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Figure 1: Hypergraph representation of a sparse 2 × 2 × 3 tensor. Nodes in different codes
represent different modes. Each (hyper-)edge represents an existent entry, where the edge weight
is the entry value.
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1 Sparse Tensor Models
1.1 Completely Random Measures and Gamma Processes

A completely random measure (Kingman, 1967, 1992; Lijoi et al., 2010) µ on a Rd
+ is a

random variable that takes values in the space of measures on Rd
+ such that for any col-

lection of disjoint subsets A1, . . . , An ⊂ Rd, the random variables µ(A1), . . . , µ(An)
are independent. This independence condition has the implication that CRMs are
discrete measures. That is,

µ =

∞∑
i=1

wiδθi . (1)

The theory of CRMs is intimately connected to Poisson Point Processes (PPP). We
can characterize CRMs by the mean measure of a PPP. If (wi,θi) ∈ (R+,R

d
+) has

the distribution of a Poisson Point Process with intensity (mean) measure ν(dwdθ),
then the resulting discrete measure is a CRM. If we assume that the weights are
independent of the locations in the CRM, the measure ν can be decomposed as
ν(dwdθ) = ρ(w)µ0(dθ).

A Gamma process (Hougaard, 1986; Brix, 1999) with the base measure µ0, denoted
by ΓP(µ0), is the CRM that arises when

ν(dwdθ) = w−1e−wdwµ0(dθ).

Since ∫
w−1e−wdw =∞

for any measurable subset Θ ⊂ Rd with µ0(Θ) > 0, the ΓP will have an infinite number
of atoms (locations). This is why in our sparse tensor process where we set µ0 = λα,
the Lebesgue measure with support restricted to [0, α]d, we still generate an infinite
number of nodes in each mode (see (2) in the main paper). However when the PPP with
the product of ΓPs as the mean measure is sampled to generate tensor entries, only a
finite number of those nodes in each mode become active, because the the number of
entries is finite (with probability one); see Sec. 3.1 of the main paper for more details.

Now suppose g ∼ ΓP(µ0), then it can be shown g(Θ) follows a Gamma distribution
with the shape parameter µ0(θ) for any measureable Θ ⊂ Rd

+. This implies that if µ0

is a finite measure, then g(Rd
+) is finite almost surely and g/g(Rd

+) is a well defined
probability measure. Furthermore,

g/g(Rd
+) ∼ DP(µ0(Rd

+), µ0/µ0(Rd
+))

where DP is a Dirichlet process with the strength µ0(Rd
+) and base probability measure

µ0/µ0(Rd
+).

1.2 Sparsity

Now we will prove Lemma 3.1 and Corollary 3.1.1. Our sparse tensor process is
summarized as

Wα
k ∼ ΓP(λα)(1 ≤ k ≤ K),

T ∼ PPP(Wα
1 × · · · ×Wα

K). (2)
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We will first list a few lemmas the will be important to finish the proof.

Lemma 1.1 (Campbell’s Theorem (Kingman, 1992)). Let Π be a Poisson Process on S
with mean measure ν and suppose f : S → R is a measureable function, then

E

[∑
x∈Π

f(x)

]
=

∫
S

f(x)ν(dx).

Lemma 1.2 ( (Caron and Fox, 2014) Lemma 17). Let µ be a random almost surely
positive measure on R+ and let

N |µ ∼ PoissonPoint(µ).

Define N̂t = N [0, t] and µ̂t = µ([0, t]) then

N̂t|µ ∼ Poisson(µ̂t).

Furthermore if µ̂t →∞ and limt→∞
µ̂t+1

µ̂t
= 1, then

N̂t
µ̂t
→ 1 a.s.

Lemma 1.3 (Poisson Superposition Theorem (Cinlar and Agnew, 1968)). Suppose Π1

and Π2 are Poisson point process on S with mean measure µ1 and µ2 respectively. Then
Π1 + Π2 is a Poisson point process on S with mean measure µ = µ1 + µ2

Lemma 1.4 (Marking Theorem (Kingman, 1993)). Let Π be a Poisson process on S
with mean measure µ. Suppose for each X ∈ Π we associate a mark mX ∈M from a
distribution px()̇, that may depend onX but not other points. Then the cartesian product
{(X,mX)|X ∈ Π} is a Poisson process on S ×M with mean measure µ(dx)px(dm).

1.2.1 Proof of Lemma 3.1 and Corollary 3.1.1

We will prove Lemma 3.1 in two steps. For simplicity we will assume λα is the
Lebesgue measure on [0, α] and λ is the Lebesgue measure on [0,∞].The extension to
the Lebesgue measure on [0, α]d is straightforward.

It follows from the properties of the ΓP that if W∞ ∼ ΓP(λ) and if Wα ∼ ΓP(λα)
then the distribution of the measure W∞ restricted to [0, α] is identical to Wα. Thus
instead of generating a new CRM for Wα each time with α increased, we assume the
same CRM, W∞ is restricted to the growing set [0, α].

Let Mα
k be the number of active nodes in mode k and let Nα be the number of

entries. Let
Aαk,θki

= [0, α]× · · · × {θki } × · · · × [0, α].

Then we have
Mα
k = #{θki ∈ [0, α]|T (Aαk,θki

) > 0}.

In the first step, we will show limα→∞
α
Mα
k

= 0 a.s. for all k ∈ {1, . . . ,K}. Then

in the second step , we will show that lim supα→∞Nα/αK <∞ a.s. Together this
implies

lim
α→∞

Nα∏K
k=1M

α
k

= 0 a.s
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because
Nα∏K
k=1M

α
k

=
Nα

αK

K∏
k=1

α

Mα
k

.

Step 1. First note that T (Aα
k,θki

)|{W∞k }Kk=1 has a Poisson distribution so

Pr(T (Aαk,θki
) > 0|{W∞k }Kk=1)) = 1− exp

−W∞k ({θki })×
∏
j 6=k

W∞j ([0, α])

 .

Additionally, the set of points {T (Aα
k,θki

) > 0}i can be interpreted as random
binary marks on the Gamma process W∞k when conditioned on {W∞j }j 6=k. Hence,
according to the Poisson marking theorem (Lemma 1.4), the marked Gamma process
{(θki , T (Aα

k,θki
) > 0)} conditioned on {W∞j }j 6=k is generated by a Poisson point

process on R+ × R+ × {0, 1}. Thus Mα
k |{W∞i ([0, α])}i 6=k is a Poisson random

variable. We compute the expectation of Mα
k given the ΓPs of the other modes to

characterize the distribution of Mα
k |{W∞i }i6=k. Using the law of total expectation, we

have

E[Mα
k |{W∞j }j 6=k] = E

 ∑
θi∈[0,α]

1(T (Aαk,θki
) > 0)

∣∣∣∣{W∞j }j 6=k


= E

 ∑
θi∈[0,α]

E[1(T (Aαk,θki
) > 0)|{W∞k }Kk=1]

∣∣∣∣{W∞j }j 6=k


= E

 ∑
θi∈[0,α]

1− exp

−W∞k ({θki } ×
∏
j 6=k

W∞j ([0, α])

∣∣∣∣{W∞j }j 6=k
 .

For the expectation, because (θki , w
k
i ) is a Poisson process due to the construction of

the CRM, we can apply Lemma 1.1. Together this gives

E[Mα
k |{W∞j ([0, α])}j 6=k]

=

∫ ∞
0

∫ ∞
0

1− exp

−w ×∏
j 6=k

W∞j ([0, α])

w−1e−wdwdλα

= α

∫ ∞
0

1− exp

−w ×∏
i 6=k

W∞i ([0, α])

w−1e−wdw.

Let

ψ(t) =

∫ ∞
0

(1− exp(−wt))w−1e−wdw,

then our work shows

Mα
k |{W∞j }j 6=k ∼ Poisson

α · ψ
∏
j 6=k

W∞j ([0, α])

 .
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AsW∞j ([0, α]) is Gamma distributed with shape parameterα, limα→∞Wα
j ([0, α]) =

∞ a.s. We also have limt→∞ ψ(t) =∞. This follows immediately from the monotone
convergence theorem as

∫∞
0
w−1e−wdw =∞. Together this implies

lim
α→∞

αψ
(∏

j 6=kW
∞
j ([0, α])

)
α

=∞ a.s. (3)

Applying Lemma 1.2 the Poisson process with mean measure, τ where τ([a, b]) =

bψ
(∏

i 6=kW
∞
i ([0, b])

)
− aψ

(∏
i 6=kW

∞
i ([0, a])

)
then implies

Pr

(
lim
α→∞

Mα
k

α · ψ(
∏
i6=kW

α
i ([0, α]))

= 1

∣∣∣∣{W∞i }i 6=k
)

= 1.

Taking the expectation on both sides of the above expression implies

lim
α→∞

Mα
k

α · ψ(
∏
i 6=kW

α
i ([0, α]))

= 1 a.s.

Combining the above with with equation (3) completes the first step and implies

lim
α→∞

α

Mα
k

= 0 a.s.

Step 2. As it is possible for the point process to sample more than one point at a single
location, the number of points generated from the point process may not equal to the
number of (distinct) tensor entries. Let Dα be the actual number of points sampled.
Note Nα < Dα.

Now consider j ∈ N and Dj = T ([0, j]K). We have

Dj |{W∞1 , . . .W∞K } ∼ Poisson

(
K∏
k=1

W∞k ([0, j])

)
.

By the independence of the CRM on disjoint sets, it follows immediately by the strong
law of large numbers

lim
j→∞

W∞k ([0, j])

j
=

∑j
i=1W

∞
k ((i− 1, i])

j
= E[W∞k ([0, 1])] = 1 a.s.

as W∞k ((i− 1, i]) are i.i.d Gamma random variables. This implies

lim
j→∞

∏K
k=1W

∞
k ([0, j])

jK
= 1 a.s. (4)

But applying Lemma 1.2 implies

Pr

(
lim
j→∞

Dj∏K
k=1W

j
k ([0, j])

= 1

∣∣∣∣{W∞i }Ki=1

)
= 1
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Taking the expectation of both sides of the above expression and combining with
equation (4) implies

lim
j→∞

Dj

jK
= 1 a.s.

The above only holds for natural numbers. To extend to real numbers note for any
α, there exists, j ∈ N such that j ≤ α ≤ j + 1. Thus

jK

(j + 1)K
Dj

jK
≤ Dα

αk
≤ (j + 1)K

jK
Dj+1

(j + 1)K
,

so taking α→∞ proves

lim
α→∞

Dα

αK
= 1.

Recalling Nα ≤ Dα completes the proof.

Proof of Corollary 3.1.1 By the Lemma 1.3 (Poisson superposition theorem)

T ∼ PPP(

R∑
r=1

Wα
1,r × · · · ×Wα

K,r)

can be constructed as

T =

R∑
r=1

PPP(Wα
1,r × · · · ×Wα

K,r).

Now lemma 3.1 applies to each of the individual Poisson processes which implies the
result.
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