U(t)G(t)U|(t) where G(t) is an arbitrary diagonal matrix.

To see why U̇ = 0, at each time step we have:

Ṁ = U̇DU
| + UḊU

| + UDU̇
| = UGU

| (74)

since U is unitary, we have:
U

|
U̇D +DU̇

|
U = G� Ḋ (75)

Since U
|(t)U(t) = I , we have U̇

|
U + U

|
U̇ = 0 so Q := U

|
U̇ is a skew-symmetric matrix and we have

QD �DQ = G� Ḋ (76)

Since the right hand side is a diagonal matrix, checking each entry and we have qijdj � qijdi = 0 for i 6= j. If M

has distinctive eigenvalues, then we know qij = 0 for i 6= j. Q is skew-symmetric so qii = 0. So Q = U
|
U̇ = 0

and thus U̇ = 0. If M has duplicated eigenvalues, then we can show qij = 0 for any di 6= dj . Within high-dimensional
eigenspace for duplicated eigenvalues, its eigen-decomposition is not unique and we can always pick the eigenspace within
each duplicated eigenspace so that U̇ = 0.

Therefore, we just multiply U
| and U to Eqn. 65 and the system becomes decoupled. Then after some algebraic manipu-

lation, we arrive at the following:

ṗj = ↵p(1 + �
2)sj


⌧

1 + �2
� pj

�
� ⌘pj (77)

ṡj = 2(1 + �
2)pjsj


⌧

1 + �2
� pj

�
� 2⌘sj (78)

Multiply Eqn. 77 with 2↵�1
p pj and subtract with Eqn. 78, we get:

2↵�1
p pj ṗj � ṡj = �2⌘↵�1

p p
2
j + 2⌘sj (79)

which gives

↵
�1
p

 
dp2j
dt

+ 2⌘p2j

!
= ṡj + 2⌘sj (80)

↵
�1
p

d

dt
(e2⌘tp2j ) =

d

dt
(e2⌘tsj) (81)

↵
�1
p e

2⌘t
p
2
j = e

2⌘t
sj � cj (82)

↵
�1
p p

2
j (t) = sj(t)� e

�2⌘t
cj (83)

Therefore, we have integral sj(t) = ↵
�1
p p

2
j (t) + cje

�2⌘t. For finite weight decay (⌘ > 0), we could simply expect
sj(t) ⇡ ↵

�1
p p

2
j (t).

On the other hand, the dynamics of ⌧ is:
Ẇa = �(W �Wa) (84)

Applying our assumption about EMA (Assumption 1) Wa(t) = ⌧(t)W (t), then we have:

⌧̇W + ⌧Ẇ = �(1� ⌧)W (85)
⌧̇WW

| + ⌧ẆW
| = �(1� ⌧)WW

| (86)
2⌧̇F + ⌧ Ḟ = 2�(1� ⌧)F (87)
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When F and Wp aligns, we have Ḟ all in the same eigen space.

Ḟ = �(1 + �
2){W 2

p , F}+ ⌧{Wp, F}� 2⌘F (88)

So the eigenvectors U won’t change and thus we have:

2⌧̇sj + ⌧ ṡj = 2�(1� ⌧)sj (89)

or

⌧̇ = �(1� ⌧)� ⌧
ṡj

2sj
(90)

which has a close form solution when cj = 0. Note that in the case, we have sj = ↵
�1
p p

2
j and thus ṡj = 2↵�1

p pj ṗj and we
have:

⌧̇ = �(1� ⌧)� ⌧
ṗj

pj
(91)

or

⌧̇ + ⌧

✓
ṗj

pj
+ �

◆
= � (92)

or
d

dt
(ef(t)⌧) = �e

f(t) (93)

where f(t) =
R
(ṗj/pj +�)dt = ln pj +�t and thus ef(t) = e

�t
pj . Take integral on both side and we have (here ⌧(0) = 0

is the initial condition):

e
�t
pj⌧ = �

Z t

0
e
�t0

pj(t
0)dt (94)

which is:

⌧j(t) = p
�1
j (t)�e��t

Z t

0
pj(t

0)e�t
0
dt (95)

B.2. Section 3.2

Monotonicity of p⇤j� with respect to ⌘ and ⌧ . Note that

p
⇤
j� =

⌧ �
p
⌧2 � 4⌘(1 + �2)

2(1 + �2)
(96)

is the (right) boundary of trivial basin p < p
⇤
j� and determines the size of trivial attractive region towards p⇤j0 = 0. It is

dependent on ⌘ and ⌧ . It is clear that p⇤j� is a increasing function of ⌘. This means that if the weight decay ⌘ is large, so
does trivial region (and more eigenvalues will be trapped to trivial solution).

On the other hand, we can compute the derivative of g(x) = x�
p
x2 � c for c > 0 and x

2
> c:

dg

dx
= 1� 1p

1� c/x2
< 0 (97)

So g(x) is a decreasing function with respect to x. Or p⇤j� is a decreasing function with respect to ⌧ .

C. Section 4
Experiment setup. Unless explicitly stated, in all our experiments, we use ResNet-18 as the backbone network, two-layer
MLP (with BN and ReLU) as the projector, and a linear predictor. For STL-10 and CIFAR-10, we use SGD as the optimizer
with learning rate ↵ = 0.03, momentum 0.9, weight decay ⌘̄ = 0.0004 and EMA parameter �a = 0.996. The batchsize is
128. Each setting is repeated 5 times to compute mean and standard derivation. We report final number as “mean±std”.
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D. Analysis of BYOL and SimSiam learning dynamics without isotropic assumptions on data
In the main paper we focused on isotropic data assumptions to obtain analytic insights into when and why BYOL and
SimSiam learning dynamics avoid representational collapse. Here we provide an alternate perspective using a different
assumption, involving decoupled initial conditions, that enables us to address the case of learning with non-isotropic data.
First, we recall the data generation and augmentation process. Let x be a data point drawn from the data distribution p(x)
and let x1 and x2 be two augmented views of x: x1,x2 ⇠ paug(·|x) where paug(·|x) is the augmentation distribution.
Let ⌃s = E [x1x

|
1 ] be the correlation matrix of a single augmented view x1 of the data x, and let ⌃d = E [x1x

|
2 ] be the

correlation matrix between two augmented views x1 and x2 of the same data point x. In the notation of the main paper,
⌃s and ⌃d can be decomposed as ⌃s = X +X

0 and ⌃d = X , where X = E [x̄x̄|] and x̄(x) := Ex0⇠paug(·|x) [x
0] is the

average augmented view of a data point x. In turn X
0 = Ex

⇥
Vx0|x[x

0]
⇤

is the covariance matrix Vx0|x[x
0] of augmented

views x0 conditioned on x, subsequently averaged over the data x. Intuitively, X is the correlation matrix of augmentation
averaged data, while X

0 is the augmentation covariance matrix averaged over data.

Also recall that the BYOL learning dynamics, without weight decay, is given by

Ẇ = W
|
p

�
�WpW⌃s +Wa⌃

d
�

(98)

Ẇp = ↵p

�
�WpW⌃s +Wa⌃

d
�
W

| (99)

Ẇa = �(�Wa +W ) (100)

SimSiam learning dynamics is a special case in which Wa = W and the final equation is ignored.

We first derive exact fixed point solutions to both BYOL and SimSiam learning dynamics in this setting. We then discuss
specific models for data distributions and augmentation procedures, and show how the fixed point solutions depend on
both data and augmentation distributions. We then discuss how our theory reveals a fundamental role for the predictor
in avoiding collapse in BYOL solutions. Finally, we derive a highly reduced three dimensional description of BYOL and
SimSiam learning dynamics, assuming decopuled initial conditions, that provides considerable insights into dynamical
mechanisms enabling both to avoid collapsed solutions without negative pairs to force apart representations of different
objects.

D.1. The fixed point structure of BYOL and Simsiam learning dynamics.

Examining equation 98-equation 100, we find sufficient conditions for a fixed point given by WpW⌃s = Wa⌃d and
W = Wa. Note these are sufficient conditions for fixed points of both BYOL and SimSiam. Inserting the second equation
into the first and right multiplying both sides by [⌃s]�1 (assuming ⌃s is invertible), yields a manifold of fixed point
solutions in W1 and W2 satisfying the nonlinear equation

WpW = W⌃d[⌃s]�1
. (101)

This constitutes a set of n1 ⇥ n2 nonlinear equations in (n1 ⇥ n2) + (n2 ⇥ n2) unknowns, yielding generically a nonlinear
manifold of solutions in W1 and W2 of dimensionality n2 ⇥ n2 corresponding to the number of predictor parameters.
For concreteness, we will assume that n2  n1, so that the online and target networks perform dimensionality reduction.
Then a special class of solutions to equation 101 can be obtained by assuming the n2 rows of W correspond to n2 left-
eigenvectors of ⌃d[⌃s]�1 and Wp is a diagonal matrix with the corresponding eigenvalues. This special class of solutions
can then be generalized by a transformation Wp ! SWpS

�1 and W ! SW where S is any invertible n2 by n2 matrix.
Indeed this transformation is a symmetry of equation 101, which defines the solution manifold. In addition to these families
of solutions, the collapsed solution W = Wp = Wa = 0 also exists.

D.2. Illustrative models for data and data augmentation

The above section suggests that the top eigenmodes of ⌃d[⌃s]�1 control the non-collapsed solutions. Here we make
this result more concrete by giving illustrative examples of data distributions and data augmentation procedures, and the
resulting properties of ⌃d[⌃s]�1.

Multiplicative scrambling. Consider for example a multiplicative subspace scrambling model. In this model, data aug-
mentation scrambles a subspace by multiplying by a random Gaussian matrix, while identically preserving the orthogonal
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complement of the subspace. In applications, the scrambled subspace could correspond to a space of nuisance features,
while the preserved subspace could correspond to semantically important features. Indeed many augmentation proce-
dures, including random color distortions and blurs, largely preserve important semantic information, like object identity
in images.

More precisely, we consider a random scrambling operator A which only scrambles data vectors x within a fixed k dimen-
sional subspace spanned by the orthonormal columns of the n0⇥k matrix U . Within this subspace, data vectors are scram-
bled by a random Gaussian k⇥k matrix B. Thus A takes the form A = P

c+UBU
T where P c = I�UU

T is a projection
operator onto the n0 � k dimensional conserved, semantically important, subspace orthogonal to the span of the columns
of U , and the elements of B are i.i.d. zero mean unit variance Gaussian random variables so that E [BijBkl] = �ik�jl.
Under this simple model, the augmentation average x̄(x) := Ex0⇠paug(·|x) [x

0] becomes x̄(x) = P
cx. Thus, intuitively,

under multiplicative subspace scrambling, the only aspect of a data vector that survives averaging over augmentations is
the projection of this data vector onto the preserved subspace. Then the correlation matrix of two different augmented
views is ⌃d = P

c⌃x
P

c while the correlation matrix of two identical views is ⌃s = ⌃x where ⌃x ⌘ Ex⇠p(·)
⇥
xxT

⇤
is

the correlation matrix of the data distribution. Thus non-collapsed solutions of both BYOL and SimSiam can correspond
to principal eigenmodes of ⌃d[⌃s]�1 = P

c⌃x
Pc[⌃x]�1. In the special case in which P

c commutes with ⌃x, we have the
simple result that ⌃d[⌃s]�1 = P

c, which is completely independent of the data correlation matrix ⌃x. Thus in this simple
setting BYOL and SimSiam can learn the subspace of features that are identically conserved under data augmentation,
independent of how much data variance there is in the different dimensions of this conserved subspace.

Additive scrambling. We also consider, as an illustrative example, data augmentation procedures which simply add
Gaussian noise with a prescribed noise covariance matrix ⌃n. Under this model, we have ⌃s = ⌃x +⌃n while ⌃d = ⌃x.
Thus in this setting, BYOL learns principal eigenmodes of ⌃d[⌃s]�1 = ⌃x[⌃x + ⌃n]�1. Thus intuitively, dimensions
with larger noise variance are attenuated in learned BYOL representations. On the otherhand, correlations in the data that
are not attenuated by noise are preferentially learned, but the degree to which they are learned is not strongly influenced
by the magnitude of the data correlation (i.e. consider dimensions that lie along small eigenvalues of ⌃n). Note that in the
main paper we focused on the case where ⌃x = I and ⌃n = �

2
I .

D.3. The importance of the predictor in BYOL and SimSiam.

Here we note that our theory explains why the predictor plays a crucial role in BYOL and SimSiam learning in this simple
setting, as is observed empirically in more complex settings. To see this, we can model the removal of the predictor by
simply setting Wp = I in all the above equations. The fixed point solutions then obey W = W⌃d[⌃s]�1. This will only
have nontrivial, non-collapsed solutions if ⌃d[⌃s]�1 has eigenvectors with eigenvalue 1. Rows of W consisting of linear
combinations of these eigenvectors will then constitute non-collapsed solutions.

This constraint of eigenvalue 1 yields a much more restrictive condition on data distributions and augmentation procedures
for BYOL and Simsiam to have non-collapsed solutions. It can however be satisfied in multiplicative scrambling if an
eigenvector of the data matrix ⌃x lies in the column space of the projection operator P c (in which case it is an eigenvector
of eigenvalue 1 of ⌃d[⌃s]�1 = P

c⌃x
Pc[⌃x]�1. This condition cannot however be generically satisfied for additive

scrambling case, in which generically all the eigenvalues of ⌃d[⌃s]�1 = ⌃x[⌃x + ⌃n]�1 are less than 1. In this case,
without a predictor, it can be checked that the collapsed solution W = Wa = 0 is stable.

Thus overall, in this simple setting, our theory provides conceptual insight into how the introduction of a predictor is
crucial for creating new non-collapsed solutions for both BYOL and SimSiam, even though the predictor confers no new
expressive capacity in allowing the online network to match the target network.

D.4. Reduction of BYOL learning dynamics to low dimensions

The full learning dynamics in equation 98 to equation 100 constitutes a set of high dimensional nonlinear ODEs which
are difficult to solve from arbitrary initial conditions. However, there is a special class of decoupled initial conditions
which permits additional insight. Consider the special case in which ⌃s and ⌃d commute, and so are simultaneously
diagonalizable and share a common set of eigenvectors, which we denote by u↵ 2 Rn0 . Consider also a special set of
initial conditions where each row of W and the corresponding row of Wa are both proportional to one of the eigenmodes
u↵, with scalar proportionality constants w

↵ and w
↵
a respectively, and Wp is diagonal, with the corresponding diagonal

element given by w
↵
p . Then it is straightforward to see that under the dynamics in equation 98 to equation 100, that the
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Figure 10. A visualization of BYOL dynamics in low dimensions. Left: Black arrows denote the vector field of the flow in the w and wp

plane of online and predictor weights in Eqns. 102 and 103 when the target network weight wa is fixed to 1. For all 3 panels, �s = 1,
�d = 1/2, and ↵p = � = 1. All flow field vectors are normalized to unit length to indicate direction of flow alone. The red curve
shows the hyperoblic manifold of stable fixed points wpw = wa�d�

�1
s , while the red point at the origin is an unstable fixed point. For

a fixed target network, the online and predictor weights will cooperatively amplify each other to escape the collapsed solution at the
origin. Middle: A visualization of the full low dimensional BYOL dynamics in Eqns 102-104 when the online and predictor weights
are tied so that w = wp. The green curve shows the nullcline wa = w corresponding to dwa

dt = 0 and the blue curve shows part of
the nullcline dw

dt = 0 corresponding to w2 = wa�d�
�1
s . The intersection of these two nullclines yields two fixed points (red dots): an

unstable collapsed solution at the origin w = wa = 0, and a stable non-collapsed solution with wa = w and w = �d�
�1
s . Right: A

visualization of dynamics in Eqns 102-104 when the the predictor is removed, so that w2 is fixed to 1. The resulting two dimensional
flow field on w and wa is shown (black arrows). The green curve shows the nullcline w = wa corresponding to dwa

dt = 0, while the blue
curve shows the nullcline w = wa�d�

�1
s . The slope of this nullcline is �s�

�1
d > 1. The resulting nullcline structure yields a single

fixed point at the origin which is stable. Thus there only exists a collapsed solution. In the special case where �s�
�1
d = 1, the two

nullclines coincide, yielding a one dimensional manifold of solutions.

structure of this initial condition will remain the same, with only the scalars w↵, w↵
a and w

↵
p changing over time. Moreover,

the scalars decouple across the different indices ↵, and the dynamics are driven by the eigenvalues �↵
s and �

↵
d of ⌃s and

⌃d respectively. Inserting this special class of initial conditions into the dynamics in equation 98 to equation 100, and
dropping the ↵ index, we find the dynamics of the triplet of scalars is given by

dwp

dt
= ↵p [wa�d � wpw�s]w (102)

dw

dt
= wp [wa�d � wpw�s] (103)

dwa

dt
= �(�wa + w). (104)

Alternatively, this low dimensional dynamics can be obtained from equation 98 to equation 100 not only by considering a
special class of decoupled initial conditions, but also by considering the special case where every matrix is simply a 1 by 1
matrix, making the scalar replacements W ! w, Wp ! wp, Wa ! wa, ⌃s ! �s, and ⌃d ! �d. Note furthermore that
this 3 dimensional dynamical system is equivalent to that studied in the main paper under the change of variables s = w

2

and ⌧ = wa/w and the special case of �s = 1 + �
2 and �d = 1.

The fixed point conditions of this dynamics are given by wa = w and wpw = wa�d�
�1
s . Thus the collapsed point

w = wp = wa = 0 is a solution. Additionally wp = �d�
�1
s and w = wa taking any value is also a family of non-collapsed

solutions. We can understand the three dimensional dynamics intuitively as follows when � is much less than both 1 and
↵p, so that the dynamics of w and wp are very fast relative to the dynamics of wa. In this case, the target network evolves
very slowly compared to the online network, as is done in practice. For simplicity we use the same learning rate for the
predictor as we do for the online network (i.e. ↵p = 1). In this situation, we can treat wa as approximately constant on the
fast time scale over which the online and predictor weights w and wp evolve. Then the joint dynamics in equation 102 and



Understanding Self-Supervised Learning Dynamics without Contrastive Pairs

equation 103 obeys gradient descent on the error function

E =
�s

2
(wa�d�

�1
s � wpw)

2
. (105)

Iso-contours of constant error are hyperbolas in the w by wp plane, and for fixed wa, the origin w = wp = 0 is a saddle
point, yielding an unstable fixed point (see Fig. 10 (left)). From generic initial conditions, w and wp will then cooperatively
amplify each other to rapidly escape the collapsed solution at the origin, and approach the zero error hyperbolic contour
wpw = wa�d�

�1
s where wa is close to its initial value. Then the slower target network wa will adjust, slowly moving this

contour until wa = w. The more rapid dynamics of w and wp will hug the moving contour wpw = wa�d�
�1
s as wa slowly

adjusts. In this fashion, the joint fast dynamics of w and wp, combined with the slow dynamics of wa, leads to a nonzero
fixed point for all 3 values, despite the existence of a collapsed fixed point at the origin. Moreover, the larger the ratio
�d�

�1
s , which is determined by the data and augmentation, the larger the final values of both w and wp will tend to be.

We can obtain further insight by noting that the submanifold w = wp, in which the online and predictor weights are tied,
constitutes an invariant submanifold of the dynamics in Eqns. 102 to 104; if w = wp at any instant of time, then this
condition holds for all future time. Therefore we can both analyze and visualize the dynamics on this two dimensional
invariant submanifold, with coordinates w = wp and wa (Fig. 10 (middle)). This analysis clearly shows an unstable
collapsed solution at the origin, with w = wa = 0, and a stable non-collapsed solution at w = wa = �d�

�1
s .

We note again, that the generic existence of these non-collapsed solutions in Fig. 10 depends critically on the presence of a
predictor with adjustable weights wp. Removing the predictor corresponds to forcing wp = 1, and non-collapsed solutions
cannot exist unless �d = �s, as demonstrated in Fig. 10 (right). Thus, remarkably, in BYOL in this simple setting, the
introduction of a predictor network plays a crucial role, even though it neither adds to the expressive capacity of the online
network, nor improves its ability to match the target network. Instead, it plays a crucial role by dramatically modifying the
learning dynamics (compare e.g. Fig 10 middle and right panels), thereby enabling convergence to noncollapsed solutions
through a dynamical mechanism whereby the online and predictor network cooperatively amplify each others’ weights to
escape collapsed solutions ( Fig. 10 (left)).

Overall, this analysis of BYOL learning dynamics provides considerable insight into the dynamical mechanisms enabling
BYOL to avoid collapsed solutions, without negative pairs to force apart representations, in what is likely to be the simplest
nontrivial setting. Further analysis on this model, in direct analogy to the analysis performed on the equivalent 3 dynamical
system (derived under different assumptions) studied in the main paper, can yield similar insights into the dynamics of
BYOL and SimSiam under various conditions on learning rates.


	Introduction
	Two-layer linear model
	How multiple factors affect learning dynamics
	Dynamical alignment of eigenspaces between the predictor and its input correlation matrix
	Analysis of decoupled dynamics
	Summarizing the effects of hyperparameters

	Optimization-free Predictor Wp
	Discussion
	Section 2
	Section 3
	Section 3.1
	Section 3.2

	Section 4
	Analysis of BYOL and SimSiam learning dynamics without isotropic assumptions on data
	The fixed point structure of BYOL and Simsiam learning dynamics.
	Illustrative models for data and data augmentation
	The importance of the predictor in BYOL and SimSiam.
	Reduction of BYOL learning dynamics to low dimensions


