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Abstract

Bayesian optimization (BO) is among the most
effective and widely-used blackbox optimization
methods. BO proposes solutions according to an
explore-exploit trade-off criterion encoded in an
acquisition function, many of which are computed
from the posterior predictive of a probabilistic
surrogate model. Prevalent among these is the
expected improvement (ET). The need to ensure
analytical tractability of the predictive often poses
limitations that can hinder the efficiency and ap-
plicability of BO. In this paper, we cast the com-
putation of EI as a binary classification problem,
building on the link between class-probability
estimation and density-ratio estimation, and the
lesser-known link between density-ratios and EI.
By circumventing the tractability constraints, this
reformulation provides numerous advantages, not
least in terms of expressiveness, versatility, and
scalability.

1. Introduction

Bayesian optimization (BO) is a sample-efficient method-
ology for the optimization of expensive blackbox func-
tions (Brochu et al., 2010; Shahriari et al., 2015). In brief,
BO proposes candidate solutions according to an acquisition
function that encodes the explore-exploit trade-off. At the
core of BO is a probabilistic surrogate model based on which
the acquisition function can be computed.

Of the many acquisition functions that have been devised,
the expected improvement (EI) (Mockus et al., 1978; Jones
et al., 1998) remains predominant, due in large to its effec-
tiveness in spite of its relative simplicity. In particular, while
acquisition functions are generally difficult to compute, let
alone optimize (Wilson et al., 2018), ET has a closed-form
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Figure 1. Optimizing a synthetic function f(z) = sin(3z) + z* —
0.7z with observation noise ¢ ~ N(0,0.2?). In the main pane,
the noise-free function is represented by the solid gray curve, and
N = 27 noisy observations are represented by the crosses ‘Xx’.
Observations with output y in the top-performing v = 1/3 propor-
tion are shown in red; otherwise, they are shown in blue. Their
corresponding densities, £(x) and g(z), respectively, are shown in
the top pane. BORE exploits the correspondence between the El
acquisition function and the ratio of densities ¢(#)/g(x).

expression when the model’s posterior predictive is Gaus-
sian. However, while this condition makes EI easier to work
with, it can also preclude the use of richer families of mod-
els: one must ensure analytical tractability of the predictive,
often at the expense of expressiveness, or otherwise resort
to sampling-based approximations (Balandat et al., 2020).

By virtue of its flexibility, well-calibrated predictive uncer-
tainty, and conjugacy properties, Gaussian process (GP)
regression (Williams & Rasmussen, 1996) is a widely-
used probabilistic model in BO. To extend GP-based BO
to problems with discrete variables (Garrido-Merchan &
Hernandez-Lobato, 2020), structures with conditional de-
pendencies (Jenatton et al., 2017), or to capture nonstation-
ary phenomenon (Snoek et al., 2014), it is common to apply
simple modifications to the covariance function, as this can
often be done without compromising the tractability of the
predictive. Suffice it to say, there exist estimators more nat-
urally adept at dealing with these conditions (e.g. decision
trees in the case of discrete variables). Indeed, to scale BO to
problem settings that produce vast numbers of observations,
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such as in transfer learning (Swersky et al., 2013), existing
works have resorted to different families of models, such
as random forests (RFs) (Hutter et al., 2011) and Bayesian
neural networks (BNNs) (Snoek et al., 2015; Springenberg
et al., 2016; Perrone et al., 2018). However, these are either
subject to constraints and simplifying assumptions, or must
resort to Monte Carlo (MC) methods that make EI more
cumbersome to evaluate and optimize.

Recognizing that the surrogate model is only a means to an
end—namely, of formulating an acquisition function, we
turn the spotlight away from the model and toward the ac-
quisition function itself. To this end, we seek an alternative
formulation of EI, specifically, one that potentially opens
the door to more powerful estimators for which the predic-
tive would otherwise be unwieldy or simply intractable to
compute. In particular, Bergstra et al. (2011) demonstrate
that the EI function can be expressed as the relative ratio be-
tween two densities (Yamada et al., 2011). To estimate this
ratio, they propose a method known as the tree-structured
Parzen estimator (TPE), which naturally handles discrete and
tree-structured inputs, and scales linearly with the number
of observations. However, in spite of its many advantages,
TPE is not without deficiencies.

In this paper, we make the following contributions: (i) We
revisit the TPE approach from first principles and identify
its shortcomings in tackling the general density-ratio es-
timation (DRE) problem (§ 2). (ii) We propose a simple
yet powerful alternative that casts the computation of EI as
probabilistic classification (§ 3). This approach is built
on the aforementioned link between EI and the relative
density-ratio, and the correspondence between DRE and
class-probability estimation (CPE). As such, it retains the
strengths of the TPE method while ameliorating many of its
weaknesses. Perhaps most significantly, it enables one to
leverage virtually any state-of-the-art classification method
available. In § 4 we discuss how our work relates to the
existing state-of-the-art methods for blackbox optimization
and demonstrate, through comprehensive experiments in § 5,
that our approach competes well with these methods on a
diverse range of problems.

2. Background

Given a blackbox function f : X — R, the goal of BO is to
find an input x € X’ at which it is minimized, given a set of
N input-output observations Dy = {(X,, y»)}\_;, where
output y,, = f(xy,)+e¢ is assumed to be observed with noise
e ~ N(0,0?). In particular, having specified a probabilistic
surrogate model M, its posterior predictive p(y | x, D) is
used to compute the acquisition function «(x; Dy), a crite-
rion that encapsulates the explore-exploit trade-off. Accord-
ingly, candidate solutions are obtained by maximizing this
criterion, Xy 41 = arg max, ¢y a(x; Dy). We now focus

our discussion on the expected improvement (EI) function.

2.1. Expected improvement (EI)

We first specify a utility function that quantifies the nonneg-
ative amount by which y improves upon some threshold 7,
U(x,y,7) := max(7—y,0). Then, the EI function (Mockus
et al., 1978) is defined as the expected value of U (x, y, T)
over the predictive

a(x; Dy, 7) = Epy | x,00) [U (X, y,7)]. (D

By convention, 7 is set to the incumbent, or the lowest
function value so far observed 7 = min,, y,, (Wilson et al.,
2018). Suppose the predictive takes the form of a Gaussian,

p(y|x,Dy) =N (y|u(x),0°(x)) . )

This leads to

a(x; Dy, 7) = 0(x) - [v(x) - ¥(v(x)) + ¥ (v(x))], (3)
where v(x) = T;é‘x()x ), and ¥, 4 denote the cdf and pdf
of the normal distribution, respectively. While this exact
expression is both easy to evaluate and optimize, the condi-
tions necessary to satisfy eq. 2 can often come at the expense
of flexibility and expressiveness. Instead, let us consider a
fundamentally different way to express EI itself.

2.2. Relative density-ratio

Let ¢(x) and g(x) be a pair of densities. The -relative
density-ratio of £(x) and g(x) is defined as

£(x)
YU(x) + (1 —7)g(x)

; “4)

Ty(X) =

where v£(x) + (1 — v)g(x) denotes the y-mixture density
with mixing proportion 0 < v < 1 (Yamada et al., 2011).
Note that for v = 0, we recover the ordinary density-ratio
ro(x) = ¢()/g(x). Further, observe that r.,(x) = h.(ro(x))

where hy :u— (v 4+ u (1 — 7))_1 for u > 0.

We now discuss the conditions under which EI can be ex-
pressed as the ratio in eq. 4. First, set the threshold 7 as
the ~-th quantile of the observed y values, 7 := ®~1(v)
where v = ®(7) = p(y < 7). Thereafter, define
the pair of densities as ¢(x) = p(x|y < 7;Dy) and
9(x) =p(x|y > 7;Dy).

An illustrated example is shown in Figure 1. Under these
conditions, Bergstra et al. (2011) demonstrate that the EI
function can be expressed as the relative density-ratio, up to
some constant factor

a(x;DN,CI)_l(’y)) X 7(X). (5)
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Figure 2. Gaussian densities (left) and their v-relative density-
ratios (right), which diverges when v = 0 and converges to 4
when y = 1/4.

For completeness, we provide a self-contained derivation in
Appendix A. Thus, this reduces the problem of maximizing
EI to that of maximizing the relative density-ratio,

X1 = argmaxa (x; Dy, @71 (7))
xeX

= argmaxr.(x). (6)
XEX

To estimate the unknown relative density-ratio, one can
appeal to a wide variety of approaches from the DRE liter-
ature (Sugiyama et al., 2012). We refer to this strategy as
Bayesian optimization by density-ratio estimation (BORE).

2.3. Tree-structured Parzen estimator

The tree-structured Parzen estimator (TPE) (Bergstra et al.,
2011) is an instance of the BORE framework that seeks
to solve the optimization problem of eq. 6 by taking the
following approach:

1. Since r,(x) = h,(ro(x)) where h., is strictly non-
decreasing, focus instead on maximizing' ro(x),

X, = argmax ro(x).
xeX

2. Estimate the ordinary density-ratio ro(x) by separately
estimating its constituent numerator £(x) and denomi-
nator g(x), using a tree-based variant of kernel density
estimation (KDE) (Silverman, 1986).

It is not hard to see why TPE might be favorable compared to
methods based on GP regression—one now incurs an O(N)
computational cost as opposed to the O(N?3) cost of GP
posterior inference. Furthermore, it is equipped to deal with
tree-structured, mixed continuous, ordered, and unordered
discrete inputs. In spite of its advantages, TPE is not without

shortcomings.
'70(x) denotes v = 0 solely in r.(x) of eq. 4—it does not

signify threshold 7 := ®~'(0), which would lead to density £(x)

containing no mass. We address this subtlety in Appendix B.

2.4. Potential pitfalls

The shortcomings of this approach are already well-
documented in the DRE literature (Sugiyama et al., 2012).
Nonetheless, we reiterate here a select few that are par-
ticularly detrimental in the context of global optimization.
Namely, the first major drawback of TPE lies within step 1:

Singularities. Relying on the ordinary density-ratio can
result in numerical instabilities since it is unbounded—
often diverging to infinity, even in simple toy scenarios
(see Figure 2 for a simple example). In contrast, the -
relative density-ratio is always bounded above by v~ ! when
~ > 0 (Yamada et al., 2011). The other potential problems
of TPE lie within step 2:

Vapnik’s principle. Conceptually, independently estimating
the densities is actually a more cumbersome approach that
violates Vapnik’s principle—namely, that when solving a
problem of interest, one should refrain from solving a more
general problem as an intermediate step (Vapnik, 2013). In
this instance, density estimation is a more general problem
that is arguably more difficult than density-ratio estimation
(Kanamori et al., 2010).

Kernel bandwidth. KDE depends crucially on the selection
of an appropriate kernel bandwidth, which is notoriously
difficult (Park & Marron, 1990; Sheather & Jones, 1991).
Furthermore, even with an optimal selection of a single
fixed bandwidth, it cannot simultaneously adapt to low- and
high-density regions (Terrell & Scott, 1992).

Error sensitivity. These difficulties are exacerbated by the
fact that one is required to select two bandwidths, whereby
the optimal bandwidth for one individual density is not
necessarily appropriate for estimating the density-ratio—
indeed, it may even have deleterious effects. This also
makes the approach unforgiving to misspecification of the
respective estimators, particularly in that of the denominator
g(x), which has a disproportionately large influence on the
resulting density-ratio.

Curse of dimensionality. For these reasons and more, KDE
often falls short in high-dimensional regimes. In contrast,
direct DRE methods have consistently been shown to scale
better with dimensionality (Sugiyama et al., 2008).

Optimization. Ultimately, we care not only about estimating
the density-ratio, but also optimizing it wrt to inputs for the
purpose of candidate suggestion. Being nondifferentiable,
the ratio of TPEs is cumbersome to optimize.

3. Methodology

We propose a different approach to BORE—importantly, one
that circumvents the issues of TPE—by seeking to directly
estimate the unknown ratio r., (x).
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There exists a multitude of direct DRE methods. Here, we fo-
cus on a conceptually simple and widely-used method based
on class-probability estimation (CPE) (Qin, 1998; Cheng
et al., 2004; Bickel et al., 2007; Sugiyama et al., 2012;
Menon & Ong, 2016).

First, let 7(x) = p(z = 1|x) denote the class-posterior
probability, where z is the binary class label

1
z =
0

By definition, we have ¢(x) = p(x|z = 1) and g(x) =
p(x|z = 0). We plug these into eq. 4 and apply Bayes’
rule, letting the p(x) terms cancel each other out to give

- (425

p(z=1|x) p(z=0]x)\ "
X(”' we=1 T )

ify <7,
ify >

(7

Since p(z = 1) = ~y by definition, eq. 7 simplifies to
.y (x) =y (). (8)

Refer to Appendix C for derivations. Thus, eq. 8 establishes
the link between the class-posterior probability and the rela-
tive density-ratio. In particular, the latter is equivalent to the
former up to constant factor y~!. Refer to Appendix A.1
for a discussion on how 7(x) relates to the probability of
improvement (PI) (Kushner, 1964).

Let us estimate the probability 7(x) using a probabilistic
classifier—a function mg : X — [0, 1] parameterized by 6.
To recover the true class-posterior probability, we minimize
a proper scoring rule (Gneiting & Raftery, 2007), such as
the log loss

1 N
L£(6) = N < § 2p log Mo (Xp)
= ©)

+(1——z010g(1—7m(xnﬂ>-

Thereafter, we approximate the relative density-ratio up to
constant -y through

mo(X) > v - 1y(X), (10)

with equality at 8, = argming £(8). Refer to Appendix D
for derivations. Hence, in the so-called BO loop (summa-
rized in Algorithm 1), we alternately optimize (i) the clas-
sifier parameters @ wrt to the log loss (to improve the ap-
proximation of eq. 10; Line 6), and (ii) the classifier input
x wrt to its output (to suggest the next candidate to evalu-
ate; Line 8). An animation of Algorithm 1 is provided in
Appendix E.

Algorithm 1: Bayesian optimization by density-
ratio estimation (BORE).
Input: blackbox f : X — R, proportion v € (0, 1),
probabilistic classifier mg : X — [0, 1].
1 while under budget do
2 T < (1371(7)
zn — ly, < 7]forn=1,...,N

’bN — {(%n, Zn)}ij\,r:l

w

0, <+ argming £(0) eq. 9

XN ¢ arg max,c y 7o, (x)
yn + f(xn)

10 Dy < Dy—1U{(xn,yn)}
11 N+ N+1

12 end

eq. 10

(R TR . S

In traditional GP-based EI, Line 8 typically consists of maxi-
mizing the EI function expressed in the form of eq. 3, while
Line 6 consists of optimizing the GP hyperparameters wrt
the marginal likelihood. By analogy with our approach, the
parameterized function g (x) is itself an approximation to
the EI function to be maximized directly, while the approx-
imation is tightened through by optimizing the classifier
parameters wrt the log loss. In short, we have reduced the
problem of computing EI to that of learning a probabilistic
classifier, thereby unlocking a broad range of estimators be-
yond those so far used in BO. Importantly, this enables one
to employ virtually any state-of-the-art classification method
available and to parameterize the classifier using arbitrarily
expressive approximators that potentially have the capacity
to deal with non-linear, non-stationary, and heteroscedastic
phenomena frequently encountered in practice.

3.1. Choice of proportion ~

The proportion v € (0,1) influences the explore-exploit
trade-off. Intuitively, a smaller setting of v encourages ex-
ploitation and leads to fewer modes and sharper peaks in
the acquisition function. To see this, consider that there are
by definition fewer candidate inputs x for which its corre-
sponding output y can be expected to improve over the first
quartile (y = 1/4) of the observed output values than, say,
the third quartile (y = 3/4). That being said, given that the
class balance rate is by definition v, a value too close to 0
may lead to instabilities in classifier learning. A potential
strategy to combat this is to begin with a perfect balance
(v = 1/2) and then to decay ~y as optimization progresses. In
this work, we keep ~ fixed throughout optimization. This,
on the other hand, has the benefit of providing guarantees
about how the classification task evolves. In particular, in
each iteration, after having observed a new evaluation, we
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are guaranteed that the binary label of ar most one existing
instance can flip. This property can be exploited to make
classifier learning of Line 6 more efficient by adopting on-
line learning techniques that avoid learning from scratch
in each iteration. An extended discussion is included in
Appendix F.

3.2. Choice of probabilistic classifier

We examine a few variations of BORE that differ in the
choice of classifier and discuss their strengths and weak-
nesses across different global optimization problem settings.

Multi-layer perceptrons. We propose BORE-MLP, a vari-
ant based on multi-layer perceptrons (MLPs). This choice
is appealing not only for (i) its flexibility and universal ap-
proximation guarantees (Hornik et al., 1989) but because
(ii) one can easily adopt stochastic gradient descent (SGD)
methods to scale up its parameter learning (LeCun et al.,
2012), and (iii) it is differentiable end-to-end, thus enabling
the use of quasi-Newton methods such as L-BFGS (Liu &
Nocedal, 1989) for candidate suggestion. Lastly, since SGD
is online by nature, (iv) it is feasible to adapt weights from
previous iterations instead of training from scratch. A no-
table weakness is that MLPs can be over-parameterized and
therefore considerably data-hungry.

Tree-based ensembles. We consider two further variants:
BORE-RF and BORE-XGB, both based on ensembles of de-
cision trees—namely, random forest (RF) (Breiman, 2001)
and gradient-boosted trees (XGBOOST) (Chen & Guestrin,
2016), respectively. These variants are attractive since they
inherit from decision trees the ability to (i) deal with dis-
crete and conditional inputs by design, (ii) work well in
high-dimensions, and (iii) are scalable and easily paralleliz-
able. Further, (iv) online extensions of RFs (Saffari et al.,
2009) may be applied to avoid training from scratch. A
caveat is that, since their response surfaces are discontin-
uous and nondifferentiable, decision trees are difficult to
maximize. Therefore, we appeal to random search and
evolutionary strategies for candidate suggestion. Further
details and a comparison of various approaches is included
in Appendix G.1.

In theory, for the approximation of eq. 10 to be tight, the
classifier is required to produce well-calibrated probabili-
ties (Menon & Ong, 2016). A potential drawback of the
BORE-RF variant is that RFs are generally not trained by
minimizing a proper scoring rule. As such, additional tech-
niques may be necessary to improve calibration (Niculescu-
Mizil & Caruana, 2005).

Gaussian processes. The last variant we consider is BORE-
GP, based on a GP classifier (GpC) (Williams & Barber,
1998). Like the GP regression model, GPC offers (i) a high
degree of flexibility, at least on smooth functions up to mod-

erate dimensionalities, and (ii) well-calibrated uncertainty
estimates (useful for marginalizing out the hyperparameters
from the acquisition function, as we discuss in Appendix L).
On the other hand, GPC not only loses one of the foremost
appeals of GP regression, namely, analytical tractability of
the predictive, but it is also not necessarily better equipped
to deal with more problematic settings (discrete variables,
high-dimensionalities, etc), and its scalability is contingent
upon the choice of inference approximation being utilized.

4. Related Work

The literature on BO is vast and ever-expanding (Brochu
et al., 2010; Shahriari et al., 2015; Frazier, 2018). Some
specific threads pertinent to our work include achiev-
ing scalability through neural networks (NNs), as in BA-
NANAS (White et al., 2019), ABLR (Perrone et al., 2018),
BOHAMIANN (Springenberg et al., 2016), and DNGO (Snoek
et al., 2015), and handling discrete and conditional vari-
ables using tree ensembles, as with RFs in SMAC (Hutter
et al., 2011). To negotiate the tractability of the predictive,
these methods must either make simplifications or resort
to approximations. In contrast, by seeking to directly ap-
proximate the acquisition function, BORE is unencumbered
by such constraints. Refer to Appendix L for an expanded
discussion. Beyond the classical PI (Kushner, 1964) and
EI functions (Jones et al., 1998), a multitude of acquisition
functions has been devised, including the upper confidence
bound (UCB) (Srinivas et al., 2009), knowledge gradient
(KG) (Scott et al., 2011), entropy search (ES) (Hennig &
Schuler, 2012), and predictive ES (PES) (Hernandez-Lobato
et al., 2014). Nonetheless, EI remains ubiquitous in large
because it is conceptually simple, easy to evaluate and opti-
mize, and consistently performs well in practice.

There is a substantial body of existing works on density-ratio
estimation (Sugiyama et al., 2012). Recognizing the defi-
ciencies of the KDE approach, myriad alternatives have since
been proposed, including KL importance estimation proce-
dure (KLIEP) (Sugiyama et al., 2008), kernel mean matching
(KMM) (Gretton et al., 2009), unconstrained least-squares
importance fitting (ULSIF) (Kanamori et al., 2009), and rela-
tive ULSIF (RULSIF) (Yamada et al., 2011). In this work, we
restrict our focus on CPE, an effective and versatile approach
that has found widespread adoption in a diverse range of
applications, e.g. in covariate shift adaptation (Bickel et al.,
2007), energy-based modelling (Gutmann & Hyvirinen,
2012), generative adversarial networks (GANs) (Goodfellow
et al., 2014; Nowozin et al., 2016), likelihood-free infer-
ence (Tran et al., 2017; Thomas et al., 2020), and more.
Of particular relevance is its use in Bayesian experimental
design (BED), a close relative of BO, in which it is similarly
used to approximate the expected utility function (Klei-
negesse & Gutmann, 2019).
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Figure 3. Immediate regret over function evaluations on the HPOBench neural network tuning problems (D = 9).

5. Experiments

We describe the experiments conducted to empirically eval-
uate our method. To this end, we consider a variety of prob-
lems, ranging from automated machine learning (AUTOML),
robotic arm control, to racing line optimization.

We provide comparisons against a comprehensive selec-
tion of state-of-the-art baselines. Namely, across all prob-
lems, we consider random search (RS) (Bergstra & Bengio,
2012), GP-BO (using EI with v = 0) (Jones et al., 1998),
TPE (Bergstra et al., 2011), and SMAC (Hutter et al., 2011).
We also consider evolutionary strategies: differential evolu-
tion (DE) (Storn & Price, 1997) for problems with contin-
uous domains, and regularized evolution (RE) (Real et al.,
2019) for those with discrete domains. Further information
about these baselines and the source code for their imple-
mentations are included in Appendix I.

To quantitatively assess performance we report the immedi-
ate regret (in benchmarks for which the exact global mini-
mum is known), defined as the absolute error between the
global minimum and the lowest function value attained thus
far. Unless otherwise stated we report, for each benchmark

and method, results aggregated across 100 replicated runs.

We set v = 1/3 across all variants and benchmarks. For
candidate suggestion in the tree-based variants, we use RS
with a function evaluation limit of 500 for problems with
discrete domains, and DE with a limit of 2,000 for those
with continuous domains. Our open-source implementation
is available at https://github.com/ltiao/bore.
Further details concerning the experimental set-up and the
implementation of each variant are included in Appendix J.

Neural network tuning (HPOBench). First, we consider
the problem of training a two-layer feed-forward NN for
regression. Specifically, a NN is trained for 100 epochs
with the ADAM optimizer (Kingma & Ba, 2014), and the
objective is the validation mean-squared error (MSE). The
hyperparameters are the initial learning rate, learning rate
schedule, batch size, along with the layer-specific widths,
activations, and dropout rates. We consider four datasets:
PROTEIN, NAVAL, PARKINSONS, and SLICE, and utilize
HPOBench (Klein & Hutter, 2019) which tabulates, for each
dataset, the MSEs resulting from all possible (62,208) config-
urations. Additional details are included in Appendix K.1,
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Figure 4. Immediate regret over function evaluations on the NASBench201 neural architecture search problems (D = 6).

and the results are shown in Figure 3. We see across all
datasets that the BORE-RF and -XGB variants consistently
outperform all other baselines, converging rapidly toward
the global minimum after 1-2 hundred evaluations—in some
cases, earlier than any other baseline by over two hundred
evaluations. Notably, with the exception being BORE-MLP
on the PARKINSONS dataset, all BORE variants outperform
TPE, in many cases by a sizable margin.

Neural architecture search (NASBench201). Next, we
consider a neural architecture search (NAS) problem, namely,
that of designing a neural cell. A cell is represented by a
directed acyclic graph (DAG) with 4 nodes, and the task is
to assign an operation to each of the 6 possible arcs from
a set of five operations. We utilize NASBench201 (Dong
& Yang, 2020), which tabulates precomputed results from
all possible 5° = 15, 625 combinations for each of the three
datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
and ImageNet-16 (Chrabaszcz et al., 2017). Additional
details are included in Appendix K.2, and the results are
shown in Figure 4. We find across all datasets that the
BORE variants consistently achieve the lowest final regret
among all baselines. Not only that, the BORE variants, in
particular BORE-MLP, maintains the lowest regret at anytime
(i.e. at any optimization iteration), followed by BORE-RF,
then BORE-XGB/-GP. In this problem, the inputs are purely
categorical, whereas in the previous problem they are a
mix of categorical and ordinal. For the BORE-MLP variant,
categorical inputs are one-hot encoded, while ordinal inputs
are handled by simply rounding to their nearest integer index.
The latter is known to have shortcomings (Garrido-Merchan
& Herndndez-Lobato, 2020), and might explain why BORE-
MLP is the most effective variant in this problem but the
least effective in the previous one.

Robot arm pushing. We consider the 14D control problem
first studied by Wang & Jegelka (2017). The problem is
concerned with tuning the controllers of robot hands to push
objects to some desired locations. Specifically, there are two
robots, each tasked with manipulating an object. For each
robot, the control parameters include the location and ori-
entation of its hands, the moving direction, pushing speed,
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Figure 5. Negative reward over function evaluations on the Robot
Pushing task (D = 14).

and duration. Due to the prohibitively large number of func-
tion evaluations (~10,000) required to achieve reasonable
performance, we omit all GP-based methods from our com-
parisons on this benchmark. Further, we reduce the number
of replicated runs of each method to 50. Additional details
are included in Appendix K.3, and the results are shown in
Figure 5. We see that BORE-XGB attains the highest reward,
followed by BORE-RF and TPE (which attain roughly the
same performance), and then BORE-MLP.

Racing line optimization. We consider the problem of
computing the optimal racing line for a given track and
vehicle with known dynamics. We adopt the set-up of Jain
& Morari (2020), who consider the dynamics of miniature
scale cars traversing the tracks at UC BERKELEY and ETH
ZURICH. The racing line is a trajectory determined by D
waypoints placed along the length of the track, where the
ith waypoint deviates from the centerline of the track by
z; € [-%, %] for some track width . The task is to
minimize the lap time f(x), the minimum time required to
traverse the trajectory parameterized by x = [z1---xp]T.
Additional details are included in Appendix K.4, and the
results are shown in Figure 6. First, we see that the BORE
variants consistently outperform all baselines except for GP-
BO. This is to be expected since the function is continuous,
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Figure 6. Best lap times (in seconds) over function evaluations in the racing line optimization problem on various racetracks.

smooth, and has ~20 dimensions or less. Nonetheless, we
find that the BORE-MLP variant performs as well as, or
marginally better than, GP-BO on two tracks. In particular,
on the UC BERKELEY track, we see that BORE-MLP achieves
the best lap times for the first ~40 evaluations, and is caught
up to by GP-BO in the final 10. On ETH ZURICH track B,
BORE-MLP consistently maintains a narrow lead.
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Figure 7. Effects of calibrating RFs in the BORE-RF variant. Re-
sults of racing line optimization on the UC BERKELEY track.

Effects of calibration. As discussed in § 3.2, calibrating
RFs may have a profound effect on the BORE-RF variant.
We consider two popular approaches (Niculescu-Mizil &
Caruana, 2005), namely, Platt scaling (Platt et al., 1999)
and isotonic regression (Zadrozny & Elkan, 2001; 2002).
The results shown in Figure 7 suggest that applying these
calibration techniques may have deleterious effects. How-
ever, this can also be adequately explained by overfitting
due to insufficient calibration samples (in the case of iso-
tonic regression, ~ 1,000 samples are necessary). Therefore,
we may yet observe the benefits of calibration in problem
settings that yield large amounts of data.

We provide further ablation studies in Appendix G.

6. Discussion and Outlook

We examine the limitations of our method, discuss how these
may be addressed, and outline additional future directions.

Exploration. Similar to the TPE method, BORE generally has
a tendency to favor exploitation over exploration. In the case
of TPE, the maximizer of the acquisition function £(x)/g(x)
will be located at the mode of ¢(x), which has mass con-
centrated around inputs for which its output value is within
the smallest proportion ~y of all observed output values (i.e.
inputs with label z = 1). Recall the classical formulation
of EI from eq. 3 in which the explore-exploit trade-off is
explicitly encoded in mathematical terms. Assuming we had
access to its global optimum, then by design the solution
is a candidate that strikes a good balance between explo-
ration and exploitation. Indeed, by virtue of having lower
predictive uncertainty, previously evaluated candidates will
tend to have lower acquisition values, which helps to en-
courage exploration. In contrast, for TPE and BORE, the
previously evaluated candidates labeled z = 1 will tend to
retain high acquisition values. Therefore, in the worst-case
scenario, the global optimum of the acquisition function
may become stuck at some local optimum of the blackbox
function, or a point within some neighborhood thereof. In
practice, implementations of TPE avoid this scenario by in-
troducing stochasticity in the acquisition optimization, e.g.
by randomly sampling from ¢(x) and suggesting the sample
that maximizes £(*)/g(x). We surmise that BORE was able
to avoid such pathological cases in our experiments due in
part to the sources of randomness inherent to the acquisition
optimization method of choice.

A further detail to note is that the labels z do not remain
static throughout optimization. In other words, the classi-
fication dataset is different for each new iteration. Recall
that, by construction, only a fraction vy of the observations
can have positive labels z = 1. With each iteration, observ-
ing a new value of y leads to a change in the threshold 7.
Since only a fraction 7y of observations can lie below this
threshold, the labels of existing observations must accord-
ingly flip intermittently throughout optimization. Thus, as
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the probabilistic classifier 7g(x) adapts to these updates,
the regions in which it outputs high probabilities will also
shift accordingly. Consequently, the classifier response sur-
face will either become multimodal (leading to exploration)
or become narrower and more sharply-peaked in the same
region (leading to exploitation).

Although not considered in this work, the behavior described
above can make simple e-greedy strategies particularly ef-
fective at stimulating exploration. Future work will consider
batch extensions based on methods such as quantile Stein
variational gradient descent (SVGD), which can encourage
high diversity and good worst-case performance in the query
batch (Gong et al., 2019).

Hyperparameter estimation. Firstly, a noteworthy conse-
quence of seeking to directly approximate EI under its al-
ternative formulation is that the classifier parameters 0
in BORE can be interpreted as hyperparameters (in the
same way that the parameters of the GP kernel are hy-
perparameters), a deterministic treatment of which based
on point estimates can often be viable. For example, in
the BORE-MLP variant, € consists of the layer weights,
which we are able to estimate using type-II maximum like-
lihood. In contrast, to utilize NNs in traditional BO, gen-
erally the layer weights w are parameters that must first
be marginalized out in order to compute the predictive
po(y|x,Dn) = [po(y|x,w)pe(w|Dn)dw, while the
hyperparameters @, consisting of e.g. the prior and like-
lihood precisions, may optionally be marginalized out as
well (though usually point estimates suffice). Refer to Ap-
pendix L for an expanded discussion on this distinction. As
with the GP hyperparameters in GP-BO, in order to encour-
age exploration, it may be beneficial to consider placing
a prior on @ and marginalizing out its uncertainty (Snoek
et al., 2012). Further, compared against GP-BO, a potential
downside of BORE is that there may be vastly more meta-
hyperparameters settings from which to choose. Whereas in
GP-BO these might consist of, e.g. the choice of kernel and
its isotropy, there are potentially many more possibilities in
BORE. In BORE-MLP, this may consist of, e.g. layer depth,
widths, activations, etc—the tuning of which is often the
reason one appeals to BO in the first place. While we ob-
tained remarkable results with the proposed variants without
needing to deviate from the sensible defaults, in general, for
further improvements in calibration and sample diversity,
it may be beneficial to consider marginalizing out even the
meta-hyperparameters (Wenzel et al., 2020).

Direct DRE. Another avenue to explore is the potential
benefits of other direct DRE methods, in particular RUL-
SIF (Yamada et al., 2011), which is the only method of those
aforementioned in § 4 that directly estimates the relative
density-ratio. Furthermore, since RULSIF is parameterized
by a sum of Gaussian kernels, it enables the use of well-

established mode-finding approaches, such as the mean-shift
algorithm (Comaniciu & Meer, 2002), for candidate sugges-
tion. Along the same avenue, but in a different direction,
one may also consider employing DRE losses for classifier
learning (Menon & Ong, 2016).

Extended BO. Lastly, a fertile ground for future work lies
in the extension of BORE with classifier designs suitable for
BO in more sophisticated paradigms, such as in the multi-
task (Swersky et al., 2013), multi-fidelity (Kandasamy et al.,
2017), and multi-objective settings (Herndndez-Lobato
et al.,, 2016). Of particular interest is the use of model
architectures that are effective for BO on sequential in-
puts (Moss et al., 2020) which can be applied to molecular
structures (Goémez-Bombarelli et al., 2018) and beyond.

7. Conclusion

We have presented a novel methodology for BO based on the
observation that the problem of computing EI can be reduced
to that of probabilistic classification. This observation is
made through the well-known link between CPE and DRE,
and the lesser-known insight that EI can be expressed as a
relative density-ratio between two unknown distributions.

We discussed important ways in which TPE, an early at-
tempt to exploit the latter link, falls short. Further, we
demonstrated that our CPE-based approach to BORE, in par-
ticular, our variants based on the MLP, RF, XGBOOST, and
GP classifiers, consistently outperform TPE, and compete
well against the state-of-the-art derivative-free global opti-
mization methods.

Overall, the simplicity and effectiveness of BORE make it a
promising approach for blackbox optimization, and its high
degree of extensibility provides numerous exciting avenues
for future work.
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