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Appendix
In Appendix A, we briefly compare our approach to Harsanyi & Selten (1988). In Appendix B, we provide
additional details about our implemented algorithms, cross-play evaluation, and further results. Everything
afterwards, starting with Appendix C, is a self-contained rigorous treatment of the results that were informally
stated in the paper. The two main theorems are subject of Appendices E and F. In the following, we give a
brief outline of Appendices C–F.

In Appendix C, we make rigorous the definition of an LFC game and LFC problem from Section 4.2, and we
provide auxiliary results required to prove our main theorems. Among those, we show in Section C.7 that
any optimal symmetric profile of learning algorithms in an LFC game is a Nash equilibrium. In addition, in
Appendix C.8, we briefly discuss a condition under which the objective in the LFC problem is equivalent to
the formulation used in our experiments as outlined in Section 6.

In Appendix D, we provide characterizations of both the OP objective and the payoff in an LFC game,
in terms of equivalence classes of policies under random permutations by automorphisms. This notion of
equivalence makes it possible to analyze the OP-optimal policies in terms of representatives of equivalence
classes that are invariant to automorphisms. We will use our results from this section for the proofs about the
LFC problem, and for a proof about the existence of random tie-breaking functions.

In Appendix E, we then turn to stating and proving a rigorous version of Theorem 7. To that end, we show
that there are two distinct OP-optimal equivalence classes in the two-stage lever game (Appendix E.1), and
then prove that any algorithm that learns both of these is an OP learning algorithm, but not optimal in the
LFC problem of that game (Appendix E.2).

Lastly, in Appendix F, we provide theoretical results about OP with tie-breaking and state and prove a rigorous
version of Theorem 8. First, we define OP with tie-breaking and discuss to what degree the formal definition
is satisfied by our method (Appendix F.1). Second, we show that OP with tie-breaking is optimal in the LFC
problem and that all principals using OP with tie-breaking is an optimal symmetric Nash equilibrium of any
LFC game (Appendix F.2). Third, we prove that a modification of the tie-breaking function introduced in
Section 5 satisfies our formal requirements (Appendix F.3).

List of Symbols
General mathematical notation

N natural numbers excluding 0
R real numbers
N0 N ∪ {0}
P(X ) power set of the set X∏N
i=1 Xi Cartesian product X1 × · · · × XN of sets X1, . . . ,XN
|X | cardinality of the set X
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X \ Y set of elements of X that are not in Y
X := Y X is defined as Y
f ◦ g composition of two composable functions f and g
proji(x) projection on the ith component of the vector x = (xi)i∈X
x−i vector with the ith component removed, x−i := (x1, . . . , xi−1, xi+1, . . . xN )
(x̃i, x−i) vector with x̃i as ith component, (x̃i, x−i) := (x1, . . . xi−1, x̃i, xi+1, . . . xN )
δij Kronecker delta
1X indicator function of set X
P probability measure
∆(X ) set of probability mass functions or measures over the set X
E1 ⊗ E2 product-σ-Algebra of E1 and E2
µ1 ⊗ µ2 product measure of µ1 and µ2

E[X] expectation of the random variable X
Ex∼ν [f(x)] integral of f with respect to the measure ν
U(X ) uniform distribution over the set X
δx Dirac measure
θ parameter value
ξ neural network
L loss function

Dec-POMDPs

D,E, F Dec-POMDPs
XD set belonging to the Dec-POMDP D (e.g., ΠD is the set of policies of D)
N set of agents or principals N = {1, . . . , N}
i agent or principal
S set of states
St random variable for the state at step t
s state
A set of joint actions
Ai set of actions of player i
Ai,t random variable for the action of agent i at step t
a joint action
ai action of agent i
O set of observations
Oi set of observations of agent i
Oi,t random variable for the observation of agent i at step t
o joint observation
oi observation of agent i
Rt random variable for the reward at step t
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r reward
P (s′ | s, a) transition probability
O(o | s, a) observation probability
R(a, s) reward given joint action a and state s
T horizon
AO set of joint action-observation histories
AOi,t set of local action-observation history of agent i of length t
AOi,t random variable for action-observation history of agent i of length t
τi,t local action-observation history of agent i of length t
H set of histories
H random variable for the history
τ history
Ht set of histories of length t
Ht random variable for the history of length t
τt history of length t
Π set of joint policies
Πi set of local policies of agent i
π joint policy
πi local policy of agent i
Π0 set of joint deterministic policies
Π0
i set of local deterministic policies of agent i

(Ω,P(Ω),Pπ) measure space for a Dec-POMDP environment induced by policy π
Eπ expectation with respect to Pπ
JD(π) expected return of policy π in Dec-POMDP D

Label-free coordination and other-play

Aut(D) set of automorphisms
Iso(D,E) set of isomorphisms from D to E
Sym(D) set of labelings of D
f isomorphism or labeling
f∗D relabeled Dec-POMDP
f∗π pushforward policy
f profile of isomorphisms
Aut(D) set of automorphisms of D
g automorphism
e identity automorphism
g profile of automorphisms
JDOP(π) other-play value of π in Dec-POMDP D
D, C sets of Dec-POMDPs
Fi σ-Algebra over Πi
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F product-σ-Algebra over Π
ν distribution over policies
ΣD set of learning algorithms for D
σ learning algorithm
σ profile of learning algorithms
UD(σ) payoff in the label-free coordination game for D given strategy profile σ
UD(σ) value of σ in the label-free coordination problem for D
µ distribution over policies with independent local policies
Zi latent variable for the policy of agent i
Z measurable set of policies
πµ policy corresponding to the distribution µ
Ψ(π) policy corresponding to the other-play distribution of π
[π] equivalence class of policies
# hash function
χ tie-breaking function

A. Comparison to the solution by Harsanyi & Selten
Here, we compare the solution to the equilibrium selection problem provided by Harsanyi & Selten (1988)
to our approach. It is unclear how to apply Harsanyi & Selten (1988)’s solution to Dec-POMDPs, and this
would be an interesting area for future work. However, we can translate Dec-POMDPs into Harsanyi & Selten
(1988)’s formalism of standard-form games, using similar constructions as the ones for normal-form games
and extensive-form games by Oliehoek et al. (2006), and apply Harsanyi & Selten (1988)’s solution to such a
problem. We can then compare it to OP with tie-breaking as an optimal solution to the LFC problem.

Below, we give an example in which OP with tie-breaking is equivalent to any OP algorithm in theory, as
there is only one OP-optimal policy (ignoring differences between policies that do not matter under OP; see
Appendix D). We also consider that policy as good solution to ZSC in spirit. However, applying Harsanyi &
Selten (1988)’s procedure to a corresponding standard-form game leads to a policy in which agents cannot
coordinate and which thus leads to a lower payoff. We restrict ourselves to an informal exposition and leave a
more rigorous analysis to future work.

Consider a version of the two-stage lever game with 10 instead of 2 levers. As in the two-stage lever game,
pulling the same lever gives a reward of 1, non-coordination gives a reward of −1, and the game is fully
observable. Note that, like in the game with two levers, an OP-optimal policy uniformly randomizes between
all levers in the first round. If no coordination was achieved in the first round, then in the second round, an
optimal policy randomizes between the two levers that have been played in the first round by both players,
similarly to the two-lever variant. There is a difference, however, if players coordinated on one lever in the
first round. Clearly, in one optimal policy, players repeat their action from the first round, as was the case in
the two-stage lever game. However, unlike in the two-lever case, here, there is no second optimal policy. It is
not possible for the players to consistently switch to a different lever, as there are now not one but 9 other
levers to choose from. Hence, the only optimal policy is one that chooses the unique lever that was chosen in
the first round. This appears to us as a good solution to ZSC in this case.

Now consider a corresponding standard-form game (Harsanyi & Selten, 1988, ch. 2). It is sufficient for us
here to note that in this game, each player i = 1, 2 is split into agents jτi,t with distinct sets of actions Aτi,t
(corresponding to the 10 levers) for each possible action-observation history τi,t ∈ AOi,t in the corresponding
Dec-POMDP. The payoff for a strategy for all agents of all players is then the expected return that the
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corresponding policy would receive. Importantly, symmetries as introduced by Harsanyi & Selten (1988,
ch. 3.4) can permute each of the individual action sets Aτi,t separately, as long as this does not change
the payoffs (there are more rules for how symmetries can permute actions, players, and agents, but these
do not matter for us here). For instance, one symmetry may leave the actions of both players i = 1, 2 in
the first round unchanged, while it may apply one permutation to the action sets Aτi,1 corresponding to
action-observation histories τi,1 ∈ AOi,1 of all agents of both players in the second round. Since rewards in
the second round do not depend on actions in the first round, and permuting all actions of all second-round
agents in the same way does not change the rewards for actions, such a permutation is a symmetry of the
game.

As a result, in the first and the second round, all individual actions are symmetric, and, unlike in the
corresponding Dec-POMDP, the symmetries for both rounds can be applied independently of each other.
Hence, a symmetry-invariant strategy needs to play all actions with equal probability in both rounds. Since
Harsanyi & Selten (1988)’s solution always chooses a strategy that is invariant to symmetries (Harsanyi &
Selten, 1988, ch. 3.4), it follows that the strategy chosen by their procedure is a uniform distribution. Clearly,
this strategy yields a lower return than the OP-optimal policy described above. In particular, since this applies
independently of labelings, it follows from Theorem 8 that the solution must be suboptimal in the associated
LFC problem.

A similar argument could be made about cheap-talk: in a standard-form game, players using a symmetry-
invariant policy would never be able to use cheap-talk, as they could not learn the meanings of each others’
messages over time. Transforming a Dec-POMDP into a standard-form game thus yields too many symmetries,
precluding players from coordinating based on the structure of the Dec-POMDP, even if it was possible to
uniquely do so. In contrast, OP exhibits in a sense the opposite failure mode in the two-stage lever game,
allowing players to coordinate arbitrarily due to too few symmetries between policies.

B. Further experimental details
Here, we provide additional details about the experiments outlined in Section 6. We describe our implementa-
tion of OP (Appendix B.1), our implementation other OP with tie-breaking (Appendix B.2), and discuss our
cross-play evaluation procedure as well as some further results (Appendix B.3).

B.1. Other-play implementation

Our implementation of the OP learning algorithm is based on the PyMARL framework (Samvelyan et al.,
2019). We use recurrent neural networks to parameterize the policies of agents and a policy gradient algorithm
to train agents’ policies. Given that our toy problems are very small, they could also be solved by simple
tabular methods. Nevertheless, we choose to employ this framework to demonstrate that our results transfer
to state-of-the-art methods, even if the problems do not require them.

PyMARL is based on the PyTorch deep learning framework (Paszke et al., 2019). Neural network layers
are implemented using the PyTorch module nn.Linear and the recurrent neural network uses a single
nn.GRUCell, with the input encoding being one layer with ReLU activation functions. Hidden states are
transformed into probabilities by a single nn.Linear layer followed by a softmax. The dimension of the
hidden state is 64. Agent parameters are optimized using the RMSProp module, with a learning rate of
0.0005, an alpha of 0.99 and epsilon of 0.00001. These hyperparameters were all adopted as default values
from the PyMARL framework.
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Algorithm 1 Other-play learning algorithm based on vanilla policy gradient
Input: Dec-POMDP D

Number of training steps L
Episode batch-size K
Gradient-based optimizer

Output: Joint policy π ∈ ΠD

Initialize θ
for l = 1 to L do

for k = 1 to K do
Sample profile of automorphisms g(k) ∼ U(Aut(D)N )

Sample history τ (k) ∼ PD
g(k)∗πθ

using joint policy g(k)∗πθ
for t = 1 to T do
G

(k)
t ←

∑T
t′=t r

(k)
t′

end for
end for
Compute loss L(θ)← − 1
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Update θ using ∇θL(θ) to minimize L
end for
Return πθ

Since our generalization of the OP objective requires policies that can randomize, and since it cannot be
implemented as the SP objective in a modified Dec-POMDP (see Appendix D.5), it is not clear how to use
multi-agent methods based on value functions (e.g. Sunehag et al., 2018; Foerster et al., 2018). For this reason,
we use a vanilla multi-agent policy gradient algorithm without baseline (Nguyen et al., 2017; Williams, 1992;
Sutton & Barto, 2018, ch. 13.1), which can easily be applied to our generalization of the OP objective (see
Algorithm 1).

We use weight sharing, that is, all agents use the same neural network and receive an additional observation
specifying their agent-ID. In the two-stage lever game, where agents are symmetric, we omit this agent-ID
and thus force the resulting joint policy to be symmetric, π1 = π2. We can do this as a symmetric policy is
optimal under OP in this case (see Theorem 70). As a benefit, we do not have to implement permutations
of agents for OP. In the asymmetric lever game, since agents are not symmetric, agent-IDs are added to
observations as one-hot vectors.

Lastly, we add a penalty for the negative entropy of a policy to the loss-function (Mnih et al., 2016; Schulman
et al., 2017). The entropy of the probability distribution πθ,i(· | τi,t) is defined as

H(πθ,i(· | τi,t)) := −
∑
ai∈Ai

πθ,i(ai | τi,t) log πθ,i(ai | τi,t).

The loss-function is then

L̃(θ) = − 1

KTN

K∑
k=1

T∑
t=0

(
G

(k)
t

N∑
i=1

log πθ,i(a
(k)
i,t | τ

(k)
i,t ) + α

∑
i∈N

H(πθ,i(· | τ (k)
i,t ))

)
, (15)

where α is a hyperparameter.
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We choose α = 0.5, as the highest α at which we still got fast convergence to an approximately optimal policy,
after testing α = 1, 0.5, 0.1, and 0.05. First, this encourages exploration and avoids a policy prematurely
converging to a local minimum. Without this term, a small percentage of the learned policies in the asymmetric
lever game converged to suboptimal equilibria. Second, we did this to make sure that agents learn to play
a unique uniform distribution where actions do not matter for the OP value of a policy. Since it can be the
case that actions do not matter but each choice of distribution still creates a different policy, this helps reduce
the number of different policies that are learned, and thus facilitates tie-breaking between the remaining
policies. Additionally, in the lever game with asymmetric players, it ensures that one can always infer from a
distribution over histories the Dec-POMDP that these histories belong to. It hence suffices to let our hash
function depend only on histories (see Appendix F.3).

Finally, we briefly outline how sampling from a policy f∗π is implemented, in the two-stage lever game where
agents are symmetric and use the same policy network. Actions and observations are encoded as one-hot
vectors, i.e., as elements of the canonical basis {e1, . . . , ek}, where k is the cardinality of the respective set.
For a given episode, one profile of automorphisms g1,g2 ∼ U(Aut(D)) is sampled. At time step t, the
observation input of the agent i is g−1

i (Oi,t, Ai,t−1). Then an action Ãi,t is sampled from the agent policy,
and that action is permuted by applying gi, i.e., Ai,t := giÃi,t. Otherwise, the Dec-POMDP model proceeds
as normal. One can easily see that this results in a history H ∼ Pg∗π .

B.2. Deep tie-breaking

We implement OP with tie-breaking as described in Section 5 (see Algorithm 2).

Algorithm 2 OP with tie-breaking
Input: Dec-POMDP E

OP learning algorithm σOP

Tie-breaking-function χ
Number of seeds K

Output: Joint policy π∗ ∈ ΠE

for k = 1 to K do
Train policy π(k) ∼ σOP(E)
Calculate tie-breaking value x(k) ← χ(E, π(k))

end for
kmax ← arg maxKk=1 x

(k)

π∗ ← π(kmax)

Return π∗

Turning to the tie-breaking function, the function is only applied to actions of both agents and to rewards, but
not to observations or states. This is because in our problems, states are always the same, and observations are
completely determined by actions. The hash network has four hidden layers with ReLu activation functions,
a hidden dimension of 32, and weights and biases are initialized uniformly in [−1, 1]. We chose these
hyperparameters mostly based on prior considerations, but we did compare neural network depths 2 to 5
and hidden-layer dimensions 8, 16, 32 and 64 to determine hyperparameters for which OP with tie-breaking
performed well. To calculate the tie-breaking function, we use 2048 episode samples. See Algorithm 3 for
pseudo code.
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Algorithm 3 Tie-breaking function
Input: Dec-POMDP E

Policy π ∈ ΠE

Neural network architecture ξ#
Random seed n
Number of episode samples K
Tie-breaking value χ(E, π)

Initialize ξ# using random seed n
for k = 1 to K do

Sample profile of automorphisms g(k) ∼ U(Aut(E)N )
Sample history τ (k) ∼ PE

g(k)∗π
end for
χ(E, π)← 1

N !K

∑K
k=1

∑
fN∈Bij(N ) ξ#(fN (ι(τ (k)))

Return χ(D,π)
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(b) Asymmetric lever game

Figure 7. Learning curves for 320 independent training runs of the OP algorithm, with shaded standard deviation.

B.3. Cross-play evaluation

Recall that, to evaluate algorithms in the LFC problems for our environments, we simplify the objective to

ŨD(σ) := Eπ(i)∼σ(D), i=1,2

[
Egi∼U(Aut(D)), i=1,2

[
JD((g∗1π

(1))1, (g
∗
2π

(2))2)
]]
. (16)

We discuss this simplification further in Appendix C.8.

For each game, we train 320 joint policies in total, using OP with different seeds for network initialization and
environmental randomness. In the two-stage lever game, we train each policy for three million environment
steps, and in the variant with asymmetric players for five million steps (see Figure 7 for learning curves). The
training for both environments took around three days on a MacBook Pro laptop from 2017. We split the 320
policies into 10 sets of 32 policies each. The policies in each set are used for application of the tie-breaking
method, while the 10 different sets represent independent runs which can be used to calculate cross-play
values.

Given a list of 10 policies π(1), . . . , π(10) produced by independent runs of an algorithm, we estimate
the cross-play value Gk,l ≈ Egi∼U(Aut(D)), i=1,2

[
J((g∗1π

(k))1, (g
∗
2π

(l))2)
]

for any two indices of policies
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Table 2. Average off-diagonal cross-play value and standard deviation for OP with tie-breaking with K = 1, 2, 4, 8, 16,
and 32, in the two-stage lever game (TSLG) and asymmetric lever game (ALG).

Problem 1 2 4 8 16 32
TSLG -0.03 (±0.00) 0.14 (±0.13) 0.48 (±0.06) 0.50 (±0.00) 0.50 (±0.00) 0.50 (±0.00)
ALG 0.90 (±0.00) 1.23 (±0.08) 1.75 (±0.22) 1.90 (±0.16) 1.96 (±0.11) 1.97 (±0.10)

Table 3. Percentage of policies learned corresponding to different classes of mutually compatible policies, for two-stage
lever game (TSLG) and asymmetric lever game (ALG), each time out of 320 seeds for training.

Problem Class 1 Class 2 Class 3 Class 4
TSLG 50.94% 49.06% / /
ALG 43.75% 20.94% 19.38% 15.94%

k, l ∈ {1, . . . , 10}. These values are used to print cross-play matrices (Figure 4) The average off-diagonal
cross-play value is calculated as G := 1

10(10−1)

∑
k 6=lGk,l, where we leave out values on the diagonal

because these do not represent cross-play between independent runs. Note that in the two-stage lever
game, off-diagonal values can be higher than the optimal OP value. This is because in cross-play, agents
can use different joint policies that accidentally work better in cross-play than a symmetric policy. It is
counterbalanced in expectation by other entries of the matrix, in which unsuitable agents are matched. We
provide in Table 2 the average off-diagonal cross-play values used to create the graph in Figure 5.

Lastly, we categorize policies into classes of mutually compatible policies. To do so, we calculate a cross-play
value for each combination of two out of the 320 trained joint policies, using 256 episodes each. We then
dynamically build classes of policies by comparing a policy’s expected return to the cross-play value with a
policy from a given class, and assigning the policy to that class if the difference between the values is below a
threshold of 0.6. If no class is compatible with a policy, the method creates a new class containing that policy.
In that way, all 320 policies are assigned to a class. In Table 3 we list the relative sizes of the different classes.

While in the two-stage lever game, both classes are represented approximately equally, a clear majority of
policies belongs to one class in the asymmetric lever game. This class corresponds to the strategy in which
player 2 switches to a different action upon non-coordination in the first round, and in which both players
repeat their action given successful coordination in the first round. The least frequent class was the one in
which player 2 switches to a different action upon non-coordination, but where both players switch to a
different action if they were successful in the first round. The imbalance of classes in this case could be used
to implement a tie-breaking rule that chooses the policy that is learned more often.

We think that a reasonable policy in the two-stage lever game is one in which a player repeats their action
upon coordination. Hence, a tie-breaking function that chooses the “repeat”-policy is preferable. Interestingly,
out of 20 seeds for the hash function, only 4 of the resulting tie-breaking functions gave higher values to that
policy.

We used new random seeds for the final experiments that have not been used to improve the method.
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C. Formalization of a label-free coordination game and problem
In this section, we formalize label-free coordination (LFC) games and the LFC problem, and we provide
auxiliary results required to prove our main theorems.

In Appendix C.1, we recall the definition of Dec-POMDPs and introduce some additional notation. In
Appendix C.2, we recall the definition of isomorphisms and automorphisms, provide more comprehensive
examples, and prove first lemmas about these concepts. Afterwards, in Appendix C.3, we discuss the
pushforward and prove, among other things, that a pushforward policy has the same expected return as
the original policy. In Appendix C.4, we show that automorphisms define group actions on joint actions,
policies, etc. and introduce the concept of an orbit. In Appendix C.5, we then introduce Dec-POMDP labels
to construct the set of relabeled Dec-POMDPs used to define an LFC game. In Appendix C.6, we recall the
definition of LFC games and of the LFC problem, and we provide different expressions for the payoff in LFC
games. We also prove that LFC games for isomorphic Dec-POMDPs are equivalent, up to a permutation of
the principals in the game. In Appendix C.7, we prove that any strategy profile that is optimal among those
that respects symmetries between principals is a Nash equilibrium in the game, making use of group actions
and orbits. This theorem is needed later to prove that all principals using OP with tie-breaking is a Nash
equilibrium. Lastly, in Appendix C.8, we briefly discuss a condition under which the objective in the LFC
problem is equivalent to the formulation without relabeled Dec-POMDPs used in our experiments as outlined
in Section 6.

C.1. Recapitulation of Dec-POMDPs

Before we turn to isomorphisms and automorphisms, we briefly recapitulate Dec-POMDPs and introduce
some additional notation that we will use throughout the following. That is, we also introduce a history
of length t, τt ∈ Ht, the set of deterministic policies Π0 and we define the measure space (Ω,P(Ω),Pπ)
corresponding to a Dec-POMDP in which agents follow the joint policy π. We also define the notation
x−i := (x1, . . . , xi−1, xi+1, . . . xN ) and the projection operator proji(x) = xi. Apart from this, the
definitions in this section are a more elaborate version of those in Section 3 of the main text.

To begin, recall the definition of a Dec-POMDP.

Definition 9. A (finite-horizon) Dec-POMDP is a tuple

D =
(
N ,S,A =

∏
i∈N
Ai, P,R,O =

∏
i∈N
Oi, O, b0, T

)
where

• N = {1, . . . , N}, N ∈ N is a finite set of agents.

• S is a finite set of states.

• Ai is a finite set of actions for player i ∈ N .

• P : S ×A → ∆(S) is the transition probability kernel (where ∆(S) denotes the set of probability mass
functions over S).

• R : S ×A → R is the joint reward function.

• Oi is a finite set of observations for player i ∈ N .
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• O : S ×A → ∆(O) is the observation probability kernel.

• b0 ∈ ∆(S) is a distribution over the initial state.

• T ∈ N0 is the horizon of the problem.

When considering different Dec-POMDPs D,E at the same time, we writeAD,AE , etc., to indicate to which
Dec-POMDP the set belongs. Similarly, we do this for transition, observation, and reward functions. We omit
the index D if it is clear which Dec-POMDP is meant.

Given a Dec-POMDP D, define the set of local action-observation histories of length t ∈ {0, . . . , T} for
player i ∈ N as

AOi,t := (Ai ×Oi)t ,

(where (A×O)
0 := {∅}) and the set of local action-observation histories for player i as

AOi :=
⋃

0≤t≤T

(Ai ×Oi)t .

Moreover, we define the set of histories of length t as

Ht := S ×A×R(S ×A)× (S ×O ×A×R(S ×A))
t
.

and H := HT as the set of histories. Histories τ ∈ H are also called episodes, when one is talking about
a particular sample of the stochastic process induced by agents following a policy in the Dec-POMDP, as
defined below.

At step 0 ≤ t ≤ T , agent i ∈ N chooses a distribution over actions, conditional on a past action-observation
history τi,t ∈ AOi,t. This choice is described by a local (stochastic) policy for player i, which is a mapping
πi : AOi → ∆(Ai). Since actions can be chosen stochastically, a policy and past observations do not imply
which past actions have been taken, so policies are also able to condition on past actions (i.e., agents remember
their past actions). We write πi(ai | τi,t) for the probability of action ai ∈ Ai given the action-observation
history τi,t ∈ AOi,t. A (joint stochastic) policy is a tuple π = (π1, . . . , πN ) with a local policy for each
player. We denote ΠD as the set of joint stochastic policies for a Dec-POMDP D, and ΠD

i as the set of
local policies for player i. A local deterministic policy for player i ∈ N is defined as a policy πi such that
πi(· | τi,t) is concentrated on exactly one action (i.e., there exists ai ∈ Ai such that πi(ai | τi,t) = 1) for
each τi,t ∈ AOi,t. A joint deterministic policy is defined analogously to joint stochastic policies, and (Π0)D

is the set of joint deterministic policies for D.4

A Dec-POMDP D together with a joint policy π ∈ ΠD specify the stochastic process according to which
an episode evolves, yielding a distribution over histories. Formally, we define a discrete probability space
(Ω,P(Ω),Pπ) with random variables for states, actions, observations, and rewards at all time steps.

The distributions of these random variables are defined inductively in the following way. First, S0 ∼ b0, that
is, the first state is an independent random variable with values in S and image distribution b0. Similarly, the

4Normally, a deterministic policy is defined as having values in Ai, but we can identify each element ai ∈ Ai with a
probability mass function in ∆(Ai) with support {ai}, so these definitions are interchangeable. Since a deterministic
policy outputs only one action for each action-observation history, it there is only one possible action for each observation
history (oi,1, . . . , oi,t), and we could hence write a deterministic policy as a map from observation histories to actions.
We omit this here for simplicity.
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first action of agent i is distributed according to Ai,0 ∼ πi(· | ∅) (note that ∅ ∈ AOi by definition), and the
first reward is R0 := R(S0, A0), where we define A0 := (Ai,0)i∈N .

Now assume there are random variables for all states, actions, and observations until step 0 ≤ t ≤ T (in the
case t = 0, there are no observations defined yet). We can summarize them into a random variable for the
history of length t as

Ht := (S0, A0, (St′ , (Oi,t′ , Ai,t′)i∈N , Rt′)1≤t′≤t)

(and we let H := HT ). At step t + 1, a new state St+1 ∼ P (· | St, At) and a new joint observation
Ot+1 ∼ O(· | St+1, At) are sampled. Note that, in a slight abuse of notation, we use O for both observation
probabilities and observation random variable. We can define a random variable for the action-observation
history of agent i at time t + 1 as AOi,t+1 := (Ai,0, Oi,1, Ai,1, . . . , Ai,t, Oi,t+1). Conditioning on this
action-observation history, agent i samples an action Ai,t+1 ∼ πi(· | AOi,t+1). This yields a new joint action
At+1. Finally, the new reward is Rt+1 := R(St+1, At+1), which concludes the definition.

We will sometimes make use of a simplified notation for a tuple excluding a particular player. Let (xi)i∈N
be a vector indexed by agents, with elements xi ∈ Xi where Xi, i ∈ N are some sets. Then we define
x−j := (x1, . . . , xj−1, xj+1, . . . , xN ) for j ∈ N . Moreover, for any x′i ∈ Xi, we then write (x′i, x−i) :=
(x1, . . . , xi−1, x

′
i, xi+1, . . . , xN ). We will also sometimes use the projection operator proji(x) := xi to

clearly refer to a particular element of x when x is a more complicated expression.

Now, given a problem D and a joint policy π ∈ ΠD, the measure Pπ defined above specifies a distribution
over rewards R0, . . . , RT . We can use this fact to define the expected return of the policy. To that end, let
Eπ := EPπ denote the expectation with respect to Pπ .

Definition 10 (Self-play objective). Let D be a Dec-POMDP. Define the self-play (SP) objective JD : ΠD →
R for D via

JD(π) := Eπ

[
T∑
t=0

Rt

]
for π ∈ ΠD. Here, JD(π) is called the expected return of a joint policy π.

C.2. Dec-POMDP isomorphisms and automorphisms

Here, we recall the definitions of isomorphisms and automorphisms from Sections 4.1 and 4.3 and give more
comprehensive examples than in the main text. Then we prove some elementary results.

Let D,E be two Dec-POMDPs. Consider a tuple of bijective maps

f := (fN , fS , (fAi)i∈N , (fOi)i∈N ),

where

fN : ND → NE (17)

fS : SD → SE (18)

∀i ∈ N : fAi : ADi → AEfN (i) (19)

∀i ∈ N : fOi : ODi → OEfN (i). (20)
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Given a joint action a ∈ AD and such tuple f , we define

fA(a) :=

(
fA

f
−1
N

(i)
af−1
N (i)

)
i∈NE

∈ AE , (21)

and analogously for o ∈ OD

fO(o) :=

(
fO

f
−1
N

(i)
of−1
N (i)

)
i∈NE

∈ OE . (22)

That is, in the joint action fA(a) ∈ AE , the agent j = fN (i) ∈ NE (where i ∈ ND) plays the action
fAi(ai) ∈ AEj . Note that it is really fA(a) ∈ AE , as for any a ∈ AD and j := f−1

N (i) ∈ ND, by definition
it is

fAj (aj) ∈ AEfN (j) = AE
fN (f−1

N (i))
= AEi .

The analogous holds for observations.

Definition 11 (Dec-POMDP isomorphism). Let D,E be Dec-POMDPs such that both have the same horizon
TD = TE , and let

f := (fN , fS , (fAi)i∈N , (fOi)i∈N )

be a tuple of bijective maps as defined in equations (17)–(20). Then f is an isomorphism from D to E if for
any a ∈ AD, s, s′ ∈ SD and o ∈ OD, it is

PD(s′ | s, a) =PE(fS(s′) | fS(s), fA(a)) (23)

OD(o | s, a) =OE(fO(o) | fS(s), fA(a)) (24)

RD(s, a) =RE(fS(s), fA(a)) (25)

bD0 (s) =bE0 (fS(s)). (26)

If such an isomorphism exists, D and E are called isomorphic. We denote Iso(D,E) for the set of isomor-
phisms from D to E.

Remark 12. In a Dec-POMDP, distributions over histories and policies can be ranked by their associated
expected return. If a reward function is multiplied with a positive constant α ∈ R>0 and shifted by a constant
β ∈ R, then the new reward function R′ := αR + β still induces the same ranking. For this reason, one
could consider such transformations as part of an isomorphism between two problems. For instance, Harsanyi
& Selten (1988, p. 72) make it part of their definition of an isomorphism in the framework of standard-form
games. For simplicity, we ignore this complication here and consider only isomorphic problems with reward
functions that have the same range.

As in the main text, we write fa instead of fA(a) and fai instead of fAiai, and we do the same for
observations, states, etc. We also write fτi,t for actions of isomorphisms on action-observation histories,
which is defined as the element-wise application of f , and letting fr := r for rewards, we define fτ for entire
histories τ ∈ H.

Now we prove a first basic result about actions of isomorphisms. Note that an isomorphism f ∈ Iso(D,E) is
a bijective map

f : ND × SD ×
∏
i∈ND

ADi ×
∏
i∈ND

ODi → NE × SE ×
∏
i∈NE

AEfi ×
∏
i∈NE

OEfi, (27)
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which can be inverted and composed with other maps. The following result shows that actions of isomorphisms
on joint actions and joint observations are compatible with function composition and with taking inverses of
functions. It follows that also the element-wise application to histories and action-observation histories is
compatible in this way. In particular, this justifies omitting brackets when applying isomorphisms. We will
use this lemma liberally in the following.

Lemma 13. Let D,E, F be Dec-POMDPs, a ∈ AD, o ∈ OD, let e ∈ Iso(D,D) be the identity, and let
f ∈ Iso(D,E), f̃ ∈ Iso(E,F ). Then it is

(i) ea = a and eo = o.

(ii) f̃(fa) = (f̃ ◦ f)a and f̃(fo) = (f̃ ◦ f)o.

In particular, actions of isomorphisms f on joint actions and joint observations can be inverted using f−1.

Proof. First, it is ea = (eae−1i)i∈N = e, and analogously for o. Second,

f̃(fa) = f̃(faf−1i)i∈N = (f̃(faf−1f̃−1i))i∈N = (f̃fa(f̃f)−1i)i∈N = (f̃ ◦ f)a

as function composition is associative and the inverse of f̃ ◦ f is f−1 ◦ f̃−1.

Next, it follows from the previous that f−1(fa) = (f−1 ◦ f)a = ea = a. The analogous holds for o, which
concludes the proof.

The following corollary states that the action of f on histories τt ∈ Ht is bijective. An analogous corollary
also hold for action-observation histories.

Corollary 14. Let D,E be isomorphic Dec-POMDPs with isomorphism f ∈ Iso(D,E) and let t ∈
{0, . . . , T}. Then fH : HDt → HEt , τt 7→ fτt is a bijective map.

Proof. Let τt = (s0, a0, s1, o1, a1, r1, . . . , st, ot, at, rt) ∈ HDt . Define fH as above and f−1
H : τ 7→ f−1τ .

Then

f−1(f(τt)) = f−1((fs0, fa0, fs1, fo1, fa1, fr1, . . . , fst, fot, fat, frt))

= (f−1fs0, f
−1fa0, f

−1fs1, f
−1fo1, f

−1fa1, f
−1fr1, . . . , f

−1frt))

Lemma 13
= (s0, a0, s1, o1, a1, r1, . . . , st, ot, at, rt) = τt. (28)

Recall the definition of an automorphism, which can be thought of as describing a symmetry of the Dec-
POMDP.

Definition 15 (Dec-POMDP automorphism). An isomorphism f ∈ Iso(D,D) from D to itself is called an
automorphism. We define Aut(D) := Iso(D,D) as the set of all automorphisms of D.

Now we give an example of an isomorphism and automorphism, using the lever coordination game.
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Example 16 (Lever coordination game). Consider the lever coordination game introduced in Section 1. This
can be formalized as a Dec-POMDP D with only one state, one observation for each agent, and in which
T = 0. The agents areN = {1, 2} and actions are A1 = A2 = {1, . . . , 10}. One possible reward function is

R(a1, a2, s) = δa1,a2
(
1.0 · 1{1,...,9}(a1) + 0.9 · 1{10}(a1)

)
,

where

δa1,a2 :=

{
1 if a1 = a2

0 otherwise

is the Kronecker delta.

As an isomorphic problem E, consider a problem with the same sets of actions for both players, but where
the reward function is defined as

RE(a1, a2, s) = δa1,a2
(
1.0 · 1{2,...,10}(a1) + 0.9 · 1{1}(a1)

)
for a1 ∈ A1, a2 ∈ A2 and the trivial state s. Note that this is formally a different Dec-POMDP. Nevertheless,
we can define an isomorphism f ∈ Iso(D,E) in the following way. For i = 1, 2, define fAi : Ai → Ai such
that fAi(10) = 1 and fAi(1) = 10, and let fA1 = fA2 be arbitrary otherwise. Let the remaining components
of f be the identity map. Then for any joint action a and the trivial state s, it is

RE(fs, fa) = δfa1,fa2
(
1.0 · 1{2,...,10}(fa1) + 0.9 · 1{1}(fa1)

)
= δa1,a2

(
1.0 · 1{1,...,9}(a1) + 0.9 · 1{10}(a1)

)
= RD(s, a) (29)

and hence D and E are isomorphic (as observation and transition probabilities as well as the initial state
distribution are trivial here).

Note that we could have used any two (potentially different) permutations f̂1, f̂2 of the two sets A1,A2

and defined a new reward function R′(s, a) := RD(s, f̂−1
1 a1, f̂

−1
2 a2). This reward function would then

define a new Dec-POMDP D′, and the isomorphism from D to D′ would be exactly f defined by fA1
=

f̂1, fA2
= f̂2 and the identity in the other components, as R′(fs, fa) = RD(s, fA1

f̂−1
1 a1, fA2

f̂−1
2 a2) =

RD(s, f̂1f̂
−1
1 a1, f̂2f̂

−1
2 a2) = RD(s, a). We will use this idea in Section C.5 to define relabeled Dec-

POMDPs.

Next, consider the automorphisms of the lever coordination game. Note that the agents in this game are
symmetric. For instance, we can define g via gN (1) = 2 and gN (2) = 1, and such that gA1

= gA2
= ĝ, where

ĝ is any permutation of {1, . . . , 10} such that ĝ(10) = 10. Then one can easily check that RD(gs, ga) =
RD(s, a) for any joint action a and the state s.

Next, we introduce the automorphisms of the two-stage lever game (Example 3), which we will need later to
prove that OP is suboptimal in the corresponding LFC problem.

Example 17. Recall that in the two-stage lever game, there are two agents, N = {1, 2}, and the problem
has two rounds, so T = 1. Each round, each agent has to pull one of two levers, A1 = A2 = {1, 2}. If both
agents choose the same lever, they get a reward of 1. Otherwise, the reward is −1. There is again only one
state, but there are two observations, O1 = O2 = {1, 2}. In the second stage (t = 1), each player observes
the previous action of the other player, so Oi,1 = A−i,0 for i = 1, 2. The reward and observation probabilities
are given in Table 4.
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Table 4. Reward function and observation probabilities in the two-stage lever game (Example 3).

(a) Reward functionR(s, a) for each joint action a

a R(s, a)
(1,1) 1
(1,2) -1
(2,1) -1
(2,2) 1

(b) Observation probabilities O(o | s, a) for joint ob-
servations o and joint actions a.

a \ o (1,1) (1,2) (2,1) (2,2)
(1,1) 1 0 0 0
(1,2) 0 0 1 0
(2,1) 0 1 0 0
(2,2) 0 0 0 1

Table 5. Visualization of precomposition of both reward function and observation probability kernel with g−1, by applying
g to the index column and header row of the tables from Table 4. Note that apart from a permutation of rows and columns,
the tables are identical to the ones in Table 4, showing that g is an automorphism.

(a) Reward functionR(g−1s, g−1a)

a R(s, a)
(2,2) 1
(1,2) -1
(2,1) -1
(1,1) 1

(b) Observation probabilities O(g−1o | g−1s, g−1a)

a \ o (2,2) (1,2) (2,1) (1,1)
(2,2) 1 0 0 0
(1,2) 0 0 1 0
(2,1) 0 1 0 0
(1,1) 0 0 0 1

Using the table for reward function and observation probabilities, we can easily visualize isomorphisms and
automorphisms. Consider any isomorphism f ∈ Iso(D,E) whereE is some other Dec-POMDP. Considering,
for instance, the reward function, we know that RD(s, a) = RE(fs, fa). This means that if we want to
check the value of the reward function of E when agents choose action fa, we can look it up in the table
corresponding toRD in the row for a. So we can visualize an isomorphism by applying fA to the index (i.e.,
first) column of this table, but leaving the other cells unchanged. This creates a new table with the reward
function for E, or, equivalently, this new table corresponds to the reward functionRD precomposed with f−1,
i.e.,RD(f−1

S ·, f
−1
A ·) = RE . Analogously, we can apply fO to the header row and fA to the index column of

the table with observation probabilities, yielding OD(f−1
O · | f

−1
S ·, f

−1
A ·) = OE . An automorphism is then

simply an isomorphism such that applying it to index column and header of the tables does not change the
table, other than permuting rows and columns.

Now let g be an automorphism. gN can either be the identity or it can switch both agents. In either case, it
must be gA1 = gA2 , which can also either be the identity or the map that switches the actions. The observation
permutation then has to be equal to that of the actions, gO1

= gO2
= gA1

. There is trivially only one option
for the state permutation.

We visualize the application of the automorphism that switches agents as well as actions and thus also
observations in Table 5. For instance, using the definition of actions of automorphisms on joint actions in
Equations (21) and (22), we have fA(1, 1) = (fAfN 1

1, fAfN 2
1) = (fA2

1, fA1
1) = (2, 2), and fA(1, 2) =

(fA2
2, fA1

1) = (1, 2).

Before we turn to applying isomorphisms and automorphisms to policies, we briefly provide two basic results
about isomorphisms and the relationship between isomorphisms and automorphisms.

First, we prove that function composition and inversion preserve isomorphisms.
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Lemma 18. Let D,E, F be Dec-POMDPs and let f ∈ Iso(D,E) and f̃ ∈ Iso(E,F ). Then f−1 ∈
Iso(E,D) and f̃ ◦ f ∈ Iso(D,F ).

Proof. Let s, s′ ∈ SD, a ∈ AD. First, using the definition of an isomorphism and associativity of function
composition, it is

PD(s′ | s, a) = PE(fs′ | fs, fa) = PF (f̃fs′ | f̃fs, f̃fa) = PF ((f̃ ◦ f)s′ | (f̃ ◦ f)s, (f̃ ◦ f)a).

An analogous calculation applies to observation probabilities, reward functions and initial state distribution.
This shows that f̃ ◦ f ∈ Iso(D,F ).

Next, let s′, s ∈ SE . Using Lemma 13 and the definition of an isomorphism, it is

PE(s′ | s, a) = PE(ff−1s′ | ff−1s, ff−1a) = PD(f−1s′ | f−1s, f−1a).

Again, an analogous calculation applies to observation probabilities and the other relevant functions. This
shows that f−1 ∈ Iso(E,D).

The next lemma shows that one can decompose isomorphisms into any isomorphism composed with an
automorphism. Essentially, an isomorphism is a map from one Dec-POMDP to another, composed with a
symmetry of that Dec-POMDP. This will be important later when we apply these concepts to define the LFC
problem and show how OP relates to it.

Lemma 19. Let D,E be Dec-POMDPs and f, f̃ ∈ Iso(D,E). Then there exists exactly one g ∈ Aut(E)
such that g ◦ f = f̃ . Analogously, there exists exactly one g ∈ Aut(D) such that f ◦ g = f̃ . In particular, it is

Iso(D,E) = f ◦Aut(E) = Aut(D) ◦ f,

where f ◦Aut(E) := {f ◦ g | g ∈ Aut(E)} and Aut(D) ◦ f is defined analogously.

Proof. Existence: By Lemma 18, g := f̃ ◦ f−1 is an isomorphism in Iso(E,E) = Aut(E), and it is
g ◦ f = (f̃ ◦ f−1) ◦ f = f̃ .

Uniqueness: Assume g ◦ f = g̃ ◦ f = f̃ for automorphisms g, g̃ ∈ Aut(E). Then it follows that

g = g ◦ (f ◦ f−1) = (g ◦ f) ◦ f−1 = (g̃ ◦ f) ◦ f−1 = g̃.

The proof for the second part of the lemma is exactly analogous, but using g := f−1f̃ .

Turning to the “in particular” statement, the above shows that

Iso(D,E) ⊆ f ◦Aut(E)

and
Iso(D,E) ⊆ Aut(D) ◦ f.

The two inclusions in the other direction follow directly from Lemma 18.
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C.3. Pushforward policies

Recall the definition of pushforward policies.

Definition 20 (Pushforward policy). Let D,E be isomorphic Dec-POMDPs, let f ∈ Iso(D,E), and let
π ∈ ΠD. Then we define the pushforward f∗π ∈ ΠE of π by f via

(f∗π)i(ai | τi,t) := πf−1i(f
−1ai | f−1τi,t)

for all i ∈ NE , ai ∈ AEi , t ∈ {0, . . . , T}, and τi,t ∈ AO
E

i,t. That is, in the joint policy f∗π, agent j ∈ NE

gets assigned the local policy πi of agent i := f−1j ∈ ND, precomposed with f−1.

One can easily see that f∗π is a policy for the Dec-POMDP E. Hence, when f is an automorphism, f∗π is a
policy for the same Dec-POMDP as π.

Like actions of isomorphisms on joint actions and observations, the pushforward is compatible with function
composition, and it can be inverted using the inverse map f−1.

Lemma 21. Let D,E and F be Dec-POMDPs. Let π ∈ ΠD, e ∈ Aut(D,D) be the identity and f ∈
Iso(D,E), f̃ ∈ Iso(E,F ). Then it is

(i) e∗π = π.

(ii) f̃∗(f∗π) = (f̃ ◦ f)∗π.

In particular, the pushforward can be inverted using the inverse map f−1.

Proof. First, let i ∈ ND, ai ∈ ADi , t ∈ {0, . . . , T}, and τi,t ∈ AO
D

i,t. Then

(e∗π)i(ai | τi,t) = πei(eai | eτi,t) = πi(ai | τi,t),

which shows that e∗π = π.

Second, let i ∈ NF , ai ∈ AFi and τi,t ∈ AO
F

i,t. Using Lemma 13, it is

(f̃∗(f∗π))i(ai | τi,t) = (f∗π)f̃−1i(f̃
−1ai | f̃−1τi,t) = πf−1(f̃−1i)(f

−1(f̃−1ai) | f−1(f̃−1τi,t))

Lemma 13
= π(f◦f̃)−1i((f̃ ◦ f)−1ai | (f̃ ◦ f)−1τi,t) = ((f̃ ◦ f)∗π)i(ai | τi,t), (30)

which proves that f̃∗(f∗π) = (f̃ ◦ f)∗π.

Regarding the invertibility of the pushforward, note that by (ii), it is

(f−1)∗(f∗π)
(ii)
= (f−1 ◦ f)∗π = π.

This concludes the proof.

One may wonder how pushforward policies and isomorphisms are related. In particular, how is the distribution
over histories induced by a pushforward policy related to the distribution induced by the original policy?
This question is answered by the following theorem, which we will use throughout this paper. The theorem
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demonstrates how the isomorphism from D to E preserves the structure of the problem. It is similar to Kang
& Kim (2012)’s Theorem 3, which applies to automorphisms in POSGs and makes a statement about the
expected returns of all agents under the pushforward policy. We will provide a result about expected returns
as a corollary.

Theorem 22. Let D,E be isomorphic Dec-POMDPs, let f ∈ Iso(D,E), and let π ∈ ΠD. Then for any
τ ∈ HD, it is

Pπ(HD = τ) = Pf∗π(HE = fτ).

In particular, for any i ∈ N , t ∈ {0, . . . , T} and τi,t ∈ AOi, it is

Pπ(AOi,t = τi,t) = Pf∗π(AOfi,t = fτi,t).

Proof. Proof by induction over t ∈ {0, . . . , T}.

To start the induction, let s ∈ SD, a ∈ A, r ∈ R and τ0 := (s, a, r) ∈ HD0 . Then it is

Pπ(HD
0 = τ0) = bD0 (s)

∏
i∈ND

πi(ai | ∅)δRD(s,a),r (31)

= bE0 (fs)
∏
i∈ND

πf−1fi(f
−1fai | ∅)δRE(fs,fa),r (32)

= bE0 (fs)
∏
i∈ND

(f∗π)fi(fai | ∅)δRE(fs,fa),r (33)

= bE0 (fs)
∏
i∈NE

(f∗π)i(faf−1i | ∅)δRE(fs,fa),r (34)

= Pf∗π(HE
0 = fτ). (35)

Here, in (32), we use the definition of an isomorphism, in (33) we use the definition of the pushforward policy,
and in (35) we use the definition of fa from Equation (21).

Next, let t > 0 and assume that it is Pπ(τDt−1 = τt−1) = Pf∗π(τE = fτt−1) for any τt−1 ∈ Ht−1. Let

τt = (. . . , st−1, ot−1, at−1, rt−1, st, ot, at, rt) ∈ HDt

arbitrary, define ai,t for i ∈ N such that (ai,t)i∈ND = at, and define τi,t as the action-observation history
for player i ∈ ND corresponding to τt.

If Pπ(HD
t−1 = τt−1) = 0, then also Pf∗π(HE

t−1 = fτt−1) = 0, and thus also

Pπ(HD
t = τt) = 0 = Pf∗π(HE

t = fτt).
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Thus, assume now that Pπ(HD
t−1 = τt−1) > 0. Then it is

Pπ(SDt = st, O
D
t = ot, A

D
t = aT , R

D
t = rt | HD

t−1 = τt−1) (36)

= PD(st | st−1, at−1)OD(ot | st, at−1)
∏
i∈ND

πi(ai,t | τt)δRD(st,at),r (37)

= PE(fst | fst−1, fat−1)OE(fot | fst, fat−1) (38)∏
i∈ND

πf−1fi(f
−1fai,t | f−1fτt)δRE(fst,fat),r (39)

= PE(fst | fst−1, fat−1)OE(fot | fst, fat−1) (40)∏
i∈ND

(f∗π)fi(fai,t | fτt)δRE(fst,fat),r (41)

= PE(fst | fst−1, fat−1)OE(fot | fst, fat−1) (42)∏
i∈NE

(f∗π)i(faf−1i,t | fτf−1i,t)δRE(fst,fat),r (43)

= Pf∗π(SEt = fst, O
E
t = fot, A

E
t = fat, R

E
t = rt | HE

t−1 = fτt−1). (44)

Again, we have used the definitions of isomorphism, pushforward policy, and Equations (21) and (22) in lines
(38), (40), and (44), respectively. Using the inductive hypothesis, it follows that

Pπ(HD
t = τt) (45)

= Pπ(SDt = st, O
D
t = ot, A

D
t = aT , R

D
t = rt | HD

t−1 = τt−1)Pπ(HD
t−1 = τt−1) (46)

= Pf∗π(SEt = fst, O
E
t = fot, A

E
t = fat, R

E
t = rt | HE

t−1 = fτt−1)Pπ(HD
t−1 = τt−1) (47)

I.H.
= Pf∗π(SEt = fst, O

E
t = fot, A

E
t = fat, R

E
t = rt | HE

t−1 = fτt−1)Pf∗π(HE
t−1 = fτt−1) (48)

= Pf∗π(HE
t = fτt). (49)

This concludes the induction and thus proves that Pπ(HD = τ) = Pf∗π(HE = fτ) for any history
τ := τT ∈ HDT .

Turning to the “in particular” part of the proposition, let i ∈ N , t ∈ {0, . . . , T}, and τi,t ∈ AOi,t. Let
τt ∈ HDt such that Pπ(HD

t = τt) > 0 and thus also Pf∗π(HE
t = fτt) > 0.

First, assume that actions and observations of agent i in this history equal those in τi,t. Then it is {HD
t =

τt} ⊆ {AO
D

i,t = τi,t} and hence Pπ(AOi,t = τi,t | Ht = τt) = 1. Moreover, by Equations (21) and
(22), it follows for any t′ ≤ t, at′ ∈ AD and ot′ ∈ OD that projfi(fat′) = fai,t′ and analogously
projfi(fot′) = foi,t′ . Hence, it follows that actions of observations of agent fi in fτt are equal to those in

fτi,t, and thus it is {HE
t = fτt} ⊆ {AO

E

fi,t = fτi,t}, which implies Pf∗π(AO
E

fi,t = fτi,t | Ht = fτt) = 1.

If, on the other hand, a history τt disagrees with τi,t in any way, then trivially Pπ(AOi,t = τi,t | Ht = τt) = 0
and thus by same argument as before also Pf∗π(AOfi,t = fτi,t | Ht = fτt) = 0.

It follows that for any τt ∈ HDt such that Pπ(HD
t = τ) > 0, it is

Pπ(AOi,t = τi,t | Ht = τt) = Pf∗π(AO
E

fi,t = fτi,t | Ht = fτt), (50)
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and hence

Pπ(AOi,t = τi,t) =
∑

τt∈HDt

Pπ(AOi,t = τi,t | Ht = τt)Pπ(HD
t = τt) (51)

(45)
=

∑
τt∈HDt

Pπ(AOi,t = τi,t | Ht = τt)Pf∗π(HD
t = fτt) (52)

(50)
=

∑
τt∈HDt

Pf∗π(AOfi,t = fτi,t | Ht = fτt)Pf∗π(HD
t = fτt) (53)

=
∑

τt∈f−1(HDt )

Pf∗π(AOfi,t = fτi,t | Ht = τt)Pf∗π(HD
t = τt) (54)

= Pf∗π(AOfi,t = fτi,t). (55)

In line (55), we have used that, by Corollary 14, f is a bijective map when applied to histories, and thus
f−1

(
HDt
)

= HEt . This concludes the proof.

It is an immediate corollary that the expected return of a policy is not changed by the pushforward.

Corollary 23. Let D,E be Dec-POMDPs, let f ∈ Iso(D,E), and let π ∈ ΠD. Then

JD(π) = JE(f∗π).

Proof. By Corollary 14 and Theorem 22, it is

Pπ(f
(
HD

)
= τE)

Corollary 14
= Pπ(HD = f−1τE)

Theorem 22
= Pf∗π(HE = f(f−1τE)) = Pf∗π(HE = τE) (56)

for any history τE ∈ HE . This shows that the random variable f
(
HD

)
has the same image distribution

under Pπ as the variable HE under Pf∗π. In particular, this means that for any t = 0, . . . , T , the variables
f(RDt ) = RDt and REt have the same distribution in the respective probability spaces (*). Using the definition
of the expected return, it follows that

JD(π) = Eπ

[
T∑
t=0

RDt

]
(*)
= Ef∗π

[
T∑
t=0

REt

]
= JE(f∗π). (57)

C.4. Relation to group theory

The study of symmetries is a focus of group theory, and the concepts introduced above hence correspond
to group-theoretic notions. For instance, as we show below, Aut(D) is a group, and its elements do act on
the elements of a Dec-POMDP in the sense of group actions. We discuss this here as we will need these
results later, in the discussion of symmetric profiles of learning algorithms in Appendix C.7, as well as in the
discussion of random tie-breaking functions in Appendix F.3. For a reference on the group-theoretic concepts
discussed here, see Rotman (2012, ch. 3).

We begin by showing that Aut(D) is a group.
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Proposition 24. Let D be a Dec-POMDP. Then (Aut(D), ◦) is a group, where ◦ is the function composition.

Proof. First, we show that the binary operation

◦ : Aut(D)×Aut(D)→ Aut(D), (g, g̃) 7→ g ◦ g̃

is well-defined. By Equation 27, an automorphism g ∈ Aut(D) is a bijective self-map, so we can compose
any two automorphisms g, g̃ ∈ Aut(D). Moreover, by Lemma 18, for any g ∈ Aut(D), g̃ ∈ Aut(D), we
also have g̃ ◦ g ∈ Iso(D,D) = Aut(D). This shows that Aut(D) is closed under function composition.

Second, note that ◦ is an associative operation as function composition is associative. Moreover, for the
identity map e, it is e ◦ g = g for any g ∈ Aut(D), so Aut(D) has a neutral element. Lastly, by Lemma 18,
it is also g−1 ∈ Aut(D), and since g−1 ◦ g = e, this implies that g has an inverse in Aut(D). This concludes
the proof.

Next, we turn to group actions, which formalize the idea that elements of groups can be applied to sets. In the
case of symmetry groups, this connects the abstract group elements with their role as transformation of an
underlying set. For instance, consider the set X of the vertices of an equilateral triangle in R2 and the cyclic
group Z�3Z. Each element of Z�3Z can be regarded as a rotation of the vertices of the triangle, mapping one
vertex to another.
Definition 25 (Group action). Let (G, ·) be a group with identity e and let X be any set. A group action is
defined as a map α : G×X → X such that

(i) Identity: α(e, x) = x for any x ∈ X

(ii) Compatibility: α(f, α(g, x)) = α(f · g, x) for any f, g ∈ G, x ∈ X .

It is common to write gx := α(g, x) for g ∈ G, x ∈ X , if it is clear which group action is referred to.

We have already proven these two properties for isomorphisms and both their actions on joint actions and
observations, as well as the pushforward of policies, in Lemma 13 and Lemma 21, respectively. Hence, it
follows that also Aut(D) acts on these sets in the sense of group actions.
Corollary 26. Let D be a Dec-POMDP. The actions of Aut(D) onA andO, defined as αA : (g, a) 7→ gA(a)
respectively αO : (g, o) 7→ gO(o) as in Equations 21 and 22 are group actions. Similarly, the pushforward of
policies by automorphisms (g, π) 7→ g∗π as defined in Definition 20 is an action of Aut(D) on ΠD.

Proof. This follows directly from Lemma 13 and Lemma 21.

Of course, automorphisms also act on states and agents, and one can also easily see that they act on histories
and action-observation histories.

Some further results immediately follow from this, such as the fact that N decomposes into equivalence
classes of orbits under Aut(D). The orbit of agent i is defined as the set of all agents j that can be obtained
from i by applying automorphisms.
Definition 27 (Orbit). Let D be a Dec-POMDP and assume that Aut(D) acts on the set X . Then for x ∈ X ,
the set

Aut(D)x := {gx | g ∈ Aut(D)}
is called the orbit of x under Aut(D).
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For instance, for i ∈ N , the set Aut(D)i := {gi | g ∈ Aut(D)} is the orbit of agent i under Aut(D). It is a
standard result from group theory that orbits form a partition {Aut(D)i | i ∈ N} ⊆ P(N ) of the set. This
follows from the fact that since group actions have an identity and are invertible, belonging to the same orbit
is an equivalence relation. For example, in the case of the triangle in R2, all the vertices in V can be reached
from any other vertex by rotations, so they all belong to the same orbit. In general, though, the orbits may
form any other partition of the set.

C.5. Dec-POMDP labelings and relabeled Dec-POMDPs

In the following, assume that a Dec-POMDP D is given. Here, we want to define a set of isomorphic
Dec-POMDPs D as described in Section 4.2, in which the sets of states, actions, etc. are of the form
{1, 2, . . . , k − 1, k} ⊆ N, k ∈ N. This set can then be used to define the LFC game for D in a way that does
not depend on labels.

We begin by defining a labeling of D. A labeling f is a special Dec-POMDP isomorphism from D to another,
relabeled Dec-POMDP, that can be constructed using f .

Definition 28 (Dec-POMDP labeling). A Dec-POMDP labeling is a tuple of bijective maps

f := (fN , fS , (fAi)i∈N , (fOi)i∈N ),

where

fN : N → {1, . . . , |N |} (58)
fS : S → {1, . . . , |S|} (59)

∀i ∈ N : fAi : Ai → {1, . . . , |Ai|} (60)
∀i ∈ N : fOi : Oi → {1, . . . , |Oi|}. (61)

We denote Sym(D) for the set of labelings of D.

Note that if X is some set, then Sym(X) usually denotes the symmetric group of X . The symmetric group is
the set of permutations of X , together with the operation of function composition. We use the same notation,
as Sym(D) can be understood of as containing all the permutations of the different sets that D consists
of, with the caveat that we first map those sets to subsets of the first k natural numbers. This is done for
simplification, especially regarding the treatment of the individual action and observation sets of different
agents.

Next, we introduce the pushforward Dec-POMDP f∗D for a labeling f ∈ Sym(D). This is a Dec-POMDP
that is isomorphic to D, with isomorphism f . In the following, we let f ∈ Sym(D) act on joint actions,
observations, etc., in the same way as before for isomorphisms. For instance, for a ∈ A, it is fa :=
(fA

f
−1
N

(i)
(af−1

N (i)))i∈{1,...,|N |}. The compatibility of these actions with function composition and function

inversion trivially still hold.

Definition 29 (Relabeled Dec-POMDP). Let f ∈ Sym(D). Let N ∈ N such that {1, . . . , N} = N . The
pushforward of D by f , called a relabeled Dec-POMDP, is the Dec-POMDP

f∗D := (N̂ , Ŝ, Â, P̂ , R̂, Ô, Ô, b̂0, T̂ ),

where
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• N̂ := {1, . . . , N} = N .

• Ŝ := {1, . . . , |S|}.

• Âi := {1, . . . , |Af−1i|} for i ∈ N̂ .

• P̂ (s′ | s, a) := P (f−1s′ | f−1s, f−1a) for s′, s ∈ Ŝ, a ∈ Â.

• R̂(s, a) := R(f−1s, f−1a) for s ∈ Ŝ, a ∈ Â.

• Ôi := {1, . . . , |Of−1i|} for i ∈ N̂ .

• Ô(o | s, a) := O(f−1o | f−1s, f−1a) for o ∈ Ô, s ∈ Ŝ, a ∈ Â.

• b̂0(s) := b0(f−1s) for s ∈ Ŝ.

• T̂ := T .

First, we have to check that this is well-defined, e.g., that f−1a ∈ A for any a ∈ Â. For states, it is clear from
the definition of Sym(D) that f−1(Ŝ) = f−1({1, . . . , |S|}) = S . Moreover, the same applies to agents, i.e.,
f−1i ∈ N for any i ∈ {1, . . . , |N |}. This leaves joint actions and observations.

Proposition 30. For Â, Ô as defined above, it is f−1(Â) = A and f−1(Ô) = O.

Proof. Let â ∈ Â. Then for any i ∈ N̂ , we can define j ∈ N and aj ∈ Aj such that fj = i and faj = âi.
Then

f−1â = (f−1âfj))j∈N = (f−1faj))j∈N = (aj)j∈N = a ∈ A.

The same argument works for ô ∈ Ô.

Importantly, it can be f∗D 6= D for a labeling f ∈ Sym(D). Nevertheless, it is easy to see from the
definitions that f∗D is actually isomorphic to D, with isomorphism f . This also implies that it is f∗D = D
if and only if f is an automorphism.

Lemma 31. For any f ∈ Sym(D), it is f ∈ Iso(D, f∗D).

Proof. This follows directly from the definition of an isomorphism, together with Lemma 13. For instance,
considering transition probabilities, it is

P (s′ | s, a) = P (f−1fs′ | f−1fs, f−1fa) = P̂ (fs′ | fs | fa)

for any s′, s ∈ S, a ∈ A. Similar calculations apply to all the other relevant functions.

It follows as a corollary that f∗π is a policy for the Dec-POMDP f∗D, where π ∈ ΠD, f ∈ Sym(D). Note
also that the results in Lemma 21 still apply to the pushforward by labelings.

Corollary 32. Let f ∈ Sym(D) and π ∈ ΠD. Then f∗π ∈ Πf∗D.

Proof. Follows from the definition of f∗π and Lemma 31.
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Lastly, we provide some further useful results about labelings. First, the set Sym(D) already contains all
the isomorphisms in Iso(D, f∗D). We will need this result later to relate results about isomorphisms and
automorphisms to the relabeled Dec-POMDPs used in an LFC game.
Lemma 33. Let f ∈ Sym(D). Then

Iso(D, f∗D) = {f̃ ∈ Sym(D) | f̃∗D = f∗D}

Proof. “⊇”: for any f̃ ∈ Sym(D) such that f̃∗D = f∗D, it is also Iso(D, f̃∗D) = Iso(D, f∗D), and thus
it follows from Lemma 31 that f̃ ∈ Iso(D, f̃∗D) = Iso(D, f∗D).

“⊆”: Let f̂ ∈ Iso(D, f∗D). Note that the set of agents, states, and the individual action and observation sets
in f∗D are all of the form {1, . . . , k} where k ∈ N depends on the respective set. Now consider, for instance,
the map f̂Ai for i ∈ N . Then by the definition of an isomorphism, f̂Ai is a bijective map, and its domain
and codomain are Ai and {1, . . . , k} for some k ∈ N. Moreover, since f̂Ai is bijective, it must be k = |Ai|.
Mutatis mutandis, the same applies to all of the other maps that are part of the tuple f̂ . Hence, f̂ satisfies the
definition of a Dec-POMDP labeling, so f̂ ∈ Sym(D).

Next, it follows that f̂ ∈ Iso(D, f̂∗D) by Lemma 31, and thus e = f̂ ◦ f̂−1 ∈ Iso(f∗D, f̂∗D) by the
assumption and Lemma 18. Hence, using the definition of an isomorphism, it follows that also f∗D = f̂∗D.
This shows that

f̂ ∈ {f̃ ∈ Sym(D) | f̃∗D = f∗D},
which concludes the proof.

Second, we show that labelings and pushforward are compatible with composition with isomorphisms.
Lemma 34. Let D,E be isomorphic Dec-POMDPs with f ∈ Iso(D,E). Then

Sym(D) = Sym(E) ◦ f.

Moreover, it is f̃∗E = (f̃ ◦ f)∗D for any f̃ ∈ Sym(E).

Proof. First, let f̃ ∈ Sym(D) and define f̂ := f̃ ◦ f−1. Note that f̂ has as components bijective maps
with a domain and codomain that satisfies the definition of a labeling of E. Hence, f̂ ∈ Sym(E). Next, let
f̃ ∈ Sym(E). Then similarly, f̃ ◦ f fulfills the requirements for a labeling in Sym(D).

To prove the second statement, let again f̃ ∈ Sym(E). Note that since D and E are isomorphic, they must
have the same set of players and sets of states with the same cardinalities. Now let i ∈ ND. Using the
definition of an isomorphism and of a labeling, it is then

Af̃
∗E
i = {1, . . . , |AE

f̃−1i
|} = {1, . . . , |AD

f−1(f̃−1i)
|} = {1, . . . , |AD

(f̃◦f)−1i
|} = A(f̃◦f)∗D

i .

A similar argument applies to the sets Oi for i ∈ N . Finally, let s, s′ ∈ S f̃∗E , a ∈ Af̃∗E . Using again the
definition of an isomorphism and a labeling, it follows that

P f̃
∗E(s′ | s, a) = PE(f̃−1s′ | f̃−1s, f̃−1a)

= PD(f−1f̃−1s′ | f−1f̃−1s, f−1f̃−1a) = P (f̃◦f)∗D(s′ | s, a). (62)

Again, an analogous argument applies to the observation probability kernel and reward function, as well as
the initial state distribution. This concludes the proof.
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C.6. The label-free coordination game and problem

Here, we recall the definitions of an LFC game and of the LFC problem. To begin, we define a measure
space of policies and recall the definition of a learning algorithm. For any Dec-POMDP D, let ∆(ΠD) be the
set of measures on the space (ΠD,FD) where FD := ⊗i∈NFDi is a product σ-Algebra and FDi ⊆ P(ΠD

i )
are σ-Algebras that make the random variables and sets discussed in this paper measurable. For instance,
for i ∈ N , this could be the Borel σ-Algebra with respect to the standard topology on ΠD

i that comes from
regarding ΠD

i as a subset of [0, 1]A
D
i ×AO

D
i . Although we do not investigate this here, all the relevant functions

and sets should be measurable in that sense.

Definition 35 (Learning algorithm). Let D be a finite set of Dec-POMDPs. A learning algorithm for D is a
map

σ : D →
⋃
D∈D

∆(ΠD)

such that σ(D) ∈ ∆(ΠD) for all D ∈ D. We write ΣD for the set of learning algorithms for D.

Note that this definition is general enough so as to include planning algorithms that construct a policy directly
from the environment dynamics, instead of incrementally updating a policy from experience. Nevertheless,
here, we imagine that σ(D) is a policy that was trained by an RL algorithm, using a simulator of D. Note
also that a learning algorithm can learn different joint policies in different training runs, which we formalize
as outputting a measure over joint policies.

Similarly to the case of policies, for a distribution ν ∈ ∆(ΠD) and an isomorphism f ∈ Iso(D,E), we can
define a pushforward distribution f∗ν := ν ◦ (f∗)−1 ∈ ∆(ΠE), which is the image measure of ν under f∗.
It is apparent that for two isomorphisms f ∈ Iso(D,E), f̃ ∈ Iso(E,F ), it is f̃∗(f∗ν) = (f̃ ◦ f)∗ν.

In the following, for some distributions ν(i) ∈ ∆(ΠD) for i ∈ N and bounded measurable function
η : ΠD × · · · ×ΠD → R, we will use the notational shorthands

Eπ(i)∼ν(i), i∈N

[
η(π(1), . . . , π(N))

]
:= Eπ(1)∼ν(1)

[
. . .
[
Eπ(N)∼ν(N)

[
η(π(1), . . . , π(N))

]]
. . .
]

and
Eπ(i)∼ν(i)

[
η(π(1), . . . , π(N))

]
:=

∫
ΠD

η(π(1), . . . , π(N))dν(i)(π(i)).

Note that by Fubini’s theorem (see Williams, 1991, ch. 8), it is

Eπ(i)∼ν(i), i∈N

[
η(π(1), . . . , π(N))

]
=

∫
ΠD×···×ΠD

η(π(1), . . . , π(N))d⊗i∈N ν(i).

Now we define the LFC game for a Dec-POMDP.

Definition 36 (Label-free coordination game). Let D be a Dec-POMDP and define D := {f∗D |
f ∈ Sym(D)}. The label-free coordination (LFC) game for D is defined as a tuple ΓD :=
(ND, (ΣD)i∈N , (U

D)i∈N ) where

• ND is the set of players, called principals.

• ΣD is the set of strategies for all principals i ∈ ND.
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• the common payoff for the strategy profile σ1, . . . ,σN ∈ ΣD is

UD(σ) := EDi∼U(D), i∈N

[
Efj∼U(Iso(Dj ,D)), j∈N

[
Eπ(k)∼f∗kσk(Dk), k∈N

[
JD((π

(l)
l )l∈N )

]]]
, (63)

where U(D) is a uniform distribution overD and U(Iso(Dj , D)) a uniform distribution over Iso(Dj , D).

Remark 37. Note that set of strategies ΣD is continuous. The game ΓD could hence be considered a
continuous game, which is a generalization of the concept of a normal-form game to continuous strategy
spaces (see Glicksberg, 1952). In continuous games, it is usually assumed that the set of strategies is compact
and that the payoffs are continuous functions, which we believe does apply in our case.

Moreover, we believe that there is some other normal-form game with finite strategy space such that the
mixed strategies in that game correspond to the set of strategies ΣD in ΓD (for a reference on these concepts
from game theory, see Osborne & Rubinstein, 1994; Gibbons, 1992). In particular, one can see that the set of
strategies ΣD is already convex.

We do not need any further characterization of an LFC game in the following, so we do not investigate issues
such as compactness or convexity of the set of strategies. The formalism at hand was chosen primarily to
work well with an intuitive formulation of the LFC problem and to suit our discussion of the OP algorithm.

Next, to recall the definition of the LFC problem, let any set C of Dec-POMDPs be given, and denote
C :=

⋃
D∈C DD where DD := {f∗D | f ∈ Sym(D)} is the set of all relabeled problems of D. The LFC

problem for C is then defined as the problem of finding one learning algorithm σ ∈ ΣC to be used by principals
in a randomly drawn game ΓD for D ∼ U(C).
Definition 38 (Label-free coordination problem). Let C be any set of Dec-POMDPs. Define the objective
UC : ΣC → R via

UC(σ) := EE∼U(C)
[
UE(σ, . . . , σ)

]
(64)

for σ ∈ ΣC . Then we define the Label-free coordination (LFC) problem for C as the optimization problem

max
σ∈ΣC

UC(σ) (65)

and we call UC(σ) the value of σ in the LFC problem for C. If C = {D}, we write UD := U{D} in a slight
abuse of notation and refer to this as the LFC problem for E.
Remark 39. The aim of the LFC problem is to find a general learning algorithm to recommended to principals
in any LFC game. For this reason, we defined the problem here for a distribution over LFC games. However,
a learning algorithm is optimal in the problem for a set of Dec-POMDPs if and only if it is optimal in the
problem for each Dec-POMDP in that set. That is because, as one can easily see, the sets DD,DE do never
overlap for two non-isomorphic Dec-POMDPsD,E, and we will show in Corollary 43 that the LFC problems
for two isomorphic Dec-POMDPs are identical. So to evaluate a learning algorithm in the LFC problem for a
set of Dec-POMDPs, we can decompose the set into equivalence classes of isomorphic Dec-POMDPs and
evaluate the learning algorithm separately for each of these classes. In the following, we will thus simplify our
analysis and restrict ourselves entirely to problems defined for single Dec-POMDPs. Note that the objective
in the LFC problem is then simply

UD(σ) = U{D}(σ) = EE∼U({D})
[
UE(σ, . . . , σ)

]
= UD(σ, . . . , σ). (66)

If we then prove, e.g., that a learning algorithm is optimal in any such problem, it follows that it is also
optimal for the problem defined for any set of Dec-POMDPs.
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Now we will provide two different expressions of the payoff in an LFC game. To that end, let D be a
Dec-POMDP and define D := {f∗D | f ∈ Sym(D)}. First, we provide an expression in terms of labelings.

Lemma 40. Let σ1, . . . ,σN ∈ ΣD. Then

UD(σ1, . . . ,σN ) = Ef∼U(Sym(D)N )

[
Eπ(i)∼(f−1

i )∗σi(f∗i D), i∈N

[
JD((π

(j)
j )j∈N )

]]
(67)

Proof. It follows from Lemma 33 that it is Sym(D) =
⋃
E∈D Iso(D,E), where one can easily see that

the union is disjoint (i). Moreover, it follows from Lemma 19 that |Iso(D,E)| = |Iso(D,F )| for any
Dec-POMDPs E,F ∈ D, so there exists M ∈ N such that M = |Iso(D,E)| for any E ∈ D, and from (i) it
follows that |Sym(E)| = |D||M | (ii).

Next, by Lemma 18, for any f ∈ Iso(D,Dj), it is f−1 ∈ Iso(Dj , D) for any f ∈ Iso(Dj , D). In
addition, by the same Lemma, for f ∈ Iso(Dj , D), it is f = (f−1)−1 and f−1 ∈ Iso(D,Dj) and thus
f ∈ {f̃−1 | f̃ ∈ Iso(D,Dj)}. Hence, it is

{f̃ | f̃ ∈ Iso(Dj , D)} = {f̃−1 | f̃ ∈ Iso(D,Dj)}. (68)

Using the above, it follows that

UD(σ1, . . . ,σN ) (69)

= EDi∼U(D), i∈N

[
Efj∼Iso(Dj ,D), j∈N

[
Eπ(k)∼f∗kσk(Dk), k∈N

[
JD((π

(l)
l )l∈N )

]]]
(70)

(68)
= EDi∼U(D), i∈N

[
Efj∈Iso(D,Dj), j∈N

[
Eπ(k)∼(f−1

k )∗σk(Dk), k∈N

[
JD((π

(l)
l )l∈N )

]]]
(71)

(i), (ii)
= Efi∼U(Sym(E)), i∈N

[
Eπ(j)∼(f−1

j )∗σj(f∗j D), j∈N

[
JD((π

(k)
k )k∈N )

]]
(72)

= Ef∼U(Sym(E)N )

[
Eπ(i)∼(f−1

i )∗σi(f∗i D), i∈N

[
JD((π

(j)
j )j∈N )

]]
. (73)

This concludes the proof.

Second, we can prove a useful decomposition of the payoff in an LFC game into isomorphisms and auto-
morphisms. We can already see here the connection to the OP objective (we will recall the OP objective in
Appendix D.1). Recall the projection operator, proji(x) := xi for x = (xi)i∈N .

Lemma 41. Let σ1, . . . ,σN ∈ ΣD. For any E,F ∈ D, choose fE,F ∈ Iso(E,F ) arbitrarily. Then

UD(σ1, . . . ,σN ) (74)

= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
Eg∈Aut(D)N

[
JD
((

projk(g∗kπ
(k))
)
k∈N

)]]]
. (75)

Proof. Let i ∈ N , Di ∈ D. We know from Lemma 19 that for any f ∈ Iso(Di, D) there is a unique
g ∈ Aut(D) such that f = g ◦ fDi,D. Also, for the pushforward measure, it is (g ◦ fDi,D)∗σi(Di) =
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g∗f∗Di,Dσi(Di) for any g ∈ Aut(D). Using this, it follows that

EDi∼U(D), i∈N

[
Efj∼U(Iso(Dj ,D)), j∈N

[
Eπ(k)∼f∗kσk(Dk), k∈N

[
JD((π

(l)
l )l∈N )

]]]
(76)

= EDi∼U(D), i∈N

[
Eg∼U(Aut(D)N )

[
Eπ(k)∼g∗kf

∗
Dk,D

σk(Dk), k∈N

[
JD((π

(j)
j )j∈N )

]]]
(77)

= EDi∼U(D), i∈N

[
Eπ(k)∼f∗Dk,Dσk(Dk), k∈N

[
Eg∼U(Aut(D)N )

[
JD
((

projj(g
∗
jπ

(j))
)
j∈N

)]]]
, (78)

where we have used a change of variables for pushforward measures in the last line.

Finally, we can show that the payoff in an LFC game is equal for isomorphic Dec-POMDPs, up to a possible
permutation of principals. Intuitively, this means that the game does not depend on labels for the problem.

Theorem 42. Let D,E be isomorphic and f ∈ Iso(D,E) arbitrary. Define D := {f∗D | f ∈ Sym(D)}
and C := {f∗E | f ∈ Sym(E)}. Then D = C, and for any profile of algorithms σ = (σ1, . . . ,σN ) ∈ ΣD,
it is

UD(σ1, . . . ,σN ) = UE(σf−11, . . . ,σf−1N ).

Proof. First, note that by Lemma 34, it is

C = {f̃∗E | f̃ ∈ Sym(E)} Lemma 34
= {(f̃ ◦ f)∗D | f̃ ∈ Sym(E)}

= {f̂∗D | f̂ ∈ Sym(E) ◦ f} Lemma 34
= {f̂∗D | f̂ ∈ Sym(D)} = D. (79)

Now let σ1, . . . ,σN ∈ ΣD arbitrary. Then, using the expression of UD from Lemma 40, it is

UD(σ1, . . . ,σN ) (80)

= Ef∼U(Sym(D)N )

[
Eπ(i)∼(f−1

i )∗σi(f∗i D), i∈N

[
JD((π

(j)
j )j∈N )

]]
(81)

= Ef∼U(Sym(D)N )

[
Eπ(i)∼(f−1

i )∗σi(f∗i D), i∈N

[
JE(f∗(π

(j)
j )j∈N )

]]
(82)

= Ef∼U(Sym(D)N )

[
Eπ(i)∼(f−1

i )∗σi(f∗i D), i∈N

[
JE((π

(f−1j)
f−1j (f−1· | f−1·))j∈N )

]]
(83)

= Ef∼U(Sym(D)N )

[
Eπ(i)∼(f−1

i )∗σi(f∗i D), i∈N

[
JE((projj(f

∗π(f−1j)))j∈N )
]]

(84)

= Ef∼U(Sym(D)N )

[
Eπ(i)∼f∗(f−1

i )∗σi(f∗i D), i∈N

[
JE((projj(π

(f−1j)))j∈N )
]]

(85)

= Ef∼U(Sym(D)N )

[
Eπ(i)∼((fi◦f−1)−1)∗σi(f∗i D), i∈N

[
JE((projj(π

(f−1j)))j∈N )
]]

(86)

= Ef∼U(Sym(D)N )

[
Eπ(i)∼((fi◦f−1)−1)∗σi((fi◦f−1)∗E), i∈N

[
JE((projj(π

(f−1j)))j∈N )
]]

(87)

= Ef∼U(Sym(E)N )

[
Eπ(i)∼(f−1

i )∗σi(f∗i E), i∈N

[
JE((projj(π

(f−1j)))j∈N )
]]

(88)

= Ef∼U(Sym(E)N )

[
Eπ(i)∼(f−1

f−1i
)∗σf−1i(f

∗
f−1i

E), i∈N

[
JE((projj(π

(j)))j∈N )
]]

(89)

= Ef∼U(Sym(E)N )

[
Eπ(i)∼(f−1

i )∗σf−1i(f
∗
i E), i∈N

[
JE((proji(π

(i)))i∈N )
]]

(90)

= UE(σf−11, . . . ,σf−1N ). (91)
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Here, in (82), we use Theorem 22; in (83) and (84), we use the definition of the pushforward policy; in (85),
we apply a change of variables for pushforward measures, applied to each of the measures (f−1

i )∗σi(f
∗
i D)

separately; in (86), we use the associativity of the pushforward measure as well as the fact that (fi ◦f−1)−1 =
f ◦ f−1

i ; in (87) and in (88), we use the second respectively first part of Lemma 34; in (89), we again use a
change of variables for pushforward measures, this time applied to the joint measure ⊗i∈N (f−1

i )∗σi(f
∗
i D);

and in (90) we use the symmetry of the set Sym(E)N with respect to player permutations, concluding the
proof.

First, this result implies that the LFC problems for two isomorphic problems are identical.

Corollary 43. Let D,E be two isomorphic Dec-POMDPs and let D := {f∗D | f ∈ Sym(D)} and
C := {f∗E | f ∈ Sym(E)}. Then D = C and UD(σ) = UE(σ) for any σ ∈ ΣD = ΣC .

Proof. By Theorem 42, we have D = C. Now let σ ∈ ΣD = ΣC . Then again by Theorem 42, it is

UD(σ) = UD(σ, . . . , σ)
Theorem 42

= UE(σ, . . . , σ) = UE(σ).

Second, the theorem shows that symmetries between the agents in a Dec-POMDP are also symmetries
between principals in ΓD.

Corollary 44. Let D be a Dec-POMDP. Then it is

UD(σ1, . . . , σN ) = UD(σg−11, . . . , σg−1N ).

for any g ∈ Aut(D).

Proof. This follows from Theorem 42, using that Aut(D) = Iso(D,D).

C.7. Optimal symmetric strategy profiles

Above, we have shown that the payoff in an LFC game is invariant with respect to symmetries of the agents in
D. Similarly to the case of Dec-POMDPs and their symmetries, we can also apply the concept of symmetry
to profiles of learning algorithms. We can then ask whether a profile of learning algorithms is invariant
to symmetries of the principals, in which case we say that the profile is symmetric. In the following, we
will show that optimal profiles among the ones that are symmetric are Nash equilibria of an LFC game.
Since we will show in Appendix F that a profile in which all principals choose OP with tie-breaking is an
optimal symmetric profile, it will result as a corollary that all principals using OP with tie-breaking is a Nash
equilibrium of the game.

To begin, we define symmetric principals and profiles of learning algorithms. In the following, let again D be
a Dec-POMDP and D := {f∗D | f ∈ Sym(D)}.
Definition 45 (Symmetric principals and strategy profiles). We say that two principals i, j ∈ N are symmetric
if there exists an automorphism g ∈ Aut(D) such that i = gj. A profile of learning algorithms σ1, . . . ,σN ∈
ΣD is called symmetric if it is σi = σg−1i for any automorphism g ∈ Aut(D) and principal i ∈ N .

An optimal symmetric profile is then defined as a symmetric profile σ such that for all other symmetric
profiles σ̃, it is UD(σ) ≥ UD(σ̃). Note that if there are non-symmetric principals in N , then for a single
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learning algorithm σ ∈ ΣD, the property that σ, . . . , σ is an optimal symmetric profile in the LFC game for
D is stronger than the property that the algorithm σ is optimal in the LFC problem for D. The latter only
requires that UD(σ, . . . , σ) ≥ UD(σ′, . . . , σ′) for all σ′ ∈ ΣD, while σ, . . . , σ being an optimal symmetric
profile means that UD(σ, . . . , σ) ≥ UD(σ1, . . . ,σN ) for all symmetric profiles σ1, . . . ,σN ∈ ΣD, where a
profile could potentially include different learning algorithms for non-symmetric principals.

For a simple characterization of symmetric profiles, consider the orbit Aut(D)i of a principal i ∈ N , as
defined in Appendix C.4. Clearly, saying that a profile is symmetric can equivalently be expressed as saying
that all principals from the same orbit are assigned the same learning algorithm.

Lemma 46. A profile σ1, . . . ,σN ∈ ΣD is symmetric if and only if it is σi = σj for any two symmetric
principals i, j ∈ N .

Proof. This can be easily seen from the definition of the orbit and the properties of actions of automorphisms
on agents and principals.

Lastly, we define a Nash equilibrium of an LFC game.

Definition 47 (Nash equilibrium of an LFC game). A profile of learning algorithms σ1, . . . ,σN ∈ ΣD is a
Nash equilibrium of the LFC game for D if, for any principal i ∈ N and learning algorithm σ′i ∈ ΣD, it is

UD(σ) ≥ UD(σi,σ−i).

Now we show that any optimal symmetric profile is a Nash equilibrium. An analogous result for normal-form
games was proven in Emmons et al. (2021). Our proof closely follows that proof, adapted to our setting.

Theorem 48. Any optimal symmetric strategy profile in an LFC game is a Nash equilibrium.

Proof. In the following, fix a Dec-POMDP D and let D := {f∗D | f ∈ Sym(D)}. Let U := UD. Let
σ1, . . . ,σN be an optimal symmetric strategy profile. Towards a contradiction, assume that σ is not a Nash
equilibrium, i.e., that there is i ∈ N and σ̃i ∈ ΣD such that U(σ̃i,σ−i) > U(σ). We show that then there is
another symmetric strategy profile σ̂ that achieves a higher payoff than σ, U(σ̂) > U(σ), contradicting the
assumption that σ was optimal among the symmetric profiles.

To that end, for arbitrary p ∈ (0, 1] define the profile σ̂j := pσ̃i + (1 − p)σi for any j ∈ Aut(D)i
and σ̂j := σj for j ∈ N \ Aut(D)i. Note that, since we jointly change all learning algorithms in one
orbit Aut(D)i, the remaining profile σ̂ is symmetric by Lemma 46. Next, let K := |Aut(D)i|, choose
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Dec-POMDPs D1, . . . , DN ∈ D, and measurable sets Z1, . . . ,ZN ⊆ ΠD. Then it is

(⊗j∈N σ̂(Dj))(
∏
l∈N

Zl) (92)

=
∏

j∈N\Aut(D)i

σ(Dj)(Zj)
∏

l∈Aut(D)i

(pσ̃i(Dl)(Zl) + (1− p)σi(Dl)(Zl)) (93)

= (1− p)K
∏
j∈N

σj(Dj)(Zj)

+
∑

j∈Aut(D)i

p(1− p)K−1σ̃i(Dj)(Zj)
∏

l∈N\{j}

σl(Dl)(Zl)

+
∑

k=2,...,K

pk(1− p)K−kµj,k,Dj
∏
j∈N
Zj

 (94)

= (1− p)K ⊗j∈N σj(Dj)

∏
j∈N
Zj


+

∑
j∈Aut(D)i

p(1− p)K−1
(
σ̃i(Dj)⊗l∈N\{j} σl(Dl)

)∏
j∈N
Zj


+

∑
k=2,...,K

pk(1− p)K−kµj,k,Dj
∏
j∈N
Zj

 (95)

where µk,D1,...,DN is some measure (not necessarily a probability measure) on the space ΠD × · · · × ΠD

that depends on k and D1, . . . , DN , but not on p. This tells us that we can also decompose the integral with
respect to the measure ⊗j∈N σ̂(Dj) as in (95). It follows that

U(σ̂1, . . . , σ̂N ) (96)

= Ef∼U(Sym(D)N )

[
Eπ(j)∼(f−1

j )∗σ̂j(f∗j D), j∈N

[
JD((π

(l)
l )l∈N )

]]
(97)

= Ef∼U(Sym(D)N )

[
Eπ(j)∼σ̂j(f∗j D), j∈N

[
JD
((

projl((f
−1
l )∗π(l))

)
l∈N

)]]
(98)

(95)
= Ef∼U(Sym(D)N )

[
(1− p)KEπ(j)∼σj(f∗j D), j∈N

[
JD
((

projl((f
−1
l )∗π(l))

)
l∈N

)]
+

∑
j∈Aut(D)i

p(1− p)K−1Eπ(m)∼σm(f∗mD),m∈N\j

[
Eπ(j)∼σ̃i(f∗j D)

[
JD
((

projl((f
−1
l )∗π(l))

)
l∈N

)]]

+
∑

k=2,...,K

pk(1− p)K−k
∫
JD
((

projl((f
−1
l )∗π(l))

)
l∈N

)
dµk,f

∗
1D,...,f

∗
ND
(
π(1), . . . , π(N)

) ]
(99)

= (1− p)KU(σ) +
∑

j∈Aut(D)i

p(1− p)K−1U(σ1, . . . ,σj−1, σ̃i,σj+1, . . . ,σN )

+
∑

k=2,...,K

pk(1− p)K−kCk (100)
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= B(m = 0, p)U(σ) +B(m = 1, p)U(σ̃i,σ−i) +
∑

k=2,...,K

pk(1− p)K−kCk (101)

for some constants Ck ∈ R for k = 2, . . . ,K, and where we write B(k = 0, p) to denote the probability
that a binomial distribution with K trials and success chance p has 0 successful trials (and B(k = 1, p)
analogously). Here, in (98), we use a change of variables for pushforward measures, separately for each
measure σ̂j(f

∗
jD); in (100), we use the linearity of the expectation; and in (101) we use that U and σ are

both invariant to symmetries between principals, and thus for g ∈ Aut(D) with g−1j = i, it is

U(σ̃i,σ−i) = U(σ̃g−11, . . . ,σg−1(j−1), σ̃i,σg−1(j+1), . . . ,σg−1N )

= U(σ1, . . . ,σj−1, σ̃i,σj+1, . . . ,σN ). (102)

Now note that if we can show that

(1−B(m = 0, p))U(σ) < B(m = 1, p)U(σ̃i,σ−i) +
∑

k=2,...,K

pk(1− p)K−kCk,

then it would also follow that

U(σ̂)
(96)–(101)

= B(m = 0, p)U(σ) +B(m = 1, p)U(σ̃i,σ−i) +
∑

k=2,...,K

pk(1− p)K−kCk

> B(m = 0, p)U(σ) + (1−B(m = 0, p))U(σ) = U(σ). (103)

Thus, this would show that σ̂ is a symmetric profile with higher payoff than σ, proving the required
contradiction.

In the following, we show the equivalent condition

U(σ) <
B(1, p)

B(m > 0, p)
U(σ̃i,σ−i) +

∑
k=2,...,K p

k(1− p)K−kCk
B(m > 0, p)

,

where B(m > 0, p) =
∑K
k=1B(m = k, p) = 1 − B(m = 0, p). To that end, note that since U(σ) <

U(σ̃i,σ−i) by assumption, we can choose some small ε > 0 such that still

U(σ) < U(σ̃i,σ−i)− ε.

Moreover, note that B(m > 0, p) is a polynomial in p, and the degree of its nonzero term with lowest degree
is 1. Similarly, for

∑
k=2,...,K p

K−k(1− p)2Ck, that lowest degree is 2. Hence, it is∑
k=2,...,K p

k(1− p)K−kCk
B(m > 0, p)

=

∑
k=2,...,K p

k−1(1− p)K−kCk
C +Q(p)

for some constant C 6= 0 and polynomial Q in p, and it follows that

lim
p→0

∑
k=2,...,K p

k(1− p)K−kCk
B(m > 0, p)

= lim
p→0

∑
k=2,...,K p

k−1(1− p)K−kCk
C +Q(p)

= 0.
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With the same argument, it is also limp→0
B(m>1,p)
B(m>0,p) = 0 and thus

lim
p→0

B(m = 1, p)

B(m > 0, p)
= 1− lim

p→0

B(m > 1, p)

B(m > 0, p)
= 1.

Hence, we can find some p > 0 that is small enough such that both∑
k=2,...,K p

k(1− p)K−kCk
B(m > 0, p)

<
ε

2

and

1 +
ε

2|U(σ̃i,σ−i)|
>
B(m = 1, p)

B(m > 0, p)
> 1− ε

2|U(σ̃i,σ−i)|
.

It follows that

U(σ) < U(σ̃i,σ−i)− ε =

(
1− ε

2U(σ̃i,σ−i)

)
U(σ̃i,σ−i)−

ε

2

<
B(m = 1, p)

B(m > 0, p)
U(σ̃i,σ−i) +

∑
k=2,...,K p

k(1− p)K−kCk
B(m > 0, p)

, (104)

which is what we wanted to show. This concludes the proof.

C.8. Evaluating equivariant learning algorithms

In the following, let D be a Dec-POMDP and define D := {f∗D | f ∈ Sym(D)}. In the special case in
which a learning algorithm is in a sense independent from the used labels, we can find a simpler form of
the algorithm’s value in the LFC problem for D. To do so, we define the notion of an equivariant learning
algorithm.

Definition 49 (Equivariant learning algorithms). Let σ ∈ ΣD. Then σ is called equivariant if for any two
labelings f, f̃ ∈ Sym(D), it is

(f−1)∗σ(f∗D) = (f̃−1)∗σ(f̃∗D).

Remark 50. We believe that a learning algorithm implemented via neural networks and one-hot encodings, as
used in our experiments, should be equivariant. To see this, note that by a symmetry argument, the distribution
over functions corresponding to a randomly initialized neural network is invariant with respect to coordinate
permutations. Assume that actions, observations, and agents of a given problem are implemented as one-hot
vectors, i.e., elements of a canonical basis {e1, . . . , ek} ∈ Rk where k ∈ N is the cardinality of the respective
set. Then the distribution over randomly initialized neural network policies will also not depend on particular
assignments of actions, etc., to one-hot vectors. We conjecture that, if the used optimizer is equivariant with
respect to coordinate permutations (i.e., if the parameter dimensions are permuted, then the prescribed updates
to the parameters are equally permuted), then the resulting learning algorithm is equivariant. We leave a
rigorous exploration of this issue to future work.

An equivariant algorithm can be evaluated in the LFC problem for D by evaluating its cross-play value in
any Dec-POMDP E ∈ D. The resulting policies can be permuted by random automorphisms or they can be
evaluated as they are.



A New Formalism, Method and Open Issues for Zero-Shot Coordination

Proposition 51. Let σ ∈ ΣD be equivariant. Then for any f ∈ Sym(D) and E = f∗D ∈ D, it is

UD(σ) = Eπ(i)∼σ(E), i∈N

[
Eg∈U(Aut(E)N )

[
JE
((

projj(g
∗
jπ

(j))
)
j∈N

)]]
(105)

= Eπ(i)∼σ(E), i∈N

[
JE
((

π
(j)
j

)
j∈N

)]
. (106)

Proof. First, let f ∈ Sym(D) and E := f∗D. Using the expression of the payoff in the LFC game for D
from Lemma 40, it is

UD(σ) = UD(σ, . . . , σ) = Ef∼U(Sym(D)N )

[
Eπ(i)∼(f−1

i )∗σ(f∗i D), i∈N

[
JD((π

(j)
j )j∈N )

]]
(107)

= Eπ(i)∼(f−1)∗σ(E), i∈N

[
JD((π

(j)
j )j∈N )

]
(108)

= Eπ(i)∼σ(E), i∈N

[
JD((f−1)∗(π

(j)
j )j∈N )

]
(109)

= Eπ(i)∼σ(E), i∈N

[
JE((π

(j)
j )j∈N )

]
, (110)

where we use equivariance in (108), a change of variables for pushforward measures in (109), and Theorem 22
in (110).

Second, by Lemma 33, it is Iso(D,E) ⊆ Sym(D). Thus, using Lemma 19, it is Aut(E) ◦ f = Iso(D,E) ⊆
Sym(D). Hence, it follows that

UD(σ) = UD(σ, . . . , σ) = Eπ(i)∼(f−1)∗σ(E), i∈N

[
JD((π

(j)
j )j∈N )

]
(111)

= Eg∼U(Aut(E)N

[
Eπ(i)∼(f−1◦gi)∗σ(E), i∈N

[
JD((π

(j)
j )j∈N )

]]
(112)

= Eg∼U(Aut(E)N

[
Eπ(i)∼g∗i σ(E), i∈N

[
JE((π

(j)
j )j∈N )

]]
(113)

= Eg∼U(Aut(E)N

[
Eπ(i)∼σ(E), i∈N

[
JE((projj(g

∗
i π

(j)))j∈N )
]]
, (114)

where we again use equivariance in (112), a change of variables and Theorem 22 in (113), and another change
of variables in (114). This concludes the proof.

If a learning algorithm is equivariant, we can use either of the expressions above to evaluate it in the LFC
problem. One may choose the first expression, i.e., apply random automorphisms to policies, since this
transformation maps different policies that are equivalent under OP to a unique automorphism-invariant
policy and thus reduces the variance of the cross-play values across different samples π ∼ σ(D). We will
introduce these notions of equivalence and automorphism-invariant policies in Appendix D.

Note that an equivariant learning algorithm is not necessarily one that performs well in the LFC problem.
For instance, a SP algorithm may be equivariant. However, if an algorithm is equivariant and it does well in
cross-play, then the preceding shows that it will also do well in the LFC problem.

D. Characterization of other-play and of label-free coordination games
In this section, we define for a given policy π a policy Ψ(π) that corresponds to agents choosing local policies
that are randomly permuted by automorphisms, and that is itself invariant to pushforward by automorphisms.
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We then use this self-map on policies Ψ, called the symmetrizer, to characterize both the OP objective and the
payoff in an LFC game. This characterization helps us to analyze the OP-optimal policies in the two-stage
lever game in Appendix E, and it allows us to prove a stronger result, showing that any OP algorithm that is
not concentrated on only one equivalence class in the two-stage lever game is suboptimal in the corresponding
LFC problem. We also use this notion of equivalence classes of policies to define OP with tie-breaking in
Appendix F, which allows us to then show that random tie-breaking functions exist.

In the following, in Appendix D.1, we recall the definition of our generalization of OP, and we define policies
that are invariant to automorphism. Afterwards, in Appendix D.2, we introduce the concept of a policy
corresponding to a distribution over policies. In Appendix D.3, we introduce the other-play distribution, in
which each agent’s local policy is chosen as pushforward by a random automorphism, and we define the
symmetrizer. Using these concepts, in Appendix D.4, we give a new expression for both the OP objective and
the payoff in an LFC game. The OP objective can be understood of as transforming a policy into one that
is invariant to automorphisms, and evaluating that policy in SP. Finally, in Appendix D.5, we show that our
generalized OP objective can in general not be understood of as the SP objective in a modified Dec-POMDP.

D.1. Generalization of other-play

In the following, fix a Dec-POMDP D. Recall that for a profile of automorphisms g ∈ Aut(D)N and a joint
policy π ∈ ΠD, we define the joint policy g∗π := π̂, where the local policy π̂i of agent i ∈ N is given by the
local policy of agent i in the pushforward policy g∗i π. That is, for i ∈ N , we define

π̂i := proji(g
∗
i π) = πg−1

i i(g
−1
i · | g

−1
i ·).

Using this, we define the OP objective as the expected return of a policy that is randomly permuted by such
profiles of automorphisms.

Definition 52 (Other-play objective). Define JDOP : ΠD → R via

JDOP(π) := Eg∼U(Aut(D)N )

[
JD(g∗π)

]
(115)

for π ∈ ΠD, where U(Aut(D)N ) is a uniform distribution over Aut(D)N . We say that JDOP is the other-play
(OP) objective of D, and JDOP(π) is the OP value of π ∈ ΠD.

Remark 53. It is clear that this objective always admits a maximum. For instance, we can consider ΠD as a
subset of

∏
i∈N [0, 1]Ai×AOi with its standard topology. As ΠD is a Cartesian product of simplices, it is a

compact subset of this space. Moreover, one can check that the objective JD(π) is continuous in the policy π,
and that for g ∈ Aut(D)N , the map π 7→ g∗π is continuous as well. Thus, also JDOP(π) is continuous in π,
as it is a finite linear combination of continuous functions. By the extreme value theorem, it follows that the
function always attains a maximum.

Next, recall our formal definition of an OP learning algorithm as any algorithm that achieves an optimal OP
value in expectation.

Definition 54 (Other-play learning algorithm). Let D be a finite set of Dec-POMDPs. A learning algorithm
σ ∈ ΣD is called an OP learning algorithm if for any D ∈ D, it is

Eπ∼σOP(D)[J
D
OP(π)] = max

π∈ΠD
JDOP(π).

Now fix again a Dec-POMDP D and consider the notion of invariance to automorphism.
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Definition 55 (Invariance to automorphism). A policy π ∈ Π is called invariant to automorphism if f∗π = π
for any f ∈ Aut(D).

Clearly, if a policy is invariant to automorphism, then it has the same OP value and expected return.

Proposition 56. Let π ∈ Π be invariant to automorphism. Then

JOP(π) = J(π).

Proof. It is

JOP(π) = Eg∼U(Aut(D)N ) [J(g∗π)] = Eg∼U(Aut(D)N ) [J((proji(g
∗
i π))i∈N )]

(*)
= Eg∼U(Aut(D)N ) [J((proji(π))i∈N )] = J(π), (116)

where we have used invariance to automorphism in (*).

In the following, we will show that if a policy π is not already invariant to automorphism, then one can under-
stand the OP objective as first transforming the policy into a policy Ψ(π) that is invariant to automorphism
by applying the symmetrizer Ψ, and then evaluating the expected return of that policy. In that way, the OP
objective ensures that policies cannot make use of arbitrary symmetry-breaking.

D.2. Policies corresponding to distributions over policies

In this section, let some Dec-POMDP D be fixed. As a first step towards defining the symmetrizer Ψ, we will
define policies corresponding to distributions over policies for general distributions. Afterwards, we will turn
to the particular policy Ψ(π) that corresponds to the OP distribution of π.

Recall that we introduced the set of distributions over policies as ∆(Π), the set of measures on the space
(Π,F). Let ν ∈ ∆(Π). For a given distribution ν ∈ ∆(Π) and agent i ∈ N , the marginal distribution νi is
defined as νi(Zi) := ν(proj−1

i (Zi)) for any measurable set of local policies Zi ⊆ Πi. We say that ν has
independent local policies, if ν = ⊗iνi, i.e., ν decomposes into independent marginal distributions over local
policies for each agent. We denote such distributions by µ.

Now let µ ∈ ∆(Π) be a distribution with independent local policies. We want to construct a policy πµ that
represents each agent sampling a local policy πi ∼ µi in the beginning of an episode, and then choosing
actions according to that policy until the end of the episode. This policy should be equivalent to µ in the sense
that it should yield the same expected return as µ, where we define the expected return of µ as

J(µ) := Eπ∼µ [J(π)] = Eπi∼µi, i∈N [J(π)] . (117)

The statement that such a policy exists is analogous and more general than a result by Kuhn (1953), which
says that in an extensive-form game, given some conditions on the game, for every mixed strategy there is an
equivalent behavior strategy. Kuhn’s theorem is relevant to Dec-POMDPs since there is a correspondence
between Dec-POMDPs and extensive-form games (Oliehoek et al., 2006). For Dec-POMDPs, the analogous
result states that for every distribution over deterministic policies, there is an equivalent stochastic policy.

We cannot directly apply Kuhn’s theorem here, as we require a result for distributions over stochastic policies
instead of deterministic policies. This is because such a result fits better with our remaining setup—for
instance, the domain of the OP objective is the set of stochastic policies, and learning algorithms are defined
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as distributions over stochastic policies. Nevertheless, our proof is based on similar ideas as, for instance, the
proof of Kuhn’s theorem in Maschler et al. (2013), after translating between the different formal frameworks
of extensive-form games and Dec-POMDPs.

To define a policy πµ that is equivalent to µ, we begin by defining a new measure space (Π× Ω,F ⊗ P(Ω)),
which is the product space of the space of policies (Π,F) with the Dec-POMDP environment (Ω,P(Ω)).
On this space, for a given distribution µ, we define a probability measure Pµ which represents the procedure
outlined above, i.e., in which a policy π is chosen according to µ, and then samples in Ω are distributed
according to Pπ . Formally, we define Pµ as the unique measure such that

Pµ(Z ×Q) := Eπ∼µ [1ZPπ(Q)] 5 (118)

for any measurable sets Z ⊆ Π and Q ⊆ Ω. Note that the product sets Z ×Q for measurable Z ⊆ Π and
Q ⊆ Ω are a π-system and generate the product σ-Algebra F ⊗ P(Ω). Hence, by Carathéodory’s extension
theorem, there is a unique measure satisfying this definition (see Williams, 1991, ch. 1).

On this new product space Π × Ω, define the random variable Z as the projection onto Π. We can define
histories H and all other random variables defined on the space (Ω,P(Ω)) by composing them with the
projection onto Ω (for notational convenience, we denote these random variables using the same symbols in
both spaces).

Remark 57. Note that the conditional probability of a particular trajectory τ given the policy Z is just the
probability of that history under PZ , that is,

Pµ(H = τ | Z) = PZ(H = τ) (119)

for any τ ∈ H. Here, the conditional probability is a random variable, defined via the conditional expectation

Pµ(H = τ | Z) := Eµ [1H=τ | Z] .

Intuitively, for a given sample (π, ω), the value of that random variable is the best estimate of the probability
of {H = τ} given Z = π, ignoring ω. As, in general, {Z = π} may have zero probability, it is impossible
to define the conditional probability P(H = τ | Z = π) via P(H = τ | Z = Z) := P(H=τ,Z=π)

P(Z=π) . It is still
possible to define the conditional expectation Eµ [1H=τ | Z], though.

Here, we briefly give the definition of the conditional expectation and show that (119) is correct. For a
reference on conditional expectations, refer to (Williams, 1991, ch. 9). Applied to our setup, the conditional
expectation of 1H=τ given Z is any random variable (which can be shown to be almost surely unique),
denoted by Eµ [1H=τ | Z], that is measurable with respect to

σ(Z) := {Z−1(Z) | Z ∈ F} = {Z × Ω | Z ∈ F}

such that
Eµ [1XEµ [1H=τ | Z]] = Eµ [1X1H=τ ] . (120)

for all X ∈ σ(Z). The fact that the random variable is measurable with respect to σ(Z) can be equivalently
expressed as saying that it can be written as a function of Z. Moreover, Equation 120 says that the conditional
expectation should represent correct averages of the random variable 1H=τ over the level-sets in σ(Z).

5Pµ is the semidirect product of µ with the Markov kernel κ(· | π) := Pπ(·).
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To show that (119) is correct, let X ∈ σ(Z) arbitrary. Since X is of the form Z ×Ω, and {H = τ} = Π×Q
for some Q ⊆ Ω, it is (Z × Ω) ∩ {H = τ} = Z ×Q. Using Equation 118, it follows that

Eµ [1XPZ(H = τ)] = Eµ [1Z×ΩPZ(Q)] = Eπ∼µ [1Z(π)Pπ(Q)]

(118)
= Pµ(Z ×Q) = Eµ [1Π×Ω1Z×Q] = Eµ [1X1H=τ ] . (121)

Hence, letting Eµ[1H=τ | Z] := PZ(H = τ) satisfies condition (120). PZ(H = τ) is also σ(Z)-measurable,
since it is just a function of Z.

We will repeatedly make use of (119) in the following, together with the tower property, which, applied to our
case, says that

Pµ(H = τ) = Eµ [Pµ (H = τ | Z)]
(119)
= Eµ [PZ (H = τ)] (122)

for any history τ ∈ H (see Williams, 1991, ch. 9.7).

Using the measure space defined above, we now define a local policy πµii for an agent i ∈ N , corresponding
to a distribution µi ∈ ∆(Πi). For an action ai ∈ Ai and an action-observation history τi,t ∈ AOi,t, we define
πµii (ai | τi,t) as the probability that agent i, who follows a policy that is sampled from µi, plays action ai,
conditional on {AOi,t = τi,t}.
Definition 58. Let i ∈ N and let µi ∈ ∆(Πi) be a distribution over local policies of agent i. We define the
local policy πµii corresponding to µi in the following way. For ai ∈ Ai, t ∈ {0, . . . , T} and τi,t ∈ AOi,t, let

πµii (ai | τi,t) := Pµi⊗µ−i(Ai,t = ai | AOi,t = τi,t), (123)

where µ−i is any distribution over Π−i with independent local policies such that

Pµi⊗µ−i(AOi,t = τi,t) > 0.

If no such distribution exists, we let πµi (ai | τi,t) := 1
|Ai| .

Note that if Pµi⊗µ−i(AOi,t = τi,t) = 0 for all the distributions µ−i ∈ ∆(Π−i) over opponent policies, then
agent i’s action-observation history τi,t is almost never reached, independent of the other agents’ policies.
In that case, we can define the policy arbitrarily and this will never matter for the distribution over histories
under Pµi⊗µ−i , and as we will see, neither for the distribution under Pπµii ,π−i

for arbitrary π−i.

First, we need to make sure that πµii is well-defined, i.e., it does not depend on the chosen distribution µ−i.
Unfortunately, the proof for the following Lemma is somewhat technical.

Lemma 59. Let i ∈ N , µi ∈ ∆(Πi), t ∈ {0, . . . , T}, τi,t ∈ AOi, and ai ∈ Ai. Let µ−i, µ′−i ∈
∆(Π−i) be any two distributions with independent local policies such that Pµi⊗µ−i(AOi,t = τi,t) > 0 and
Pµi⊗µ′−i(AOi,t = τi,t) > 0. Then it is

Pµi⊗µ−i(Ai,t = ai | AOi,t = τi,t) = Pµi⊗µ′−i(Ai,t = ai | AOi,t = τi,t).

Proof. In the following, let i ∈ N , t ∈ {0, . . . , T} be fixed. Our goal is to find an expression for the
distribution of Zi given AOi,t that only depends on µi. If we can do that, we can also show that the probability
of a particular action chosen by an agent is independent of the distributions over other agents’ policies.
To begin, we analyze the joint distribution of Zi and AOi,t for an arbitrary distribution µ ∈ ∆(Π) with
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Figure 8. Part of a Bayesian graph of the random variables on the space Π× Ω. Here, the gray-marked nodes are part of
the action-observation history AOi,2. Conditional on AOi,2, there is an unblocked path, marked in teal, from Zi to Ai,2
and to nodes below Ai,2 not displayed here, making them d-connected and thus dependent. The path marked in a lighter
magenta, on the other hand, is blocked, illustrating that the part of the graph below Oi,2 may be independent of Zi.

independent local policies. Note that by assumption, the Zj are independent for j ∈ N under µ. We now
show that conditioning on AOi,t still leaves Zi independent from Z−i.

To see this, one can consider a Bayesian graph of the random variables on the space Π× Ω. For a reference
on Bayesian graphs and the concepts discussed below, refer to Pearl (2009, ch. 1.2). In Figure 8, we have
displayed a part of this Bayesian graph with nodes for the agent i, indicating left-out parts of the graph with
dots. The arrows in the graph illustrate the dependence relationships between the different variables: if there
is an arrow from one node to another, this means that the other node depends on that node. Nodes belonging
to the action-observation history AOi,2 of agent i are marked in gray.

Given such a Bayesian graph, the d-separation criterion tells us which variables are dependent after condition-
ing on a set V of variables. The criterion specifies valid, “unblocked” paths in the graph, depending on the
graph structure and the nodes that are being conditioned on. The d-separation criterion says that two variables
are dependent conditional on the variables in V if and only if there is an unblocked path in the graph between
them; the variables are then said to be d-connected. If there is no path, then the variables are d-separated.

An unblocked path can contain a chain X →W → Y or a fork X ←W → Y if W is not being conditioned
on. If it contains a collider X →W ← Y , on the other hand, i.e., the two incident edges to W in the path are
both directed towards the node, then the path is blocked, unless W or a descendant of W in the graph is in V .
For instance, the path that is marked in a lighter magenta in Figure 8 is blocked—the path cannot go from Zi
over Ai,1 to Oi,2. An unblocked path is marked in teal.

Using the d-separation criterion, one can tell that Zi may be d-separated from left-out parts of the graph in
Figure 8 indicated by the dots below Ai,0, for instance, but that it is d-connected to some variables in the
part below Ai,2. We do not work this out here completely, but once considering the entire graph, one can see
that there is no unblocked path from Zi to the Z−i, because such a path would inevitably have to traverse
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a collider that is not being conditioned on and that has no descendants that are being conditioned on (for
instance, the observations of all other agents are colliders that connect the Z−i with Zi). Generalizing from
the example of τi,2, we can conclude that Zi and Z−i are independent given AOi,t.

Now let Zj ⊆ Πj be measurable sets for j ∈ N , and let τi,t ∈ AOi,t arbitrary. Then, using the above, it
follows that

Eπ−i∼µ−i [1π−i∈Z−iEZi∼µi [1πi∈ZiPπ(AOi,t = τi,t)]] (124)

= Pµ(Zi ∈ Zi, AOi,t = τi,t, Z−i ∈ Z−i) (125)

= Pµ(Zi ∈ Zi | AOi,t = τi,t, Z−i ∈ C−i)Pµ(AOi,t = τi,t, Z−i ∈ Z−i) (126)

= Pµ(Zi ∈ Zi | AOi,t = τi,t)Pµ(AOi,t = τi,t, Z−i ∈ Z−i) (127)

= Eπ−i∼µ−i [1π−i∈Z−iPµ(Zi ∈ Zi | AOi,t = τi,t)Eπi∼µi [Pπ(AOi,t = τi,t)]], (128)

where we use the argument about conditional independence in (127) and the definition of Pµ from Equa-
tion 118 in (125) and (128).

Since the sets Zj for j ∈ N \ {i} were arbitrary, it follows that µ−i-almost surely, it is

Eπi∼µi [1πi∈ZiPπi,Z−i(AOi,t = τi,t)]

= Pµ(Zi ∈ Zi | AOi,t = τi,t)Eπi∼µi [Pπi,Z−i(AOi,t = τi,t)]. (129)

Moreover, since µ was arbitrary, Equation 129 holds for any distribution with independent local policies. If
we divide by the term Eπi∼µi [Pπi,Z−i(AOi,t = τi,t)], this becomes

Pµ(Zi ∈ Zi | AOi,t = τi,t) =
Eπi∼µi [1πi∈ZiPπi,Z−i(AOi,t = τi,t)]

Eπi∼µi [Pπi,Z−i(AOi,t = τi,t)]
, (130)

which gives us a formula for the distribution of Zi givenAOi,t under the measure Pµ that is independent of the
distributions µ−i. But to be able to do so, we have to find a value for Z−i such that Eπi∼µi [Pπi,Z−i(AOi,t =
τi,t)] is nonzero under µ.

Now let µi ∈ ∆(Πi) and let µ−i, µ′−i ∈ ∆(Π−i) be any two distributions with independent local policies
such that Pµi⊗µ−i(AOi,t = τi,t) > 0 and Pµi⊗µ′−i(AOi,t = τi,t) > 0. Define µ′i := µi, µ := µi ⊗ µ−i, and
µ′ := µi ⊗ µ′−i. Our goal is to show that

Pµ(Ai,t = ai | AOi,t = τi,t) = Pµ′(Ai,t = ai | AOi,t = τi,t).

To that end, we define a third distribution µ̂ := ⊗j∈N ( 1
2µj + 1

2µ
′
j). Apparently, it is then µi = µ̂i = µ′i

and also µ̂ has independent local policies. We now prove separately for µ and µ′ that the distribution of Zi
given {AOi,t = τi,t} under µ respectively µ′ is equal to the one under µ̂. To do so, we use that µ and µ′ are
absolutely continuous with respect to µ̂ to find desired values for Z−i such that we can apply Equation 130.

First, let Zi ∈ Πi be an arbitrary measurable set. Using Equation 129, we can find measurable sets
Z−i, Ẑ−i ⊆ Π−i such that µ−i(Z−i) = 1 = µ̂−i(Ẑ−i), and such that

Eπi∼µi [1πi∈ZiPπi,π−i(AOi,t = τi,t)]

= Pµ(Zi ∈ Zi | AOi,t = τi,t)Eπi∼µi [Pπi,π−i(AOi,t = τi,t)]. (131)
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for any π−i ∈ Z−i and

Eπi∼µ̂i [1πi∈ZiPπi,π̂−i(AOi,t = τi,t)]

= Pµ̂(Zi ∈ Zi | AOi,t = τi,t)Eπi∼µi [Pπi,π̂−i(AOi,t = τi,t)]. (132)

for any π̂−i ∈ Ẑ−i.

Next, it follows that Pµ({Z−i ∈ Z−i} ∩ {AOi,t = τi,t}) > 0, which by definition of µ̂ implies Pµ̂({Z−i ∈
Z−i}∩{AOi,t = τi,t}) > 0 and thus by definition of Ẑ−i also Pµ̂({Z−i ∈ Z−i∩Ẑ−i}∩{AOi,t = τi,t}) > 0.
Since

Pµ̂({Z−i ∈ Z−i ∩ Ẑ−i} ∩ {AOi,t = τi,t})

= Eπ−i∼µ̂−i
[
1Z−i∩Ẑ−i(π−i)Eπi∼µ̂i [Pπi,π−i(AOi,t = τi,t)]

]
, (133)

there must be π−i ∈ projΠ−i({Z−i ∈ Z−i ∩ Ẑ−i} ∩ {AOi,t = τi,t}) such that

Eπi∼µ̂i [Pπi,π−i(AOi,t = τi,t)] > 0.

Lastly, using that µ̂i = µi, it follows that

Eπi∼µi [Pπi,π−i(AOi,t = τi,t)] = Eπi∼µ̂i [Pπi,π−i(AOi,t = τi,t)] > 0. (134)

Hence, we can use Equations 131 and 132 to conclude that

Pµ(Zi ∈ Zi | AOi,t = τi,t)
(131)
=
Eπi∼µi [1πi∈ZiPπi,π−i(AOi,t = τi,t)]

Eπi∼µi [Pπi,π−i(AOi,t = τi,t)]
(135)

µi=µ̂i
=

Eπi∼µ̂i [1πi∈ZiPπi,π−i(AOi,t = τi,t)]

Eπi∼µ̂i [Pπi,π−i(AOi,t = τi,t)]
(136)

(132)
= Pµ̂(Zi ∈ Zi | AOi,t = τi,t). (137)

Now note that one can make an exactly analogous argument for µ′ and µ̂, potentially using a different π−i.
Hence, it follows that

Pµ(Zi ∈ Zi | AOi,t = τi,t) = Pµ̂(Zi ∈ Zi | AOi,t = τi,t) = Pµ′(Zi ∈ Zi | AOi,t = τi,t). (138)

Since Zi ∈ Πi was arbitrary, it follows that the distribution of Zi given {AOi,t = τi,t} is equal under Pµ and
Pµ′ .

To conclude the proof, we can use this to show that also the distribution of actions under Pµ and Pµ′ are equal,
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conditional on {AOi,t = τi,t}. For ai ∈ Ai, it is

Pµ(Ai,t = ai | AOi,t = τi,t) = Eµ
[
Pµ(Ai,t = ai | Z,AOi,t) | AOi,t = τi,t

]
(139)

= Eµ
[
PZ(Ai,t = ai | AOi,t) | AOi,t = τi,t

]
(140)

= Eµ
[
Zi(ai | τi,t) | AOi,t = τi,t

]
(141)

(138)
= Eµ′

[
Zi(ai | τi,t) | AOi,t = τi,t

]
(142)

= Eµ′
[
PZ(Ai,t = ai | AOi,t) | AOi,t = τi,t

]
(143)

= Eµ′
[
Pµ′(Ai,t = ai | Z,AOi,t) | AOi,t = τi,t

]
(144)

= Pµ′(Ai,t = ai | AOi,t = τi,t), (145)

where we have used the tower property in (139) and (145), and Equation 119 in (140) and (144). This is what
we wanted to show.

In the following, we write πµ := (πµii )i∈N for the joint policy corresponding to a distribution µ with
independent local policies. Our next goal is to prove that the distribution over histories is the same under Pπµ
as under Pµ.

Proposition 60. Consider any distribution µ ∈ ∆(Π) with independent local policies. Let πµ be the joint
policy corresponding to µ, as defined above. Then the history H has the same distribution under Pµ as under
Pπµ . In particular, it is JD(µ) = JD(πµ).

Proof. Fix a distribution µ ∈ ∆(Π) with independent local policies. We show by induction that for all
t ∈ {0, . . . , T}, it is Pµ(Ht = τt) = Pπµ(Ht = τt) for any τt ∈ Ht.

First, note that by Definition 58, for any i ∈ N , ai ∈ Ai, t ∈ {0, . . . , h}, and τi,t ∈ AOi such that
Pµ(AOi,t = τi,t) > 0, it is

Pπµ(Ai,t = ai | AOi,t = τi,t) = πµii (ai | AOi,t = τi,t) = Pµ(Ai,t = ai | AOi,t = τi,t). (146)

In particular, this holds for t = 0, in which case it is AOi,0 = ∅ for i ∈ N . Hence, for a ∈ A, s ∈ S, it is

Pµ(S0 = s,A0 = a)
(122)
= Eµ[PZ(S0 = s,A0 = a)] = Eµ[PZ(S0 = s)PZ(A0 = a)]

(i)
= b0(s)Eµ[PZ(A0 = a)] = b0(s)Eµ[

∏
i∈N

Zi(Ai,0 | ∅)]
(ii)
= b0(s)

∏
i∈N

Eµ[Zi(ai | ∅)]

(122)
= b0(s)

∏
i∈N

Pµ(Ai,0 = ai) = b0(s)
∏
i∈N

Pµ(Ai,0 = ai)
(146)
= b0(s)

∏
i∈N

Pπµ(Ai,0 = ai)

= b0(s)Pπµ(A0 = a) = Pπµ(S0 = s,A0 = a). (147)

Here, we also use (i) the fact that that the initial state distribution does not depend on the policy, and (ii) the
fact that µ has independent local policies and thus also the Zi are independent in the probability space Pµ.

Next, assume that 0 ≤ t − 1 ≤ T and Pµ(Ht−1 = τt−1) = Pπµ(Ht−1 = τt−1) for any τt−1 ∈ Ht−1. Let
τt−1 = (s0, a0, r0, s1, . . . , rt−1) ∈ Ht−1 arbitrary such that Pµ(Ht−1 = τt−1) = Pπµ(Ht−1 = τt−1) > 0.
As in the proof of Lemma 59, it follows from considering the d-separation criterion on a Bayesian graph of
the random variables defined on Π×Ω that conditioning on Ht−1 does not make the Zi dependent (see Pearl,
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2009, ch. 1.2). The same criterion also says that, after conditioning on Ai,t−1 and AOi,t−1, one cannot gain
additional information about Zi from the other components of Ht−1 or from Oi,t (that is, Ai,t−1 and AOi,t−1

d-separate Zi from the rest of the history). Using this in (151), it follows for arbitrary st, ot, at, rt that

Pµ(St = st, Ot = ot, At = at, Rt = rt | Ht−1 = τt−1) (148)
= Eµ[Pµ(St = st, Ot = ot, At = at, Rt = rt | Ht−1, Z) | Ht−1 = τt−1] (149)

= Eµ[P (st | st−1, at−1)O(ot | st, at−1)
∏
i∈N

Zi(ai,t | τi,t)1R(s,a)=r | Ht−1 = τt−1] (150)

= P (st | st−1, at−1)O(ot | s, at−1)∏
i∈N

Eµ[Zi(ai,t | τi,t) | Ai,t−1 = ai,t−1, AOi,t−1 = τi,t−1]1R(st,at)=rt (151)

= P (st | st−1, at−1)O(ot | s, at−1)
∏
i∈N

Pµ(Ai,t = ai,t | AOi,t = τi,t)1R(st,at)=rt (152)

= P (st | st−1, at−1)O(ot | s, at−1)
∏
i∈N

Pπµ(Ai,t = ai,t | AOi,t = τi,t)1R(st,at)=rt (153)

= Pπµ(St = st, Ot = ot, At = at, Rt = rt | Ht−1 = τt−1). (154)

In (153), we again use Equation 146, which is possible since Pµ(Ht−1 = τt−1) > 0 implies that also
Pµ(AOi,t−1 = τi,t−1) > 0, where τi,t−1 is defined as the projection of τt−1 onto AOi,t−1.

To conclude the inductive step, let τt ∈ Ht and choose τt−1 as the projection of τt ontoHt−1. If

Pµ(Ht−1 = τt−1) = Pπµ(Ht−1 = τt−1) = 0,

necessarily also Pµ(Ht = τt) = Pπµ(Ht = τt) = 0 and there is nothing more to show. Assume now that this
is not the case. Using the inductive hypothesis and Equations (148)–(154) in (*), it then follows that

Pµ(Ht = τt) = Pµ(Ht = τt | Ht−1 = τt−1)Pµ(Ht−1 = τt−1)

= Pµ(St = st, Ot = ot, At = at, Rt = rt | Ht−1 = τt−1)Pµ(Ht−1 = τt−1)

(*)
= Pπµ(St = st, Ot = ot, At = at, Rt = rt | Ht−1 = τt−1)Pπµ(Ht−1 = τt−1)

= Pπµ(Ht = τt). (155)

This concludes the induction. In particular, it follows that

Pµ(HT = τT ) = Pπµ(HT = τT ).

Hence, H = HT has the same distribution under both Pµ and Pπµ .

Turning to the “in particular” statement, we can use the tower property (i) and Equation 119 (ii) to follow that

J(πµ) = Eπµ [

h∑
t=1

Rt] = Eµ[

h∑
t=1

Rt]

(i)
= Eµ

[
Eµ

[
h∑
t=1

Rt

∣∣∣∣∣Z
]]

(ii)
= Eµ

[
EZ

[
h∑
t=1

Rt

]]
= Eπ∼µ[J(π)] = J(µ). (156)
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Before we turn to the OP distribution, we prove another useful Lemma, stating that the mapping from
distributions to corresponding joint policies and the pushforward by isomorphisms commute. That is, the
policy corresponding to the pushforward of a distribution and the pushforward of the policy corresponding to
that distribution are the same.

Lemma 61. Let D,E be isomorphic Dec-POMDPs with isomorphism f ∈ Iso(D,E). Let π ∈ ΠD and let
µ ∈ ∆(ΠD) be any distribution with independent local policies. Then

f∗πµ = πf
∗µ.

Proof. First, we have to find an expression for the marginal distributions (f∗µ)i and prove that f∗µ is a
distribution with independent local policies. To that end, consider measurable sets Zi ⊆ ΠE

i for i ∈ NE and
define Z :=

∏
i∈NE Zi. In the following, we adopt the notation πi ◦ f := πi(f · | f ·) and Zi ◦ f := {πi ◦ f |

πi ∈ Zi}. Note that

(f∗)−1(Z) = {π | f∗π ∈ Z} = {π | ∀i ∈ NE : πf−1i ◦ f−1 ∈ Zi)}

= {π | ∀j ∈ ND : πj ∈ Zfj ◦ f} =
∏
j∈ND

Zfj ◦ f. (157)

Hence, using in (i) that µ has independent local policies, it follows that

(f∗µ)(Z) = µ((f∗)−1(Z))
(157)
= µ(

∏
j∈ND

Zfj ◦ f)
(i)
=
∏
j∈ND

µj(Zfj ◦ f) =
∏
i∈NE

µf−1i(Zi ◦ f). (158)

Now let i ∈ NE arbitrary. With the choice of Ẑi := Zi and Ẑk := ΠE
k for all k ∈ NE \ {i}, it is

(f∗µ)i(Zi) = f∗µ(proj−1
i (Zi)) = f∗µ(Ẑ1 × · · · × ẐN ))

(158)
=

∏
k∈NE

µf−1k(Ẑk ◦ f) = µf−1i(Zi ◦ f), (159)

as µf−1k(Ẑk ◦ f) = µf−1k(Πk ◦ f) = µf−1k(Πf−1k) = 1 for any k ∈ NE \ {i}.

Since i was arbitrary, this shows that f∗µ(Z) =
∏
i∈NE (f∗µ)i(Zi). Since the sets Zi were arbitrary and the

Cartesian products of these sets are a π-system and generate the product σ-Algebra F , this shows that f∗µ
has independent local policies.

Next, let i ∈ NE , t ∈ {0, . . . , T} and τi,t ∈ AO
E

i,t. Note that proji(f
∗πµ) = π

µf−1i

f−1i ◦ f
−1 and

proji(π
f∗µ) = π

(f∗µ)i
i . Hence, it remains to prove that π

µf−1i

f−1i ◦ f
−1 = π

(f∗µ)i
i .

To that end, let j ∈ ND such that fj = i. By Theorem 22, it is

Pπ(AOj,t = f−1τi,t) = Pf∗π(AOi,t = τi,t) (160)
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for any π ∈ ΠD. Letting, µ−j ∈ ∆(ΠD
−j) with independent local policies arbitrary and defining µ := µi⊗µ−i,

this means that also

Pµ(AOj,t = f−1τi,t)
(ii)
= Eµ

[
PZ(AOj,t = f−1τi,t)

]
= Eµ

[
Pf∗Z(AOi,t = τi,t)

]
= Ef∗µ

[
PZ(AOi,t = τi,t)

] (ii)
= Pf∗µ(AOi,t = τi,t), (161)

where we use Equation 122 in (ii). Since f∗ is a bijection on the space of policies, it is

{f∗(µj ⊗ µ−j) | µ−j ∈ ∆(ΠD
−j)} = {(f∗µ)i ⊗ µ̂−i | µ̂−i ∈ ∆(ΠE

−i)}.

Hence, (161) implies that there is some µ−j ∈ ∆(ΠD
−j) with independent local policies such that

Pµj⊗µ−j (AOj,t = f−1τi,t) > 0 if and only if there is µ̂−i ∈ ∆(ΠE
−i) with independent local policies

such that P(f∗µ)i⊗µ̂−i(AOi,t = τi,t) > 0.

Using this fact, it suffices to distinguish the two cases where such a distribution does exist and where it does
not exist. First, assume that it does not exist. Then by Definition 58, both πµjj (· | f−1τi,t) and π(f∗µ)i

i (· | τi,t)
are uniform distributions. Since f−1 is a bijection on AEi , also πµjj (f−1· | f−1τi,t) is a uniform distribution,
and hence

π
µj
j (f−1· | f−1τi,t) = π

(f∗µ)i
i (· | τi,t).

Second, consider the case in which a distribution µ−j ∈ ∆(ΠD
−j) with independent local policies exists such

that
Pµj⊗µ−j (AOj,t = f−1τi,t) > 0,

and define µ := µj ⊗ µ−j . Then for ai ∈ AEi , it is

π
µj
j (f−1ai | f−1τi,t) = Pµ(Aj,t = f−1ai | AOj,t = f−1τi,t) (162)

= Eµ[Pµ(Aj,t = f−1ai | AOj,t, Z) | AOj,t = f−1τi,t] (163)

= Eµ[Zj(f
−1ai | f−1τi,t) | AOj,t = f−1τi,t] (164)

=

∫
ΠD

∫
Ω

(f∗Z)i(ai | τi,t)1AOj,t=f−1τi,t
dPZdµ∫

ΠD

∫
Ω
1AOj,t=f−1τi,t

dPZdµ
(165)

=

∫
ΠD

(f∗Z)i(ai | τi,t)PZ(AOj,t = f−1τi,t)dµ∫
ΠD
PZ(AOj,t = f−1τi,t)dµ

(166)

=

∫
ΠD

(f∗Z)i(ai | τi,t)Pf∗Z(AOi,t = τi,t)dµ∫
ΠD
Pf∗Z(AOi,t = τi,t)dµ

(167)

=

∫
ΠE

Zi(ai | τi,t)PZ(AOi,t = τi,t)dµ ◦ (f∗)−1∫
ΠE
PZ(AOi,t = τi,t)dµ ◦ (f∗)−1

(168)

= Ef∗µ[Zi(ai | τi,t) | AOi,t = τi,t] (169)

= Pf∗µ(Ai,t = ai | AOi,t = τi,t) (170)

= π
(f∗µ)i
i (ai | τi,t), (171)

where we have used Definition 58 in (162) and (171), and Theorem 22 in (167). This concludes the second
case and thus the proof.
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D.3. The other-play distribution and the symmetrizer

Using the idea of a policy corresponding to a distributions over policies introduced above, we can now define
a policy corresponding to the distribution over policies used in the OP objective. In the following, fix again a
Dec-POMDP D.

Definition 62 (Other-play distribution). Let π ∈ Π. We define the OP distribution of π as the distribution

µ := |Aut(D)|−N
∑

g∈Aut(D)N

δg∗π, (172)

where δ is the Dirac measure, i.e., for any measurable set Z ⊆ Π, it is

δg∗π(Z) =

{
1 if g∗π ∈ Z
0 otherwise.

Intuitively, agent i chooses one of the automorphisms gi ∈ Aut(D) uniformly at random in the beginning
of an episode and then follows the local policy proji(g

∗
i π). It can easily be shown that this distribution has

independent local policies.

Lemma 63. Let π ∈ Π and let µ be the OP distribution of π. Then µ has independent local policies.

Proof. Let Zi ⊆ Πi measurable for i ∈ N and let Z :=
∏
i∈N Zi. Note that for any i ∈ N and

g ∈ Aut(D)N , it is

δg∗π(proj−1
i (Zi)) =

∏
j∈N\{i}

δprojj(g
∗
jπ)(Πj)δproji(g

∗
i π)(Zi) = δproji(g

∗
i π)(Zi). (173)

Hence, it follows that

µ(Z) = |Aut(D)|−N
∑

gi∈Aut(D)N

δg∗π(Z) =
∏
i∈N

∑
gi∈Aut(D)

|Aut(D)|−1δproji(g
∗
i π)(Zi))

=
∏
i∈N

∑
g∈Aut(D)N

|Aut(D)|−(N−1)|Aut(D)|−1δproji(g
∗
i π)(Zi))

(173)
=

∏
i∈N
|Aut(D)|−N

∑
g∈Aut(D)N

δg∗π(proj−1
i (Zi)) =

∏
i∈N

µi(Zi). (174)

This shows that µ = ⊗i∈Nµi.

Using the OP distribution of a policy, we can define the symmetrizer ΨD for D, which maps a policy π to a
policy ΨD(π) that corresponds to the OP distribution of π. If it is clear which Dec-POMDP is considered,
we also write Ψ(π).

Definition 64 (Symmetrizer). We define the symmetrizer for the Dec-POMDPD as the map ΨD : ΠD → ΠD

such that for any policy π ∈ Π and OP distribution µ of π, it is

ΨD(π) := πµ.
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It is clear that if a policy is already invariant to automorphism, then πi = Ψi(π) for i ∈ N , excluding
action-observation histories that can never be reached under πi. We formulate a slightly weaker proposition
below, which is easier to prove.

Proposition 65. Let π ∈ Π be invariant to automorphism, and assume that, for all t ∈ {0, . . . , T} and
τi,t ∈ AOi,t, it is Pπ(AOi,t = τi,t) > 0. Then it is Ψ(π) = π.

Proof. Let µ be the OP distribution of π. Since π is invariant to automorphism, it is

µ = |Aut(D)|−N
∑

g∈Aut(D)N

δg∗π = δπ.

Now let i ∈ N , t ∈ {0, . . . , T}, ai ∈ Ai and τi,t ∈ AOi,t arbitrary. Using Equation 122, it follows that

Pδπ (AOi,t = τi,t)
(122)
= Eδπ

[
PZ(AOi,t = τi,t)

]
= Pπ(AOi,t = τi,t) > 0

and

Pδπ (Ai,t = ai | AOi,t = τi,t)
(122)
= Eδπ

[
PZ(Ai,t = ai | AOi,t) | AOi,t = τi,t

]
= Pπ(Ai,t = ai | AOi,t = τi,t). (175)

Hence, we can apply Definition 58 and conclude that

Ψi(π)(ai | τi,t) = πµii (ai | τi,t)
Definition 58

= Pδπ (Ai,t = ai | AOi,t = τi,t)

(175)
= Pπ(Ai,t = ai | AOi,t = τi,t) = πi(ai | τi,t). (176)

It will be helpful to refer to policies as equivalent if they have the same image under Ψ.

Definition 66. Let π, π′ ∈ ΠD. We say that π and π′ are equivalent, denoted as π ≡D π, if ΨD(π) = ΨD(π′).
Moreover, we write [π] := {π′ | π′ ≡D π} for the equivalence class of π.

It is clear that ≡D is an equivalence relation, since it is induced by the function ΨD. It follows that under

≡D, ΠD decomposes into a partition of equivalence classes, denoted by ΠD
�≡D.

Applying Lemma 61 to the symmetrizer in particular, we can show that it commutes with isomorphisms, and
that the policy Ψ(π) is invariant to automorphism.

Corollary 67. Let f ∈ Iso(D,E) and π ∈ ΠD. Then it is

f∗ΨD(π) = ΨE(f∗π).

If E = D, then
f∗ΨD(π) = ΨD(π),

i.e., ΨD(π) is invariant to automorphism.
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Proof. Let µ be the other-play distribution of π and µ̂ the other-play distribution corresponding to f∗π. Then,
using the associativity of function composition and pushforward proven in Lemma 21, and using the “in
particular” part of Lemma 19, it follows that

µ̂ = |Aut(E)|−N
∑

g∈Aut(E)N

δg∗(f∗π) = |Aut(E)|−N
∑

g∈Aut(E)N

δ(proji(g
∗
i f
∗π))i∈N

Lemma 19
= |Aut(D)|−N

∑
g∈Aut(D)N

δ(proji(f
∗g∗i π))i∈N = |Aut(D)|−N

∑
g∈Aut(D)N

δf∗(g∗π)

= |Aut(D)|−N
∑

g∈Aut(D)N

δg∗π ◦ (f∗)−1 = µ ◦ (f∗)−1. (177)

Thus, using Lemma 61, it is

f∗ΨD(π) = f∗πµ
Lemma 61

= πf
∗µ = πµ◦(f

∗)−1 (177)
= πµ̂ = ΨE(f∗π) (178)

Finally, assume E = D. Then f is an automorphism and Aut(E) = Aut(D) = Aut(D) ◦ f by Lemma 19.
Hence,

µ ◦ (f∗)−1 = |Aut(D)|−N
∑

g∈Aut(D)N

δg∗π ◦ (f∗)−1

= |Aut(D)|−N
∑

g∈Aut(D)N

δ(proji(f
∗g∗i π))i∈N

Lemma 19
= |Aut(D)|−N

∑
g∈Aut(D)N

δg∗π = µ. (179)

By (178), it follows that

f∗ΨD(π)
(178)
= πµ◦(f

∗)−1 (179)
= πµ = ΨD(π),

which concludes the proof.

A direct corollary is that we can define the pushforward purely in terms of equivalence classes of policies.
This will also be useful later.

Definition 68. Let D,E be isomorphic Dec-POMDPs with f ∈ Iso(D,E). Let [π] ∈ ΠD
�≡D. We define

the pushforward equivalence class f∗[π] ∈ ΠE�≡E via

f∗[π] := [f∗π].

The following corollary show that this is well-defined, that the pushforward of an equivalence class does not
depend on the particular chosen isomorphism, and that it is compatible with function composition.

Corollary 69. (i) The pushforward of an equivalence class is well-defined, i.e., for any π, π′ ∈ ΠD such
that π ≡D π′, it is [f∗π] = [f∗π′].

(ii) Any two isomorphisms f, f ′ ∈ Iso(D,E) induce the same pushforward.
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(iii) Analogous results to those in Lemma 21 apply to the pushforward of equivalence classes.

Proof. First, let π ≡D π′ ∈ ΠD and f ∈ Iso(D,E) arbitrary. Then, using Corollary 67 and the definition of
≡D, it is

ΨE(f∗π) = f∗ΨD(π) = f∗ΨD(π′) = ΨE(f∗π′).

Thus, [f∗π] = [f∗π′], which proves the first part.

Second, let f, f̃ ∈ Iso(D,E) and π ∈ ΠD arbitrary. By Lemma 19, there then exists g ∈ Aut(E) such that
f̃ = g ◦ f . Hence, using the second and first part of Corollary 67 and Lemma 21, it is

ΨE(f∗π)
Corollary 67

= g∗ΨE(f∗π)
Corollary 67

= ΨE(g∗(f∗π))
Lemma 21

= ΨE((g ◦ f)∗π) = ΨE(f̂∗π). (180)

Finally, it follows that
f∗[π] = [f∗π]

180
= [f̃∗π] = f̃∗[π],

which concludes the second part.

The third part follows directly from Lemma 21 by using the definition of the pushforward of equivalence
classes.

In the following, we say that two equivalence classes [π], [π′] for π ∈ ΠD, π′ ∈ ΠE correspond to each other
if there exists an isomorphism f ∈ Iso(D,E) such that f∗[π] = [π′]. In that case, in a slight abuse of the
terms, we also say that π and π′ are equivalent, extending the equivalence between policies defined above
to policies for different Dec-POMDPs. Using Corollary 69, one can see that two policies π, π′ ∈ ΠD are
equivalent in the sense that [π] = [π′] if and only if there exists an isomorphism f ∈ Iso(D,D) such that
f∗[π] = [π′], so this extended notion is equivalent to the old one for two policies π, π′ ∈ ΠD. We continue to
reserve the notation [π] and ≡ for policies from the same Dec-POMDP.

D.4. Main characterizations

Having defined the symmetrizer Ψ, we can now characterize the OP objective as transforming a policy π into
an invariant policy Ψ(π) and evaluating the expected return of that policy. This means that we can “pass to
the quotient” and consider the OP objective as a map J̃OP of equivalence classes, J̃OP([π]) := JOP(π) for
[π] ∈ Π�≡, using the equivalence relation on policies introduced above. The result is essentially a rigorous
version of Hu et al. (2020)’s Proposition 1 in our setup. It will help us later to analyze the OP-optimal
policies in a given example, as it implies that we can restrict ourselves to considering representatives Ψ(π) of
equivalence classes.

Theorem 70. Let D be a Dec-POMDP, let π ∈ ΠD, and let Ψ be the symmetrizer for D. Then Ψ(π) is
invariant to automorphism, and it is

JDOP(π) = JD(Ψ(π)). (181)

In particular, we can consider the OP objective as a function of equivalence classes [π] ∈ ΠD
�≡D, and if

there exists an optimal policy for the OP objective, then there also exists an optimal policy that is invariant to
automorphism.

Proof. In the following, fix a Dec-POMDP D. Let π ∈ Π and let µ be the OP distribution of π, such that
Ψ(π) = πµ. Then by the second part of Corollary 67, Ψ(π) is invariant to automorphism. Moreover, using
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Proposition 60, it is

JOP(π) = Eg∼U(Aut(D)N ) [J(g∗π)] =
∑

g∈Aut(D)N

|Aut(D)|−NJ(g∗π)

=
∑

g∈Aut(D)N

|Aut(D)|−N
∫
π′∈Π

J(π′)d (δg∗π)

=

∫
π′∈Π

J(π′)d

 ∑
g∈Aut(D)N

|Aut(D)|−Nδg∗π


(172)
=

∫
π′∈Π

J(π′)dµ
(117)
= J(µ)

Proposition 60
= J(Ψ(π)), (182)

which proves Equation 181.

Turning to the “in particular” statement, let π′ ≡ π for a second policy π′ ∈ Π. By Definition 66, this means
that Ψ(π′) = Ψ(π). Hence, by Equation 182, it follows that JOP(π) = JOP(π′), which shows that the
function J̃OP : Π�≡ → R, [π] 7→ JOP(π) is well-defined.

Lastly, assume that there is π ∈ arg maxπ′∈Π JOP(π′) (see Remark 53 regarding the existence of such a
policy). Then by Equation 182, it is also Ψ(π) ∈ arg maxπ′∈Π JOP(π′), so Ψ(π) is an OP-optimal policy
that is invariant to automorphism.

As a corollary, we can show that isomorphisms do not affect the OP value of a policy (we already know this
about SP from Corollary 23). In the following, we define ΠD

OP := arg maxπ∈ΠD J
D
OP(π) for a Dec-POMDP

D.
Corollary 71. Let D, E be isomorphic Dec-POMDPs with f ∈ Iso(D,E), and let π ∈ ΠD. Then it is

JDOP(π) = JEOP(f∗π).

In particular, if π ∈ ΠD
OP, then also f∗π ∈ ΠE

OP.

Proof. Using Theorem 70, Corollary 67, and Corollary 23, it is

JEOP(f∗π)
Theorem 70

= JE(ΨE(f∗π))
Corollary 67

= JE(f∗ΨD(π))

Corollary 23
= JD(ΨD(π))

Theorem 70
= JDOP(π). (183)

Turning to the “in particular” statement, assume that π ∈ ΠD
OP. By Lemma 18, it is f−1 ∈ Iso(E,D). Hence,

for any π̃ ∈ ΠE , it follows from the preceding that

JEOP(π̃) = JDOP((f−1)∗π̃) ≤ JDOP(π) = JEOP(f∗π). (184)

This shows that f∗π ∈ ΠE
OP.

Finally, we turn to the connection between OP and the payoff in an LFC game. The following result will
be helpful in both showing the inadequacy of OP and in proving that OP with tie-breaking is optimal. It
shows that equivalent policies in [π] ∈ Π�≡ are all compatible when played against each other by different
principals in the LFC game. The proof is based on Lemma 41 and Proposition 60.
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Theorem 72. Let D be a Dec-POMDP, let Ψ be the symmetrizer for D, and define D := {f∗D | f ∈
Sym(D)}. Let σ1, . . . ,σN ∈ ΣD. For any E ∈ D, choose fD,E ∈ Iso(D,E) arbitrarily. Then it is

UD(σ) = EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
JD
((

Ψk(π(k))
)
k∈N

)]]
. (185)

Proof. First, consider arbitrary joint policies π(1), . . . , π(N) ∈ ΠD and let µ(i) be the OP distribution of π(i),
so that πµ

(i)

= Ψ(π(i)) for i ∈ N . Define the distribution

µ̂(π(1), . . . , π(N)) := |Aut(D)|−N
∑

g∈Aut(D)N

⊗i∈N δproji(g
∗
i π

(i)) (186)

as a function of π(1), . . . , π(N). It can easily be seen that µ̂(π
(1), . . . , π(N)) ∈ ∆(ΠD) and that it has

independent local policies. Moreover, µ̂(π(1), . . . , π(N))i = µ
(i)
i , i.e., the marginal distribution for agent

i ∈ N is equal in µ̂(π(1), . . . , π(N)) and µ(i). Hence, also the corresponding local policies are identical, that
is,

π
µ̂(π(1),...,π(N))i
i = π

µ
(i)
i
i = Ψi(π

(i)) (187)

for i ∈ N .

It follows that

UD(σ1, . . . ,σN ) (188)

= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
Eg∈Aut(D)N

[
JD((projk(g∗kπ

(k)))k∈N )
]]]

(189)

= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
(190)

|Aut(D)|−N
∑

g∈Aut(D)N

∫
π∈ΠD

JD(π)d
(
⊗k∈N δprojk(g∗kπ

(k))

)]]
(191)

= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
(192)

∫
π∈ΠD

JD(π)d

|Aut(D)|−N
∑

g∈Aut(D)N

⊗k∈N δprojk(g∗kπ
(k))

]] (193)

(186)
= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[∫
π∈ΠD

JD(π)dµ̂(π(1), . . . , π(N))

]]
(194)

(117)
= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
JD(µ̂(π(1), . . . , π(N)))

]]
(195)

= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
JD((π

µ̂(π(1),...,π(N))k
k )k∈N )

]]
(196)

(187)
= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
JD
((

Ψk(π(k))
)
k∈N

)]]
, (197)

where we have used Lemma 41 in (189) and Proposition 60 in (196). This concludes the proof.
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Table 6. Rewards for each joint action in Example 73.

a2,1 a2,2
a1,1 − 1

2
1

a1,2 1 −1

Based on this result, the LFC game for D can be understood in the following way. Principal i ∈ N observes
a randomly relabeled problem Di ∈ D and trains a joint policy π(i) ∼ σi(Di) on this problem. The resulting
policy π(i) is then translated back into a policy f∗Di,Dπ

(i) for the original problem, using any isomorphism
fDi,D ∈ Iso(Di, D). Finally, this joint policy is made invariant to automorphism by applying the symmetrizer,
and agent i in the original problem D is assigned the local policy Ψi(f

∗
Di,D

π(i)).

D.5. Other-play is not self-play in a different Dec-POMDP

Hu et al. (2020) show that the OP objective J̃DOP introduced by them can be understood of as the SP objective
in a special Dec-POMDP. That is, for every Dec-POMDPD, there is a second Dec-POMDPE with ΠE = ΠD

such that for any π ∈ ΠD, it is J̃DOP(π) = maxπ′∈ΠD J̃
D
OP(π′) if and only if JE(π) = maxπ′∈ΠE J

E(π′).
Interestingly, when including player permutations, this is not the case anymore. We will prove this here, using
the characterization of OP from the last section.

Intuitively, if agents are symmetric, then under OP, they will always act according to the same local policy
in the environment. In some Dec-POMDPs, this means that it is optimal for the agents to randomize their
actions, to end up with different actions some of the time. For instance, consider the following game:
Example 73. There are two players with two actions Ai := {ai,1, ai,2} for i = 1, 2 each, and an episode
lasts only one step, making this a simple normal-form game. Rewards for each joint action are displayed in
Table 6.

This example demonstrates that sometimes there does not exist a deterministic policy that is optimal under
the OP objective.
Lemma 74. In Example 73, for any deterministic policy π, it is JOP(π) < maxπ′∈ΠD JOP(π′).

Proof. Let R ∈ R2,2 denote a matrix containing rewards as in Table 6.

First, note that in this game, players are symmetric, but actions are not. Moreover, there are no observations
and only one state. Hence, Aut(D) = {g, e} where gN1 = 2, gN2 = 1 and e is the identity.

Now consider any deterministic policy π = (π1, π2), corresponding to two vectors of action-probabilities

x, y ∈
{[

1
0

]
,

[
0
1

]}
for the two players. Due to the symmetry of both players, the OP distribution µ of π assigns each policy
π1, π2 to either player with probability 1

2 , so in Ψ(π) = πµ, both players play the distribution z := 1
2x+ 1

2y
and receive a reward of

JOP(π)
Theorem 70

= J(Ψ(π)) = z>Rz.

It follows by the definition of x, y that

z ∈
{[

1
0

]
,

[
0
1

]
,

[
1
2
1
2

]}
.
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Clearly, then z>Rz is maximized at z = [ 1
2 ,

1
2 ]>, yielding a reward of

JOP(π) = z>Rz =
1

8
. (198)

Next, define x = [ 4
7 ,

3
7 ]> and let π∗ be a policy such that π∗1 = π∗2 and the two action-probabilities of both

local policies are given by the vector x. Note that since g∗π∗ = (π∗gi)i=1,2 = π∗, it follows from the above
that π∗ is invariant to automorphism.

It follows by Proposition 56 that we can evaluate the OP value of π∗ by evaluating its expected return. That is,

JOP(π∗)
Proposition 56

= J(π∗) = x>Rx = −1

2

(
4

7

)2

+ 2
4

7

3

7
− 1

(
3

7

)2

=
1

7
. (199)

It follows that
JOP(π)

(198)
=

1

8
<

1

7
= JOP(π∗) ≤ max

π′∈ΠD
JOP(π′), (200)

which concludes the proof.

The fact that there is no deterministic optimal policy in Example 73 is in conflict with a canonical result about
Dec-POMDPs.

Theorem 75 (Oliehoek et al., 2008, sec. 2.4.4). In every Dec-POMDP D, there is a deterministic policy
π ∈ (Π0)D such that JD(π) = maxπ′∈ΠD J

D(π′).

As a result, we can prove the following.

Proposition 76. There exists a Dec-POMDP D such that for any other Dec-POMDP E with ΠE = ΠD,
there exists a policy π ∈ ΠE that is optimal for the SP objective of E, but not optimal for the OP objective of
D.

Proof. Let D be the Dec-POMDP as described in Example 73. Assume, towards a contradiction, that there
exists a Dec-POMDP E with ΠE = ΠD such that any optimal policy in that Dec-POMDP is optimal under
the OP objective of D. Then by Theorem 75, there exists a deterministic policy π ∈ (Π0)E such that
JE(π) is maximal. Hence, by the assumption, also JDOP(π) is maximized. But by Lemma 74, it must be
maxπ̃∈ΠD J

D
OP(π̃) > JDOP(π). This is a contradiction, which means that D is an example of a Dec-POMDP

that has the desired properties.

This shows that to optimize the OP objective, we have to directly consider that objective and we cannot simply
apply an RL algorithm to a different Dec-POMDP. Also, the fact that we need stochastic policies means that
it is not immediately clear how to apply a Bellman equation to the objective.

E. Other-play is not optimal in the label-free coordination problem
In this section, our goal is to prove a rigorous version of Theorem 7 from the main text.

Recall that in Appendix D, we introduced the symmetrizer Ψ: Π→ Π, which maps a joint policy π to the
policy corresponding to agents following randomly permuted local policies (g∗i π)i where gi ∼ U(Aut(D)).
This represents the random permutations employed in the OP objective, and hence by Theorem 70, it is
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JOP(π) = J(Ψ(π)), i.e., the OP value of π is equal to the SP value of Ψ(π). Moreover, we defined the
equivalence classes [π] = Ψ−1({Ψ(π)}) of policies that get mapped to the same policy under Ψ.

As defined in Appendix D.1, an OP learning algorithm is any learning algorithm such that the policies that
it learns achieve optimal OP value in expectation. In particular, it can be a learning algorithm that learns
different policies in different training runs, as long as it chooses OP-optimal policies with probability 1. As
we have seen in Theorem 72, in an LFC game, it does not matter which policy from an equivalence class [π]
is chosen. Unfortunately, though, there can also be different OP-optimal policies that are not equivalent. In
this case, if an OP learning algorithm is not concentrated on only compatible policies, it is not optimal in the
corresponding LFC problem.

In the remainder of this section, we will prove this statement. Concretely, in Appendix E.1, we will recall the
two policies πR, πS in the two-stage lever game that we introduced in Section 4.4. We will show that both
are optimal under OP, but that their cross-play value is inferior to the optimal OP value. In Appendix E.2, we
will then formally state and prove the result that, if an OP algorithm is not concentrated on only one of the
two incompatible equivalence classes of policies [πR], [πS ] in the two-stage lever game, then the algorithm is
suboptimal in the LFC problem for that game.

E.1. Two incompatible optimal policies in the two-stage lever game

We begin by mapping out the space of OP-optimal policies in the two-stage lever game. Recall that this
was a game with two agents, which proceeds in two rounds. Both agents have two actions, and their goal
in both rounds is to choose the same action, for a reward of 1. Failure of coordination leads to a reward of
−1. Moreover, in the second round, agents observe the actions of the other agent from the first round. In the
following, let D stand for the Dec-POMDP associated to this game as described in Example 3.

Recall the two policies πR and πS introduced in Section 4.4. In both policies, agents randomize uniformly
between both levers in the first round. They also both randomize in the second round if coordination was
unsuccessful in the first one. If coordination in the first round was successful, there are two different strategies:
in πR, both agents repeat their respective actions from round one. In πS , both agents switch to the action they
did not play in round one.

The following lemma shows that both policies are optimal under OP.

Lemma 77. Both πR and πS as described above are invariant to automorphism, and they maximize the OP
objective, where

JOP(πR) = JOP(πS) = max
π∈ΠD

JOP(π) =
1

2
.

Proof. Let π̃ ∈ ΠD arbitrary and define π := Ψ(π̃). By Theorem 70, π must be invariant to automorphism,
and it must be

JOP(π̃) = J(π).

Moreover, if we show that πR and πS are invariant to automorphism, then by Proposition 56, their OP value
equals their expected return. Hence, to show that πR and πS are optimal, it suffices to show that they are
invariant to automorphism, and then compare their expected returns to the expected return of π.

To begin, consider the set of automorphisms in the game, as described in Example 17. Let g ∈ Aut(D). Recall
that the state permutation is the trivial identity map, and the permutations for actions and observations of both
players have to be equal, gA1

= gA2
= gO1

= gO2
. Hence, we can represent g as a tuple (gN , gA). There are
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four possible combinations of choices for permutations gA, gN : {1, 2} → {1, 2}. Either permutation can

either be the identity map
(

1 2
1 2

)
or the inversion

(
1 2
2 1

)
.

Now consider πR and πS . Note that both policies are symmetric in the agents, so πR1 = πR2 and πS1 = πS2 .
Invariance to automorphism is trivially fulfilled in the first stage, i.e., πRi (ai | ∅) = πR

g−1
N i

(g−1
A ai | ∅) and

πSi (ai | ∅) = πS
g−1
N i

(g−1
A ai | ∅) for any i ∈ {1, 2}, ai ∈ {1, 2}, since both agents randomize uniformly

between actions. Now consider the second stage. Note that since automorphisms for the actions and
observations of both players have to be identical, an automorphism can never map an action-observation
history with Oi,1 6= Ai,0, i.e., such that one’s own action and the observed action from the other agent differ,
onto one in which they are the same, and vice versa. So we can consider the condition of invariance to
automorphism separately for the case in which players achieved coordination in the first stage and for the
case where they did not.

In the latter case, players randomize their actions uniformly, so in this case the policy is also trivially invariant.
Now consider the former case, i.e., for i = 1, 2, it is either AOi,1 = (1, 1) or AOi,1 = (2, 2). If both players
repeat their action, then for i ∈ {1, 2}, ai = oi ∈ {1, 2}, and any automorphism g = (gN , gA), it is

πRi (ai | ai, oi) = 1 = πR
g−1
N i

(g−1
A ai | g−1

A ai, g
−1
A oi).

In the case where they change their action, for a′i ∈ {1, 2} \ {ai}, it is g−1
A a′i 6= g−1

A ai, and thus

πSi (a′i | ai, oi) = 1 = πS
g−1
N i

(g−1
A a′i | g−1

A ai, g
−1
A oi).

In conclusion, this shows that g∗πS = πS and g∗πR = πR. Both πS and πR have an expected return of

J(πS) = J(πR) = E[R1 +R2] =
1

2
(1 + 1) +

1

2
(−1 +

1

2
· 1 +

1

2
· (−1)) =

1

2

i.e., in the first round, they coordinate in half of the cases, in which case they coordinate again, and if they do
not coordinate in the first round, they have an equal chance of achieving coordinating or not in the second
round.

Now consider π. First, choosing gN as the inversion and gA as the identity, it follows that

π1
(!)
= πg−1

N 1(g−1
A · | g

−1
A ·) = π2(· | ·) = π2,

where in (!) we use that π is invariant to automorphism. This shows that π must by symmetric in players, so
π1 = π2. Moreover, choosing gN as the identity and gA as the inversion, it is

πi(1 | ∅)
(!)
= πg−1

N i(g
−1
A 1 | ∅) = πi(2 | ∅),

so under π, too, both agents must choose both actions with equal probability in the first stage.

Turning to the second stage, we assume that π receives a maximal reward of 1 in the second stage if both
agents coordinated in the first stage. Now consider the case in which coordination failed in the first step.
Note that since π is symmetric in the agents, it is not possible for agents to consistently choose to play
either the action of agent 1 or of agent 2 in the second round if those actions did not coincide in the first
round. Moreover, due to invariance to action and observation permutations, the probability p that an agent
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repeats their action from the first round must be the same, no matter whether that action was a 1 or 2, as for
a 6= a′ ∈ {1, 2}, it must be πi(a | a, a′) = πi(a

′ | a′, a) for i = 1, 2 due to invariance to automorphism. Due
to the symmetry of agents, that probability must also be the same for both agents. Hence, we can define

p := πi(a | a, a′) = 1− πi(a′ | a, a′)

for i = 1, 2 and a 6= a′ ∈ {1, 2}. The return in the second stage in this case is then

E[R2 | A2,1 6= A1,1]

= 1 ·
(
π1(a1,1 | a1,1, a2,1)π2(a1,1 | a2,1, a1,1) + π1(a2,1 | a1,1, a2,1)π2(a2,1 | a2,1, a1,1)

)
− 1 ·

(
π1(a1,1 | a1,1, a2,1)π2(a2,1 | a2,1, a1,1) + π1(a2,1 | a1,1, a2,1)π2(a1,1 | a2,1, a1,1)

)
= 1 ·

(
p(1− p) + (1− p)p

)
− 1 ·

(
pp+ (1− p)(1− p)

)
= 0, (201)

where a1,1 6= a2,1 ∈ {1, 2} are arbitrary. This shows that also

J(π) ≤ 1

2
(1 + 1) +

1

2
(−1 + 0) =

1

2
.

Thus, it follows that J(π) ≤ 1
2 = J(πR) = J(πS), which shows that πR, πS are both optimal and thus

concludes the proof.

Now consider the case in which one agent chooses a local policy from πR and another agent chooses a local
policy from πS . It is clear that this will yield a suboptimal expected return compared with πR or πS , as
agents will always fail to coordinate in the second round, if they coordinated in the first round.

Lemma 78.
J(πR1 , π

S
2 ) = J(πS1 , π

R
2 ) = −1

2
<

1

2
.

Proof. Both policies are equal in the first round, in which there is a 50% chance that agents coordinate. If
agents do not coordinate in the first round, then they both randomize uniformly in the second stage. If agents
do coordinate in the first round, then agent 1 using πR1 repeats their action from the first round, while agent 2,
using πS2 , will switch to a different action. In this case, the reward is thus always −1. As a result, it is

Jwe(πR1 , π
S
2 ) =

1

2
(1− 1) +

1

2
(−1 +

1

2
· 1 +

1

2
· (−1)) = −1

2
<

1

2
.

The same argument applies if agent 1 uses πS1 and agent 2 uses πR2 .

E.2. Proof that other-play is suboptimal

Using the two lemmas from the last section, we can now show that if an OP learning algorithm is not
concentrated on only one of [πS ] or [πR], it is not optimal in the LFC problem for D. Note that we could
just choose a particular learning algorithm, for instance, one that randomizes uniformly between πR and πS ,
and show that that algorithm is suboptimal. This would then prove that a suboptimal OP learning algorithm
exists. However, we show a more general result. Specifically, take any learning algorithm that learns with
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positive probability a policy equivalent to πR in one relabeling of D and, also with positive probability, a
policy equivalent to πL in some potentially different relabeling. Then this learning algorithm is suboptimal in
the LFC problem for D.

In the following, let D := {f∗D | f ∈ Sym(D)} be the set of different relabeled Dec-POMDPs of the
two-stage lever game D. For any Dec-POMDP E ∈ D, choose fD,E ∈ Iso(D,E) arbitrarily. Below, we
define the class of algorithms relevant to our theorem.

Definition 79. Let σ ∈ ΣD be a learning algorithm such that for any E ∈ D, E = f∗D, it is

σ(E) = αEµE + (1− αE)µ′
E
,

where αE ∈ [0, 1] and µE , µ′E ∈ ∆(ΠE) are chosen such that

µE(f∗D,E [πR]) = 1 = µ′
E

(f∗D,E [πS ]).

That is, σ(E) is a mixture of a distribution µE with weight only on the equivalence class of policies
corresponding to πR, and a distribution µ′E that only puts weight on policies corresponding to πS . We say
that σ learns both [πR] and [πS ] if there exist D̃, D̃′ ∈ D such that αD̃ > 0 and αD̃′ < 1.

Note that Corollary 69 (ii) ensures that this definition does not depend on the chosen isomorphisms fD,E .

The above condition is very weak: we only require there to be some relabeled Dec-POMDP on which the
learning algorithm chooses an equivalent policy of πR some of the time, and some potentially different
relabeled Dec-POMDP where the algorithm chooses a policy equivalent to πS some of the time. We now
show that a learning algorithm with this property is an OP learning algorithm per Definition 54, but that it is
not optimal in the LFC problem for D.

Theorem 80. In the two-stage lever game, there are two classes of OP-optimal policies, denoted by [πR] and
[πS ]. Any learning algorithm that learns both [πR] and [πS ] in the sense of Definition 79 is an OP learning
algorithm, but it is not optimal in the LFC problem for that game.

Proof. First, note that under πR, πS , all action-observation histories are reached with positive probability,
and by Lemma 77, they are both invariant to automorphism. Hence, by Proposition 65, it is Ψ(πR) = πR and
Ψ(πS) = πS (*). This also shows that [πR] and [πS ] are distinct. Let σ be a learning algorithm as specified
in Definition 79, and define µE , µ′E and αE for E ∈ D as in that definition. Also, let D̃, D̃′ ∈ D such that
αD̃ > 0 and αD̃′ < 1.

We begin by showing that σ is an OP learning algorithm. For any E ∈ D, it is

Eπ∼σ(E)[J
E
OP(π)] = αEEπ∼µE [JEOP(π)] + (1− αE)Eπ∼µ′E [JEOP(π)] (202)

= αEEπ∼µE [1f∗D,E [πR]J
E
OP(π))] + (1− αE)Eπ∼µ′E [1f∗D,E [πS ]J

E
OP(π)] (203)

= αEEπ∼µE [1f∗D,E [πR]J
D
OP(f∗E,Dπ))]

+ (1− αE)Eπ∼µ′E [1f∗D,E [πS ]J
D
OP(f∗E,Dπ)] (204)

= αEEπ∼f∗E,DµE [1f∗E,D(f∗D,E [πR])J
D
OP(π))]

+ (1− αE)Eπ∼f∗E,Dµ′E [1f∗E,D(f∗D,E [πS ])J
D
OP(π)] (205)

= αEEπ∼f∗E,DµE [1[πR]J
D
OP(π))] + (1− αE)Eπ∼f∗E,Dµ′E [1[πS ]J

D
OP(π)] (206)
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= αEJ
D
OP(πR) + (1− αE)JDOP(πS) (207)

= αE max
π∈ΠD

JDOP(π) + (1− αE) max
π∈ΠD

JDOP(π) (208)

= max
π∈ΠD

JDOP(π), (209)

using Definition 79 in (202) and (203); Corollary 71 in (204); a change of variables for pushforward measures
in (205); Lemma 18 and parts (ii) and (iii) of Corollary 69 in (206); the “in particular” part of Theorem 70 in
(207); and Lemma 77 in (208). This shows that σ is an OP learning algorithm.

Next, we turn to proving that σ is suboptimal in the LFC problem. To that end, define the auxiliary function

X(D1, D2, π
(1), π(2)) := δD1,D̃

δD2,D̃′
1[πR](π

(1))1[πS ](π
(2))

for any D1, D2 ∈ D and π(1), π(2) ∈ ΠD. This function is 1 whenever the first Dec-POMDP is D̃ and the
policy π(1) is such that its pushforward policy is in [πR], and when the second Dec-POMDP is D̃′ and the
pushforward of π(2) is in [πS ]. Otherwise, it is 0.

Recall that by Lemma 18, it is (f∗E,D)−1 ∈ Iso(D,E) for E ∈ D, and by Corollary 69 (ii), the pushforward
of an equivalence class does not depend on the particular chosen isomorphism. Define

β := ED1,D2∼U(D)[Eπ(i)∼f∗D,Diσ(Di), i=1,2[X(D1, D2, π
(1), π(2))]]

and note that β ≤ 1. This number is relevant to us as it is a lower bound on the probability that agents 1 and 2
will have incompatible joint policies in the objective of the LFC problem. By assumption about σ, we know
that

(f∗
D̃,D

σ(D̃))([πR]) = σ(D̃)((f∗
D̃,D

)−1[πR]) = αD̃ > 0

and similarly
(f∗
D̃′,D

σ(D̃′))([πS ]) = σ(D̃′)((f∗
D̃′,D

)−1[πS ]) = 1− αD̃′ > 0,

and it is U(D)({D̃}) = U(D)({D̃′}) = 1
D . Hence, it follows that 0 < β ≤ 1 (**). That is, with nonzero

probability, using σ leads to incompatible policies.

Our goal is now to prove that UD(σ) < 1
2 . To that end, we also have to show that the value in the cases where

X(D1, D2, π
(1), π(2)) = 0 is bounded by 1

2 . Note that for any E ∈ D, it is

(f∗E,Dσ(E))([πR] ∪ [πS ]) = σ(E)(((f∗E,D)−1[πR]) ∪ ((f∗E,D)−1[πS ])) = 1,

and for π(1), π(2) ∈ [πR] ∪ [πS ], using the definition of equivalence, it is

JD(Ψ(π(1))1,Ψ(π(2))2) = JD(Ψ(πC)1,Ψ(πC
′
)2)

(∗)
= JD(πC1 , π

C′

2 )
Lemma 77

=
1

2
(210)

if both policies are from the same class, i.e., C = C ′ ∈ {R,S}, and

JD(Ψ(π(1))1,Ψ(π(2))2) = JD(Ψ(πC)1,Ψ(πC
′
)2)

(∗)
= JD(πC1 , π

C′

2 )
Lemma 78

= −1

2
(211)

if they come from different classes, i.e., C 6= C ′ ∈ {R,S}. It follows that for any D1, D2 ∈ D, it is

JD(Ψ(π(1))1,Ψ(π(2))2) ≤ 1

2
(212)



A New Formalism, Method and Open Issues for Zero-Shot Coordination

almost surely if π(1) ∼ f∗D1,D
σ(D1) and π(2) ∼ f∗D2,D

σ(D2).

Using this bound together with (**), it follows that

UD(σ) = UD(σ, . . . , σ) (213)

= ED1,D2∼U(D)[Eπ(i)∼f∗Di,Dσ(Di), i=1,2[JD(Ψ1(π(1)),Ψ2(π(2)))]] (214)

= ED1,D2∼U(D)

[
Eπ(i)∼f∗Di,Dσ(Di), i=1,2

[
JD(Ψ(π

(1)
1 ),Ψ2(π(2)))X(D1, D2, π

(1), π(2))

+ JD(Ψ1(π(1)),Ψ2(π(2)))(1−X(D1, D2, π
(1), π(2)))

]]
(215)

≤ ED1,D2∼U(D)

[
Eπ(i)∼f∗Di,Dσ(Di), i=1,2

[(
−1

2

)
X
(
D1, D2, π

(1), π(2)
)

+
1

2

(
1−X

(
D1, D2, π

(1), π(2)
))]]

(216)

=

(
−1

2

)
β +

1

2
(1− β) (217)

(**)
<

1

2
, (218)

where we use Theorem 72 in (214) and Equations 211 and 212 in (216).

To see that this is suboptimal in the LFC problem, consider σ∗ defined via σ∗(E) := δf∗D,EπR for any E ∈ D.
Since

f∗E,Dσ(E) = δf∗D,EπR ◦ (f∗E,D)−1 = δf∗E,D(f∗D,Eπ
R) = δπR (219)

for any E ∈ D, it follows that

UD(σ∗) = UD(σ∗, . . . , σ∗)

Theorem 72
= ED1,D2∼U(D)[Eπ(i)∼f∗Di,Dσ

∗(Di), i=1,2[JD(Ψ1(π(1)),Ψ2(π(2)))]]

(219)
= JD(Ψ1(πR),Ψ2(πR))

(210)
=

1

2

(214)–(217)
> UD(σ), (220)

which concludes the proof.

F. Other-play with tie-breaking
In this section, we formally define OP with tie-breaking as introduced in Section 5, state and prove a rigorous
version of Theorem 8, and provide an additional result about random tie-breaking functions. In Appendix F.1,
we define OP with tie-breaking and discuss to what degree the formal definition is satisfied by our method.
In Appendix F.2, we show that OP with tie-breaking is optimal in the LFC problem and that all principals
using OP with tie-breaking is an optimal symmetric Nash equilibrium of any LFC game. In Appendix F.3
we prove that a modification of the tie-breaking function introduced in Section 5 satisfies our definition of a
tie-breaking function.
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F.1. Definition of other-play with tie-breaking

Recall that OP with tie-breaking was introduced as an extension of OP, to fix the failure of OP in the LFC
problem. A tie-breaking function ranks the different OP-optimal equivalence classes of policies in a given
problem. For instance, a tie-breaking function could compare the two incompatible policies in the two-stage
lever game, πR and πS , and choose the policy under which actions are more highly correlated, which is πR.
Another tie-breaking function would be one that samples from an OP learning algorithm and ranks policies in
terms of their relative frequencies. If one policy is learned more often than another, that tie-breaking function
would be able to distinguish between them. OP with tie-breaking is defined as an algorithm that chooses an
OP-optimal policy that maximizes a tie-breaking function.

Note that an obvious alternative approach, making a learning algorithm deterministic by coordinating on a
random seed, would not work in the LFC problem. This is because the learned policies have to be compatible
even across different, relabeled Dec-POMDPs. A labeling modifies the representation of the data used to
train the algorithm, which likely leads to the same effect as a resampling of the random seed. Hence, fixing
a random seed fails to ensure that the chosen policies are compatible when principals do not coordinate on
labels for the problem. (Note that a learning algorithm that outputs consistent policies on a given problem,
but incompatible policies on different, relabeled problems is explicitly included as a non-optimal algorithm
in Theorem 80.) Additionally, this would be an unprincipled way to deal with the choice between different
maximizers of the OP objective, leaving no possibility, e.g., for an explicit bias towards some policies over
others.

Turning to the definitions, recall again from Appendix D that we say that for a Dec-POMDPD, π, π′ ∈ ΠD are
equivalent, π ≡ π′, if Ψ(π) = Ψ(π′), where Ψ is the symmetrizer for D that maps a joint policy π to the joint
policy Ψ(π) corresponding to agents following randomly permuted local policies (g∗i π) for gi ∼ U(Aut(D)).
Moreover, we defined [π] as the equivalence class of π, and f∗[π] := [f∗π] for f ∈ Iso(D,E).

In the following, define ΠD
OP := arg maxπ∈ΠD J

D
OP(π) as the set of OP-optimal policies for any Dec-

POMDP D. Let D be any set of Dec-POMDPs. A tie-breaking function takes in Dec-POMDPs D ∈ D and
policies π ∈ ΠD and outputs values in [0, 1] that can be used to consistently break ties between policies,
across different isomorphic Dec-POMDPs.
Definition 81 (Tie-breaking function). Let χ : {(D,π) | D ∈ D, π ∈ ΠD} → [0, 1]. Then

(a) χ is called a tie-breaking function for D if

(i) for any D ∈ D, χ attains a maximum on the set

{(D,π) | π ∈ ΠD
OP}.

(ii) for any D ∈ D and π, π′ ∈ ΠD, it is

χ(D,π) = χ(D,π′)⇒ π ≡D π′.

(b) χ is called invariant to isomorphism if for any D,E ∈ D, f ∈ Iso(D,E), and π ∈ ΠD, π′ ∈ ΠE , it is

f∗[π] = [π′]⇒ χ(D,π) = χ(E, π′).

χ being a tie-breaking function ensures that there is always a unique equivalence class of policies that
maximizes the function for a given Dec-POMDP. It being invariant to isomorphism ensures that χ chooses
corresponding equivalence classes of policies on different, isomorphic Dec-POMDPs in D.

Using a tie-breaking function that is invariant to isomorphism, we can define OP with tie-breaking.
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Definition 82 (Other-play with tie-breaking). Let χ be a tie-breaking function for D that is invariant to
isomorphism. Let σχ ∈ ΣD be a learning algorithm such that for any D ∈ D, there exists a measurable set
Z ⊆ ΠD

OP such that σχ(D)(Z) = 1 and Z ⊆ arg maxπ∈ΠDOP
χ(D,π). Then we say that σχ is an OP with

tie-breaking learning algorithm for D.

This definition implies that no matter the problem D ∈ D, the algorithm always learns the OP-optimal policy
that achieves the highest tie-breaking value. Since the tie-breaking function is invariant to isomorphism, this
means that policies learned in different training runs and when trained on relabeled Dec-POMDPs are always
compatible.

Finally, recall that the practical method introduced in Section 5 consists of sampling K ∈ N policies using an
OP learning algorithm, applying a tie-breaking function to each policy, and then choosing the one with the
highest value. Clearly, if all the OP-optimal equivalence classes of policies in any of the Dec-POMDPs in D
are among the first K learned policies, then this algorithm will satisfy our definition. This appears to be the
case for the OP algorithm and toy examples used in our experiments, at least for large enough K, and when
we ignore differences between policies that matter little for the agents’ expected returns. Moreover, it is easy
to see that the algorithm will still always pick equivalent policies if for any two isomorphic Dec-POMDPs
D,E ∈ D, if σOP learns a policy π with positive probability in D, it also learns an equivalent policy π′ in E
with positive probability, in the sense that f∗[π] = [π′] for f ∈ Iso(D,E). That is, it does not matter if some
policies are never learned, if this happens consistently across isomorphic problems. One way for an algorithm
σOP to have this property is by being equivariant (see Appendix C.8).

F.2. Other-play with tie-breaking is an optimal symmetric profile

In the following, fix a Dec-POMDP D and the set of relabeled Dec-POMDPs D := {f∗D | f ∈ Sym(D},
and let χ be a tie-breaking function for D that is invariant to isomorphism. Let U(σ) := UD(σ) stand for
the payoff in the LFC game for D given the profile of learning algorithms σ1, . . . ,σN ∈ ΣD. Recall that the
learning algorithm σ ∈ ΣD is optimal in the LFC problem for D if U(σ) ≥ U(σ′) for all σ′ ∈ ΣD, where
U(σ) := U(σ, . . . , σ).

Recall from Appendix C.7 that we call a profile of learning algorithms σ1, . . . ,σN ∈ ΣD symmetric if
σi = σg−1i for any principal i ∈ N and g ∈ Aut(D). σ is defined as an optimal symmetric profile if it is
symmetric and for any other symmetric profile σ′1, . . . ,σ

′
N ∈ ΣD, it is U(σ) ≥ U(σ′).

Turning to our main theorem, we show that a profile σχ, . . . , σχ in which all principals choose OP with
tie-breaking is an optimal symmetric profile in the LFC game for D. That is, as long as symmetric principals
choose the same learning algorithm, they cannot do better than all choosing OP with tie-breaking. In particular,
this implies that σχ is optimal in the LFC problem. Note, though, that we prove a stronger statement, as
optimality for the LFC problem only requires that U(σχ, . . . , σχ) ≥ U(σ′, . . . , σ′) for all σ′ ∈ ΣD, while we
show that U(σχ, . . . , σχ) ≥ UD(σ1, . . . ,σN ) for all symmetric profiles σ1, . . . ,σN ∈ ΣD. Afterwards, we
will apply Theorem 48 to conclude that all principals using OP with tie-breaking is also a Nash equilibrium,
i.e., given that all principals use OP with tie-breaking, no individual principal can do better by switching to a
different algorithm.

Theorem 83. Let σχ be an OP with tie-breaking learning algorithm for D, as defined in Definition 82. Then
all principals using σχ is an optimal symmetric strategy profile in the LFC game for D. In particular, σχ is
optimal in the LFC problem for D, and it is U(σχ) = maxσ∈ΣD U(σ) = maxπ∈ΠD J

D
OP(π).

Proof. We begin by showing that U(σχ, . . . , σχ) = maxπ∈ΠD J
D
OP(π). Afterwards, we show that one
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cannot get a better payoff in the LFC game than that using a symmetric profile of learning algorithms, i.e., that
σχ, . . . , σχ is an optimal symmetric profile. It then follows immediately that also U(σχ) = U(σχ, . . . , σχ) ≥
U(σ, . . . , σ) = U(σ) for any σ ∈ ΣD, i.e., that σχ is optimal in the LFC problem for D.

Recall the definition ΠE
OP := arg maxπ′∈ΠE J

E
OP(π′) for E ∈ D. Let E,F ∈ D arbitrary and f, f̃ ∈

Sym(D) such that E = f∗D and F = f̃∗D. We want to show that σχ learns compatible OP-optimal policies
in both Dec-POMDPs. To that end, let Z ⊆ ΠE

OP measurable such that Z ⊆ arg maxπ∈ΠE χ(E, π) and
such that σ(E)(Z) = 1. Then since χ is a tie-breaking function, there must exist a policy π′ ∈ ΠE

OP such
that π′ ∈ Z ⊆ [π′] and thus σ(E)([π′]) = 1 and π′ ∈ arg maxπ∈ΠEOP

χ(E, π) (i). Letting π := (f−1)∗π′, it
follows from Corollary 71 that π ∈ ΠD

OP (ii).

Now we want to show that σχ learns policies in [f̃∗π] in F . Let π̃ := (f̃ ◦ f−1)∗π′ and note that f̃ ◦ f−1 ∈
Iso(E,F ), so π̃ ∈ ΠF . Since χ is invariant to isomorphism, it is

χ(F, π̂) = χ(E, (f ◦ f̃−1)∗π̂)
(i)
≤ χ(E, π′),

for any π̂ ∈ ΠF . Here, equality holds for π̂ := π̃, as it is

(f ◦ f̃−1)∗π̃ = (f ◦ f̃−1)∗(f̃ ◦ f−1)∗π′ = π′

by Lemma 21. Moreover, due to Corollary 71 it is again π̃ ∈ ΠF
OP. This shows that π̃ ∈

arg maxπ̂∈ΠFOP
χ(F, π̂), and since χ is a tie-breaking function, it is arg maxπ̂∈ΠFOP

χ(F, π̂) ⊆ [π̃]. Hence, by
the definition of σχ, it follows that σχ(F )([π̃]) = 1 (iii).

Now choose any arbitrary isomorphism fF,D ∈ Iso(F,D). By Lemma 21, it is (f∗F,D)−1 = (f−1
F,D)∗. Hence,

by the second part of Lemma 69, it is (f∗F,D)−1[π] = f̃∗[π] (iv). Moreover, using again Lemma 21, it is

(f ◦ f̃−1)∗π̃ = (f ◦ f̃−1)∗(f̃ ◦ f−1)∗π′ = π′. (221)

It follows that

(f∗F,D)−1([π])
(iv)
= f̃∗[π] = f̃∗[(f−1)∗π′]

(221)
= f̃∗[(f−1)∗(f ◦ f̃−1)∗π̃]

Definition 68
= f̃∗(f−1)∗(f ◦ f̃−1)∗[π̃]

Corollary 69 (iii)
= [π̃] (222)

and thus
f∗F,Dσ

χ(F )([π]) = σχ(F )((f∗F,D)−1([π]))
(222)
= σχ(F )([π̃])

(iii)
= 1. (223)

Since F was arbitrary, we can conclude that the above equation holds for any F ∈ D and isomorphism
fF,D ∈ Iso(F,D).

Using this fact together with the definition of equivalence of policies in Definition 66, as well as the expression
for the payoff in the LFC game from Theorem 72, it follows that

U(σχ, . . . , σχ)
Theorem 72

= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
JD
((

Ψk(π(k))
)
k∈N

)]]
(224)

(223)
= EDi∼U(D), i∈N

[
Eπ(j)∼f∗Dj,Dσj(Dj), j∈N

[
JD
(
(Ψk(π))k∈N

)]]
(225)

= JD(Ψ(π)) (226)
Theorem 70

= JDOP(π) (227)
(ii)
= max

π̂∈ΠD
JOP
D (π̂), (228)
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Next, we show that we cannot do better than that with a symmetry-invariant profile of learning algorithms.
To that end, let σ1, . . . ,σN ∈ ΣD arbitrary such that σi = σg−1i for any g ∈ Aut(D), i ∈ N . For i ∈ N ,
define the distribution

ν(i) := |Sym(D)|−1
∑

f∈Sym(D)

(f−1)∗σi(f
∗D)

and let µ := ⊗i∈N ν(i)
i . Then it is

U(σ) = Ef∼U(Sym(D)N )[Eπ(i)∼(f−1
i )∗σi(f∗i D), i∈N [JD((π

(i)
i )i∈N )]] (229)

=
∑

f∈Sym(D)N

|Sym(D)|−N
∫

(π(i))i∈N∈(ΠD)N
JD((π

(i)
i )i∈N )d⊗i∈N (f−1

i )∗σi(f
∗
i D) (230)

=
∑

f∈Sym(D)N

|Sym(D)|−N
∫
π∈ΠD

JD(π)d⊗i∈N (f−1
i )∗σi(f

∗
i D) ◦ proj−1

i (231)

=

∫
π∈ΠD

JD(π)d⊗i∈N

|Sym(D)|−1
∑

fi∈Sym(D)

(f−1
i )∗σi(f

∗
i D) ◦ proj−1

i

 (232)

=

∫
π∈ΠD

JD(π)dµ (233)

(117)
= JD(µ). (234)

Now we want to show that it is JD(µ) ≤ maxπ∈ΠD J
D(π), by proving that µ and thus also the corresponding

policy πµ is invariant to pushforward by automorphism. Let g ∈ Aut(D) and let Zi ⊆ ΠD
i measurable for

i ∈ N . Recall that by Lemmas 13 and 21, g is a bijective self-map on action-observation histories and g∗

a bijective self-map on ΠD, and that isomorphisms can be inverted and composed by Lemma 18. In the
following, we use the notations πi ◦ g := πi(g· | g·) and Zi ◦ g := {πi(g· | g·) | πi ∈ Zi} for i ∈ N .

By definition, µ has independent local policies. Hence, we can apply Equation 158 from the proof of
Lemma 61, which says that

(g∗µ)(Z) =
∏
i∈ND

µg−1i(Zi ◦ g). (235)

Moreover, it is (g∗)−1(ΠD) = ΠD and by definition, (g∗π)i = πg−1i ◦ g−1, which implies that

proj−1
g−1i(Zi ◦ g) = {π | π ∈ ΠD, πg−1i ∈ Zi ◦ g} (236)

= {π | π ∈ (g∗)−1(ΠD), πg−1i ◦ g−1 ∈ Zi} (237)

= {π | g∗π ∈ ΠD, (g∗π)i ∈ Zi} (238)

= {(g∗)−1π | π ∈ ΠD, πi ∈ Zi} (239)

= (g∗)−1(proj−1
i (Zi)). (240)
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Hence, it follows for i ∈ N that

ν(i)(proj−1
g−1i(Zi ◦ g)) = ν(i)((g∗)−1(proj−1

i (Zi))) (241)

= |Sym(D)|−1
∑

f∈Sym(D)

(f−1)∗σi(f
∗D)((g∗)−1(proj−1

i (Zi))) (242)

= |Sym(D)|−1
∑

f∈Sym(D)

g∗(f−1)∗σi(f
∗D)(proj−1

i (Zi)) (243)

= |Sym(D)|−1
∑

f∈Sym(D)

((f ◦ g−1)−1)∗σi(f
∗D)(proj−1

i (Zi)) (244)

= |Sym(D)|−1
∑

f∈Sym(D)

((f ◦ g−1)−1)∗σi((f ◦ g−1)∗D)(proj−1
i (Zi)) (245)

= |Sym(D)|−1
∑

f∈Sym(D)

(f−1)∗σi(f
∗D)(proj−1

i (Zi)) (246)

= ν(i)(proj−1
i (Zi)). (247)

Here, we use in (245) and (246) that g−1 ∈ Iso(D,D) and thus by Lemma 34, it is (f ◦ g−1)∗D = f∗D and
Sym(D) = Sym(D) ◦ g−1, respectively.

Next, note that by assumption, it is ν(i) = ν(g−1i) for i ∈ N (v). It follows that

(g∗µ)(Z)
(235)
=

∏
i∈NE

µg−1i(Zi ◦ g) =
∏
i∈ND

ν(g−1i)(proj−1
g−1i(Zi ◦ g))

(v)
=
∏
i∈ND

ν(i)(proj−1
g−1i(Zi ◦ g))

(241)–(247)
=

∏
i∈ND

ν(i)(proj−1
i (Zi))

=
∏
i∈ND

µi(Zi) = µ(Z). (248)

Since the sets
∏
i∈N Zi, Zi ∈ Fi are a π-system and generate F , this shows that µ = g∗µ. By Lemma 61, it

is thus
g∗πµ = πg

∗µ = πµ (249)

for any g ∈ Aut(D), where πµ is the policy corresponding to µ as defined in Section D.2.

Using Proposition 60, it follows that

U(σ1, . . . ,σN )
(229)–(234)

= JD(µ)
Proposition 60

= J(πµ) = Eg∼U(Aut(D)N )[J
D(πµ)]

= Eg∼U(Aut(D)N )

[
JD ((proji(π

µ))i∈N )
] (249)

= Eg∼U(Aut(D)N )

[
JD ((proji(g

∗
i π

µ))i∈N )
]

= JDOP(πµ) ≤ max
π∈ΠD

JDOP(π)
(224)–(228)

= U(σχ, . . . , σχ). (250)

This concludes the proof.

Finally, it follows as a corollary of Theorem 48 that the profile σχ, . . . , σχ is a Nash equilibrium of the LFC
game.
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Corollary 84. All principals using OP with tie-breaking is a Nash equilibrium of the LFC game for D.

Proof. By Theorem 83, a profile in which all principals use OP with tie-breaking is an optimal symmetric
strategy profile in the LFC game for D. Hence, by Theorem 48, it is a Nash equilibrium of the game.

F.3. Random tie-breaking functions

In this last section, we show that a certain tie-breaking function, based on random hashes of normal forms
of histories, is a tie-breaking function that is invariant to isomorphisms, in the sense of Definition 81 above.
As we prove that a certain random function is a tie-breaking function with probability 1, one may call this
approach a “probabilistic method” (cf. Alon & Spencer, 2016).

In the following, let D be any set of Dec-POMDPs and D ∈ D. Recall that in Section 5, we de-
fined a function ι that maps histories to normal forms, where the normal form is a history in which
the first occurrence of each state, action, or observation is set to a 0, the second occurrence is set to
a 1, and so on, and where, if an element in τ ∈ HD repeats itself, the number is repeated. For
ι(τ) := (s0, (ai,0)i∈N , r0, . . . , sT , (oi,T )i∈N , (ai,T )i∈N , rT ), we then define

fN (ι(τ)) := (s0, (af−1
N i,0)i∈N , r0, . . . , sT , (of−1

N i,T )i∈N , (af−1
N i,T )i∈N , rT ).

for a permutation fN ∈ Bij(N ) of N . The tie-breaking function in Section 5 was defined as

χ̃#(D,π) :=
1

N !

∑
fN∈Bij(N )

Eg∼U(Aut(D)N ) [Eg∗π [#(fN (ι(H)))]] , (251)

for some neural random neural network #.

To be able to prove a theoretical result, we have to modify this tie-breaking function to make it dependent on
the Dec-POMDP that belongs to a normal form ι(τ). The above function is simpler to implement, as we do
not have to implement a representation of a Dec-POMDP, and it was sufficient for our experimental results.
We leave it to future work to determine to what degree the above version works in general.

In order to define the modified function formally, let (Ω#, E ,P#) be some probability space, such that for
any D ∈ D, f ∈ Sym(D) and τ ∈ Hf∗D, there is an independent, identically distributed real-valued random
variable #(f∗D, τ) on this space. Assume that

P#(#(f∗D, τ) = λ) = 0 ∀λ ∈ R, D ∈ D, f ∈ Sym(D), τ ∈ Hf
∗D. (252)

For instance, this would be satisfied by uniformly distributed hash values #(f∗D, τ) ∼ U([0, 1]).

Now for a given Dec-POMDP D and history τ ∈ HD, denote K(τ) ⊆ Sym(D) for the set of labelings
f ∈ Sym(D) such that fτ = ι(τ). It is easy to see that for any history τ ∈ HD, there must exist some
labelings f ∈ Sym(D) such that fτ = ι(τ), so K(τ) is non-empty. Then our tie-breaking function here is
defined as

χ#(D,π) := EΨD(π)

[
Ef∼U(K(HD))

[
#(f∗D, fHD)

]]
(253)

for D ∈ D, π ∈ ΠD. We have to sample from the symmetrized policy Ψ(π) instead of just π, since we need
a distribution over histories under which equivalent histories have equal probabilities, and the tie-breaking
function needs to be equal for equivalent policies in order to always have a maximizer. The expectation over
labelings in K(τ) makes the function invariant to isomorphisms. We need to make the hash function depend
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on the Dec-POMDP, since otherwise, we are unable to prove that it can distinguish all histories that it needs
to be able to distinguish.

Remark 85. By Proposition 60, the distribution over histories under PΨ(π) is the same as the one under Pµ
where µ is the OP distribution of π ∈ ΠD. Hence, using the definition of Pµ from Equation 118 and the
definition of the OP distribution from Equation 172, it follows that

χ#(D,π) = EΨD(π)

[
Ef∼U(K(HD))

[
#(f∗D, fHD)

]]
(254)

Proposition 60
= Eµ

[
Ef∼U(K(HD))

[
#(f∗D, fHD)

]]
(255)

(118)
= Eπ̃∼µ

[
Eπ̃
[
Ef∼U(K(HD))

[
#(f∗D, fHD)

]]]
(256)

(172)
= Eg∼U(Aut(D)N )

[
Eg∗π

[
Ef∼U(K(HD))

[
#(f∗D, fHD)

]]]
(257)

for any D ∈ D, π ∈ ΠD. Given a realization of the hash function #, one can hence compute an estimate of
χ#(D,π) by sampling a Monte Carlo estimate of the expectation in (257). One can easily see that without
the dependence on Dec-POMDPs, this formulation is equal to the one in Equation 251.

Now we show that χ# is invariant to isomorphism. Note that this statement holds for any sample ω ∈ Ω#

and thus for any sample χ#(·)(ω) of the tie-breaking function. Afterwards, we will show that χ# is almost
surely a tie-breaking function. We first need a small lemma.

Lemma 86. Let D, E isomorphic Dec-POMDPs with f ∈ Iso(D,E) and let τ ∈ HD. Then it is

{(f̃∗E, f̃(fτ)) | f̃ ∈ K(fτ)} = {(f̂∗D, f̂τ) | f̂ ∈ K(τ)}.

Proof. Note that for any labeling f̃ ∈ K(fτ), f̃fτ = (f̃ ◦ f)τ is in a normal form, and f̃ ◦ f ∈ Sym(D)
by Lemma 34. Hence, also f̃ ◦ f ∈ K(τ). An analogous argument from considering f−1 shows that for
any f̂ ∈ K(τ), it is (f̂ ◦ f−1)(fτ) = f̂ τ in a normal form an thus f̂ ◦ f−1 ∈ K(fτ). It follows that
K(fτ) ◦ f = K(τ) (i). Moreover, by Lemma 34, it is f̃∗E = (f̃ ◦ f)∗D (ii), and thus

{(f̃∗E, f̃(fτ)) | f̃ ∈ K(fτ)} (ii)
= {((f̃ ◦ f)∗D, (f̃ ◦ f)τ) | f̃ ∈ K(fτ)} (258)
(i)
= {(f̂∗D, f̂τ) | f̂ ∈ K(τ)}. (259)

Using this Lemma, we show the first result.

Proposition 87. χ# as defined in Equation 253 is invariant to isomorphism.

Proof. Let D,E ∈ D, f ∈ Iso(D,E) and let π ∈ ΠD, π′ ∈ ΠE such that f∗[π] = [π′]. We need to show
that χ#(D,π) = χ#(E, π′).

Note that f∗[π] = [f∗π] by definition, and thus it follows from the assumption that f∗π ≡ π′, which means
that ΨE(f∗π) = ΨE(π′) (i) by the definition of ≡.
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It follows that

χ#(E, π′) = EΨE(π′)

[
Ef̃∼U(K(HE))

[
#(f̃∗E, f̃HE)

]]
(260)

(i)
= EΨE(f∗π)

[
Ef̃∼U(K(HE))

[
#(f̃∗E, f̃HE)

]]
(261)

= Ef∗ΨD(π)

[
Ef̃∼U(K(HE))

[
#(f̃∗E, f̃HE)

]]
(262)

= EΨD(π)

[
Ef̃∼U(K(fHD))

[
#(f̃∗E, f̃(fHD))

]]
(263)

= EΨD(π)

[
Ef̂∼U(K(HD))

[
#(f̂∗D, f̂HD)

]]
(264)

where in (262), we use that isomorphisms and symmetrizer Ψ commute by Corollary 67, in (263), we use
Theorem 22, and in (264), we use Lemma 86.

This shows that χ# is invariant to isomorphism.

To show that χ# is almost surely a tie-breaking function, we need two technical assumptions. The first,
substantial one, is that the set of OP-optimal equivalence classes of policies is finite, to make sure that there
always exists a unique maximizer of χ#. If this was not the case, our method for finding a tie-breaking
function could fail. We leave it to future work to investigate whether and under what conditions this may be
the case.

The second, less substantial assumption is that, if two policies π, π′ are not equivalent, then Ψ(π) and Ψ(π′)
also do not lead to the same distribution over histories. Without this assumption, Ψ(π) and Ψ(π′) might differ
on action-observation histories that are never reached, such that the policies induce the same distribution
over histories but are not equivalent. Choosing policies which differ in that way should not matter for the
objective of the LFC problem, but we wanted to avoid dealing with this complication in our proof that OP
with tie-breaking is optimal. For this reason, we have stronger requirements for tie-breaking functions here,
thus necessitating this technical assumption.6

Proposition 88. Let χ# be defined as in Equation 253. Assume that

(i) for any D ∈ D, the set ΠD
OP�≡ is finite, where ΠD

OP := arg maxπ∈ΠD J
D
OP(π).

(ii) for any D ∈ D and policies π, π′ ∈ ΠD, if PΨD(π)(H = τ) = PΨD(π′)(H = τ) for all τ ∈ HD, it
follows that ΨD(π) = ΨD(π′).

Then χ# is P#-almost surely a tie-breaking function for D.

For the proof, we first need a standard lemma in probability theory.
Lemma 89. Assume J is a finite set and Xj , j ∈ J is a collection of independent real-valued random
variables such that for any j ∈ J , it is P(Xj = λ) = 0 for any λ ∈ R. Let 〈·, ·〉 be the euclidean scalar
product on RJ . Then it is

P(〈X, v〉 = λ) = 0

6Note that in Definition 58, each local policy is defined separately, so that Ψ(π)i(· | τi,t) can in principle be defined as
something other than the uniform distribution, even if the action-observation history τi,t is never reached under the joint
policy Ψ(π). Nevertheless, if all agents choose local policies from joint policies that lead to the same distribution over
histories, the resulting cross-play policy should also induce that distribution, even if there exist opponent distributions
where the local policies might differ.
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for any λ ∈ R, v ∈ RJ \ {0}.

Proof. Let λ ∈ R and v ∈ RJ \ {0}. Since v 6= 0, there exists an index j ∈ J such that vj 6= 0. It follows
that

P(〈X, v〉 = λ) = P#

Xj = λ− 1

vj

∑
j′ 6=j

vj′Xj′

 (265)

=

∫
RJ

1xj=λ− 1
vj

∑
j′ 6=j xj′vj′

dP ◦X−1(x) (266)

=

∫
RJ\{j}

∫
R
1xj=λ− 1

vj

∑
j′ 6=j xj′vj′ )

dP ◦X−1
j (xj)dP ◦X−1

−j (x−j) (267)

=

∫
RJ\{j}

P

Xj = λ− 1

vj

∑
j′ 6=j

xj′vj′

 dP ◦X−1
−j (x−j) (268)

=

∫
RJ\{j}

0 dP ◦X−1
−j (x−j) (269)

= 0, (270)

where we use the assumption P(Xj = λ) = 0 for any λ ∈ R in (269).

Proof of Proposition 88. To check that χ# always admits a maximum among the OP-optimal policies, which
is part (a), (i) of Definition 81, let D ∈ D arbitrary and let π ≡ π′ ∈ ΠD be equivalent policies. By the
definition of ≡, it is ΨD(π) = ΨD(π′) (*). Hence, it is

χ#(D,π) = EΨD(π)

[
Ef∼U(K(HD))

[
#(f∗D, fHD)

]]
(*)
= EΨD(π′)

[
Ef∼U(K(HD))

[
#(f∗D, fHD)

]]
= χ#(D,π′). (271)

This shows that χ#(D,π′) = χ#(D,π) for any π ∈ ΠD
OP and π′ ∈ [π]. Hence, we can define the function

χ̃#(D, ·) : ΠD
OP�≡ → [0, 1], [π] 7→ χ#(D,π).

Then, using assumption (i), χ̃#(D, ·) is maximized by some equivalence class [π] ∈ ΠD
OP�≡. By definition

of χ̃#(D, ·), it follows that for any π′ ∈ ΠD
OP, it is

χ#(D,π′) = χ̃#(D, [π′]) ≤ χ̃#(D, [π]) = χ#(D,π),

so π maximizes χ#(D, ·) on the set ΠD
OP.

To prove part (a), (ii) of the definition, consider two non-equivalent policies π, π′ ∈ ΠD, i.e., assume that
Ψ(π) 6= Ψ(π′). We now want to show that P#

(
χ#(D,π) = χ#(D,π′)

)
= 0. If this is true, then χ# is

P#-almost surely a tie-breaking function.

First, note that actions of automorphisms on histories are group actions (see Section C.4). Thus, we can
consider a partition of the set of histories into orbits, J := {Aut(D)τ | τ ∈ HD}. Moreover, note that since
ΨD(π),ΨD(π′) are both invariant to automorphism by Corollary 67, using Theorem 22, we can conclude
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that for any τ ∈ HD and τ̃ ∈ Aut(D)τ , it is PΨ(π)(H = τ) = PΨ(π)(H = τ̃). The same holds for Ψ(π′).
This step only works since we sample from Ψ(π), instead of from the original policy π. As a result, it follows
that we can define a vector v ∈ RJ such that vj := |Aut(D)τ |PΨ(π)(H = τ) for j ∈ J , where τ ∈ HD is
arbitrary such that Aut(D)τ = j. Define v′ analogously for π′. By assumption (ii), Ψ(π) and Ψ(π′) induce
different distributions over histories, so it must also be v 6= v′, since the map from orbit-invariant distributions
to vectors v is injective.

Second, note that by Lemma 86, it is

Ef∼U(K(τ)) [#(f∗D, fτ)] = Ef∼U(K(gτ)) [#(f∗D, fgτ)]

for any τ ∈ HD and g ∈ Aut(D), and thus for any j ∈ J we can define the random variable Xj :=
Ef∼U(K(τ)) [#(f∗D, fτ)], where τ is an arbitrary history such that j = Aut(D)τ .

We now want to show that P#(〈X, v− v′〉 = 0) = 0, where 〈·, ·〉 is the euclidean scalar product on RJ . This
will then allow us to conclude that P#

(
χ#(D,π) = χ#(D,π′)

)
= 0. We already know that v − v′ 6= 0. To

be able to apply Lemma 89 to show this, it remains to prove that for any two j 6= j′ ∈ J , we also have two
independent variables Xj , Xj′ , and that P#(Xj = λ) = 0 for any λ ∈ R.

To prove independence, let j = Aut(D)τ, j′ = Aut(D)τ ′, and assume towards a contradiction that there
exist f ∈ K(τ), f̃ ∈ K(τ ′) such that f∗D = f̃∗D and fτ = f̃ τ ′. Then it follows that τ = f−1f̃ τ ′ and
thus j = j′, which is a contradiction. It follows that the sets of variables {#(f∗D, fτ) | f ∈ K(τ)} and
{#(f̃∗D, f̃τ ′) | f̃ ∈ K(τ ′)} are disjoint. Since all the contained random variables are independent, also
Ef∼U(K(τ)) [#(f∗D, fτ)] and Ef∼U(K(τ ′)) [#(f∗D, fτ ′)] are independent random variables.

Next, let j ∈ J . To prove that P#(Xj = λ) = 0 for any λ ∈ R, let τ ∈ HD such that j = Aut(D)τ arbitrary

and let λ ∈ R. Let M :=
∣∣∣⋃f∈K(τ){#(f∗D, fτ)}

∣∣∣ and define Y1, . . . , YM as random variables such that

{Y1, . . . , YM} =
⋃
f∈K(τ){#(f∗D, fτ)}. Define w ∈ [0, 1]M via wm := Ef∼U(K(τ))[δYm,#(f∗D,fτ)] for

m = 1, . . . ,M . By assumption (252), we have P#(Ym = λ′) = 0 for any λ′ ∈ R and Ym, Ym′ are by
definition independent variables for m 6= m′ ∈ {1, . . . ,M}. We can hence apply Lemma 89 to conclude that

P#(Xj = λ) = P#

(
Ef∼U(K(τ))[#(f∗D, fτ)] = λ

)
(272)

= P#

(
M∑
m=1

YmEf∼U(K(τ))[δYm,#(f∗D,fτ)] = λ

)
(273)

= P#

(
M∑
m=1

Ymwm = λ

)
(274)

= P# (〈Y,w〉 = λ) (275)
= 0. (276)

Since we have shown above that v 6= v′, that Xj , Xj′ are independent for j 6= j′ ∈ J , and that
P#(Xj = λ) = 0 for any λ ∈ R and j ∈ J , we can apply Lemma 89 again to get

P#(〈X, v − v′〉 = 0) = 0. (277)
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Finally, for j ∈ J let τ (j) ∈ HD arbitrary such that j = Aut(D)τ (j). Then

〈X, v〉 =
∑
j∈J
|Aut(D)τ (j)|PΨD(π)(H

D = τ (j))Xj

=
∑
j∈J
|Aut(D)τ (j)|PΨD(π)(H

D = τ (j))Ef∼U(K(τ(j)))

[
#(f∗D, fτ (j))

]
=
∑
τ∈HD

PΨD(π)(H
D = τ)Ef∼U(K(τ)) [#(f∗D, fτ)] = χ#(D,π) (278)

and analogously
〈X, v′〉 = χ#(D,π′). (279)

Hence, it is
{χ#(D,π) = χ#(D,π′)} = {〈X, v〉 = 〈X, v′〉}. (280)

It follows that

P#(χ#(D,π) = χ#(D,π′))
(280)
= P#(〈X, v〉 = 〈X, v′〉) = P#(〈X, v − v′〉 = 0)

(277)
= 0.

This concludes the proof.


