
Supplementary Material
Bayesian Optimistic Optimisation with Exponentially Decaying Regret

1. Review of SOO, BaMSOO, IMGPO algorithms
In the first section of the Supplementary Material, we provide the details of SOO (Munos, 2011) and BamSOO (Wang et al.,
2014). The main difference between our proposed BOO algorithm and these algorithms are in the following blue color lines.
As we can see, SOO and BaMSOO select a node to be expanded at line 4 in each algorithm. At depth h, among the leaf

Algorithm 1 The SOO Algorithm (Munos, 2011)
Input: Parameter m
Initialisation: Set T0 = {(0, 0)} (root node). Set p = 1. Sample initial points to build D0.

1: while True do
2: Set vmax = −∞
3: for h = 0 to min(depth(Tp), hmax(p)) do
4: Among all leaves (h, j) of depth h, select (h, i) ∈ argmax(h,j)∈Lf(ch,j)
5: if f(ch,i) ≥ vmax then
6: Expand node (h, i) by adding m children (h+ 1, ij) to tree Tp
7: Evaluate all m functional values f(ch+1,ij), where (h+ 1, ij) are children of (h, i)
8: Update vmax = f(ch,i)
9: Update p = p+ 1

10: end if
11: end for
12: end while

nodes, SOO selects the node with the maximum functional value, BaMSOO selects the node with the maximum value of
function g. The function g is defined at line 9 and line 13 in Algorithm 3. Otherwise, the proposed BOO selects the node
with the maximum GP-UCB value.

Once a node is selected to be expanded, SOO needs to sample the function at all m children nodes (at line 7 in Algorithm 2),
BamSOO needs to sample the function at m′ children nodes (at line 9 in Algorithm 3), where 0 ≤ m′ ≤ m depending on
the condition at line 9 in Algorithm 3. In the worst case, m′ = m, BamSOO spends m evaluations like SOO. Otherwise, our
sampling strategy samples the function only at the parent node. As a result, our strategy requires only one function evaluation
irrespective of the value of m. IMGPO (Kawaguchi et al., 2016) is quite similar to BaMSOO except two differences. Frist,
IMGPO do not force the tree to a maximum depth of hmax(p) like SOO, BamSOO. Second, IMGPO add a strategy to
reduce the computation when searching in the tree is inefficient. Please see their paper (Kawaguchi et al., 2016) for details.

1.1. Strict Negative Correlation

As we discussed in section 4.1 of the main paper. Most of tree-based optimistic optimisation algorithms like SOO, StoSOO
(Valko et al., 2013), BaMSOO and IMGPO face a strict negative correlation between the branch factor m and the number of
tree expansions given a fixed function evaluation budget N . In this part, we provide a summary table showing the simple
regret (in the worst case) of these algorithms given a fixed function evaluation budget N .

Algorithm Simple Regret

SOO O(e
√

N
m)

BaMSOO O((Nm)−
2α

D(4−α))

IMGPO O(e
√

N
m)

Table 1. The simple regret of SOO depends on the near-optimality dimension d. If d > 0 then the simple regret is sublinear, if d = 0 then
the simple regret is exponential as we show in this table. BaMSOO has a sublinear rate because it uses d = D/α−D/4 where α = 1 or
2. IMGPO uses a fixed m = 3. We here generalize their proof to any m.

Algorithm 2 The BaMSOO Algorithm (Wang et al., 2014)
Input: Parameter m
Initialisation: Set g0,0 = f(c0,0), f+ = g0,0, t = 1, p = 1, T0 = {(0, 0)} (root node). Sample initial points to build D0.

1: while True do
2: Set vmax = −∞
3: for h = 0 to min(depth(Tp), hmax(p)) do
4: Among all leaves (h, j′) of depth h, select (h, j) ∈ argmax(h,j′)∈Lg(ch,j′)
5: if g(ch,j) ≥ vmax then
6: for i = 0 to k − 1 do
7: Update p = p+ 1
8: if Up(ch+1,mj+i) ≥ f+ then
9: Set g(ch+1,mj+i) = f(ch+1,mj+i)

10: Set t = t+ 1
11: Dt = {Dt−1, (ch+1,mj+i, g(ch+1,mj+i))}
12: else
13: Set g(ch+1,mj+i) = Lp(ch+1,mj+i)
14: end if
15: if g(ch+1,mj+i) > f+ then
16: Set f+ = g(ch+1,mj+i)
17: end if
18: end for
19: Add the children of (h, j) to Tp
20: Set vmax = g(ch,j)
21: end if
22: end for
23: end while

The Table 3 shows the strict negative correlation of tree-based optimistic optimisation algorithms like SOO, BamSOO,
IMGPO. The larger m is, the higher the simple regret is. This explains why most of tree-based optimistic optimisation
algorithms often use a small value of m like m = 2, m = 3. In contrast, our algorithm leverages the large value of m to
improve the regret bound.

2. Proof of Lemma 1
Lemma 1 (Lemma 1 in the main paper). Given any (a, b) ∈M(m) and a partitioning procedure P (m; a, b), then

1. the longest side of a cell at depth h is at most a−b
bh
D c, and

2. the smallest side of a cell at depth h is at least a−d
bh
D e.

Proof. We prove the statement by induction. At depth h = 1, we partition the search space X into m = ab cells using the
partitioning procedure P (m; a, b). There are two cases on b.

• b = D. Then the longest side of a cell at depth h = 1 is 1/a = a−b
b
D c. Also, the smallest side of a cell at depth h = 1

is 1/a = a−d
b
D e.

• b < D. Then by the partitioning procedure, the longest side of a cell at depth h = 1 is still 1. a−b
b
D c = a0 = 1. Hence,

the longest side of a cell at depth 1 is a−b
b
D c. Also, the smallest side of a cell at depth h = 1 is 1/a = a−d

b
D e.

For both cases, the statement is true for h = 1. We assume that the statement is true for h ≥ 1. We consider any cell at
depth h+ 1. By our algorithm, this cell is divided from a cell at depth h. Similar to the case h = 1, we also consider two
cases on b.

• b = D. By the inductive hypothesis, the longest side of a cell at depth h is at most a−h. Then the longest side of a child
cell of this cell is a−(h+1) = a−b

b(h+1)
D c. Also, the smallest side of a child cell of this cell is a−(h+1) = a−d

b(h+1)
D e.

• b < D. By the inductive hypothesis, the longest side of a cell at depth h is at most a−b
bh
D c. If we divide a cell at depth

h by the partitioning procedure, then the longest side of the sub-cell is at most a−b
bh
D c/a = a−1−b

bh
D c. However, since

b < D, b b(h+1)
D c ≤ 1 + b bhD c. It follows that a−1−b

bh
D c ≤ a−b

b(h+1)
D c. Thus, the longest side of a cell at depth h+ 1 is

at most a−b
b(h+1)
D c.

Also, by the inductive hypothesis, the smallest side of a cell at depth h is at least a−d
bh
D e. If we divide a cell at depth h

then the smallest side of the sub-cell is at least a−d
bh
D e/a = a−d

bh
D e−1. However, since b < D, d bhD e+ 1 ≥ d b(h+1)

D e.
As a result, a−d

bh
D e−1 ≥ a−d

b(h+1)
D e. Thus, the smallest side of a cell at depth h+ 1 is at least a−b

b(h+1)
D c.

Thus, the statement holds for every h ≥ 1.

3. Proof of Lemma 4
To derive an upper bound on variance function σp as in Lemma 4, we use a concept, called the fill distance. Given a set of
points Dp−1 , we define the fill distance FD(Dp−1,X) as the largest distance from any point in X to the points in Dp−1, as

FD(Dp−1,X) = supx∈X infci∈Dp−1
||x− ci||.

The following result, which is proven by Wu & Schaback (1992) [Theorem 5.14], after is reviewed by Kanagawa et al.
(2018) [Theorem 5.4], provides an upper bound for the posterior variance in terms of the fill distance. It applies the cases
where the kernel whose RKHS is norm-equivalent to the Sobolev space.

Lemma 2 ((Wu & Schaback, 1992; Kanagawa et al., 2018)). Let k be a kernel on Rd whose RKHS is norm equivalent
to the Sobolev space. There exist constants h0 > 0 and C ′ > 0 satisfying the following: for any x ∈ X and any set of
observations Dp−1 = {c1, c2, ..., cp−1} ∈ X satisfying FD(Dp−1,X) ≤ h0, we have

σp(x) ≤ C ′FD(Dp−1,X))ν−D/2.

It was shown in (Bull, 2011) [Lemma 3] and in (Kanagawa et al., 2018) that the Matérm kernels’s RKHS is norm-equivalent
to the Sobolev space. Therefore, Lemma 2 is correct all functions satisfying our Assumption 1 and 2 (in Baysian setting).

Based on Lemma 2, we obtain the following result which is similar to Lemma 4 of Vakili et al. (2020) but for the Bayesian
setting.

Lemma 3 (Based on Lemma 4 of Vakili et al. (2020)). There exist constants h0 > 0 and C ′ > 0 satisfying the following:
for any x ∈ X and any set of observations Dp−1 = {x1, x2, ..., xp−1} ∈ X satisfying FD(Dp−1,X) ≤ h0, we have

σp(x) ≤ minci∈Dp−1C
′||x− ci||ν−D/2

Proof. The proof is very similar to their proof. We include it for the purpose of being self-contained. For x ∈ X , let
ci ∈ Dp−1 be the closet point to x: ||x− cj || = minxi∈Dp−1 ||x− ci||. Define X ′ = BD(cj , ||x− cj ||), the D-dimensional
hyper-ball centered at cj with radius ||x− cj ||. Let X” = Dp−1 ∩X ′. The fill distance of the points X” in X ′ satisfies:

FD(X”, X ′) = supx′∈X′ infci∈X”||x′ − ci|| ≤ supx′∈X′ ||x′ − cj || = ||x− cj ||.

Define µ′(x) = E[f(x)|X”] and k′(x, x′) = E[(f(x) − µ′(x))(f(x′) − µ′(x′))|X”]. Let σ′(x) =
√
k′(x, x′) be the

predictive standard deviation conditioned on observations X”. Applying Lemma 2 to σ′(x), we have

σ′(x) ≤ C ′FD(X”, X ′)ν−D/2 ≤ C ′||x− cj ||ν−D/2.

The lemma holds because σp(x) ≤ σ′(x). This is the decreasing monotonicity of the variance function. σ′(x) is constructed
from set X ′′ ⊂ Dp−1. A more formal proof that σp(x) ≤ σ′(x) can be found in (Chevalier et al., 2014).

Next, we apply this result to our context in which the set of the sampling points ci, Dp−1 = {c1, ..., cp−1} , contains the
centers of cells Ah,i of a tree structured search space.

Now we prove Lemma 4 in the main paper.

Lemma 4. Assuming that node ch,i at the depth h ≥ 1 was sampled at the p-th expansion, where p ≥ h, then we have that

σp(ch,i) ≤ C1(δ(h− 1; a, b))ν/2−D/4,

where C1 is a constant.

Proof. By Lemma 3, for every x ∈ X , we have that

σp(x) ≤ minci∈Dp−1C
′||x− ci||ν−D/2

where C ′ is a constant.

By assumption, node ch,i at depth h is sampled at the p-th expansion, where p ≥ h. By hierarchical structure of the sampled
points, node ch,i is sampled only if its parent node was sampled. We denote this node by ch−1,j which is at depth h− 1
with some index j. It follows that

σp(ch,i) ≤ minci∈Dp−1C
′||ch,i − ci||ν−D/2

≤ C ′||ch,i − ch−1,j ||ν−D/2

≤ C ′(L1D)D/4−ν/2(δ(h− 1; a, b))ν/2−D/4,

where in the first inequality, we apply Lemma 3. In the second inequality, we use the property of ch−1,j ∈ Dp−1, hence
minci∈Dp−1

||ch,i − ci||v−D/2 ≤ ||ch,i − ch−1,j ||v−D/2. In the last inequality, we have that ch,i belongs to the cell Ah−1,j
with center ch−1,j . Hence, distance ||ch,i − ch−1,j || must be shorter than the diameter of that cell. By Lemma and the
definition of δ(h− 1; a, b) = L1Da

−2b b(h−1)
D c, the last inequality is proven.

Finally, by setting C1 = C ′(L1D)D/4−ν/2, the lemma holds.

4. Proof of Theorem 1
To prove Theorem 1, we will involve two stages:

• Stage 1: we first prove that if N is large enough, then under some assumptions, all the centers of nodes of expandable
nodes will fall into the ball B(x∗, θ) which is centered at x∗ with radius θ as defined in Property 1. We prove this in the
following Lemma 5.

• Stage 2: when a set of expandable nodes fallen into the ball B(x∗, θ), the quadratic behaviours of the objective function
surrounding the global optimum x∗ will occur. We exploit this property to prove that |Ih| ≤ C, where C is some
constant.

Lemma 5. Assume Algorithm 1 uses partitioning procedure P (m; a, b) where a = O(N1/D) and b = D. Thus there exists
a constant N0 such that for every N ≥ N0, if (1) node (h, i) ∈ Ih, where h ≥ 2 and (2) Lp(ch,i) ≤ f(ch,i) for every
h ≤ p ≤ N , then

ch,i ∈ B(x∗, θ),

where B(x∗, θ) is the ball centered at x∗ with radius θ, which is defined in Property 1.

Proof. By definition, the expansion set Ih = {(h, i)|∃h ≤ p ≤ N : Up(ch,i) ≥ f(x∗) − δ(h; a, b)}. Therefore, if node
(h, i) ∈ Ih then there must exist some h ≤ p ≤ N such that

Up(ch,i) ≥ f(x∗)− δ(h; a, b) (1)

On the other hand, for the same upper confidence bound Up(ch,i) of f(ch,i) as above, we have that

Up(ch,i) = µp(ch,i) + β1/2
p σp(ch,i) (2)

= µp(ch,i)− β1/2
p σp(ch,i) + 2β1/2

p σp(ch,i) (3)

= Lp(ch,i) + 2β1/2
p σp(ch,i) (4)

≤ f(ch,i) + 2β1/2
p σp(ch,i) (5)

≤ f(ch,i) + 2β1/2
p C1(δ(p− 1; a, b))ν/2−D/4, (6)

where in Eq (5), we use the assumption that Lp(ch,i) ≤ f(ch,i). In Eq (6), we use Lemma 4.

Combining Eq (1) and Eq (7), we obtain

f(x∗)− f(ch,i) ≤ f(ch,i) + 2β1/2
p C1(δ(p− 1; a, b))ν/2−D/4 (7)

= L1Da
−2b bhD c + 2β1/2

p C1(L1Da
−2b b(h−1)

D c)ν/2−D/4 (8)

= L1Da
−2h + 2β1/2

p C1(L1D)ν/2−D/4a−(ν−D/2)(h−1), (9)

where Eq (8) uses the definition of δ(h; a, b) and Eq (9) uses the assumption that b = D.

We continue to go further with Eq (9) by using the assumptions that a = O(N1/D), h ≥ 2 (from assumptions of Lemma 5),
and ν −D/2 > 4 (from Assumption 1):

f(x∗)− f(ch,i) ≤ L1Da
−2h + 2β1/2

p C1(L1D)ν/2−D/4a−(ν−D/2)(h−1) (10)

≤ L1Da
−4 + 2β

1/2
N C1(L1D)ν/2−D/4a−4 (11)

=
L1D + 2C1(L1D)ν/2−D/4

√
2log(π2N3/3η)

a4
(12)

= O(

√
log(N/3η)

N4/D
), (13)

where, in Eq (11), we use h ≥ 2 and the increasing monotonicity of function βp. We recall that βp is the trade-off parameter
used on our BOO proposed. Formally, βp = 2log(π

2p3

3η), where η ∈ (0, 1). In Eq (13), we use a = O(N1/d).

We have that
√
log(N/3η)

N4/D → 0 as N →∞. Therefore, for any ε0 > 0, there exists a constant N0 > 0 such that for every
N ≥ N0, f(x∗)− f(ch,i) ≤ ε0. Thus, by definition of B(x∗, θ) in Property 1, ch,i ∈ B(x∗, θ).

We now start to prove Theorem 1.

Theorem 1. Assume that the proposed BOO algorithm uses partitioning procedure P (m; a, b) where a = O(N1/D) and
b = D. We consider set Ih, where h ≥ 2 and assume that Lp(ch,i) ≤ f(ch,i) ≤ Up(ch,i) for all node (h, i) ∈ Ih and for
all h ≤ p ≤ N . Then there exist constants N1 > 0 and C > 0 such that for every for N ≥ N1,

|Ih| ≤ C.

Proof. The proof involves three steps.

Step 1: for each node (h, i) ∈ Ih, we seek to bound gap ||x∗ − ch,i||.

By Lemma 5 and the assumptions of Lemma 1, there exists a constant N0 such that for every N ≥ N0, for any (h, i) ∈ Ih
then ch,i ∈ B(x∗, θ). Hence following Property 1, for any (h, i) ∈ Ih, the following result is guaranteed:

L2||x∗ − ch,i||2 ≤ f(x∗)− f(ch,i). (14)

On the other hand, by definition of Ih, there exists h ≤ p ≤ N such that

Up(ch,i) ≥ f(x∗)− δ(h; a, b). (15)

Combining Eq (14) and Eq (15), we have that

L2||x∗ − ch,i||2 ≤ Up(ch,i) + δ(h; a, b)− f(ch,i). (16)

Similar to Lemma 5, we continue to analyze the right hand side of Eq (16) as follows:

L2||x∗ − ch,i||2 ≤ Up(ch,i) + δ(h; a, b)− f(ch,i) (17)

= µp(ch,i) + β1/2
p σp(ch,i) + δ(h; a, b)− f(ch,i) (18)

= µp(ch,i)− β1/2
p σp(ch,i) + 2β1/2

p σp(ch,i) + δ(h; a, b)− f(ch,i) (19)

≤ Lp(ch,i) + 2β1/2
p σp(ch,i) + δ(h; a, b)− f(ch,i) (20)

≤ 2β1/2
p σp(ch,i) + δ(h; a, b) (21)

≤ 2β1/2
p C1(δ(p− 1; a, b))ν/2−D/4 + δ(h; a, b) (22)

≤ 2β
1/2
N C1(δ(h− 1; a, b))ν/2−D/4 + δ(h; a, b), (23)

where in Eq (18), we use the definition of Up(ch,i), in Eq (20), we use the definition of Lp(ch,i). In Eq (21), we use
the assumption that Lp(ch,i) ≤ f(ch,i). In Eq (22), we use Lemma 4. Finally, in the last inequality at Eq (23), we use
the decreasing monotonicity of function δ(h; a, b) and the increasing monotonicity of function βp. By assumption that
h ≤ p ≤ N , hence δ(p−1; a, b) ≤ δ(h−1; a, b) and β1/2

p ≤ β1/2
N . We recall that δ(h; a, b) = L1Da

−2b bhD c as in Definition
1.

Thus, for any (h, i) ∈ Ih, where h ≥ 2, we have that

L2||x∗ − ch,i||2 ≤ 2β
1/2
N C1(δ(h− 1; a, b))ν/2−D/4 + δ(h; a, b).

Step 2: Bounding |Ih| using covering balls.

We let Ωh be the set of nodes (h, i) at depth h generated by partitioning procedure P (m; a, b). From Ωh we define set Ih as

Ih = {(h, i) ∈ Ωh such that L2||x∗ − ch,i||2 ≤ 2β
1/2
N C1(δ(h− 1; a, b))ν/2−D/4 + δ(h; a, b)}.

By this definition, Ih ⊆ Ih which implies directly that |I|h ≤ |Ih|. Now we consider the set of points ch,i of these nodes.
This set is defined as

Ph = {ch,i ∈ X |(h, i) ∈ Ih}.

We can see that all the points of Ph are covered by a hypersphere centered at x∗ with radius√
2β

1/2
N C1(δ(h−1;a,b))ν/2−D/4+δ(h;a,b)

L2
. We call this hypersphere Sh.

On the other hand, by Lemma 3, the smallest side of a cell Ah,i at depth h is at least ad−
bh
D e. Therefore, if we bound a point

ch,i ∈ Ih by a D-ball centered ch,i with radius ad−
bh
D e/2 then all these balls are disjoint. Further, even if there are several

centers ch,i of these balls lying on the boundary of Sh then all these balls must be within the hypersphere centered at x∗

with radius √
2β

1/2
N C1(δ(h− 1; a, b))ν/2−D/4 + δ(h; a, b)

L2
+ ad−

bh
D e/2.

Thus, |Ph| cannot exceed the number of disjoint balls which fit in the hypersphere centered at x∗ with radius√
2β

1/2
N C1(δ(h−1;a,b))ν/2−D/4+δ(h;a,b)

L2
+ ad−

bh
D e/2.

The number of these disjoint balls cannot exceed the proportion of the volume of the hypersphere of radius√
δ(h)+2β

1/2
N C2L−ν+D/2(δ(h−1))ν−D/2

C1
and the volume of small balls of radius ad−

bh
D e/2. This proportion is measured

by

(

√
2β

1/2
N C1(δ(h−1;a,b))ν/2−D/4+δ(h;a,b)

L2
+ ad−

bh
D e/2

ad−
bh
D e/2

)D.

Thus, we have that

|Ph| ≤ (

√
2β

1/2
N C1(δ(h−1;a,b))ν/2−D/4+δ(h;a,b)

L2
+ ad−

bh
D e/2

ad−
bh
D e/2

)D (24)

= (

√
4β

1/2
N C1(δ(h− 1; a, b))ν/2−D/4 + 2δ(h; a, b)

L2a2d−
bh
D e

+ 1)D (25)

However, by definition of Ih and Ph, |Ih| ≤ |Ih| = |Ph|. Therefore, we have

|Ih| ≤ (

√
4β

1/2
N C1(δ(h− 1; a, b))ν/2−D/4 + 2δ(h; a, b)

L2a2d−
bh
D e

+ 1)D.

Step 3: proving that there exists a constant C such that |Ih| ≤ C.

Using the assumption that b = D, we have ad−2
bh
D e = a−2h, δ(h− 1; a, b) = L1Da

−2(h−1), and δ(h; a, b) = L1Da
−2h.

Replacing these results to Eq (25), we get

|Ih| ≤ (

√
4β

1/2
N C1(δ(h− 1; a, b))ν/2−D/4 + 2δ(h; a, b)

L2a2d−
bh
D e

+ 1)D (26)

= (

√
4β

1/2
N C1(L1D)ν/2−D/4a−(ν−D/2)(h−1) + 2L1Da−2h

L2a−2h
+ 1)D (27)

= (

√
4C1(L1D)ν/2−D/4

L2
× β1/2

N × a2h−(ν−D/2)(h−1) +
2L1

L2
+ 1)D (28)

≤ (

√
4C1(L1D)ν/2−D/4

L2
× β1/2

N × a4+D/2−ν +
2L1

L2
+ 1)D (29)

= C ′(
√
log(N/3η)×N (4+D/2−ν)/D)D/2 (30)

where, Eq (29) holds because a2h−(ν−D/2)(h−1) ≤ a4+D/2−ν . Indeed, by using the assumption that ν > 4 + D/2 and
h ≥ 2, we have that

a2h−(ν−D/2)(h−1) = ah(2+D/2−ν)+(ν−D/2)

≤ a2(2+D/2−ν)+(ν−D/2)

= a4+D/2−ν .

For the last inequality at Eq (30), we use the assumption a = O(N1/D), βN = 2log(π2N3/3η), where η ∈ (0, 1), and the

fact that 4C1(L1D)ν/2−D/4

L2
and 2L1

L2
are constants independent of N . Thus, such a constant C ′ at Eq (30) exists.

Since ν > 4+D/2, we have that
√
log(N/3η)

N
ν−D/2−4

D

→ 0 asN →∞. Therefore
√
log(N/3η)×N (4+D/2−ν)/D → 0 asN →∞.

Thus, there exists constant N1 > 0 and C > 0 such that for every N ≥ N1, |Ih| ≤ C for every h ≥ 2.

5. Proof of Lemma 5
Let (h∗p + 1, i∗) be an optimal node of depth h∗p + 1 (i.e., x∗ ∈ Ah∗p+1,i∗). We define a node (h, i) at depth h as
δ(h; a, b)-optimal if U(ch,i) ≥ f(ch,i)− δ(h; a, b). We obtains the following result.

Lemma 6. Assume that f(ch∗p+1,i∗) ≤ U(ch∗p+1,i∗). Then any node (h∗p + 1, i) of depth h∗p + 1 before (h∗p + 1, i∗) is
expanded, is δ(h∗p + 1; a, b)-optimal.

Proof. If the node (h∗p + 1, i∗) has not been expanded yet, then by Algorithm 1 (line 4) we have that U(ch∗p+1,i) ≥
U(ch∗p+1,i∗). Combining with the assumptions, we get

U(ch∗p+1,i) ≥ U(ch∗p+1,i∗) (31)
≥ f(ch∗p+1,i∗) (32)
≥ f∗ − δ(h∗p + 1; a, b), (33)

where Eq (32) use the assumption that f(ch∗p+1,i∗) ≤ U(ch∗p+1,i∗), and Eq (33) use Lemma 3. Thus, the lemma holds.

From Lemma 12, we deduce that once an optimal node of depth h is expanded, it takes at most |Ih+1| node expansions at
depth h+ 1 before the optimal node of depth h+ 1 is expanded. From that observation, we deduce the following lemma
(corresponding to Lemma 5 in the main paper.)

Lemma 7. Assume that f(ch,i) ≤ U(ch,i) for all optimal node (h, i) at each depth 0 ≤ h ≤ hmax(n). Then for any depth
0 ≤ h ≤ hmax(n), whenever n ≥ hmax(n)

∑h
i=0 |Ii|, we have h∗n ≥ h.

Proof. We prove it by induction. For h = 0, we have h∗n ≥ 0.

Assume that the proposition is true for all o ≤ h ≤ h0 with h0 < hmax(n). Let us prove that it is also true for h0 + 1. Let
n ≥ hmax(n)(|I0|+ |I1|+ ...+ |Ih0+1|). Since n ≥ hmax(n)(|I0|+ |I1|+ ...+ |Ih0 |), we have h∗n ≥ h0. If h∗n ≥ h0 + 1
then the proof is finished. If h∗n = h0, we consider the nodes of depth h0 + 1 that are expanded. We have seen that as long as
the optimal node of depth h0 + 1 is not expanded, any node of depth h0 + 1 that is expanded must be δ(h0 + 1; a, b)-optimal,
i.e., belongs to Ih0+1. Since there are |Ih0+1| of them, after hmax(n)|Ih0+1| node expansions, the optimal one must be
expanded, thus h∗n ≥ h0 + 1.

6. Proof of Lemma 6
We use Ap to denote the set of all points evaluated by the algorithm and all centers of optimal nodes of the tree Tp after p
evaluations.

Lemma 8. Pick a η ∈ (0, 1). Set βp = 2log(π2p3/3η) and Lp(c) = µp(c)− β1/2
p σp(c). With probability 1− η, we have

Lp(c) ≤ f(c) ≤ Up(c),

for every p ≥ 1 and for every c ∈ Ap.

Proof. After p evaluations, there are at most p evaluated points by the algorithm. On the other hand, after p evaluations, the
deepest depth of the tree Tp is p. In addition, at each depth, there is only one optimal node which contains x∗. Therefore,
there are at most p centers of optimal nodes which belong to tree Tp. Thus, |Ap| ≤ 2p.

The proof is similar to Lemma 5.1 in (Srinivas et al., 2012) and Lemma 4 in (Wang et al., 2014) with the set Ap (here we
use the fact that f is a sample from the GP). If we let βp = 2log(π2p2|Ap|/6η), then with probability 1− η, we have

Lp(c) ≤ f(c) ≤ Up(c),

for every p ≥ 1 and for every c ∈ Ap. Since |Ap| ≤ 2p, we will use βp = 2log(π2p3/3η) instead and the lemma also holds
with this βp = 2log(π2p3/3η).

Lemma 6 implies that with probability 1− η, all conditions Lp(c) ≤ f(c) ≤ Up(c) in Lemma 4, Theorem 1, and Lemma 5
in the main paper hold for every 1 ≤ p ≤ N .

7. Proof of Theorem 2
Theorem 2 (Regret Bound). Assume that there is a partitioning procedure P (m; a, b) where a = O(N1/D), b = D and
2 ≤ m <

√
N − 1. Let the depth function hmax(p) =

√
p. We consider m2 < p ≤ N , and define h(p) as the smallest

integer h such that

h ≥
√
p−m− 1

C
+ 2,

where C is the constant defined by Theorem 1. Pick a η ∈ (0, 1). Then for every N ≥ N1, the loss is bounded as

rp ≤ δ(min{h(p),
√
p+ 1}; a, b) + 4C1β

1/2
p (δ(min{h(p)− 1,

√
p}; a, b))ν/2−D/4,

with probability 1 − η, where N1 is the constant defined in Theorem 1, C1 is the constant defined in lemma 4 and
βN =

√
2log(π2N3/3η).

Proof. By Theorem 1, the definition of h(p) and the facts that |I0| = 1 and |I1| ≤ m, we have

h(p)−1∑
l=0

|Il| = |I0|+ |I1|+ (|I2|+ ...+ |I|h(p)−1)

≤ 1 +m+ C(h(p)− 2) ≤ √p

Therefore,
∑h(p)−1
l=0 |Il| ≤

√
p. By Lemma 5 when h(p)− 1 ≤ hmax(p) =

√
p, we have h∗p ≥ h(p)− 1. If h(p)− 1 >

√
p

then h∗p = hmax(p) =
√
p since the BOO algorithm does not expand nodes beyond depth hmax(p). Thus, in all cases,

h∗p ≥ min{h(p)− 1,
√
p}.

Let (h, j) be the deepest node in Tp that has been expanded by the algorithm up to p expansions. Thus h ≥ h∗p. By
Algorithm 1, we only expand a node when its GP-UCB value is larger than vmax which is updated at Line 10 of Algorithm
1. Thus, since the node (h, j) has been expanded, its GP-UCB value is at least as high as that of the some node (h∗p + 1, o)
at depth h∗p + 1, such that

• (1) node (h∗p + 1, o) has been evaluated at some p′-th expansion before node (h, j) and

• (2) (h∗p + 1, o) ∈ argmax(h∗p+1,i)∈LUp′(ch∗p+1,i) (see Line 4 of Algorithm 1).

We let node (h∗p + 1, o∗) be the optimal node at depth h∗p + 1. With probability 1− η,

f(x∗)− δ(h∗p + 1; a, b) ≤ f(ch∗p+1,o∗) (34)
≤ Up′(ch∗p+1,o∗) (35)
≤ Up′(ch∗p+1,o) (36)

≤ µp′(ch∗p+1,o) + β
1/2
p′ σp′(ch∗p+1,o) (37)

≤ µp′(ch∗p+1,o)− β1/2
p′ σp′(ch∗p+1,o) + 2β

1/2
p′ σp′(ch∗p+1,o) (38)

≤ Lp′(ch∗p+1,o) + 2β
1/2
p′ σp′(ch∗p+1,o) (39)

≤ f(ch∗p+1,o) + 2β
1/2
p′ σp′(ch∗p+1,o) (40)

≤ Up(ch,j) + 2β
1/2
p′ σp′(ch∗p+1,o), (41)

where in Eq (34), we use Lemma 3. Eq (35) holds with probability 1− η by using Lemma 6. In Eq (36), we use the above
condition (2). Eq (37) uses the definition of Up′ . Eq (39) uses the definition of Lp′ . Eq (40) holds with probability 1− η by
using Lemma 6. Finally, Eq (41) uses the updating condition at Line 5 and Line 10 of Algorithm 1.

Eq (41) implies that with probability 1− η,

f(x∗)− Up(ch,j) ≤ δ(h∗p + 1; a, b) + 2β
1/2
p′ σp′(ch∗p+1,o).

On the other hand, by Lemma 6, with probability 1− η, we have

Up(ch,j) = µp(ch,j) + β1/2
p σp(ch,j)

= Lp(ch,j) + 2β1/2
p σp(ch,j)

≤ f(ch,j) + 2β1/2
p σp(ch,j)

Combining these two results, we have

f(x∗)− f(ch,j) ≤ δ(h∗p + 1; a, b) + 2β
1/2
p′ σp′(ch∗p+1,o) + 2β1/2

p σp(ch,j),

with a probability 1− η.

Finally, by using Lemma 4 to bound σp′(ch∗p+1,o) and σp(ch,j) and using the fact that the function δ(∗; a, b) decreases with
their depths, we achieve

rp ≤ f(x∗)− f(ch,j)

≤ δ(min{h(p),
√
p+ 1}; a, b) + 4C1β

1/2
p (δ(min{h(p)− 1,

√
p}; a, b))ν/2−D/4

with a probability 1− η.

8. Proof of Corollary 1
Corollary 1. Pick a η ∈ (0, 1). There exists a constant N2 > 0 such that for every N ≥ N2 we have that the simple regret
of the proposed BOO with the partitioning procedure P (m; a, b) where a = b(

√
N
2)

1
D c, b = D, is bounded as

rN ≤ O(N−
√
N),

with probability 1− η.

Proof. With a = b(
√
N
2)

1
D c and b = D, m = ab ≤

√
N/2. These conditions satisfy the assumptions of Theorem 2,

therefore following Theorem 2 with probability 1− η, we have that

rN ≤ δ(min{h(N),
√
N + 1}; a, b)︸ ︷︷ ︸

Term 1

+ 4C1β
1/2
N (δ(min{h(N)− 1,

√
N}; a, b))ν/2−D/4︸ ︷︷ ︸

Term 2

.

We consider Term 1. There are two cases:

(1) If min{h(N),
√
N + 1} =

√
N + 1 then δ(min{h(N),

√
N + 1}; a, b) = δ(

√
N + 1; a, b) = L1Da

−2(
√
N+1) ≤

O(N−
√
N) by replacing a = b(

√
N
2)

1
D c.

(2) If min{h(N),
√
N + 1} = h(N). By definition of h(N) in Theorem 2, h(N) ≥

√
N−m−1
C + 2 ≥

√
N

2C −
1
C + 2.

Therefore, δ(min{h(N),
√
N + 1}; a, b) = δ(h(N); a, b) = L1Da

−2h(N) ≤ O(N−
√
N).

Thus, for both cases, Term 1 is bounded by O(N−
√
N). We now consider Term 2. There are also two cases:

(1) If min{h(N) − 1,
√
N} =

√
N then 4C1β

1/2
N (δ(min{h(N) − 1,

√
N}; a, b))ν/2−D/4 =

4C1β
1/2
N (δ(

√
N ; a, b))ν/2−D/4 = 4C1L1Dβ

1/2
N a−2(ν/2−D/4)

√
N ≤ 4C1L1Dβ

1/2
N a−4

√
N . In the last inequality,

we use the assumption that ν > 4 +D/2. The component a−4
√
N with a = b(

√
N
2)

1
D c dominates βN which is O(

√
N).

Therefore Term 2 is bounded by O(N−
√
N).

(2) If min{h(N) − 1,
√
N} = h(N) − 1. By definition of h(N) in Theorem 2, h(N) − 1 ≥

√
N−m−1
C + 1 ≥

√
N

2C −
1
C + 1. Then 4C1β

1/2
N (δ(min{h(N) − 1,

√
N}; a, b))ν/2−D/4 = 4C1β

1/2
N (δ(h(N) − 1; a, b))ν/2−D/4 =

4C1L1Dβ
1/2
N a−2(ν/2−D/4)(h(N)−1) ≤ 4C1L1Dβ

1/2
N a−4(h(N)−1). By the argument similar as above, we have that Term 2

is bounded by O(N−
√
N).

Finally, for all cases, we get that rN ≤ O(N−
√
N) with probability 1− η.

References
Bull, A. D. Convergence rates of efficient global optimization algorithms. J. Mach. Learn. Res., 12:2879–2904, November

2011. ISSN 1532-4435.

Chevalier, C., Ginsbourger, D., and Emery, X. Corrected kriging update formulae for batch-sequential data assimilation. In
Pardo-Igúzquiza, E., Guardiola-Albert, C., Heredia, J., Moreno-Merino, L., Durán, J. J., and Vargas-Guzmán, J. A. (eds.),
Mathematics of Planet Earth, pp. 119–122, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Kanagawa, M., Hennig, P., Sejdinovic, D., and Sriperumbudur, B. K. Gaussian processes and kernel methods: A review on
connections and equivalences, 2018.

Kawaguchi, K., Kaelbling, L. P., and Lozano-Pérez, T. Bayesian optimization with exponential convergence, 2016. URL
https://arxiv.org/abs/1604.01348.

Munos, R. Optimistic optimization of a deterministic function without the knowledge of its smoothness. In Shawe-Taylor,
J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing
Systems 24, pp. 783–791. Curran Associates, Inc., 2011.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. W. Information-theoretic regret bounds for gaussian process
optimization in the bandit setting. IEEE Trans. Inf. Theor., 58(5):3250–3265, May 2012. ISSN 0018-9448. doi:
10.1109/TIT.2011.2182033. URL http://dx.doi.org/10.1109/TIT.2011.2182033.

Vakili, S., Picheny, V., and Durrande, N. Regret bounds for noise-free bayesian optimization, 2020.

Valko, M., Carpentier, A., and Munos, R. Stochastic simultaneous optimistic optimization. In Proceedings of the 30th
International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pp. 19–27, 2013.

Wang, Z., Shakibi, B., Jin, L., and de Freitas, N. Bayesian multi-scale optimistic optimization. In Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April
22-25, 2014, pp. 1005–1014, 2014.

Wu, Z. and Schaback, R. Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal,
13:13–27, 1992.

https://arxiv.org/abs/1604.01348
http://dx.doi.org/10.1109/TIT.2011.2182033

