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Abstract

In many coordination problems, independently
reasoning humans are able to discover mutually
compatible policies. In contrast, independently
trained self-play policies are often mutually in-
compatible. Zero-shot coordination (ZSC) has
recently been proposed as a new frontier in multi-
agent reinforcement learning to address this fun-
damental issue. Prior work approaches the ZSC
problem by assuming players can agree on a
shared learning algorithm but not on labels for
actions and observations, and proposes other-play
as an optimal solution. However, until now, this
“label-free” problem has only been informally de-
fined. We formalize this setting as the label-free
coordination (LFC) problem by defining the label-
free coordination game. We show that other-play
is not an optimal solution to the LFC problem as it
fails to consistently break ties between incompat-
ible maximizers of the other-play objective. We
introduce an extension of the algorithm, other-
play with tie-breaking, and prove that it is optimal
in the LFC problem and an equilibrium in the
LFC game. Since arbitrary tie-breaking is pre-
cisely what the ZSC setting aims to prevent, we
conclude that the LFC problem does not reflect
the aims of ZSC. To address this, we introduce an
alternative informal operationalization of ZSC as
a starting point for future work.

1. Introduction

In multi-agent reinforcement learning (MARL), variations
of the self-play (SP) regime (Tesauro, 1994) have been suc-
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Figure 1. Rewards in the lever coordination game. Levers with
equal rewards cannot be distinguished without labels.

cessful in producing superhuman policies for two-player
zero-sum games such as chess, go, and poker (Campbell
et al., 2002; Silver et al., 2017; Brown & Sandholm, 2018).
SP leads to policies that are highly adapted to each other
and thus often appear artifical. This is not a problem in
two-player zero-sum games as all optimal policies are inter-
changeable (Nash, 1951), at least when considering optimal
opponents.

In fully cooperative MARL, however, such arbitrary con-
ventions can be undesirable, as they fail when paired with
agents that were not present during SP training. For instance,
consider a situation in which robots must avoid collisions,
by either swerving right or left or slowing down to avoid
the other robot. Here, robots trained via SP would randomly
learn to swerve either left or right and thus crash half the
time at test time when paired in cross-play (XP) with agents
from independent training runs. Similarly, the arbitrary con-
ventions learned by agents, e.g., in the card-game Hanabi,
can prevent successful human-Al coordination (Foerster
et al., 2019; Carroll et al., 2019).

This shortcoming of SP in fully cooperative problems mo-
tivates the study of the zero-shot coordination (ZSC) prob-
lem, which Hu et al. (2020) operationalize as finding a
general-purpose learning algorithm that allows indepen-
dently trained agents to coordinate successfully at test time.
The independent training is a proxy for the independent de-
cision making that humans have to undertake when solving
coordination tasks, while the ability to agree on an algorithm
corresponds to having a common high-level approach for
solving these problems.
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More specifically, Hu et al. (2020) assume that players only
agree on a learning algorithm, but without sharing labels for
observations, actions, and states in the environment. As an
example, consider the lever coordination game in Figure 1.
There are two agents, each having the choice between 10
different levers. If both agents choose the same lever, they
receive rewards as specified in Figure 1. There is 1 lever
with a reward of 0.9 and 9 levers with reward 1. If agents
pull different levers, the reward is 0. Here, the SP algorithm
will learn a joint policy wherein one lever of the nine with
a reward of 1 is played by both agents, but such a policy
cannot be coordinated on without labels for levers.

Hu et al. (2020) suggest the other-play (OP) algorithm as
a solution and give an informal optimality proof. The idea
behind the algorithm is that it learns policies that are robust
to permutations by symmetries of a given problem. For
example, in the lever coordination game, the actions leading
to a reward of 1 are all symmetric, so a randomly permuted
policy will pick them with equal probability. In contrast,
the lever leading to a payoff of 0.9 does not have symmetric
counterparts, so it is possible to consistently choose that
lever. Hu et al. (2020) show that in Hanabi, OP improves
performance over SP when playing with real humans, show-
ing the benefits of ZSC to human-Al coordination. However,
Hu et al. (2020) do not formalize the “no labels” assumption,
but rely on an intuitive notion in their proof. Moreover, Hu
et al. (2020)’s proof relies implicitly on the assumption that
the OP algorithm’s objective has a unique maximizer.

The first goal of this paper is a formalization of Hu et al.
(2020)’s problem setting and a theoretical analysis of OP
(Section 4). To do so, we introduce label-free coordination
(LFC) games and define the label-free coordination problem
as finding an optimal algorithm to recommend to players
in a random LFC game (Section 4.2). The formalization
provides a rigorous optimality criterion that can be used to
compare OP to other algorithms theoretically and to discuss
whether Hu et al. (2020)’s formulation is aligned with the
goal of human-AlI coordination. After introducing a gener-
alized version of the OP algorithm (Section 4.3), we show
that OP can be suboptimal in the LFC problem, as Hu et al.
(2020)’s assumption of a unique maximizer is not always
fulfilled (Section 4.4). Our findings suggest that the 8 point
gap between the SP and XP scores for the vanilla version of
OP in Hanabi (Hu et al., 2020) may be due to fundamental
problem with the algorithm instead of an optimization issue.

Second, we fix this shortcoming by introducing an extension
of the algorithm, OP with tie-breaking, in which players use
a tie-breaking function to consistently break ties between
different OP-optimal policies (Section 5). We prove that this
extension is an optimal solution to the LFC problem and
that all players using the algorithm is a Nash equilibrium of
any LFC game.

Label-free coordination problem
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Figure 2. Illustration of the LFC problem. A learning algorithm
trains agents independently in a randomly chosen LFC game. The
use of different controllers by red and blue agents symbolizes that,
while the agents can separately coordinate on policies during train
time, they do not know the labels used by agents of the other color
and cannot coordinate with them before test time.

Third, we verify our results experimentally in two toy ex-
amples (Section 6). Our examples are stylized coordina-
tion problems that abstractly model real-world coordination
problems.

Fourth, we argue that the operationalization of the ZSC prob-
lem by Hu et al. (2020) does not reflect ZSC’s aims, and
we suggest a new operationalization as a starting point for
future work (Section 7). Despite the “no labels” assumption,
an optimal algorithm for the problem implements arbitrary
tie-breaks. While there may be some settings where it is fea-
sible to pre-coordinate on a tie-breaking function, in general,
arbitrary tie-breaking is precisely what the ZSC setting aims
to prevent. This shows that algorithmic advances towards
Hu et al. (2020) problem formulation are misaligned with
the overarching goals of ZSC. We propose an improved
informal operationalization in which players are allowed to
coordinate only on high-level ideas for a learning algorithm
but are prohibited from sharing implementation details such
as random seeds, parameters, or code. We leave it to future
work to refine and address this revised definition of ZSC.

To save space, we give informal statements and explanations
of our theoretical results in the main text. A rigorous treat-
ment of all results, including formal statements and proofs,
can be found in the appendix. Our two main results are
stated and proven in Appendices E and F.
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2. Related work

Game theory A closely related problem to ZSC is the
equilibrium selection problem in game theory (see Harsanyi
& Selten, 1988), which arises when there are different equi-
libria in a game. The ZSC problem arises when there is
an equilibrium selection problem between different optimal
policies in a fully cooperative game. Equilibrium selection
problems can introduce the additional difficulty that players
can have different preferences over the equilibria.

Harsanyi & Selten (1988; see Harsanyi, 1975) introduce a
general solution to the equilibrium selection problem in the
framework of standard-form games, and Herings & Peeters
(2003) have adapted it to stochastic games. One property of
this solution is invariance to isomorphisms between games,
which, like the LFC problem, is based on the idea that a
solution should not depend on arbitrary labels (Harsanyi &
Selten, 1988, ch. 3.4). A difference to our setting is that
we are interested in practical algorithms that can be run on
large-scale games, for which computing Harsanyi & Selten
(1988)’s solution would be infeasible (cf. Goldberg et al.,
2013; Herings & Van Den Elzen, 2002). Another difference
is that standard-form games have less structure than Dec-
POMDPs. We explicate this and compare our approaches in
more detail in Appendix A.

Another game-theoretic approach to coordination problems
is based on exogenous information about agents’ options.
For instance, consider the famous problem ‘“you lost your
friend in New York City, where are you going to meet?”
(Schelling, 1980; Mehta et al., 1994). Here, additional mean-
ing is attached to each option, independent of dynamics and
rewards of the problem, which allows for picking a unique
option. Agents might also be able to choose options based
on social conventions and norms, such as which side of the
street to drive on (Lewis, 2008). In this work, we instead re-
strict our attention to coordination-problem solutions based
only on endogenous information present in the abstract struc-
ture of the problem. In many settings, conventions need to
be introduced and adapted to within an episode at test time,
rather than coordinating them beforehand, e.g., via joint
training.

Coordination without joint training Some work looks
at coordination problems in settings that do not assume
agents are trained together. For instance, Boutilier (1999)
introduces a dynamic programming algorithm for fully ob-
servable, fully cooperative stochastic games, where no prior
coordination between agents is possible. Agents randomize
between different optimal actions in a given state until they
succeed on coordinating on an optimal joint action. Gold-
man et al. (2007) consider the Dec-POMDP setting with a
cheap-talk channel in which agents cannot pre-coordinate
on strategies. They introduce an algorithm in which agents

learn to interpret each others’ messages and use them to
communicate observations and to suggest actions to coor-
dinate on. The idea behind ZSC is to learn joint policies
that implement similarly robust strategies as the above ap-
proaches, without having to explicitly specify such behavior.

Another related approach is ad-hoc teamwork, wherein the
goal is to train an agent to perform well in expectation
when subbed into a randomly chosen team of agents (Stone
et al., 2010; Barrett et al., 2011; Barrett & Stone, 2015).
Ultimately, this amounts to learning a best response to a dis-
tribution over team members. However, the team members’
policies may themselves be ill-suited for coordination, e.g.,
if they are obtained via SP. ZSC instead assumes that all
agents are optimized for being able to coordinate well, in
the absence of pre-established conventions (even though, as
mentioned above, optimal ZSC policies in many settings
introduce conventions within an episode). It can thus find
entirely different equilibria, ones that achieve good perfor-
mance and can be consistently coordinated upon without
SP training. As an example, consider the lever coordination
game from the introduction. Optimal ad-hoc agents, trained
as a best response to a population of SP agents would learn
to uniformly randomize between the levers with a payoff
of 1.0, while an optimal policy for ZSC always plays the
unique lever with a payoff of 0.9.

Alternatively, an agent may be trained using data about other
agents’ behavior in order to learn a compatible strategy of-
fline (Lerer & Peysakhovich, 2019; Tucker et al., 2020).
This again differs from ZSC in that it is concerned with
learning a best response instead of optimizing all agents to
find non-arbitrary equilibria. Similarly, human-AlI coordina-
tion can be improved by training agents as a best response
to a human model (Carroll et al., 2019). Human-AlI coordi-
nation is also an aim of ZSC, but we try to uncover general
principles behind a human-like learning algorithm instead
of learning problem-specific policies from human models.

3. Background

Dec-POMDPs We consider decentralized partially ob-
servable Markov decision problems (Dec-POMDPs) (Nair
et al., 2003; Oliehoek et al., 2016). A (finite-horizon) Dec-
POMDP D is a tuple of a set of agents N' = {1,..., N}
where N € N, a finite set of states S, a set of joint actions
A= [];cn Ai, where A, is a finite set of actions for agent
i € N, a transition probability kernel P: S x A — A(S),
where A(S) denotes the set of probability distributions over
S, areward function R: § x A — R, a set of joint obser-
vations O := Hie v Oi, where O; is a finite set of obser-
vations for agent 7 € N\, an observation probability kernel
O: 8§ x A — A(0O), an initial state distribution by € A(S),
and a horizon T € Ny. We write A, AP etc. to indicate
which Dec-POMDP D, E, etc. a set or function belongs to.
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In a Dec-POMDP, at time step 1 < ¢ < T, the environment
is in a state .Sy, agent ¢ € N receives observations O; ; via
(Oj.t)jen ~ O(- | St, A¢—1) and chooses an action A; ; ~
mi(- | AD;+) according to a local policy m; € 11;, where
A0y = (Ai0,0i1,...,Ai1-1,0;,)is arandom variable
for agent ’s action-observation history at step ¢, with values
Tit € @Z—,t = (A; x Oi)t.l Agents receive a joint reward
R; := R(S, A;) and the environment transitions into a
state S¢11 ~ P(- | S¢, At). The initial state is Sy ~ by.
We define the set of entire histories, containing tuples of all
states, actions, rewards and observations until step 7" as H
and denote H as a random variable for the entire history.

Denote P, for a probability measure on a space with the ran-
dom variables defined above, where agents follow the (joint)
policy m € 11 := [],c - I;, and let E; be the expectation
with respect to that measure. Given a Dec-POMDP D, the
self-play (SP) objective JP : TI” — R of D is defined via

JP(7) = E, [E;";O Rt} for 7 € P, Here, JP(7) is
called the expected return of the joint policy .

Zero-shot coordination and other-play As explicated in
the lever coordination problem, there can be different, in-
compatible SP-optimal joint policies. A SP algorithm tries
to maximize the SP objective and will in general randomly
learn any one of these policies. When two such indepen-
dently trained joint policies (1), 7(2) are matched, this can

yield bad XP values J(ﬂ'il), 71';2)).

To address this shortcoming, Hu et al. (2020) introduce the
ZSC problem. In spirit, the problem is to find a general-
purpose learning algorithm for fully cooperative environ-
ments to train agents that are able to robustly coordinate
with their teammates. It is assumed that teammates have
also been optimized for ZSC, using a common high-level
approach. However, arbitrarily co-adapting agents’ policies,
e.g., through joint training, is disallowed. Hu et al. (2020)
operationalize this as the problem of recommending one
learning algorithm to players in a fully cooperative game.
Each player trains a joint policy using the algorithm and dis-
cards all but one agent. The resulting agents from all players
are then evaluated in XP over one episode. Hu et al. (2020)
assume players are able to coordinate on a common learning
algorithm, but that they are unable to coordinate the learned
policies based on common labels for the Dec-POMDP.

Hu et al. (2020) propose the OP algorithm as a method
for this setting. The algorithm’s main idea is to train a
joint policy to achieve high expected return when each lo-
cal policy is randomly permuted to break symmetries in
different ways. The hope is that this results in a unique
joint policy, at the cost of a potentially suboptimal expected

'In a slight abuse of notation, we use O for both observation
probabilities and observation random variable.

return. Informally, one can consider equivalence mappings
¢ € ®, which are maps that can be applied to actions, ob-
servations, and states, such that applying the map leaves
the problem dynamics unchanged. Equivalence mappings
can also be applied to a local policy 7; to get a new pol-
icy ¢(m;). The OP objective Jop can then be defined via
Jop(m) = Eguy@)[J(¢(m1), ¢(m2))] for a joint policy
7 € II, where U(®) is a uniform distribution over ®.> Hu
et al. (2020)’s definitions do not apply to Dec-POMDPs in
which agents have different action or observation sets, and
they do not account for symmetries between agents. We will
formally define a more general version of OP in Section 4.3.

Hu et al. (2020) provide an informal proof that both players
using OP is an optimal equilibrium in the fully cooperative
game described above. Using an appropriate formalization,
we show in the next section that this is in general not correct.
Contrary to Hu et al. (2020)’s implicit assumption, there can
be multiple, incompatible maximizers of the OP objective.

4. Formalism and analysis of OP
4.1. Dec-POMDP isomorphisms

To formalize the no-labels assumption, we introduce iso-
morphisms between Dec-POMDPs, which formalize the
intuition that two Dec-POMDPs may represent the same
problem using different labels. Our definition is a trivial
generalization of Kang & Kim (2012)’s automorphisms over
partially observable stochastic games (POSGs) to the con-
cept of an isomorphism, but restricted to fully cooperative
problems. Analogous definitions of isomorphisms between
games have been introduced before in different frameworks
(e.g., Harsanyi & Selten, 1988, ch. 3.4; Peleg et al., 1999).

Let D, E be two Dec-POMDPs. Consider a tuple of bijec-
tive maps f = (fN7 fS7 (fAi)iEN7 (foi)iGN)a where

fv: NP 5 NE (1)
fs: 8P — 8% 2)
VieN: fa: AP — A7 3)
VieN: fo,: O = OF . 4)

Define amap f4: AP — AF via

fala) = (fAfN1<¢>afN1(i)) ? ®)

1ENE

for a € AP, and fo analogously for observations o € OP.
That is, in the joint action f4(a) € A¥, agent j = fn (i) €
N (where i € N'P) plays action fa,(a;) € A¥.

This is not Hu et al. (2020)’s original definition, but it is equiv-

alent, by Hu et al. (2020)’s Proposition 2. The version presented
here is the one we will generalize later.
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Definition 1 (Dec-POMDP isomorphism). Let D, E be
Dec-POMDPs such that both have the same horizon
TP =TF, and let f be a tuple of bijective maps as de-
fined in Equations (1)—(4). Then f is an isomorphism from
Dto Eifforanya € AP,s,s' € SP,and o € OP,

PE(fs(s') | fs(5), fa(a))  (6)

PP(s' | s,a

)
OD(ol s,a) = 0% (fo(0) | fs(s), fa(a)) (D)
(,a)=7€ (fs(s), fa(a)) 8)
by (s) = by (fs(s))- )

We denote Iso(D, E) for the set of isomorphisms from D to
E. If that set is non-empty, D and E are called isomorphic.

In the following, we adopt the convention to write fa instead
of fa(a) and fa; instead of f4,a;, and we do the same for
observations and states. We can also write fr; ; for 7, €
AD; ;, which is defined as the element-wise application of
f. Letting fr := r for rewards, we can also define f7 for
entire histories 7 € H. One can show that this action of
isomorphisms can be inverted by f ! (see Appendix C.2).

A policy m € TIP can be transformed by an isomorphism
f € Iso(D, E) into a policy for E. We call this operation
the pushforward, analogously, for instance, to the construc-
tion of pushforward measures, as precomposition of 7 with
=1 “pushes” the policy from one Dec-POMDP to another.
The definition is analogous to that of applications of sym-
metries to policies in Hu et al. (2020).

Definition 2. Let D, F be isomorphic Dec-POMDPs, let
f € Iso(D,E), and let 7 € IIP”. Then we define the
pushforward f*m € T1¥ of 7 by f via

(frm)iag | 7j0) = mpr;(frag | f7 750

for all j € N, t € {o,...
@ft That is, in the joint policy f*7, agent j € N'F gets
assigned the local policy 7; of agent i := f~'j € NP,
precomposed with f~1.

a; € .AJE, ,T}, and Tit €

We show in Appendix C.3 that 7w and f* lead to the same
expected return in their respective Dec-POMDPs.

For an example of an isomorphism and a pushforward policy,
consider the two-stage lever game, a stylized coordination
problem like the lever coordination game, but with two
rounds instead of one. We will use the example in Sec-
tion 4.4 to show that OP is not optimal in the LFC problem.

Example 3 (Two-stage lever game). Consider the following
variant of the lever coordination game, denoted by D. The
problem has two agents, N” = {1, 2}, and rounds (T’ = 1).
Each round, each agent pulls a lever, A; = Ay = {1,2}. If
both agents choose the same lever, the reward is 1, otherwise
—1. There are two observations, O1 = Oy = {1,2}, and

a RP(s,a) a
a0 I U @D n
(1,2) -1 (1,2) 1
1) 1 1) 1
2,2) 1 2,2) -1

R

Figure 3. Reward function R” in the two-stage lever game and
reward function RZ = RP o f~! in an isomorphic problem.

one state. In the second round (¢ = 1), agents observe each
other’s previous action, so O; 1 = A_; ¢ fori =1,2.

Now consider an isomorphic problem £ in which the labels
for the actions of the second agent have been switched.
A possible isomorphism f € Iso(D, E) is one consisting
of identity maps, except for f4,, which switches the two
actions of player 2. We give tables of rewards for both the
original and the isomorphic problem in Figure 3. Applying
f* to any policy 7 € TP creates an equivalent policy f*7
for the Dec-POMDP F, in which the actions of agent 2 in
D are replaced by the corresponding actions in F.

4.2. The LFC game and problem

We begin by defining LFC games, which we then use to
define the LFC problem. We formalize an LFC game as a
fully cooperative game between principals whose strategies
are learning algorithms, as defined below. The LFC game
is defined for a specific “ground truth” problem D. The
game’s players, called principals, are the same as the agents
in D. Each principal observes a randomly relabeled but
isomorphic Dec-POMDP and trains a joint policy on that
problem using a learning algorithm. The policies are then
pushed back to D and evaluated in XP.

For a set of Dec-POMDPs C, let A(I1?) be a set of proba-
bility measures over IT1” for D € C. A learning algorithm
for C is then defined as a map o that takes in Dec-POMDPs
E € C and outputs distributions o(D) € A(IIP), and
C is defined as the set of learning algorithms for C. For
v € A(TIP) and an isomorphism f € Iso(D, E), define the
pushforward distribution f*v := v o (f*)~1 € A(ITF).

Now fix a Dec-POMDP D. For a given Dec-POMDP, we
can create infinitely many different isomorphic problems, as
we can use any set of labels, such as natural or real numbers,
to define the problem. To describe the process of randomly
sampling an isomorphic version of D, then, we restrict our-
selves to a specific subset D of isomorphic Dec-POMDPs
in which the sets of states, actions, etc. are of the form
{1,2,...,k —1,k} C N. Dis defined as the set of all rela-
beled Dec-POMDPs, i.e., all problems that are isomorphic
to D and have this canonical form (for a rigorous definition,
see Appendix C.5). One can interpret sampling from this
set as principals coordinating on a canonical way to rep-
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resent Dec-POMDPs, but each implementing the problem
independently.

Definition 4 (Label-free coordination game). The Label-
free coordination (LFC) game for D is defined as a game
I'P where the set of players (here called principals) is N7,
the set of strategies is ¥, and the common payoff for the
strategy profile oy, ...,on € 2P is

UP(o) :=Ep,~u(p), fiwl/{(lso(Di,D)),ieN[
k
Ertgia, (0, 5en |/ ken)] | (10)
where U (D) is a uniform distribution over D.

We show in Appendix C.6 that the LFC games for two
isomorphic Dec-POMDPs are equivalent, up to a potential
permutation of the principals.

Turning to the LFC problem, the goal is to find a general
learning algorithm to recommend to principals in any LFC
game (see Figure 2). We hence formalize the problem here
for a distribution over LFC games; however, since this does
not change our theoretical analysis, we will only consider
LFC problems for single LFC games afterwards. Let a set
C of Dec-POMDPs be given, and denote C := |J oo D
where DF is the set of all relabeled problems of £. The
LFC problem for C is then defined as the problem of finding
one learning algorithm o € Y¢ to be used by principals in a
randomly drawn game T'F for E ~ U(C).

Definition 5 (Label-free coordination problem). We define
the Label-free coordination (LFC) problem for C as the
optimization problem

max US (o) (11)

oext

where UC(0) := Epyc) [U¥(o,...,0)] foro € O If
C = {E}, we refer to this as the LFC problem for E and
write U (o) := U} (o) = UF(o,...,0).

4.3. Generalization of OP

Here, we introduce a generalized version of the OP algo-
rithm by Hu et al. (2020). It is based on Dec-POMDP
automorphisms, which are isomorphisms g € Aut(D) :=
Iso(D, D) and can be thought of as representing symme-
tries of the problem. Our definition of an automorphism
is equivalent to that of Kang & Kim (2012) in the POSG
framework® and is a generalization of Hu et al. (2020)’s
equivalence mappings. Unlike the latter, automorphisms
are defined for agents with potentially different action and
observation sets, they can consist of different permutations

31t is a straightforward consequence of Kang & Kim (2012)’s
results that the problem of finding Dec-POMDP automorphisms is
graph isomorphism—complete.

for different agents, and they can incorporate permutations
of the agents themselves.

As an example, consider an automorphism g € Aut(D)
in the two-stage lever game. ¢ is an automorphism if pre-
composition with g~! does not change the reward function,
observation probability kernel, etc. For instance, note that
players are symmetric, so g can be either the identity or it
can switch both agents. In the latter case, applying g~* to
joint actions switches the two players’ actions, which does
not have an effect on the relevant functions.

To define the OP objective, we use the pushforward by au-
tomorphisms, which is by definition a self-map on the set
of joint policies IT”. Similarly to equivalence mappings,
we can randomly permute agents’ local policies by different
automorphisms, but we have to take into account poten-
tial permutations of agents. To that end, for a profile of
automorphisms g € Aut(D)", we define the joint policy
g*m := 7, where the local policy 7; of agent i € A is given
by 7y 1= (gfm)i = mg1, (g7 ' | &7 ).

Definition 6 (Other-play). For a Dec-POMDP D and joint
policy 7 € II7, define

Jgpl = EgNZ/{(Aut(D)N) [JD(g*ﬂ')] . (12)

We say that Jgp is the other-play (OP) objective of D,
and J5o () is the OP value of 1 € TIP. Given a
set of Dec-POMDPs C, we define an OP learning algo-
rithm as any learning algorithm o¢©F € ¢ such that
Ermoor(p)[JEp(m)] = max,erp JSp(m) forall D € C.

Hu et al. (2020) show that their objective can be maximized
in practice by considering a modified Dec-POMDP and
applying any learning algorithm for Dec-POMDPs (e.g.,
Sunehag et al., 2018) to that problem. We show in Ap-
pendix D.5 that this does not work for our objective, as
optimal policies may need to be stochastic, while in Dec-
POMDPs there always exist optimal deterministic policies
(Oliehoek et al., 2008, sec. 2.4.4). However, we can still
apply a vanilla policy gradient method (see Appendix B.1).

4.4. OP is not optimal in the LFC problem

An OP learning algorithm may learn different, potentially
incompatible OP-optimal policies in independent training
runs. Hence, if the algorithm does not only learn compatible
policies, it can be suboptimal in the LFC problem.

To see this, consider the two-stage lever game. In a sim-
ple game with one round, such as the lever coordination
game, applying symmetries helps avoid arbitrary coordina-
tion on one lever. However, this changes in a game with two
rounds. Since symmetries are not applied independently
to the rounds, but they always apply to the whole episode,
agents are able to coordinate in the second round if they co-
ordinated by chance in the first round. This is advantageous
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Figure 4. Heatmaps indicating XP values between policies from independent training runs. OP is on the left and OP with tie-breaking on
the right, in which ties were broken between 32 different seeds. Each value has been averaged over 2048 episodes.

for getting a higher return, but unfortunately, there are two
different ways to coordinate in the second round.

Consider the two policies 77 and 7°. In both policies,
agents randomize uniformly between both levers in the first
round. They also both randomize in the second round if
coordination was unsuccessful in the first one. If coordina-
tion in the first round was successful, there are two different
strategies: in 7%, both agents repeat their respective actions
from round one. In 7%, both agents switch to the action
they did not play in round one, which is unique, given there
are only two levers. We show in Appendix E.1 that these
policies are both optimal under OP.

Now suppose one agent chooses a local policy from 7% and
the other chooses a local policy from 7. It is clear that this
will yield a suboptimal expected return compared with 7%
or 7 as agents will always fail to coordinate in the second
round if they coordinated in the first round. Thus, in the LFC
problem for the two-stage lever game, if a learning algorithm
is not concentrated on only one of 75 or 7, but instead
learns both policies (or potentially equivalent policies in
relabeled problems), then that algorithm is suboptimal. We
hence have the following result:

Theorem 7 (Informal). Any learning algorithm that learns
both % and 7° in the two-stage lever game is an OP learn-
ing algorithm, but it is not optimal in the LFC problem for
that game.

5. OP with tie-breaking

To fix OP’s shortcoming outlined above, we introduce OP
with tie-breaking, which is based on the notion of a tie-
breaking function that uniquely ranks the different OP-
optimal policies in a given problem and thus allows for
consistently choosing among them. A tie-breaking function
could, for instance, compare the two incompatible policies,
7% and 79, in the two-stage lever game and choose the one
under which actions are more highly correlated, which is
7k, A tie-breaking function has to satisfy certain conditions,

e.g., it always must have a unique maximizer, and it must
choose equivalent policies in isomorphic Dec-POMDPs. We
define OP with tie-breaking as an algorithm that chooses an
OP-optimal policy that maximizes a tie-breaking function
(see Appendix F.1). We then have the following result:

Theorem 8 (Informal). OP with tie-breaking is optimal in
the LFC problem, and all principals using the algorithm
is a Nash equilibrium of any LFC game. In particular, the
optimal value in the LFC problem for any Dec-POMDP
D is equal to the OP value of any OP-optimal policy, i.e.,
maxgexo UP (o) = max, JGp (7).

In practice, we can implement OP with tie-breaking by sam-
pling, for a given Dec-POMDP D, K € N policies using an
OP algorithm ¢©F and choosing the policy with the highest
tie-breaking value. To compute tie-breaking values, we use
a neural network, randomly initialized using a fixed random
seed, to map histories deterministically to real numbers. We
call these numbers “hash values” in analogy to the hash
functions used in many areas of computer science to assign
unique keys. The joint policy’s tie-breaking value is then
calculated as the expected hash value of histories under that
policy. A few additional operations (randomly permuting
policies, computing normal forms of histories, and summing
over agent permutations) are required to ensure this works
independently of labels.

Concretely, the tie-breaking function is computed as a
Monte Carlo estimate of

1
il Z Eg~vi(aut(p)N)y [Eger [#(fn(e(H)))]],
FnEBIj(N)

13)
where # is the neural network, Bij(/V) is the set of permu-
tations of ', ¢+(7) is a normal form of the history 7, and
for o(7) == (50, (@i,0)ien s T0, - - - ), we define fy(u(7)) ==
(80, (af§1i70)iej\/, 70,...). The normal form ¢(7) is com-
puted by replacing the first occurrence of each state, action,
or observation in 7 by a 0, the second occurrence by a 1,
and so on, and repeating the number if an element repeats
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Figure 5. Plot of average off-diagonal XP value of the tie-breaking
method, using different numbers of seeds for tie-breaking (using
one seed is equivalent to OP and represents the baseline). The
dashed orange line indicates the theoretical optimum. The shaded
area indicates standard deviations across 20 different seeds used
for the hash function.

itself in the history. Together with the summation over per-
mutations of agents, this achieves that +(7) does not depend
on particular labels for agents, states, etc. Moreover, con-
sistent tie-breaking is only possible between policies that
are randomly permuted by applications of g. We prove
in Appendix F.3 that, using a suitable random function #,
a modification of the tie-breaking function described here
satisfies our formal requirements almost surely.

6. Experiments

MARL training and XP evaluation We use a vanilla
policy gradient algorithm (Nguyen et al., 2017; Williams,
1992) to train recurrent neural network policies on the OP
objective. We use a randomly initialized feedforward neural
network as a hash function and implement a tie-breaking
function as described in Section 5. To implement OP with
tie-breaking and study the dependency of its performance
on the number of policies used for tie-breaking, we apply
the tie-breaking function to K learned policies and choose
the one with maximal value, for K € {2,4, 8,16, 32}.

To evaluate a given learning algorithm o, we simplify the
objective of the LFC problem. Instead of using relabeled
Dec-POMDPs, we evaluate policies from independent train-
ing runs on the same Dec-POMDP, permuted by random
automorphisms. That is, we estimate

Eri)no(D),i=1,2 EgiNU(Aut(D)),i:IQ[
IP((gim D (g5 @a)| | 19

by computing average off-diagonal XP values between in-
dependently trained, permuted policies. We believe that this
is a realistic estimate of the objective, as the distributions
over policies produced by our learning algorithms should
not depend on the used labels (see Appendix C.8).

Table 1. Rewards in the asymmetric lever game, for t = 0,1 on
the left, and for ¢ = 2 on the right.

az,1 az,2 az,3 az,1 az,2 az,3
ai,l 1 -1 —1 ai,1 0 0 0
arz | —1 1 —1 a2 | O 0 0
ai,3 —1 -1 —1 ai,3 1 1 1

In both examples, we train 320 policies using differ-
ent random seeds, and partition them into 10 sets of
32 policies, where the 32 policies can be used for tie-
breaking and each set corresponds to one run to be
used for computing XP values. We apply OP with tie-
breaking using 20 different random seeds for the hash
function to explore to what degree the quality of the tie-
breaking function depends on the random initialization
of the hash network. Additional experimental details
and results are described in Appendix B. Code for our
experiments can be found at https://github.com/
johannestreutlein/op-tie-breaking.

Environments As environments, we implement the two-
stage lever game introduced in Example 3, as well as the
asymmetric lever game. In the asymmetric lever game, there
are two agents ¢ = 1, 2, which can pull one of three levers
{ai,1,a;2,a;3}. There are three states {0, 1, 2} represent-
ing three rounds of this game (i.e., P(s+ 1| s,a) = 1 for
s €{0,1} and T' = 2). As before, both agents observe the
previous action of the other agent, so O_; ; = A;;_; for
i =1,2,t=1,2. The reward function is given in Table 1.
The first agent has an extra task in the third round, which
makes the agents asymmetric. We choose this example
since, unlike the two-stage lever game, it is one where no
OP-optimal policy is an intuitively sensible solution to ZSC.

Results All learned policies are close to optimal under
the OP objective. In the two-stage lever game, both OP-
optimal policies are learned equally well, while there is
one dominant policy in the asymmetric lever game. In XP
evaluation, OP with tie-breaking outperforms OP, achieving
close to optimal XP values in both games.

We display XP matrices, which indicate XP values for any
matching of two agents from 10 independent runs, in Fig-
ure 4. OP learns incompatible policies in different training
runs, whereas policies chosen by OP with tie-breaking ap-
pear to be compatible. Average off-diagonal XP values
for different numbers of policies used for tie-breaking are
plotted in Figure 5. Here, using only one policy for tie-
breaking is equivalent to OP, as there is only one policy to
choose from. We divide the policies into classes of policies
with a high mutual XP score and show a histogram of the
tie-breaking values for each class in Figure 6.
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Figure 6. Histogram of the tie-breaking values of the learned poli-
cies, categorized into classes with mutually high XP values.

7. Open issues

Tie-breaking may be a feasible solution in some coordi-
nation problems. For instance, if a central authority can
recommend an arbitrary tie-breaking function to all princi-
pals, using OP with tie-breaking may provide an easy way
to coordinate over a range of different problems, even if
joint training is impossible and common labels for problems
are unavailable. Moreover, there could be tie-breaking func-
tions based on natural biases that are shared between all
principals, such as a simplicity bias. In the two-stage lever
game, such a bias could be used to justify the strategy in
which agents both repeat their action if they succeeded in
coordinating in the first round.

However, our work shows that the current operationaliza-
tion of ZSC needs to be revised. This is because OP with
tie-breaking, an optimal solution to the LFC problem, is
ultimately unsatisfactory as a solution to ZSC. First, OP
with tie-breaking allows for arbitrary tie-breaking functions.
This goes against the spirit of the ZSC problem, which pro-
hibits arbitrary co-adaptation of policies and allows only tie-
breaking functions based on plausible, non-arbitrary meta
conventions, such as repeating actions that have previously
been coordinated on.

Second, sometimes there may be no plausible tie-breaking
function; instead, an entirely different policy should be
learned. For instance, in the asymmetric lever game, OP-
optimal policies choose one agent to switch to a different
lever if coordination failed in the first round. But this choice
of agent appears arbitrary. Hence, it would be preferable
to learn a policy that randomizes if the players could not
coordinate in the first round, similar to the policies in the
two-stage lever game. Since such a policy is not learned
by OP, no appropriate policy can be chosen by OP with tie-
breaking. In fact, no optimal solution to the LFC problem
would be to able learn this policy, as doing so would lead to
lower performance under the LFC problem’s objective.

Our results imply that an operationalization of ZSC should
preclude principals from sharing not only labels but also

any other implementation details. This suggests the follow-
ing improved setting: principals coordinate on high-level
ideas for learning algorithms, but they cannot coordinate
on specific implementation details, such as random seeds,
parameters, or code. Each principal then implements their
algorithm independently and trains an agent on a given ran-
domly sampled environment. As prior coordination between
principals is restricted and the algorithm must work in a
range of environments, it can only rely on general high-level
principles for coordination, not on arbitrary tie-breaking.

Unfortunately, the question of what counts as an imple-
mentation detail versus a high-level idea for an algorithm
is vague, and thus, unlike the LFC problem, this opera-
tionalization does not have a straightforward formalization.
Nevertheless, it better suits ZSC’s spirit and thus serves as
an improved problem setting. We leave it to future work to
address and refine this new operationalization.

8. Conclusion and future work

We formalized Hu et al. (2020)’s operationalization of ZSC
as the LFC problem, showed that OP is not optimal in the
problem, and introduced an extension, OP with tie-breaking,
that is optimal. We supported our theoretical results ex-
perimentally in two toy examples. Lastly, based on our
findings, we concluded that the LFC problem is misaligned
with ZSC’s aims and suggested a revised intuitive opera-
tionalization of ZSC.

More work is required to devise formalisms and algorithms
that suit this revised operationalization. One avenue may
be different symmetry concepts (e.g., Harsanyi & Selten,
1988; von Neumann & Morgenstern, 1947; Nash, 1951; Pe-
leg et al., 1999; Casajus, 2001) using weaker notions of
equivalence. Unfortunately, as we show in Appendix A,
considering Dec-POMDPs as standard-form games and ap-
plying symmetries in that formalism leads to too little possi-
ble coordination between agents. This raises the question
whether there is a “Goldilocks” concept obviating the need
for tie-breaks while allowing for maximal coordination.
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