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Abstract

While contrastive approaches of self-supervised
learning (SSL) learn representations by minimiz-
ing the distance between two augmented views
of the same data point (positive pairs) and max-
imizing views from different data points (neg-
ative pairs), recent non-contrastive SSL (e.g.,
BYOL and SimSiam) show remarkable perfor-
mance without negative pairs, with an extra
learnable predictor and a stop-gradient opera-
tion. A fundamental question arises: why do
these methods not collapse into trivial represen-
tations? We answer this question via a simple
theoretical study and propose a novel approach,
DirectPred, that directly sets the linear predictor
based on the statistics of its inputs, without gra-
dient training. On ImageNet, it performs com-
parably with more complex two-layer non-linear
predictors that employ BatchNorm and outper-
forms a linear predictor by 2.5% in 300-epoch
training (and 5% in 60-epoch). DirectPred is
motivated by our theoretical study of the nonlin-
ear learning dynamics of non-contrastive SSL in
simple linear networks. Our study yields con-
ceptual insights into how non-contrastive SSL
methods learn, how they avoid representational
collapse, and how multiple factors, like predic-
tor networks, stop-gradients, exponential mov-
ing averages, and weight decay all come into
play. Our simple theory recapitulates the results
of real-world ablation studies in both STL-10 and
ImageNet. Code is released1.

1. Introduction
Self-supervised learning (SSL) has emerged as a power-
ful method for learning useful representations without re-
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quiring expensive target labels (Devlin et al., 2018). Many
state-of-the-art SSL methods in computer vision employ
the principle of contrastive learning (Oord et al., 2018; Tian
et al., 2019; He et al., 2020; Chen et al., 2020a; Bach-
man et al., 2019) whereby the hidden representations of
two augmented views of the same object (positive pairs)
are brought closer together, while those of different ob-
jects (negative pairs) are encouraged to be further apart.
Minimizing differences between positive pairs encourages
modeling invariances, while contrasting negative pairs is
thought to be required to prevent representational collapse
(i.e., mapping all data to the same representation).

However, some recent SSL work, notably BYOL (Grill
et al., 2020) and SimSiam (Chen & He, 2020), have shown
the remarkable capacity to learn powerful representations
using only positive pairs, without ever contrasting nega-
tive pairs. These methods employ a dual pair of Siamese
networks (Bromley et al., 1994) (Fig. 1): the representa-
tion of two views are trained to match, one obtained by the
composition of an online and predictor network, and the
other by a target network. The target network is not trained
via gradient descent; and either employs a direct copy of
the online network (e.g., SimSiam (Chen & He, 2020)), or
a momentum encoder that slowly follows the online net-
work in a delayed fashion through an exponential moving
average (EMA) (e.g., MoCo (He et al., 2020; Chen et al.,
2020b) and BYOL (Grill et al., 2020)). Compared to con-
trastive learning, these non-contrastive SSL methods do not
require large batch size (e.g., 4096 in SimCLR (Chen et al.,
2020a)) or memory queue (e.g., MoCo (He et al., 2020;
Chen et al., 2020b)) to provide negative pairs. Therefore,
they are generally more efficient and conceptually simple
while maintaining state-of-the-art performance.

Since the entire procedure in non-contrastive SSL en-
courages the online+predictor network and the target net-
work to become similar to each other, this overall scheme
raises several fundamental unsolved theoretical questions.
Why/how does it avoid collapsed representations? What is
the nature of the learned representations? How do multiple
design choices and hyperparameters interact nonlinearly in
the learning dynamics? While there are interesting theo-
retical studies of contrastive SSL (Arora et al., 2019; Lee
et al., 2020; Tosh et al., 2020), any theoretical understand-
ing of the nonlinear learning dynamics of non-contrastive

https://github.com/facebookresearch/luckmatters/tree/master/ssl
https://github.com/facebookresearch/luckmatters/tree/master/ssl
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Figure 1. Two-layer setting with a linear, bias-free predictor.

SSL remains open.

In this paper, we make a first attempt to analyze the be-
havior of non-contrastive SSL training and the empirical
effects of multiple hyperparameters, including (1) Expo-
nential Moving Average (EMA) or momentum encoder,
(2) Higher relative learning rate (αp) of the predictor, and
(3) Weight decay η. We explain all these empirical find-
ings with an exceedingly simple theory based on analyzing
the nonlinear learning dynamics of simple linear networks.
Note that deep linear networks have provided a useful
tractable theoretical model of nonconvex loss landscapes
(Kawaguchi, 2016; Du & Hu, 2019; Laurent & Brecht,
2018) and nonlinear learning dynamics (Saxe et al., 2013;
2019; Lampinen & Ganguli, 2018; Arora et al., 2018) in
these landscapes, yielding insights like dynamical isome-
try (Saxe et al., 2013; Pennington et al., 2017; 2018) that
lead to improved training of nonlinear deep networks. De-
spite the simplicity of our theory, it can still predict how
various hyperparameter choices affect performance in an
extensive set of real-world ablation studies. Moreover, the
simplicity also enables us to provide conceptual and ana-
lytic insights into why performance patterns vary the way
they do. Specifically, our theory accounts for the following
diverse empirical findings:

Essential part of non-contrastive SSL. The existence of
the predictor and stop-gradient is absolutely essential. Re-
moving either of them leads to representational collapse in
BYOL and SimSiam.

EMA. While the original BYOL needs EMA to work, they
later confirmed that EMA is not necessary (i.e., the online
and target networks can be identical) if a higher αp is used.
This is also confirmed with SimSiam, as long as the pre-
dictor is updated more often or has larger learning rate (or
larger αp). However, the performance is slightly lower.

Predictor Optimality and Relative learning rate αp.
Both BYOL and SimSiam suggest that the predictor should
always be optimal, in the sense of always achieving min-

Plug-in frequency (every N minibatches)
1 2 3 5

EMA 40.67±0.50 35.29±2.49 34.60±0.98 35.63±2.66
no EMA 39.45±1.26 34.01±1.54 34.58±2.93 32.22±2.94

Table 1. Simply plugging in the “optimal solution” to the linear
predictor shows poor performance after 100 BYOL epochs (Top-
1 accuracy in STL-10 (Coates et al., 2011) downstream classifica-
tion task). The optimal solution is obtained by solving (with reg-
ularization) WpE [ffᵀ] = 1

2
(E [faf

ᵀ] + E [ffᵀ
a ]), in which the

two expectations is estimated with exponential moving average.
In comparison, with gradient descent, BYOL with a single linear
layer predictor can reach 74%-75% Top-1 in STL-10 after 100
epochs. Unless explicitly stated, in all our experiments, we use
ResNet-18 (He et al., 2016) as the backbone network for CIFAR-
10/STL-10 experiments and SGD as the optimizer with learning
rate α = 0.03, momentum 0.9, weight decay η̄ = 0.0004 and
EMA parameter γa = 0.996. Each setting is repeated 5 times.

imal `2 error in predicting the target network’s outputs
from the online network’s outputs. This optimality con-
jecture was motivated by observed superior performance
when the predictor had large learning rates and/or was al-
lowed more frequent updates than the rest of the network.
However (Chen & He, 2020) also showed that if the pre-
dictor is updated too often, then performance drops, which
questions the importance of an always optimal predictor as
a key requirement for learning good representations.

Weight Decay. Table 15 in BYOL (Grill et al., 2020) in-
dicates that no weight decay may lead to unstable results.
A recent blogpost (Fetterman & Albrecht, 2020) also men-
tions using weight decay leads to stable learning in BYOL.

Finally, motivated by our theoretical analysis, we pro-
pose a new method DirectPred that directly sets the pre-
dictor weights based on principal components analysis of
the predictor’s input, thereby avoiding complicated pre-
dictor dynamics and initialization issues. We show that
this simple DirectPred method nevertheless yields com-
parable performance in CIFAR-10 and outperforms gra-
dient training of the linear predictor by +5% Top-1 ac-
curacy in linear evaluation protocol on both STL-10 and
ImageNet (60 epochs). On the standard ImageNet bench-
mark (300 epochs), DirectPred achieves 72.4%/91.0%
Top-1/Top-5, 2.5% higher than BYOL with linear predictor
(69.9%/89.6%) and comparable with default BYOL set-
ting with 2-layer predictor (72.5%/90.8%).

2. Two-layer linear model
To obtain analytic and conceptual insights into non-
contrastive SSL we analyze a simple, bias-free linear
BYOL model where the online, target and predictor net-
works are specified by the weight matrices W ∈ Rn2×n1 ,
Wp ∈ Rn2×n2 and Wa ∈ Rn2×n1 respectively (Fig. 1).
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Let x ∈ Rn1 be a data point drawn from the data distri-
bution p(x) and let x1 and x2 be two augmented views of
x: x1,x2 ∼ paug(·|x) where paug(·|x) is the augmenta-
tion distribution. In practice such data augmentations cor-
respond to random crops, blurs or color distortions of im-
ages (Chen et al., 2020a). Let f1 = Wx1 ∈ Rn2 be the
online representation of view 1, and f2a = Wax2 ∈ Rn2

be the target representation of view 2. In BYOL, the learn-
ing dynamics of W and Wp are obtained by minimizing

J(W,Wp) :=
1

2
Ex1,x2

[
‖Wpf1 − StopGrad(f2a)‖22

]
,

(1)
while the dynamics ofWa is obtained differently, via an ex-
ponential moving average (EMA) of W . We will analyze
this combined dynamics for W , Wp and Wa, in the pres-
ence of additional weight decay, in the limit of large batch
sizes and small discrete time learning rates. This limit can
be well approximated by the gradient flow (see Supplemen-
tary Material (SM) for all derivations):
Lemma 1. BYOL learning dynamics following Eqn. 1:

Ẇp = αp (−WpW (X +X ′) +WaX)W ᵀ − ηWp (2)

Ẇ = W ᵀ
p (−WpW (X +X ′) +WaX)− ηW (3)

Ẇa = β(−Wa +W ) (4)

Here, X := E [x̄x̄ᵀ] where x̄(x) := Ex′∼paug(·|x) [x′] is
the average augmented view of a data point x and X ′ :=
Ex

[
Vx′|x[x′]

]
is the covariance matrix Vx′|x[x′] of aug-

mented views x′ conditioned on x, subsequently averaged
over the data x. Note that αp and β reflect multiplicative
learning rate ratios between the predictor and target net-
works relative to the online network. Finally, the terms in-
volving η reflect weight decay.

As a gradient flow formulation, the learning rate α does
not appear in Lemma 1. In the actual finite time update, the
learning rate for Wp is ααp, the EMA rate is αβ = 1− γa,
where γa is the usual EMA parameter (e.g,. BYOL uses
0.996), and the weight decay for actual training is η̄ := αη.

We note that since SimSiam is an ablation of BYOL that
removes the EMA computation, the underlying dynamics
of SimSiam can also be obtained from Lemma 1 simply by
setting Wa = W , inserting this relation into Eqn. 2 and
Eqn. 3, and ignoring Eqn. 4. Importantly, the stop-gradient
on the target branch is still there.

Overall Eqns. 2-4 constitute our starting point for analyz-
ing the combined roles of relative learning rates αp and β,
weight decay rate η and various ablations in determining
the performance of both BYOL and SimSiam.

We first derive two very general results (see SM).
Theorem 1 (Weight decay promotes balancing of the pre-
dictor and online networks.). Completely independent of

EMA + no-bias EMA + bias no EMA + no-bias no EMA + bias
70.62±1.05 70.99±1.01 71.36±0.44 71.37±0.77

Table 2. Top-1 accuracy of BYOL on STL-10 under linear evalu-
ation protocol, trained for 100 epochs with no weight decay (η =
0) and αp = 1. It is worse than the baseline (74.51±0.47 without
predictor bias) when the weight decay is set to be η = 0.0004.
“No-bias” means the linear predictor does not have a bias term.

the particular dynamics of Wa in Eqn. 4, the update rules
(Eqn. 2 and Eqn. 3) possess the invariance

W (t)W ᵀ(t) = α−1p W ᵀ
p (t)Wp(t) + e−2ηtC, (5)

where C is a symmetric matrix that depends only on the
initialization of W and Wp.

This theorem implies that for both BYOL and SimSiam,
there exists a “balancing” that ensures that any matching
between the online and target representations will not be
attributable solely to the predictor weights, rendering the
online weights useless. Instead what the predictor learns,
the online network will also learn, which is important as
the online network’s representations are what is used for
downstream tasks. We note that similar weight balanc-
ing dynamics has been discovered in multi-layer linear net-
works and matrix factorization (Arora et al., 2018; Du et al.,
2018). Our results generalize this to SSL dynamics. Sec-
ond, a nonzero weight decay could help remove the extra
constant C due to initialization, further balancing the pre-
dictor and online network weights and possibly leading to
better performance on downstream tasks (Tbl. 2).

Theorem 2 (The stop-gradient signal is essential for suc-
cess.). With Wa = W (SimSiam case), removing the
stop-gradient signal yields a gradient update for W given
by positive semi-definite (PSD) matrix H(t) := X ′ ⊗
(W ᵀ

pWp + In2
) + X ⊗ W̃ ᵀ

p W̃p + ηIn1n2
(here W̃p :=

Wp − In2
and ⊗ is the Kronecker product):

d

dt
vec(W ) = −H(t)vec(W ). (6)

If the minimal eigenvalue λmin(H(t)) over time is bounded
below, inft≥0 λmin(H(t)) ≥ λ0 > 0, then W (t)→ 0.

Thus we have proven analytically in this simple setting
that removing the stop-gradient leads to representational
collapse, as observed in more complex settings in Sim-
Siam (Chen & He, 2020). Similarly, with Wa = W and
no predictor (Wp = In2 ), then the dynamics Eqn. 3 also
reduces to a similar form and W (t)→ 0 (see SM).

3. How multiple factors affect learning
dynamics

The learning dynamics in Eqns. 2-4 constitute a set of high
dimensional coupled nonlinear differential equations that
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Figure 2. Training BYOL in STL-10 for 100 epochs with EMA. Top row: No symmetric regularization imposed on Wp, Bottom row:
symmetric regularization on Wp. From left to right: (1) Evolvement of eigenvalues for F . Since F is PSD and its eigenvalue sj varies
across scales, we plot log(si). We could see some eigenvalues are growing while others are shrinking to zero over training. (2) Similar
“step-function” behaviors for the predictor Wp. Its negative eigenvalues shrinks towards zero and leading eigenvalues becomes larger.
(3) The eigenspace of F and Wp gradually align with each other (Theorem 3). For each eigenvector uj of F , we compute cosine angle
(normalized correlation) between uj and Wpuj to measure alignment. (4) Wp gradually becomes symmetric and PSD during training.

can be difficult to solve analytically in general. Therefore,
to obtain analytic insights into the functional roles of the
relative learning rates αp and β and weight decay η, we
make a series of simplifying assumptions. Intriguingly, un-
der these simplifying assumptions we obtain a rich set of
analytic predictions, which we then test experimentally in
more realistic scenarios. We find, nicely, that these pre-
dictions still qualitatively hold even when our simplifying
assumptions required for obtaining analytic results do not.

Assumption 1 (Proportional EMA). We first reduce the di-
mensionality of the dynamics in Eqns. 2-4 by enforcing that
the target network Wa undergoes EMA but is forced to al-
ways be proportional to the online network via the relation
Wa(t) = τ(t)W (t). Inserting this relation into the EMA
dynamics in Eqn. 4 yields τ̇W + τẆ = β(1− τ)W .

Thus we obtain a reduced dynamics for W , Wp and τ . By
not enforcing the stronger SimSiam constraint that Wa =
W , we can still model EMA dynamics. Intuitively, τ =
τ(t) is a dynamic parameter that depends on how quickly
W = W (t) grows over time. If W is constant, then Ẇ =
0 and τ stabilizes to 1. On the other hand, if W grows
rapidly, then τ becomes small. While Assumption 1 is a
simplification, as we shall see, it still reveals interesting
verifiable predictions about the functional role of EMA.

Assumption 2 (Isotropic data and augmentation). We as-
sume the data distribution p(x) has zero mean and identity
covariance, while the augmentation distribution paug(·|x)
has mean x and covariance σ2I . This simplifies the dy-
namics in Eqns. 2-4 by reducing the augmentation aver-
aged data covariance to X = I and the data averaged
augmentation covariance to X ′ = σ2I .

Many previous studies of deep learning dynamics made
simplifying isotropic assumptions about data (Tian, 2017;
Brutzkus & Globerson, 2017; Du et al., 2019; Bartlett et al.,
2018; Safran & Shamir, 2018). Since our fundamental goal
is to obtain the first analytic understanding of the dynamics
of non-contrastive SSL methods, it is useful to first achieve
this in the simplest possible isotropic setting. Interestingly,
we will find that our final conclusions generalize to non-
isotropic real world settings.

Assumption 3 (Symmetric predictor). We enforce symme-
try in Wp by initializing it to be a symmetric matrix, and
then symmetrizing the flow for Wp in Eqn. 2 (see SM).

This symmetry assumption was motivated by both fixed
point analysis and empirical findings. First, the fixed point
of Eqn. 2 under Assumption 1 and 2 and η > 0 is always
a symmetric matrix and in numerical simulation the asym-
metric part Wp −W ᵀ

p eventually vanishes (See Appendix
for the proof and numerical simulations). Moreover, dur-
ing BYOL training without a symmetry constraint on the
predictor, Wp gradually moves towards symmetry (Fig. 2).

Second, a set of experiments reveal that whether the pre-
dictor is symmetric or not has a dramatic effect in terms
of both performance and interaction with EMA. In our
STL-10 experiment, enforcing symmetric Wp in the pres-
ence of EMA improves performance on downstream tasks
(Tbl. 3). In contrast, in the absence of EMA, a symmet-
ric Wp fails while an asymmetric Wp works reasonably
well. Similar behavior holds on ImageNet: a symmet-
ric one layer linear predictor Wp in SimSiam (i.e. with-
out EMA) achieves performance no better than random
guessing (Top-1/5: 0.1%/0.5%), while an asymmetric Wp
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No predictor bias With predictor bias
sym Wp regular Wp sym Wp regular Wp

One-layer linear predictor
EMA 75.09±0.48 74.51±0.47 74.52±0.29 74.16±0.33

no EMA 36.62±1.85 72.85±0.16 36.04±2.74 72.13±0.53
Two-layer predictor with BatchNorm and ReLU

EMA 71.58±6.46 78.85±0.25 77.64±0.41 78.53±0.34
no EMA 35.59±2.10 65.98±0.71 41.92±4.25 65.59±0.66

Table 3. The effect of symmetrization ofWp on downstream clas-
sification task (BYOL Top-1 on STL-10). SymmetricWp leads to
slightly better performance compared to regular Wp in the pres-
ence of EMA. On the other hand, without EMA, symmetric Wp

crashes. Same effects happen in two-layer predictor with Batch-
Norm and ReLU as well. Weight decay η̄ = 0.0004 and αp = 1.

achieves a Top-1/5 accuracy of 68.1%/88.2%. Our the-
ory will explain this as well as show how to obtain good
performance with a symmetric predictor without EMA by
increasing its relative learning rate αp.

3.1. Dynamical alignment of eigenspaces between the
predictor and its input correlation matrix

Under the three assumptions stated above, we analyze the
coupled dynamics of F := WXW ᵀ and Wp. Note that F
is the correlation matrix of the outputs of the online net-
work which also serve as inputs to the predictor. By As-
sumption 2, E [x] = 0 and F is also the covariance matrix.
We find F and Wp obey the following dynamics (see SM):

Ẇp = −αp
2

(1 + σ2){Wp, F}+ αpτF − ηWp (7)

Ḟ = −(1 + σ2){W 2
p , F}+ τ{Wp, F} − 2ηF

This dynamics reveals that the eigenspace of Wp will grad-
ually align with that of F under certain conditions (see SM
for derivation):

Theorem 3 (Eigenspace alignment). Under Eqn. 7, the
commutator [F,Wp] := FWp −WpF satisfies:

d

dt
[F,Wp] = −[F,Wp]K −K[F,Wp] (8)

where

K(t) = (1+σ2)

[
αp
2
F (t) +W 2

p (t)− τ

1 + σ2
Wp(t)

]
+

3

2
ηI

(9)
If inft≥0 λmin[K(t)] = λ0 > 0, then the commutator

‖[F (t),Wp(t)]‖F ≤ e−2λ0t‖[F (0),Wp(0)]‖F → 0 (10)

For symmetric Wp, when Wp and F commute they can
be simultaneously diagonalized. Thus this shows that the
eigenspace of Wp gradually aligns with that of F .

To test this prediction, we performed extensive experiments
showing that training BYOL using ResNet-18 on STL-10
yields eigenspace alignment, as demonstrated in Fig. 2.

Now if the eigenspaces of Wp and F do align, we can
obtain fully decoupled dynamics. Let the columns of the
matrix U be the common eigenvectors, so that Wp =
UΛWp

Uᵀ where ΛWp
= diag[p1, p2, . . . , pd], F =

UΛFU
ᵀ where ΛF = diag[s1, s2, . . . , sd]. For each mode

j, we have (see SM for derivation):

ṗj = αpsj
[
τ − (1 + σ2)pj

]
− ηpj (11)

ṡj = 2pjsj
[
τ − (1 + σ2)pj

]
− 2ηsj (12)

sj τ̇ = β(1− τ)sj − τ ṡj/2. (13)

This decoupled dynamics constitutes a dramatically sim-
plified set of 3 dimensional nonlinear dynamical systems
for BYOL learning, and two dimensional nonlinear sys-
tems (obtained by constraining τ = 1) for SimSiam. As
expected, each mode’s dynamics is equivalent to the 3 di-
mensional dynamics obtained by setting n1 = n2 = 1
in Eqns. 2-4 and making the replacements W 2 = sj ,
Wp = pj , and Wa/W = τ (see SM). Thus the decou-
pled dynamics in Eqns 11- 13 reduce to the scalar case of
BYOL dynamics in Eqns. 2-4 after a change of variables
and the condition in Thm. 3 reveals when this decoupled
regime is reachable.

Non-symmetric Wp. When Assumption 3 is absent, the
analysis is much more convoluted. One possible way is to
decompose Wp = A+B where A = Aᵀ is symmetric and
B = −Bᵀ is skew-symmetric. We leave it for future work.

3.2. Analysis of decoupled dynamics

The simplified three (two) dimensional dynamics of BYOL
(SimSiam) yields significant insights. First, there is clearly
a collapsed fixed point at pj(t) = sj(t) = 0 and τ taking
any value. We wish to understand conditions under which
pj and sj can avoid this collapsed fixed point and grow
from small random initial conditions. Since sj is an eigen-
value ofWW ᵀ, we are particularly interested in conditions
under which sj achieves large final values, corresponding
to a non-collapsed online network, that are moreover sen-
sitive to the statistics of the data, governed by σ2.

Exact integral. First, an important observation, similar to
Theorem 1, is that the dynamics possesses an exact integral
of motion, obtained by multiplying Eqn. 11 by 2α−1p pj ,
subtracting, Eqn. 12 and integrating over time yielding

sj(t) = α−1p p2j (t) + e−2ηtcj (14)

where cj = α−1p p2j (0)−sj(0) is fixed by initial conditions.
In absence of weight decay (η = 0), this integral reveals
that the initial condition encoded in cj is never forgotten
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Figure 3. State space dynamics in Eqns. 11 and 12 for no (η = 0)
weak (η = 0.01) and strong (η = 1) weight decay at fixed τ = 1
and αp = 1. Red (green) points indicate stable (unstable) fixed
points, blue curves indicate flow lines, and the dashed black curve
indicates the parabola sj = p2j/αp.

and the dynamics of pj and sj are confined to parabolas
of the form sj(t) = p2j (t) + cj , as can be seen by the
blue flow lines in Fig. 3(left). With weight decay (η > 0)
over time the initial condition is forgotten and the dynam-
ics approaches the invariant parabola sj = α−1p p2j as can
been seen by the approach of the blue flow lines to the
black dashed parabola in Fig. 3 right and middle. We dis-
cuss these two cases in turn. First we note that in both
cases, since the EMA computation is often very slow (Grill
et al., 2020), corresponding to small β, the dynamics of τ
in Eqn. 13 is slow relative to that of pj and sj . Therefore to
understand the combined dynamics, we can search for the
fixed points that pj and sj will rapidly approach at fixed τ .
Over time τ will then either slowly approach 1 (BYOL) or
be always equal to 1 (SimSiam), and sj and pj will follow
their τ -dependent fixed points.

No weight decay. When η = 0, Eqns. 11 and 12 at a
fixed value of τ yield a branch of collapsed fixed points
given by sj = 0 and pj taking any value, and a branch
of non-collapsed fixed points, with pj = τ/(1 + σ2) and
sj taking any value (horizontal and vertical red/green lines
in Fig. 3,left). A sufficient criterion on initial conditions
to avoid the collapsed branch is sj(0) > p2j (0)/αp cor-
responding to lying above the dashed black parabola in
Fig. 3,left. This restricted initial condition reveals why a
fast predictor (large αp) is advantageous (Obs#1): larger αp
leads to a smaller basin of attraction of the collapsed branch
by flattening the dashed parabola. Indeed both BYOL and
SimSiam have noted that a fast predictor can help avoid
collapse. On the other hand, αp cannot be infinitely large
(Obs#2): since sj(+∞) = sj(0)+α−1p (p2j (+∞)−p2j (0)),
very large αp implies that sj , the final value of the online
network characterizing the learned representation, does not
grow even if pj does. This is consistent with results which
show that optimizing the predictor too often doesn’t work
in SimSiam (Chen & He, 2020), and directly setting an “op-
timal” predictor fails as well (Tbl. 1). The online network
needs to grow along with the predictor and that cannot hap-
pen if the predictor is too fast.

Advantage of weight decay. In the non-collapsed branch
of fixed points without weight decay (vertical red line in
Fig. 3,left), the predictor pj takes the exact value τ/(1 +

Positive effects Negative effects
Relative predictor lr αp #1,#6 #2

Weight decay η #3,#7 #4,#5
EMA β #8 #9,#10

Table 4. Summarization of positive/negative effects of various hy-
perparameter choices (EMA β, relative predictor learning rate αp

and weight decay η). “#1” means (Obs#1) in the text.
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Figure 4. Fixed point of ṗj = pj(pj − p∗j−)(pj − p∗j+). Sta-
ble fixed points are in red, unstable in green and saddle in black.
When the weight decay η = 0, the trivial solution pj = 0 is a
saddle. When η > 0, the trivial solution becomes stable near to
the origin and initial pj needs to be large enough to converge to
the stable non-collapsed solution p∗j+.

σ2), which models the invariance to augmentation cor-
rectly: a large data augmentation variance σ2 should lead
to a small magnitude of the learned representation. Ideally,
we want sj to have the same property. With weight decay
η > 0 in Eqn. 14, memory of the initial condition cj fades
away, yielding convergence to some point on the invariant
parabola sj = α−1p p2j . (Obs#3): Therefore, by tying the
online network to the predictor, weight decay allows sj to
also model invariance to augmentations correctly if the pre-
dictor does, regardless of the random initial condition cj .

Dynamics on the invariant parabola. Because weight
decay forces convergence to the invariant parabola sj =
α−1p p2j , we next focus on dynamics along this parabola (i.e.
cj = 0 in Eqn. 14). In this case, Eqn. 13 has a solution:

τ(t) = p−1j (t)βe−βt
∫ t

0

pj(t
′)eβt

′
dt, (15)

with initial condition τ(0) = 0. Inserting the invariant sj =
α−1p p2j into Eqn. 11, the dynamics of pj is given by:

ṗj = p2j
[
τ(t)− (1 + σ2)pj

]
− ηpj . (16)

We first analyze the fixed points where ṗj = 0 at fixed τ .
When the weight decay 0 < η ≤ τ2

4(1+σ2) , pj has has three
fixed points (Fig. 4(b)):

p∗j± =
τ±
√
τ2 − 4η(1 + σ2)

2(1 + σ2)
> 0, p∗j0 = 0

where both p∗j0 and p∗j+ are stable and p∗j− is unstable,
as shown in Fig. 4(b). The basin of attraction of the col-
lapsed fixed point p∗j0 = 0 is pj < p∗j− while the basin
of attraction of the useful non-collapsed fixed point p∗j+ is
pj > p∗j−, yielding an important constraint on initial con-
ditions to avoid collapse. Note that p∗j− is a decreasing
function of τ and increasing function of η (see SM). This
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means that with larger η, p∗j− moves right and the basin

of collapse expands (Obs#4). When η > τ2

4(1+σ2) there is
only one stable fixed point p∗j0 = 0 (Fig. 4(c)). Under such
strong weight decay collapse is unavoidable (Obs#5).

We now discuss the dynamics. First we define the quantity
∆j := pj [τ−(1+σ2)pj ]−η, which must satisfy two crite-
ria. Note that Eqn. 16 can be written as ṗj = pj∆j , so ∆j

must at some point be positive to drive pj(t) to any posi-
tive non-collapsed fixed point p∗j+. Second, for eigenspace
alignment in Theorem 3 to remain stable (even if the align-
ment has already happened),K(t) must be positive definite
(PD) in Eqn. 9. Using the eigen-space alignment conditions
and the invariance sj = α−1p p2j , the positive definite condi-
tion on K(t) can be written as

∆j <
1

2

[
αp(1 + σ2)sj + η

]
. (17)

This criterion and the criterion ∆j > 0 yield interesting
insights into the roles of various hyperparameters choices.

First (Obs#6), larger predictor learning rate αp can play an
advantageous role by loosening the upper bound in Eqn. 17,
making it easier to satisfy. Second (Obs#7), increasing η
also has the same effect.

Role of EMA. Without EMA, τ ≡ 1 and (Eqn. 17) may
not hold initially when pj is small. The reason is ∆j is to
leading order linear in pj when τ = 1 while the right hand
side is to leading order sj ∼ p2j , so the left hand side has a
larger contribution from pj than the right.

EMA resolves this as follows. When the training begins, sj
is often quite small, and τ remains small since W changes
rapidly. When pj grows to the fixed point p∗j+ ∼ τ/(1 +

σ2), the growth of sj stops, making τ larger. This in turns
sets a higher fixed point goal for pj . This process continues
until the feature is stabilized and τ = 1 (Fig. 5 for details).

Therefore, EMA can serve as an automatic curriculum
(Obs#8): it sets an initial small goal of τ

1+σ2 for pj so ∆j

need only be small and positive to both drive pj larger and
satisfy Eqn. 17. Then EMA gradually sets a higher goal
for pj by increasing τ , so that pj and sj can grow, while
keeping the eigenspaces of Wp and F aligned.

As a trade-off, a very slow EMA schedule (β small) yields
a slow training procedure (Obs#9) (See Fig. 5). Also small
τ leads to larger p∗j− and more eigen modes can be trapped
in the collapsed basin (Obs#10).

3.3. Summarizing the effects of hyperparameters
We summarize the positive and negative effects of multi-
ple hyperparameters in Tbl. 4. We next provide additional
ablations and experiments to further justify our reasoning.

Different weight decay ηp and ηs. If we set a higher
weight decay for the predictor (ηp) than the online net (ηs),

No predictor bias With predictor bias
sym Wp regular Wp sym Wp regular Wp

Weight decay only for predictor (η̄p = 0.0004 and η̄s = 0)
EMA 71.91±0.70 70.54±0.93 73.67±0.47 70.89±0.98

no EMA 71.12±0.71 71.34±0.63 73.01±0.37 71.70±0.83
No weight decay for all (η̄p = η̄s = 0)

EMA 71.76±0.28 70.62±1.05 71.86±0.39 70.99±1.01
no EMA 43.04±2.32 71.36±0.44 41.36±3.33 71.37±0.77

Table 5. Symmetric weight works without EMA, if we set weight
decay for the predictor (η̄p = 0.0004) but not the trunk (η̄s = 0)
in BYOL experiment on STL-10. Report Top-1 accuracy after
100 epochs. If there is no weight decay for all layers, then again
symmetric weight doesn’t work without EMA.

then pj grows slower than sj and it is possible that the
condition of Theorem 3 can still be satisfied without using
EMA. Indeed Tbl. 5 shows this is the case.

Larger learning rate of the predictor αp > 1. Our analy-
sis predicts that one way to make symmetric Wp work with
no EMA is to use αp > 1 (i.e. Theorem 3 is more easily
satisfied). Fig. 6 verifies this prediction. Moreover Table 22
in Appendix of BYOL (Grill et al., 2020) also shows that
αp > 1 is required to get BYOL working without EMA.

As a reference, Table 22 in Appendix I.2 of BYOL (Grill
et al., 2020) also shows a similar trend: the learning rate of
the (2-layer) predictor needs to be higher than that of the
projector for strong performance in ImageNet, when EMA
is absent.

4. Optimization-free Predictor Wp

A direct consequence of our theory is a new method for
choosing the predictor that avoids gradient descent alto-
gether. Instead, we estimate the correlation matrix F of
predictor inputs and directly setWp to be a function of this,
thereby avoiding both the need to align the eigenspaces of
F and Wp through optimization, and the need to initial-
ize Wp outside the basin of collapse. As we shall see, this
exceedingly simple, theory motivated method also yields
better performance in practice compared to gradient-based
optimization of a linear predictor.

We call our method DirectPred which simply estimates F ,
computes its eigen-decomposition F̂ = Û Λ̂F Û

ᵀ, where
Λ̂F = diag[s1, s2, . . . , sd], and sets Wp via

pj =
√
sj + εmax

j
sj , Wp = Ûdiag[pj ]Û

ᵀ. (18)

This choice is theoretically motivated by eigenspace-
alignment between Wp and F (Theorem. 3) and conver-
gence to the invariant parabola sj ∝ p2j in Eqn. 14 with
weight decay (η > 0). Here the estimate correlation matrix
F̂ can be obtained by a moving average:

F̂ = ρF̂ + (1− ρ)EB [ffᵀ] (19)

where EB [·] is the expectation over a batch. Note that
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Figure 5. The role played by weight decay η and EMA β when applying symmetric regularization on Wp on synthetic experiments
simulating decoupled dynamics (Eqn. 11-13). The learning rate α = 0.01. Both terms boost the eigenvalue of K(t) to above 0 so that
eigen space alignment could happen (Theorem 3), but also come with different trade-offs. Here β = 0.4 so that αβ = 0.004 = 1 − γa
where γa = 0.996 as in BYOL. Top row (Weight Decay η): A large η boost the eigenvalue of K(t) up, but substantially decreases the
final converging eigenvalues pj and sj (i.e., the final features are not salient), or even drags them to zero (no training happens). Bottom
row (EMA β). A small EMA β also boost the eigenvalue of K(t), but the training converges much slower. Here η = 0.04 so that ηα
equals to the weight decay (η̄ = 0.0004) in our STL-10 experiments.
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Figure 6. The effects of relative learning rate αp without EMA.
If αp > 1, symmetric Wp with no EMA can also work. Exper-
iments on STL-10 and CIFAR-10 (Krizhevsky et al., 2009) (100
epochs with 5 random seeds).

where f is not zero-mean, we keep F̂ a correlation matrix
(rather than a covariance) without zero-centering f , other-
wise the performance deteriorates. We also added a regu-
larization factor proportional to a small ε to boost the small
eigenvalues sj so they can learn faster. In all our experi-
ments on real-world datasets, we use `2-normalization so
the absolute magnitude of sj doesn’t matter.

Hyper-parameter freq. Besides, we also evaluate a hy-
brid approach by introducing freq, which is how fre-
quently eigen-decomposition is conducted for matrix F̂ to
set Wp. For example, freq = 5 means that eigen de-
composition is run every 5 minibatches. When Wp is not
set by eigen decomposition, it is updated by regular gradi-
ent updates. freq = 1 means the eigen-decomposition
is performed at every minibatch.

Tbl. 6 shows that directly computing Wp through Direct-
Pred works better (76.77%) than training via gradient de-
scent (74.51% in Tbl. 3, regular Wp with EMA). Addi-
tional regularization through ε yields even better perfor-

Regularization factor ε
0 0.01 0.1 0.5

ρ = 0.3 76.77±0.24 77.11±0.35 77.86±0.16 75.06±1.10
ρ = 0.5 76.65±0.20 76.76±0.33 77.56±0.25 75.22±0.81

Table 6. STL-10 Top-1 after BYOL training for 100 epochs, if
we use DirectPred (Eqn. 18). It outperforms training Wp using
gradient descent (74.51% in Tbl. 3, regularWp with EMA). EMA
is used in all experiments. No predictor bias. ρ defined in Eqn. 19.

Initial constant cj
0.1 0.05 −0.05 −0.1

freq=1 46.57±18.43 65.31±18.22 77.11±0.66 76.46±0.55
freq=2 75.01±0.48 75.10±0.35 76.83±0.52 76.31±0.27

Table 7. STL-10 Top-1 Accuracy after BYOL training for 100
epochs. With different cj . ρ = 0.3 and ε = 0. EMA is used
in all experiments. No predictor bias.

mance (77.38%). Different ways to estimate F (moving
average or simple average) yield only small differences.

The performance of DirectPred also remains good over
many more training epochs (Tbl. 8). Moreover, if we allow
some gradient steps in between directly setting Wp (i.e.,
freq > 1), performance becomes even better (80.28%).
This might occur because the estimated F̂ may not be ac-
curate enough and SGD can help correct it. This also miti-
gates the computational cost of eigen-decomposition.

The constant cj . What happens if pj =
√

max(sj − cj , 0)
with cj 6= 0? If cj is small negative, performance is
still fine but a positive cj leads to very poor performance
(Tbl. 7), likely due to many small eigen-values sj becom-
ing zero and therefore trapped in the collapsed basin.

Feature-dependent Wp. Note one of the advantages of
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Number of epochs
100 300 500

STL-10
DirectPred 77.86±0.16 78.77±0.97 78.86±1.15

DirectPred (freq=5) 77.54±0.11 79.90±0.66 80.28±0.62
SGD baseline 75.06±0.52 75.25±0.74 75.25±0.74

CIFAR-10
DirectPred 85.21±0.23 88.88±0.15 89.52±0.04

DirectPred (freq=5) 84.93±0.29 88.83±0.10 89.56±0.13
SGD baseline 84.49±0.20 88.57±0.15 89.33±0.27

Table 8. STL-10/CIFAR-10 Top-1 accuracy of DirectPred, after
training for longer epochs. ρ = 0.3, ε = 0.1 with EMA.

using two layer predictors is that Wp can depend on the in-
put features. We explored this idea by using a few random
partitions of the input space, and within each random par-
tition we estimated a different correlation matrix F̂ . The
final F̂ is the sum of all the correlation matrices. With 6
random partitions, DirectPred achieves 78.20±0.16 Top-1
accuracy after 100 epochs, closing performance gap to two-
layer predictors (78.85% in Tbl. 3). We leave a thorough
analysis of the two layer setting to future work.

ImageNet experiments. We conducted additional exper-
iments on ImageNet (Deng et al., 2009), with our own
BYOL (Grill et al., 2020) implementation. We used
ResNet-50 (He et al., 2016) as the backbone to produce fea-
tures for a linear probe, followed by a projector and a pre-
dictor. The architecture design (e.g., feature dimensions),
augmentation strategies (e.g., color jittering, blur (Chen
et al., 2020a), solarization, etc.) and linear classification
protocol strictly follow BYOL (Grill et al., 2020).

We experimented with two different training settings to
study the generalization ability of DirectPred. In the first
setting, we employ an asymmetric loss (given two views,
only one view is used as the prediction target). The loss
is optimized using standard SGD for 60 epochs with a
batch size of 256. The second setting follows BYOL more
closely, where we use a symmetrized loss, 4096 batch size
and LARS optimizer (You et al., 2017), and train for 300
epochs.

The results are summarized in Tbl. 9. Both settings ex-
hibit similar behaviors in comparison, and we take the 300-
epoch results as our highlights in the following. As a base-
line, the default 2-layer predictor from BYOL (with Batch-
Norm and ReLU, 4096 hidden dimension, 256 input/output
dimension) achieves 72.5% top-1 accuracy, and 90.8% top-
5 accuracy with 300-epoch pre-training. This reproduces
the accuracy reported in BYOL (Grill et al., 2020). We
find DirectPred can match this performance (72.4% top-
1, and 91.0% top-5) without any gradient-based training
by instead directly setting the (256×256) linear predictor
weights every mini-batch. In particular for top-5 Direct-
Pred is even 0.2% better. For a fair comparison, we also

BYOL variants Accuracy (60 ep) Accuracy (300 ep)
Top-1 Top-5 Top-1 Top-5

2-layer predictor* 64.7 85.8 72.5 90.8
linear predictor 59.4 82.3 69.9 89.6
DirectPred 64.4 85.8 72.4 91.0
* 2-layer predictor is BYOL default setting.

Table 9. ImageNet experiments comparing DirectPred with
BYOL (Grill et al., 2020). Without gradient-based training, Di-
rectPred is able to match the performance of the default 2-layer
predictor introduced by BYOL, and significantly outperform the
linear predictor by 5% (60 epoch) and 2.5% (300 epoch).

run BYOL with a learned linear predictor. We find the per-
formance drops to 69.9%, and 89.6% respectively (2.5%
gap to our method). The gap is even bigger in 60-epoch
settings, up to 5.0% in top-1 (59.4% vs. 64.4%). These ex-
periments demonstrate the success of DirectPred on STL-
10 and CIFAR can also generalize and scale to ImageNet.

5. Discussion
Summary. Therefore, remarkably, our theoretical analy-
sis of non-contrastive SSL, primarily centered around a 3
dimensional nonlinear dynamical system, not only yields
conceptual insights into the functional roles of complex in-
gredients like EMA, stop-gradients, predictors, predictor
symmetry, diverse learning rates, weight decay and all their
interactions, but also predicts the performance patterns of
many ablation studies as well as suggests an exceedingly
simple DirectPred method that rivals the performance of
more complex predictor dynamics in real-world settings.

Two-layer non-linear predictor. With only a linear pre-
dictor, our results on ImageNet (Tbl. 9) have already shown
strong performance, on par with a default BYOL setting
with a 2-layer predictor on ImageNet. One interesting
question is how the dynamics changes if the predictor has
2 layers. While we don’t provide a formal analysis and the
math can be quite complicated, the intuition here is that the
“fat” 2-layer predictor used in practice (e.g., more (4096)
hidden dimension than input/output dimensions (256), and
a ReLU in between) essentially provides a large pool of ini-
tial weight directions to start with, and some of them could
be “lucky draws”, that make eigen-space alignment faster.
On the other hand, a 1-layer predictor with gradient up-
dates may get stuck in local minima. Therefore, with the
same number of epochs, a 2-layer predictor outperforms 1-
layer, and is comparable with DirectPred which does not
suffer from local minima issues.
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