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Abstract

Recently, neural networks purely based on atten-

tion were shown to address image understanding

tasks such as image classification. These high-

performing vision transformers are pre-trained

with hundreds of millions of images using a large

infrastructure, thereby limiting their adoption.

In this work, we produce competitive convolution-

free transformers trained on ImageNet only us-

ing a single computer in less than 3 days. Our

reference vision transformer (86M parameters)

achieves top-1 accuracy of 83.1% (single-crop)

on ImageNet with no external data.

We also introduce a teacher-student strategy spe-

cific to transformers. It relies on a distillation

token ensuring that the student learns from the

teacher through attention, typically from a con-

vnet teacher. The learned transformers are com-

petitive (85.2% top-1 acc.) with the state of the art

on ImageNet, and similarly when transferred to

other tasks. We will share our code and models.

1. Introduction

Convolutional neural networks have been the main design

paradigm for image understanding tasks, as initially demon-

strated on image classification tasks. One of the ingredient

to their success was the availability of a large training set,

namely Imagenet. Motivated by the success of attention-

based models in Natural Language Processing, there has

been an increasing interest in architectures leveraging atten-

tion mechanisms within convnets. More recently several

researchers have proposed hybrid architecture transplanting

transformer ingredients to convnets to solve vision tasks.

The vision transformer (ViT) introduced by Dosovitskiy

et al. (2020) is an architecture directly inherited from Natu-

ral Language Processing (Vaswani et al., 2017), but applied
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Figure 1. Throughput and accuracy on Imagenet of our method

(no external training data). The throughput is measured as the

number of images processed per second on a V100 GPU. DeiT-B

is identical to ViT-B, but with training adapted to a data-starving

regime. It is learned in a few days on one machine. The symbol ⚗

refers to models trained with our transformer-specific distillation.

See Table 5 for details and more models.

to image classification with raw image patches as input.

Their paper presented excellent results with transformers

trained with a large private labelled image dataset contain-

ing 300 millions images. The paper concluded that vision

transformers “do not generalize well when trained on in-

sufficient amounts of data”. The training of these models

involved extensive computing resources.

In our paper, we train a vision transformer on a single 8-

GPU node in two to three days (53 hours of pre-training,

and optionally 20 hours of fine-tuning) that is competitive

with convnets having a similar number of parameters and

efficiency. It uses Imagenet as the sole training set. We

build upon the visual transformer architecture from Doso-

vitskiy et al. (2020) and improvements included in the timm

library (Wightman, 2019). With our Data-efficient image

Transformers (DeiT), we report large improvements over

previous results, see Figure 1. Our ablation study details

the hyper-parameters and key ingredients for a successful

training, such as repeated augmentation.
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We address another question: how to distill these models?

We introduce a token-based strategy, DeiT⚗, that advanta-

geously replaces the usual distillation for transformers.

In summary, our work makes the following contributions:

• We show that our neural networks that contain no con-

volutional layer can achieve competitive results against

the state of the art on ImageNet with no external data.

They are learned on a single node with 4 GPUs in three

days1. Our two new models DeiT-S and DeiT-Ti have

fewer parameters and can be seen as the counterpart of

ResNet-50 and ResNet-18.

• We introduce a new distillation procedure based on a dis-

tillation token, which plays the same role as the class to-

ken, except that it aims at reproducing the label estimated

by the teacher. Both tokens interact in the transformer

through attention. This transformer-specific strategy out-

performs vanilla distillation by a significant margin.

• Our models pre-learned on Imagenet are competitive

when transferred to different downstream tasks such

as fine-grained classification, on several popular public

benchmarks: CIFAR-10, CIFAR-100, Oxford-102 flow-

ers, Stanford Cars and iNaturalist-18/19.

2. Related work

Image Classification is so core to computer vision that

it is often used as a benchmark to measure progress in

image understanding. Any progress usually translates to

improvement in other related tasks such as detection or

segmentation. Since 2012’s AlexNet (Krizhevsky et al.,

2012), convnets have dominated this benchmark and have

become the de facto standard. The evolution of the state of

the art on the ImageNet dataset (Russakovsky et al., 2015)

reflects the progress with convolutional architectures and

optimization methods (Simonyan & Zisserman, 2015; Tan

& Le, 2019; Touvron et al., 2019).

Despite several attempts to use transformers for image clas-

sification (Chen et al., 2020a), until now their performance

has been inferior to that of convnets. Nevertheless hybrid

architectures that combine convnets and transformers, in-

cluding the self-attention mechanism, have exhibited com-

petitive results in image classification (Bello et al., 2019;

Bello, 2021; Wu et al., 2020), detection (Carion et al., 2020;

Hu et al., 2018), video processing (Sun et al., 2019; Wang

et al., 2018), unsupervised object discovery (Locatello et al.,

2020), and text-vision tasks (Chen et al., 2020b; Li et al.,

2019a; Lu et al., 2019).

Recently Vision transformers (ViT) (Dosovitskiy et al.,

2020) closed the gap with the state of the art on ImageNet,

1We can accelerate the learning of the larger model DeiT-B by
training it on 8 GPUs in two days.

without using any convolution. This performance is remark-

able since convnet methods for image classification have

benefited from years of tuning and optimization (He et al.,

2019; Wightman, 2019). Nevertheless, according to Doso-

vitskiy et al. (2020), a pre-training phase on a large volume

of curated data is required for the learned transformer to be

effective. In our paper we achieve a strong performance with

ImageNet-1k and report decent results even on CIFAR-10.

The Transformer architecture, introduced by Vaswani

et al. (Vaswani et al., 2017) for machine translation is cur-

rently the reference model for all natural language process-

ing (NLP) tasks. Many improvements of convnets for image

classification are inspired by transformers. For example,

Squeeze and Excitation (Hu et al., 2017), Selective Ker-

nel (Li et al., 2019b), Split-Attention Networks (Zhang et al.,

2020) and Stand-Alone Self-Attention (Ramachandran et al.,

2019) exploit mechanism akin to transformers self-attention

(SA) mechanism. Moreover, Cordonnier et al. (Cordonnier

et al., 2020) study the link between SA and convolution.

Knowledge Distillation (Hinton et al., 2015) refers to the

training paradigm in which a student model leverages “soft”

labels coming from a strong teacher network. This is the

output vector of the teacher’s softmax function rather than

just the maximum of scores, wich gives a “hard” label. Such

a training improves the performance of the student model

(alternatively, it can be regarded as a form of compression of

the teacher model into a smaller one – the student). On the

one hand the teacher’s soft labels will have a similar effect

to labels smoothing (Yuan et al., 2020). On the other hand as

shown by Wei et al. (2020) the teacher’s supervision takes

into account the effects of the data augmentation, which

sometimes causes a misalignment between the real label

and the image. For example, let us consider image with a

“cat” label that represents a large landscape and a small cat

in a corner. If the cat is no longer on the crop of the data

augmentation it implicitly changes the label of the image.

Knowledge distillation can transfer inductive biases (Abnar

et al., 2020) in a soft way in a student model using a teacher

model where they would be incorporated in a hard way. In

our paper we study the distillation of a transformer student

by either a convnet or a transformer teacher, motivated by

inducing convolutional bias into transformers.

3. Vision transformer: overview

In this section, we briefly recall preliminaries associated

with the vision transformer (Dosovitskiy et al., 2020;

Vaswani et al., 2017), denoted by ViT. We further discuss

positional encoding and resolution.

Multi-head Self Attention layers (MSA). The attention

mechanism is based on a trainable associative memory with
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(key, value) vector pairs. A query vector q ∈ R
d is matched

against a set of k key vectors (packed together into a matrix

K ∈ R
k×d) using inner products. These inner products

are then scaled and normalized with a softmax function to

obtain k weights. The output of the attention is the weighted

sum of a set of k value vectors (packed into V ∈ R
k×d). For

a sequence of N query vectors (packed into Q ∈ R
N×d), it

produces an output matrix (of size N × d):

Attention(Q,K, V ) = Softmax(QK⊤/
√
d)V, (1)

where the Softmax function is applied on each row of the

input matrix. The
√
d term provides proper normalization.

Vaswani et al. (2017) propose a self-attention layer. Query,

key and values matrices are themselves computed from a

sequence of N input vectors (packed into X ∈ R
N×D):

Q = XWQ, K = XWK, V = XWV, using linear transfor-

mations WQ,WK,WV with the constraint k = N , meaning

that the attention is in between all the input vectors.

Finally, Multi-head self-attention layer (MSA) is defined by

considering h attention “heads”, ie h self-attention functions

applied to the input. Each head provides a sequence of size

N × d. These h sequences are rearranged into a N × dh
sequence that is reprojected by a linear layer into N ×D.

Transformer block for images. To get a full transformer

block as in (Vaswani et al., 2017), we add a Feed-Forward

Network (FFN) on top of the MSA layer. This FFN is

composed of two linear layers separated by a GeLu acti-

vation (Hendrycks & Gimpel, 2016). The first linear layer

expands the dimension from D to 4D, and the second layer

reduces it back from 4D back toD. Both MSA and FFN are

operating as residual operators thank to skip-connections,

and with a layer normalization (Ba et al., 2016).

In order to get a transformer to process images, our work

builds upon the ViT model (Dosovitskiy et al., 2020). It

is a simple and elegant architecture that processes an input

image as if it was a sequence of input tokens. The fixed-size

input RGB image is decomposed into a batch of N patches

of a fixed size of 16× 16 pixels (N = 14× 14). Each patch

is projected with a linear layer that conserves its overall

dimension 3× 16× 16 = 768.

The transformer block described above is invariant to the or-

der of the patch embeddings, and thus ignores their positions.

The positional information is incorporated as fixed (Vaswani

et al., 2017) or trainable (Gehring et al., 2017) positional

embeddings. They are added before the first transformer

block to the patch tokens, which are then fed to the stack of

transformer blocks.

The class token is a trainable vector, appended to the

patch tokens before the first layer, that goes through the

transformer layers, and is then projected with a linear layer

to predict the class. This class token is inherited from

NLP (Devlin et al., 2018), and departs from the typical

pooling layers used in computer vision to predict the class.

The transformer thus process batches of (N + 1) tokens

of dimension D, of which only the class vector is used to

predict the output. This architecture forces the self-attention

to spread information between the patch tokens and the class

token: at training time the supervision signal comes only

from the class embedding, while the patch tokens are the

model’s only variable input.

Fixing the positional encoding across resolutions. Tou-

vron et al. (2019) show that it is desirable to use a lower

training resolution and fine-tune the network at the larger

resolution. This speeds up the full training and improves

the accuracy under prevailing data augmentation schemes.

When increasing the resolution of an input image, we keep

the patch size the same, therefore the number N of input

patches does change. Due to the architecture of transformer

blocks and the class token, the model and classifier do not

need to be modified to process more tokens. In contrast, one

needs to adapt the positional embeddings, because there are

N of them, one for each patch. Dosovitskiy et al. (2020)

interpolate the positional encoding when changing the res-

olution and demonstrate that this method works with the

subsequent fine-tuning stage.

4. Distillation through attention

In this section, we assume we have access to a strong image

classifier as a teacher model. It could be a convnet, or a

mixture of classifiers. We address the question of how to

learn a transformer by exploiting this teacher. As we will

see in Section 5 by comparing the trade-off between accu-

racy and image throughput, it can be beneficial to replace a

convolutional neural network by a transformer. This section

covers two axes of distillation: hard versus soft distillation,

and classical distillation vs distillation token.

Soft distillation (Hinton et al., 2015; Wei et al., 2020)

minimizes the Kullback-Leibler divergence between the

softmax of the teacher and the softmax of the student model.

Let Zt be the logits of the teacher model, Zs the logits of the

student model. We denote by τ the temperature for the distil-

lation, λ the coefficient balancing the Kullback–Leibler di-

vergence loss (KL) and the cross-entropy (LCE) on ground

truth labels y, and ψ the softmax function. The distillation

objective is

Lglobal = (1− λ)LCE(ψ(Zs), y)

+ λτ2KL(ψ(Zs/τ), ψ(Zt/τ)). (2)

Hard-label distillation. We introduce a variant of distil-

lation where we take the hard decision of the teacher as a
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Figure 2. Our distillation procedure: we simply include a new dis-

tillation token. It interacts with the class and patch tokens through

the self-attention layers. This distillation token is employed in

a similar fashion as the class token, except that on output of the

network its objective is to reproduce the (hard) label predicted by

the teacher, instead of true label. Both the class and distillation

tokens input to the transformers are learned by back-propagation.

true label. Let yt = argmaxcZt(c) be the hard decision

of the teacher, the objective associated with this hard-label

distillation is:

LhardDistill
global =

1

2
LCE(ψ(Zs), y)+

1

2
LCE(ψ(Zs), yt). (3)

For a given image, the hard label associated with the teacher

may change depending on the specific data augmentation.

We will see that this choice is better than the traditional one,

while being parameter-free and conceptually simpler: The

teacher prediction yt plays the same role as the true label y.

Label smoothing. Hard labels can also be converted into

soft labels with label smoothing (Szegedy et al., 2016),

where the true label is considered to have a probability

of 1− ε, and the remaining ε is shared across the remaining

classes. We fix ε = 0.1 in our all experiments that use true

labels. Note that we do not smooth pseudo-labels provided

by the teacher (e.g., in hard distillation).

Distillation token. We now focus on our proposal, which

is illustrated in Figure 2. We add a new token, the distillation

token, to the initial embeddings (patches and class token).

Our distillation token is used similarly as the class token:

it interacts with other embeddings through self-attention,

and is output by the network after the last layer. Its target

objective is given by the distillation component of the loss.

The distillation embedding allows our model to learn from

the output of the teacher, as in a regular distillation, while

remaining complementary to the class embedding.

Fine-tuning with distillation. We use both the true label

and teacher prediction during the fine-tuning stage at higher

resolution. We use a teacher with the same target resolution,

typically obtained from the lower-resolution teacher by the

method of Touvron et al. (2019). We have also tested with

true labels only but this reduces the benefit of the teacher

and leads to a lower performance.

Classification with our approach: joint classifiers. At

test time, both the class or the distillation embeddings pro-

duced by the transformer are associated with linear classi-

fiers and able to infer the image label. Our referent method

is the late fusion of these two separate heads, for which we

add the softmax output by the two classifiers to make the

prediction. We evaluate these three options in Section 5.

5. Experiments

This section presents a few analytical experiments and re-

sults. We first discuss our distillation strategy. Then we

comparatively analyze the efficiency and accuracy of con-

vnets and vision transformers.

5.1. Transformer models

As mentioned earlier, our architecture design is identical to

the one proposed by Dosovitskiy et al. (2020) with no con-

volutions. Our only differences are the training strategies,

and the distillation token. Also we do not use a MLP head

for the pre-training but only a linear classifier. To avoid

any confusion, we refer to the results obtained in the prior

work by ViT, and prefix ours by DeiT. If not specified, DeiT

refers to our referent model DeiT-B, which has the same

architecture as ViT-B. When we fine-tune DeiT at a larger

resolution, we append the resulting operating resolution at

the end, e.g, DeiT-B↑384. Last, when using our distillation

procedure, we identify it with an alembic sign as DeiT⚗.

The parameters of ViT-B (and therefore of DeiT-B) are fixed

as D = 768, h = 12 and d = D/h = 64. We introduce

two smaller models, namely DeiT-S and DeiT-Ti, for which

we change the number of heads, keeping d fixed. Table 1

summarizes the models that we consider in our paper.

5.2. Distillation

Our distillation method produces a vision transformer that

becomes on par with the best convnets in terms of the trade-

off between accuracy and throughput, see Table 5. Interest-

ingly, the distilled model outperforms its teacher in terms

of the trade-off between accuracy and throughput. Our

best model on ImageNet-1k is 85.2% top-1 accuracy out-
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Table 1. Variants of our DeiT architecture. The larger model, DeiT-

B, has the same architecture as the ViT-B (Dosovitskiy et al., 2020).

The only parameters that vary across models are the embedding di-

mension and the number of heads, and we keep the dimension per

head constant (equal to 64). Smaller models have a lower parame-

ter count, and a faster throughput. The throughput is measured for

images at resolution 224×224.

Model embedding #heads #layers #params training throughput

dimension resolution (im/sec)

DeiT-Ti 192 3 12 5M 224 2536

DeiT-S 384 6 12 22M 224 940

DeiT-B 768 12 12 86M 224 292

Table 2. ImageNet-1k top-1 accuracy of the student as a function of

the teacher model used for distillation. The convolutional Regnet

by Radosavovic et al. (2020) have been trained with a similar

training as our transformers, except that we used SGD. We provide

more details about their performance and efficiency in Table 5.

Interestingly, image transformers learn more from a convnet than

from another transformer with comparable performance.

Teacher Student: DeiT-B

Models acc. pretrain ↑384

DeiT-B 81.8 81.9 83.1

RegNetY-4GF 80.0 82.7 83.6

RegNetY-8GF 81.7 82.7 83.8

RegNetY-12GF 82.4 83.0 83.9

RegNetY-16GF 82.9 83.0 84.0

performs the best Vit-B model pre-trained on JFT-300M

and fine-tuned on ImageNet-1k at resolution 384 (84.15%).

Note, the current state of the art of 88.55% achieved with

extra training data is the ViT-H model (632M parameters)

trained on JFT-300M and fine-tuned at resolution 512. Here-

after we provide several analysis and observations.

Convnets teachers. We have observed that using a con-

vnet teacher gives better performance than using a trans-

former. Table 2 compares distillation results with different

teacher architectures. The fact that the convnet is a better

teacher is probably due to the inductive bias inherited by

the transformers through distillation, as explained in Abnar

et al. (2020). In all of our subsequent distillation experi-

ments the default teacher is a RegNetY-16GF (Radosavovic

et al., 2020) with 84M parameters, that we trained with

the same data and same data-augmentation as DeiT. This

teacher reaches 82.9% top-1 accuracy on ImageNet.

Comparison of distillation methods. We compare the

performance of different distillation strategies in Table 3.

Hard distillation significantly outperforms soft distillation

for transformers, even when using only a class token: hard

distillation reaches 83.0% at resolution 224×224, compared

to the soft distillation accuracy of 81.8%. Our distillation

Table 3. Distillation experiments on ImageNet-1k with DeiT, 300

epochs of pre-training. We report the results for the architecture

augmented with an additional token/embedding in the last three

rows. We separately report the performance when classifying

with only one of the class or distillation embedding, and then

with a classifier taking both of them as input. In the last row

(class+distillation), the result correspond to the late fusion of the

class and distillation classifiers.

supervision ImageNet top-1 (%)

DeiT: method ↓ label teacher Ti 224 S 224 B 224 B↑384

no distillation ✓ ✗ 72.2 79.8 81.8 83.1

usual distillation ✗ soft 72.2 79.8 81.8 83.2

hard distillation ✗ hard 74.3 80.9 83.0 84.0

class embedding ✓ hard 73.9 80.9 83.0 84.2

distil. embedding ✓ hard 74.6 81.1 83.1 84.4

DeiT⚗: class+distil. ✓ hard 74.5 81.2 83.4 84.5

strategy from Section 4 further improves the performance,

showing that the two tokens provide complementary infor-

mation useful for classification: the classifier on the two

tokens is significantly better than the independent class and

distillation classifiers, which by themselves already outper-

form the distillation baseline.

The embedding associated with the distillation token gives

slightly better results than the class token. It is also more

correlated to the convnets prediction. In all cases, including

it improves the performance of the different classifiers. We

give more details and an analysis in the next paragraph.

Agreement with the teacher & inductive bias? As dis-

cussed above, the architecture of the teacher has an im-

portant impact. Does it inherit existing inductive bias that

would facilitate the training? While we believe it difficult

to formally answer this question, we analyze in Table 4 the

decision agreement between the convnet teacher, our image

transformer DeiT learned from labels only, and our trans-

former DeiT⚗. Our distilled model is more correlated to the

convnet than with a transformer learned from scratch. As

to be expected, the classifier associated with the distillation

embedding is closer to the convnet that the one associated

with the class embedding, and conversely the one associated

with the class embedding is more similar to DeiT learned

without distillation. Unsurprisingly, the joint class+distil

classifier offers a middle ground.

Analysis of the tokens. We observe that the learned class

and distillation tokens converge towards different vectors:

the average cosine similarity (cos) between these tokens

equal to 0.06. The class and distillation embeddings com-

puted at each layer gradually become more similar through

the network, all the way through the last layer at which their

similarity is high (cos=0.93), but still lower than 1. This

is expected since as they aim at producing targets that are
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Table 4. Disagreement analysis between convnet, image transform-

ers and distillated transformers: We report the fraction of sample

classified differently for all classifier pairs, i.e., the rate of different

decisions. We include two models without distillation (a RegNetY

and DeiT-B), so that we can compare how our distilled models and

classification heads are correlated to the RegNetY teacher.

no distillation DeiT⚗ student

convnet DeiT class distil. DeiT⚗

groundtruth 0.171 0.182 0.170 0.169 0.166

convnet (RegNetY) 0.000 0.133 0.112 0.100 0.102

DeiT 0.133 0.000 0.109 0.110 0.107

DeiT⚗– class only 0.112 0.109 0.000 0.050 0.033

DeiT⚗– distil. only 0.100 0.110 0.050 0.000 0.019

DeiT⚗– class+distil. 0.102 0.107 0.033 0.019 0.000

similar but not identical.

We verified that our distillation token adds something to

the model, compared to simply adding an additional class

token associated with the same target label: instead of a

teacher pseudo-label, we experimented with a transformer

with two class tokens. Even if we initialize them randomly

and independently, during training they converge towards

the same vector (cos=0.999), and the output embedding are

also quasi-identical. In contrast to our distillation strategy,

an additional class token does not bring anything to the

classification performance.

Number of epochs. Increasing the number of epochs sig-

nificantly improves the performance of training with distilla-

tion, see Figure 3. With 300 epochs2, our distilled network

DeiT-B⚗ is already better than DeiT-B. But while for the

latter the performance saturates with longer schedules, the

distilled network benefits from a longer training time.

5.3. Efficiency vs accuracy: a comparison to convnets

In the literature, image classificaton methods are often com-

pared as a compromise between accuracy and another cri-

terion, such as FLOPs, number of parameters, size of the

network, etc. We focus in Figure 1 on the tradeoff between

the throughput (images per second) and the top-1 classifi-

cation accuracy on ImageNet. The throughput is measured

as the number of images that we can process per second on

one 16GB V100 GPU: we take the largest possible batch

size and average the processing time over 30 runs. We focus

on the popular EfficientNet convnet, which has benefited

from years of research on convnets and was optimized by

architecture search on the ImageNet validation set.

2Formally we have 100 epochs, but each is 3x longer because
of the repeated augmentations. We prefer to refer to this as 300
epochs in order to have a direct comparison on the effective training
time with and without repeated augmentation.

⚗↑
⚗

Figure 3. Distillation on ImageNet1k with DeiT-B: top-1 accuracy

as a function of the training epochs. The performance without

distillation (horizontal dotted line) saturates after 400 epochs.

Our method DeiT is slightly below EfficientNet, which

shows that we have almost closed the gap between vision

transformers and convnets when training with Imagenet

only. These results are a major improvement (+6.3% top-1

in a comparable setting) over previous ViT models trained

on Imagenet1k only (Dosovitskiy et al., 2020). Furthermore,

when DeiT benefits from the distillation from a relatively

weaker RegNetY to produce DeiT⚗, it outperforms Effi-

cientNet. It also outperforms by 1% (top-1 acc.) the Vit-B

model pre-trained on JFT300M at resolution 384 (85.2% vs

84.15%), while being significantly faster to train.

Table 5 reports the numerical results in more details and

additional evaluations on ImageNet V2 and ImageNet Real,

that have a test set distinct from the ImageNet validation,

which reduces overfitting on the validation set. Our results

show that DeiT-B⚗ and DeiT-B⚗ ↑384 outperform, by some

margin, the state of the art on the trade-off between accuracy

and inference time on GPU.

5.4. Transfer learning to downstream tasks

Although DeiT perform very well on ImageNet it is impor-

tant to evaluate them on other datasets with transfer learning

in order to measure the power of generalization of DeiT.

We evaluated this on transfer learning tasks by fine-tuning

on the datasets in Table 8. Table 6 compares DeiT transfer

learning results to those of ViT and EfficientNet. DeiT is on

par with competitive convnet models, which is in line with

our previous conclusion on ImageNet1k.

Comparison vs training from scratch. We investigate

the performance when training from scratch on a small

dataset, without Imagenet pre-training. We get the following

results on the small CIFAR-10, which is small both w.r.t.

the number of images and labels:
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Table 5. Throughput (images/s) vs accuracy on Imagenet (Rus-

sakovsky et al., 2015), Imagenet Real (Beyer et al., 2020) and

Imagenet V2 matched frequency (Recht et al., 2019) of models

trained without external data. We compare DeiT and Vit-B (Doso-

vitskiy et al., 2020) to several state-of-the-art convnets: ResNet (He

et al., 2016), Regnet (Radosavovic et al., 2020), EfficientNet (Tan

& Le, 2019; Cubuk et al., 2019; Wei et al., 2020). We use for

each model the definition in the same GitHub (Wightman, 2019)

repository. The reported results are from corresponding papers.

nb of image ImNet Real V2
Network param. size im/s top-1 top-1 top-1

ResNet-18 12M 224 4458.4 69.8 77.3 57.1
ResNet-50 25M 224 1226.1 76.2 82.5 63.3
ResNet-101 45M 224 753.6 77.4 83.7 65.7
ResNet-152 60M 224 526.4 78.3 84.1 67.0

RegNetY-4GF⋆ 21M 224 1156.7 80.0 86.4 69.4
RegNetY-8GF⋆ 39M 224 591.6 81.7 87.4 70.8
RegNetY-16GF⋆ 84M 224 334.7 82.9 88.1 72.4

EfficientNet-B0 5M 224 2694.3 77.1 83.5 64.3
EfficientNet-B1 8M 240 1662.5 79.1 84.9 66.9
EfficientNet-B2 9M 260 1255.7 80.1 85.9 68.8
EfficientNet-B3 12M 300 732.1 81.6 86.8 70.6
EfficientNet-B4 19M 380 349.4 82.9 88.0 72.3
EfficientNet-B5 30M 456 169.1 83.6 88.3 73.6
EfficientNet-B6 43M 528 96.9 84.0 88.8 73.9
EfficientNet-B7 66M 600 55.1 84.3

EfficientNet-B5 RA 30M 456 96.9 83.7
EfficientNet-B7 RA 66M 600 55.1 84.7

KDforAA-B8 87M 800 25.2 85.8

Transformers: training 300 epochs

ViT-B/16 86M 384 85.9 77.9 83.6
ViT-L/16 307M 384 27.3 76.5 82.2

DeiT-Ti 5M 224 2536.5 72.2 80.1 60.4
DeiT-S 22M 224 940.4 79.8 85.7 68.5
DeiT-B 86M 224 292.3 81.8 86.7 71.5
DeiT-B↑384 86M 384 85.9 83.1 87.7 72.4

DeiT-Ti⚗ 6M 224 2529.5 74.5 82.1 62.9
DeiT-S⚗ 22M 224 936.2 81.2 86.8 70.0
DeiT-B⚗ 87M 224 290.9 83.4 88.3 73.2
DeiT-B⚗ ↑384 87M 384 85.8 84.5 89.0 74.8

Transformers: training 1000 epochs

DeiT-Ti⚗ 6M 224 2529.5 76.6 83.9 65.4
DeiT-S⚗ 22M 224 936.2 82.6 87.8 71.7
DeiT-B⚗ 87M 224 290.9 84.2 88.7 73.9
DeiT-B⚗ ↑384 87M 384 85.8 85.2 89.3 75.2

⋆: our trained teachers with SGD, whose optimization procedure is closer to DeiT

Table 6. We compare Transformers based models on different trans-

fer learning task with ImageNet pre-training. We also give results

obtained with Efficient-B7 for reference (Tan & Le, 2019).
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EfficientNet-B7 84.3 98.9 91.7 98.8 94.7 55.1

ViT-B/32 73.4 97.8 86.3 85.4 394.5

ViT-B/16 77.9 98.1 87.1 89.5 85.9

ViT-L/32 71.2 97.9 87.1 86.4 124.1

ViT-L/16 76.5 97.9 86.4 89.7 27.3

DeiT-B 81.8 99.1 90.8 98.4 92.1 73.2 77.7 292.3

DeiT-B↑384 83.1 99.1 90.8 98.5 93.3 79.5 81.4 85.9

DeiT-B⚗ 83.4 99.1 91.3 98.8 92.9 73.7 78.4 290.9

DeiT-B⚗ ↑384 84.4 99.2 91.4 98.9 93.9 80.1 83.0 85.9

Table 7. Ablation study on training methods on ImageNet (top-1

acc.). The top row (”none”) corresponds to our default configura-

tion employed for DeiT. The symbols ✓ and ✗ indicate that we

use and do not use the corresponding method, respectively. We

report the accuracy scores (%) after the initial training at resolution

224×224, and after fine-tuning at resolution 384×384. The hyper-

parameters are fixed according to Table 9, and may be suboptimal.

* indicates that the model did not train well, possibly because

hyper-parameters are not adapted.
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adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 81.8±0.2 83.1±0.1

SGD adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 74.5 77.3

adamw SGD ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 81.8 83.1

adamw adamw ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 79.6 80.4

adamw adamw ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 81.2 81.9

adamw adamw ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ 78.7 79.8

adamw adamw ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ 80.0 80.6

adamw adamw ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ 75.8 76.7

adamw adamw ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ 4.3* 0.1

adamw adamw ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ 3.4* 0.1

adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 76.5 77.4

adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 81.3 83.1

adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 81.9 83.1

Method RegNetY-16GF DeiT-B DeiT-B⚗
Top-1 98.0 97.5 98.5

For this experiment, we tried we get as close as possible

to the Imagenet pre-training counterpart, meaning that (1)

we consider longer training schedules (up to 7200 epochs,

which corresponds to 300 Imagenet epochs) so that the

network has been fed a comparable number of images in

total; (2) we re-scale images to 224× 224 to ensure that we

have the same augmentation. The results are not as good

as with Imagenet pre-training (98.5% vs 99.1%), which is

expected since the network has seen a much lower diversity.

However they show that it is possible to learn a reasonable

transformer on CIFAR-10 only.

6. Training details & ablation

This section discusses the DeiT training strategy to learn vi-

sion transformers in a data-efficient manner. We build upon

PyTorch (Paszke et al., 2019) and the timm3 library (Wight-

man, 2019). We provide hyper-parameters and an ablation

study in which we analyze the impact of each choice.

3The timm implementation includes a training procedure that
improved the accuracy of ViT-B from 77.91% to 79.35% top-1,
and trained on Imagenet-1k with a 8xV100 GPU machine.
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Initialization and hyper-parameters. Transformers are

relatively sensitive to initialization. After testing several

options, some of them not converging, we follow Hanin &

Rolnick (2018) and initialize the weights with a truncated

normal distribution. Table 9 indicates the hyper-parameters

that we use by default at training time for all our experi-

ments, unless stated otherwise. For distillation we follow the

recommendations from Cho & Hariharan (2019) to select

the parameters τ and λ. We take the typical values τ = 3.0
or τ = 1.0 and λ = 0.1 for the usual (soft) distillation.

Data-Augmentation. Compared to models that integrate

more priors (such as convolutions), transformers require a

larger amount of data. Thus, in order to train with datasets

of the same size, we rely on extensive data augmentation.

We evaluate different types of strong data augmentation,

with the objective to reach a data-efficient training regime.

Auto-Augment (Cubuk et al., 2018), Rand-Augment (Cubuk

et al., 2019), and random erasing (Zhong et al., 2020) im-

prove the results. For the two latter we use the timm (Wight-

man, 2019) customizations, and after ablation we choose

Rand-Augment instead of AutoAugment. Overall our exper-

iments confirm that transformers require a strong data aug-

mentation: almost all the data-augmentation methods that

we evaluate prove to be useful. One exception is dropout,

which we exclude from our training procedure.

Regularization & Optimizers. We have considered dif-

ferent optimizers and cross-validated different learning rates

and weight decays. Transformers are sensitive to the set-

ting of optimization hyper-parameters. Therefore, dur-

ing cross-validation, we tried 3 different learning rates

(5.10−4, 3.10−4, 5.10−5) and 3 weight decay (0.03, 0.04,

0.05). We scale the learning rate according to the batch size

with the formula: lrscaled = lr
512

× batchsize, similarly to

Goyal et al. (2017) except that we use 512 instead of 256 as

the base value. The best results use the AdamW optimizer

with a much smaller weight decay than in ViT.

We have employed stochastic depth (Huang et al., 2016),

which facilitates the convergence of transformers, especially

deep ones (Fan et al., 2019; 2020). For vision transform-

ers, they were first adopted in the training procedure by

Wightman (2019). Regularization like Mixup (Zhang et al.,

2017) and Cutmix (Yun et al., 2019) improve performance.

We also use repeated augmentation (Berman et al., 2019;

Hoffer et al., 2020), which is one of the key ingredients of

our proposed training procedure.

Exponential Moving Average (EMA). We evaluate the

EMA of our network obtained after training. There are small

gains, which vanish after fine-tuning: the EMA model has

an edge of is 0.1 accuracy points, but when fine-tuned the

two models reach the same (improved) performance.

Fine-tuning at different resolution. We adopt the fine-

tuning procedure from Touvron et al. (2020): our schedule,

regularization and optimization procedure are identical to

that of FixEfficientNet but we keep the training-time data

augmentation, unlike the dampened data augmentation of

Touvron et al. (2020). We also interpolate the positional

embeddings: In principle any classical image scaling tech-

nique, like bilinear interpolation, could be used. However, a

bilinear interpolation of a vector from its neighbors reduces

its ℓ2-norm compared to its neighbors. These low-norm

vectors are not adapted to the pre-trained transformers and

we observe a significant drop in accuracy if we employ

use directly without any form of fine-tuning. Therefore we

adopt a bicubic interpolation that approximately preserves

the norm of the vectors, before fine-tuning the network with

either AdamW (Loshchilov & Hutter, 2017) or SGD. These

optimizers have a similar performance for the fine-tuning

stage, see Table 7.

By default and similar to ViT we train DeiT models with

at resolution 224 and fine-tune at resolution 384. We detail

how to do this interpolation in Section 3.

Training time. A typical training of 300 epochs takes 37

hours with 2 nodes or 53 hours on a single 8-GPU node

for the DeiT-B. As a comparison point, a similar training

with a RegNetY-16GF (Radosavovic et al., 2020) (84M

parameters) is 20% slower. DeiT-S and DeiT-Ti are trained

in less than 3 days on 4 GPU. Then, optionally we fine-tune

the model at a larger resolution. This takes 20 hours on

8 GPUs to fine-tune a DeiT-B model at resolution 384×384,

which corresponds to 25 epochs. Not having to rely on batch-

norm allows one to reduce the batch size without impacting

performance, which makes it easier to train larger models.

Note that, since we use repeated augmentation (Berman

et al., 2019; Hoffer et al., 2020) with 3 repetitions, we only

see one third of the images during a single epoch.

7. Conclusion

We have introduced a data-efficient training procedure for

image transformers so that do not require very large amount

of data to be trained, thanks to improved training and in par-

ticular a novel distillation procedure. Convolutional neural

networks have been optimized, both in terms of architecture

and optimization, during almost a decade, including through

extensive architecture search prone to overfiting.

For DeiT we relied on existing data augmentation and regu-

larization strategies pre-existing for convnets, not introduc-

ing any significant architectural change beyond our novel

distillation token. Therefore we expect that further research

on image transformers will bring further gains.
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