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Abstract
Meta-learning, or learning-to-learn, seeks to de-
sign algorithms that can utilize previous experi-
ence to rapidly learn new skills or adapt to new
environments. Representation learning—a key
tool for performing meta-learning—learns a data
representation that can transfer knowledge across
multiple tasks, which is essential in regimes where
data is scarce. Despite a recent surge of interest
in the practice of meta-learning, the theoretical
underpinnings of meta-learning algorithms are
lacking, especially in the context of learning trans-
ferable representations. In this paper, we focus on
the problem of multi-task linear regression—in
which multiple linear regression models share a
common, low-dimensional linear representation.
Here, we provide provably fast, sample-efficient
algorithms to address the dual challenges of (1)
learning a common set of features from multiple,
related tasks, and (2) transferring this knowledge
to new, unseen tasks. Both are central to the gen-
eral problem of meta-learning. Finally, we com-
plement these results by providing information-
theoretic lower bounds on the sample complexity
of learning these linear features.

1. Introduction
The ability of a learner to transfer knowledge between tasks
is crucial for robust, sample-efficient inference and predic-
tion. One of the most well-known examples of such transfer
learning has been in few-shot image classification where
the idea is to initialize neural network weights in early lay-
ers using ImageNet pre-training/features, and subsequently
re-train the final layers on a new task (Donahue et al., 2014;
Vinyals et al., 2016). However, the need for methods that
can learn data representations that generalize to multiple,
unseen tasks has also become vital in other applications,
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ranging from deep reinforcement learning (Baevski et al.,
2019) to natural language processing (Ando & Zhang, 2005;
Liu et al., 2019). Accordingly, researchers have begun to
highlight the need to develop (and understand) generic algo-
rithms for transfer (or meta) learning applicable in diverse
domains (Finn et al., 2017). Surprisingly, however, despite
a long line of work on transfer learning, there is limited the-
oretical characterization of the underlying problem. Indeed,
there are few efficient algorithms for feature learning that
provably generalize to new, unseen tasks. Sharp guarantees
are even lacking in the linear setting.

In this paper, we study the problem of meta-learning of
features in a linear model in which multiple tasks share
a common set of low-dimensional features. Our aim is
twofold. First, we ask: given a set of diverse samples from
t different tasks how we can efficiently (and optimally)
learn a common feature representation? Second, having
learned a common feature representation, how can we use
this representation to improve sample efficiency in a new
(t+ 1)st task where data may be scarce?1

Formally, given an (unobserved) linear feature matrix B =
(b1, . . . ,br) ∈ Rd×r with orthonormal columns, our statis-
tical model for data pairs (xi, yi) is:

yi = x>i Bαt(i) + εi ; βt(i) = Bαt(i), (1)

where there are t (unobserved) underlying task parameters
αj for j ∈ {1, . . . , t}. Here t(i) ∈ {1, . . . , t} is the index
of the task associated with the ith datapoint, xi ∈ Rd is a
random covariate, and εi is additive noise. We assume the
sequence {αt(i)}∞i=1 is independent of all other randomness
in the problem. In this framework, the aforementioned
questions reduce to recovering B from data from the first
{1, . . . , t} tasks, and using this feature representation to
recover a better estimate of a new task parameter, βt+1 =
Bαt+1, where αt+1 is also unobserved.

Our main result targets the problem of learning-to-learn
(LTL), and shows how a feature representation B̂ learned
from t diverse tasks can improve learning on an unseen
(t+ 1)st task which shares the same underlying linear repre-
sentation. We informally state this result below.2

1This is sometimes referred to as learning-to-learn (LTL).
2Theorem 1 follows immediately from combining Theorems 3

and 4; see Theorem 6 for a formal statement.
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Theorem 1 (Informal). Suppose we are given n1 total sam-
ples from t diverse and normalized tasks which are used
in Algorithm 1 to learn a feature representation B̂, and n2

samples from a new (t+ 1)st task which are used along with
B̂ and Algorithm 2 to learn the parameters α̂ of this new
(t + 1)st task. Then, the parameter B̂α̂ has the following
excess prediction error on a new test point x? drawn from
the training data covariate distribution:

Ex?
[〈x?, B̂α̂−Bαt+1〉2] ≤ Õ

(
dr2

n1
+

r

n2

)
, (2)

with high probability over the training data.

The naive complexity of linear regression which ignores
the information from the previous t tasks has complexity
O( d

n2
). Theorem 1 suggests that “positive” transfer from

the first {1, . . . , t} tasks to the final (t + 1)st task can dra-
matically reduce the sample complexity of learning when
r � d and n1

n2
� r2; that is, when (1) the complexity of the

shared representation is much smaller than the dimension
of the underlying space and (2) when the ratio of the num-
ber of samples used for feature learning to the number of
samples present for a new unseen task exceeds the complex-
ity of the shared representation. We believe that the LTL
bound in Theorem 1 is the first bound, even in the linear
setting, to sharply exhibit this phenomenon (see Section 1.1
for a detailed comparison to existing results). Prior work
provides rates for which the leading term in (2) decays as
∼ 1√

t
, not as ∼ 1

n1
. We identify structural conditions on

the design of the covariates and diversity of the tasks that
allow our algorithms to take full advantage of all samples
available when learning the shared features. Our primary
contributions in this paper are to:

• Establish that all local minimizers of the (regularized)
empirical risk induced by (1) are close to the true linear
representation up to a small, statistical error. This pro-
vides strong evidence that first-order algorithms, such as
gradient descent (Jin et al., 2017), can efficiently recover
good feature representations (see Section 3.1).

• Provide a method-of-moments estimator which can effi-
ciently aggregate information across multiple differing
tasks to estimate B—even when it may be information-
theoretically impossible to learn the parameters of any
given task (see Section 3.2).

• Demonstrate the benefits and pitfalls of transferring
learned representations to new, unseen tasks by analyzing
the bias-variance trade-offs of the linear regression esti-
mator based on a biased, feature estimate (see Section 4).

• Develop an information-theoretic lower bound for the
problem of feature learning, demonstrating that the afore-
mentioned estimator is a close-to-optimal estimator of B,

up to logarithmic and conditioning/eigenvalue factors in
the matrix of task parameters (see Assumption 2). To our
knowledge, this is the first information-theoretic lower
bound for representation learning in the multi-task setting
(see Section 5).

1.1. Related Work

While there is a vast literature on papers proposing multi-
task and transfer learning methods, the number of theoretical
investigations is much smaller. An important early contri-
bution is due to Baxter (2000), who studied a model where
tasks with shared representations are sampled from the same
underlying environment. Pontil & Maurer (2013) and Mau-
rer et al. (2016), using tools from empirical process theory,
developed a generic and powerful framework to prove gener-
alization bounds in multi-task and learning-to-learn settings
that are related to ours. Indeed, the closest guarantee to that
in our Theorem 1 that we are aware of is Maurer et al. (2016,
Theorem 5). Instantiated in our setting, Maurer et al. (2016,
Theorem 5) provides an LTL guarantee showing that the ex-
cess risk of the loss function with learned representation on
a new datapoint is bounded by Õ( r

√
d√
t

+
√

r
n2

), with high

probability. There are several principal differences between
our work and results of this kind. First, we address the
algorithmic component (or computational aspect) of meta-
learning while the previous theoretical literature generally
assumes access to a global empirical risk minimizer (ERM).
Computing the ERM in these settings requires solving a
nonconvex optimization problem that is in general NP hard.
Second, in contrast to Maurer et al. (2016), we also provide
guarantees for feature recovery in terms of the parameter
estimation error—measured directly in the distance in the
feature space.

Third, and most importantly, in Maurer et al. (2016), the
leading term capturing the complexity of learning the fea-
ture representation decays only in t but not in n1 (which
is typically much larger than t). Although, as they remark,
the 1/

√
t scaling they obtain is in general unimprovable in

their setting, our results leverage assumptions on the dis-
tributional similarity between the underlying covariates x
and the potential diversity of tasks to improve this scaling
to 1/n1. That is, our algorithms make benefit of all the
samples in the feature learning phase. We believe that for
many settings (including the linear model that is our fo-
cus) such assumptions are natural and that our rates reflect
the practical efficacy of meta-learning techniques. Indeed,
transfer learning is often successful even when we are pre-
sented with only a few training tasks but with each having a
significant number of samples per task (e.g., n1 � t).3

There has also been a line of recent work providing guaran-

3See Fig. 3 for a numerical simulation relevant to this setting.
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tees for gradient-based meta-learning (MAML) (Finn et al.,
2017). Finn et al. (2019); Khodak et al. (2019a;b), and
Denevi et al. (2019) work in the framework of online con-
vex optimization (OCO) and use a notion of (a potentially
data-dependent) task similarity that assumes closeness of
all tasks to a single fixed point in parameter space to pro-
vide guarantees. In contrast to this work, we focus on the
setting of learning a representation common to all tasks in a
generative model. The task model parameters need not be
close together in our setting.

In concurrent work, Du et al. (2020) obtain results similar to
ours for multi-task linear regression and provide comparable
guarantees for a two-layer ReLU network using a notion
of training task diversity akin to ours. Their generalization
bounds use a distributional assumption over meta-test tasks,
while our bounds for linear regression are sharp for fixed
meta-test tasks. Moreover, their focus is on purely statistical
guarantees—they assume access to an ERM oracle for non-
convex optimization problems. Our focus is on providing
statistical rates for efficient algorithmic procedures (i.e., the
method-of-moments and local minima reachable by gradient
descent). Finally, we also show a (minimax)-lower bound
for the problem of feature recovery (i.e., recovering B).

2. Preliminaries
Throughout, we will use bold lower-case letters (e.g., x)
to refer to vectors and bold upper-case letters to refer to
matrices (e.g., X). We exclusively use B ∈ Rd×r to re-
fer to a matrix with orthonormal columns spanning an r-
dimensional feature space, and B⊥ to refer a matrix with
orthonormal columns spanning the orthogonal subspace of
this feature space. The norm ‖ · ‖ appearing on a vector or
matrix refers to its `2 norm or spectral norm respectively.
The notation ‖·‖F refers to a Frobenius norm. 〈x,y〉 is the
Euclidean inner product, while 〈M,N〉 = tr(MN>) is the
inner product between matrices. Generically, we will use
“hatted” vectors and matrices (e.g., α̂ and B̂) to refer to
(random) estimators of their underlying population quanti-
ties. We will use &, ., and � to denote greater than, less
than, and equal to up to a universal constant and use Õ to
denote an expression that hides polylogarithmic factors in
all problem parameters. Our use ofO, Ω, and Θ is otherwise
standard.

Formally, an orthonormal feature matrix B is an element of
an equivalence class (under right rotation) of a representa-
tive lying in Grr,d(R)—the Grassmann manifold (Edelman
et al., 1998). The Grassmann manifold, which we denote
as Grr,d(R), consists of the set of r-dimensional subspaces
within an underlying d-dimensional space. To define dis-
tance in Grr,d(R) we define the notion of a principal angle
between two subspaces p and q. If E is an orthonormal
matrix whose columns form an orthonormal basis of p and

F is an orthonormal matrix whose columns form an or-
thonormal basis of q, then a singular value decomposition
of E>F = UDV> defines the principal angles as:

D = diag(cos θ1, cos θ2, . . . , cos θk),

where 0 ≤ θk ≤ . . . ≤ θ1 ≤ π
2 . The distance of interest

for us will be the subspace angle distance sin θ1, and for
convenience we will use the shorthand sin θ(E,F) to refer
to it. With some abuse of notation we will use B to refer to
an explicit orthonormal feature matrix and the subspace in
Grr,d(R) it represents. We now detail several assumptions
we use in our analysis.
Assumption 1 (Sub-Gaussian Design and Noise). The
i.i.d. design vectors xi are zero mean with covariance
E[xx>] = Id and are Id-sub-gaussian, in the sense that

E[exp(v>xi)] ≤ exp
(
‖v‖2

2

)
for all v. Moreover, the addi-

tive noise variables εi are i.i.d. sub-gaussian with variance
parameter 1 and are independent of xi.

Throughout, we work in the setting of random design linear
regression, and in this context Assumption 1 is standard.
Our results do not critically rely on the identity covariance
assumption although its use simplifies several technical argu-
ments. In the following we define the population task diver-
sity matrix as A = (α1, . . . ,αt)

> ∈ Rt×r, ν = σr(
A>A
t ),

the average condition number as κ̄ =
tr( A>A

t )

rν , and the
worst-case condition number as κ = σ1(A>A

t )/ν.
Assumption 2 (Task Diversity and Normalization). The t
underlying task parameters αj satisfy ‖αj‖ = Θ(1) for all
j ∈ {1, . . . , t}. Moreover, we assume ν > 0.

Recovering the feature matrix B is impossible without struc-
tural conditions on A. Consider the extreme case in which
α1, . . . ,αt are restricted to span only the first r−1 columns
of the column space of the feature matrix B. None of the
data points (xi, yi) contain any information about the rth
column-feature which can be any arbitrary vector in the com-
plementary d− r − 1 subspace. In this case recovering B
accurately is information-theoretically impossible. The pa-
rameters ν, κ̄, and κ capture how “spread out” the tasks αj
are in the column space of B. The condition ‖αj‖ = Θ(1)
is also standard in the statistical literature and is equivalent
to normalizing the signal-to-noise (snr) ratio to be Θ(1)4.
In linear models, the snr is defined as the square of the `2
norm of the underlying parameter divided by the variance
of the additive noise.

Our overall approach to meta-learning of representations
consists of two phases that we term “meta-train” and “meta-
test”. First, in the meta-train phase (see Section 3), we

4Note that for a well-conditioned population task diversity
matrix where κ̄ ≤ κ ≤ O(1), our snr normalization enforces that
tr(A>A/t) = Θ(1) and ν ≥ Ω( 1

r
).
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provide algorithms to learn the underlying linear represen-
tation from a set of diverse tasks. Second, in the meta-test
phase (see Section 4) we show how to transfer these learned
features to a new, unseen task to improve the sample com-
plexity of learning. Detailed proofs of our main results can
be found in the Appendix.

3. Meta-Train: Learning Linear Features
Here we address both the algorithmic and statistical chal-
lenges of provably learning the linear feature representation
B.

3.1. Local Minimizers of the Empirical Risk

The remarkable, practical success of first-order methods
for training nonconvex optimization problems (including
meta/multi-task learning objectives) motivates us to study
the optimization landscape of the empirical risk induced
by the model in (1). We show in this section that all local
minimizers of a regularized version of empirical risk recover
the true linear representation up to a small statistical error.

Jointly learning the population parameters B and
(α1, . . . ,αt)

> defined by (1) is reminiscent of a matrix
sensing/completion problem. We leverage this connection
for our analysis, building in particular on results from Ge
et al. (2017). Throughout this section we assume that we
are in a uniform task sampling model—at each iteration
the task t(i) for the ith datapoint is uniformly sampled
from the t underlying tasks. We first recast our problem in
the language of matrices, by defining the matrix we hope
to recover as M? = (α1, . . . ,αt)

>B> ∈ Rt×d. Since
rank(M?) = r, we let X?D?(Y?)> = SVD(M?), and
denote U? = X?(D?)1/2 ∈ Rt×r, V? = (D?)1/2Y? ∈
Rd×r. In this notation, the responses of the regression model
are written as follows:

yi = 〈et(i)x>i ,M?〉+ εi. (3)

To frame recovery as an optimization problem we consider
the Burer-Monteiro factorization of the parameter M =
UV> where U ∈ Rt×r and V ∈ Rd×r. This motivates the
following objective:

min
U∈Rt×r,V∈Rd×r

f(U,V) =
2t

n

n∑
i=1

(yi − 〈et(i)x>i ,UV>〉)2

+
1

2
‖U>U−V>V‖2F. (4)

The second term in (4) functions as a regularization to pre-
vent solutions which send ‖U‖F → 0 while ‖V‖F → ∞
or vice versa. If the value of this objective (4) is small we
might hope that an estimate of B can be extracted from
the column space of the parameter V, since the column
space of V? spans the same subspace as B. Informally, our

main result states that all local minima of the regularized
empirical risk are in the neighborhood of the optimal V?,
and have subspaces that approximate B well. Before stat-
ing our result we define the constraint set, which contains
incoherent matrices with reasonable scales, as follows:

W = { (U,V) | max
i∈[t]
‖e>i U‖2 ≤ C0κ̄r

√
κν√

t
,

‖U‖2 ≤ C0

√
tκν, ‖V‖2 ≤ C0

√
tκν },

for some large constant C0. Under Assumption 2, this set
contains the optimal parameters. Note that U? and V?

satisfy the final two constraints by definition and Lemma 16
can be used to show that Assumption 2 actually implies that
U? is incoherent, which satisfies the first constraint. Our
main result follows.

Theorem 2. Let Assumptions 1 and 2 hold in the uniform
task sampling model. If the number of samples n1 satisfies
n1 & polylog(n1, d, t)(κr)

4 max{t, d}, then, with proba-
bility at least 1− 1/poly(d), we have that given any local
minimum (U,V) ∈ int(W) of the objective (4), the column
space of V, spanned by the orthonormal feature matrix B̂,
satisfies:

sin θ(B̂,B) ≤ O

 1√
ν

√
max{t, d}r log n1

n1

 .

We make several comments on this result:

• The guarantee in Theorem 2 suggests that all local
minimizers of the regularized empirical risk (4) will
produce a linear representation at a distance at most
Õ(
√

max{t, d}r/n1) from the true underlying represen-
tation. Theorem 5 guarantees that any estimator (including
the empirical risk minimizer) must incur error &

√
dr/n1.

Therefore, in the regime t ≤ O(d), all local minimizers
are statistically close-to-optimal, up to logarithmic factors
and conditioning/eigenvalue factors in the task diversity
matrix.

• Combined with a recent line of results showing that (noisy)
gradient descent can efficiently escape strict saddle points
to find local minima (Jin et al., 2017), Theorem 2 provides
strong evidence that first-order methods can efficiently
meta-learn linear features.5

The proof of Theorem 2 is technical so we only sketch
the high-level ideas. The overall strategy is to analyze the
Hessian of the objective (4) at a stationary point (U,V) in
int(W) to exhibit a direction ∆ of negative curvature which

5To formally establish computational efficiency, we need to
further verify the smoothness and the strict-saddle properties of
the objective function (4) (see, e.g., (Jin et al., 2017)).
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Algorithm 1 MoM Estimator for Learning Linear Features

Input: {(xi, yi)}n1
i=1.

B̂D1B̂
> ← top-r SVD of 1

n1
·
∑n1

i=1 y
2
i xix

>
i

return B̂

can serve as a direction of local improvement pointing to-
wards M? (and hence show (U,V) is not a local minimum).
Implementing this idea requires surmounting several techni-
cal hurdles including (1) establishing various concentration
of measure results (e.g., RIP-like conditions) for the sensing
matrices et(i)x

>
i unique to our setting and (2) handling the

interaction of the optimization analysis with the regularizer
and noise terms. Performing this analysis establishes that
under the aforementioned conditions all local minima in
int(W) satisfy ‖UV> −M?‖F ≤ O(

√
tmax{t,d}r logn1

n1
)

(see Theorem 8). Guaranteeing that this loss is small is
not sufficient to ensure recovery of the underlying features.
Transferring this guarantee in the Frobenius norm to a re-
sult on the subspace angle critically uses the task diversity
assumption (see Lemma 15) to give the final result.

3.2. Method-of-Moments Estimator

Next, we present a method-of-moments algorithm to re-
cover the feature matrix B with sharper statistical guaran-
tees. An alternative to optimization-based approaches such
as maximum likelihood estimation, the method-of-moments
is among the oldest statistical techniques (Pearson, 1894)
and has recently been used to estimate parameters in latent
variable models (Anandkumar et al., 2012).

As we will see, the technique is well-suited to our formu-
lation of multi-task feature learning. We present our esti-
mator in Algorithm 1, which simply computes the top-r
eigenvectors of the matrix (1/n1)

∑n1

i=1 y
2
i xix

>
i . Before

presenting our result, we define the averaged empirical task
matrix as Λ̄ = 1

n

∑n
i=1 αt(i)α

>
t(i) where ν̃ = σr(Λ̄), and

κ̃ = tr(Λ̄)/(rν̃) in analogy with Assumption 2.

Theorem 3. Suppose the n1 data samples {(xi, yi)}n1
i=1

are generated from the model in (1) and that Assumptions 1
and 2 hold, but additionally that xi ∼ N (0, Id). Then, if
n1 & polylog(d, n1)rdκ̃/ν̃, the output B̂ of Algorithm 1
satisfies

sin θ(B̂,B) ≤ Õ

(√
κ̃

ν̃

dr

n1

)
,

with probability at least 1 − O(n−100
1 ). Moreover, if the

number of samples generated from each task are equal (i.e.,
Λ̄ = 1

tA
>A), then the aforementioned guarantee holds

with κ̃ = κ̄ and ν̃ = ν.

We first make several remarks regarding this result.

Algorithm 2 Linear Regression for Learning a New Task
with a Feature Estimate

Input: B̂, {(xi, yi)}n2
i=1.

α̂← (
∑n2

i=1 B̂xix
>
i B̂>)†B̂>

∑n2

i=1 xiyi
return α̂

• Theorem 3 is flexible—the only dependence of the estima-
tor on the distribution of samples across the various tasks
is factored into the empirical task diversity parameters ν̃
and κ̃. Under a uniform observation model the guarantee
also immediately translates into an analogous statement
which holds with the population task diversity parameters
ν and κ̄.

• Theorem 3 provides a non-trivial guarantee even in the
setting where we only have Θ(1) samples from each task,
but t = Θ̃(dr). In this setting, recovering the parame-
ters of any given task is information-theoretically impos-
sible. However, the method-of-moments estimator can
efficiently aggregate information across the tasks to learn
B.

• The estimator does rely on the moment structure implicit
in the Gaussian design to extract B. However, Theorem 3
has no explicit dependence on t and is close-to-optimal
in the constant-snr regime; see Theorem 5 for our lower
bound.

We now provide a summary of the proof. Under ora-
cle access to the population mean E[ 1

n

∑
i y

2
i xix

>
i ] =

(2Γ̄ + (1 + tr(Γ̄))Id), where Γ̄ = 1
n

∑n
i=1 Bαt(i)α

>
t(i)B

>

(see Lemma 1), we can extract the features B by directly
applying PCA to this matrix, under the condition that κ̃ > 0,
to extract its column space. In practice, we only have
access to the samples {(xi, yi)}ni=1. Algorithm 1 uses
the empirical moments 1

n

∑
i y

2
i xix

>
i in lieu of the pop-

ulation mean. Thus, to show the result, we argue that
1
n

∑n
i=1 y

2
i xix

>
i = E[ 1

n

∑n
i=1 y

2
i xix

>
i ] + E where ‖E‖

is a small, stochastic error (see Theorem 7). If this holds,
the Davis-Kahan sin θ theorem (Bhatia, 2013) shows that
PCA applied to the empirical moments provides an accurate
estimate of B under perturbation by a sufficiently small E.
The key technical step in this argument is to show sharp
concentration (in spectral norm) of the matrix-valued noise
terms contained in E which are neither bounded (in spectral
norm) nor sub-gaussian/sub-exponential-like; we refer the
reader to the Appendix for further details on this argument.

4. Meta-Test: Transfer of Features to New
Tasks

Having estimated a linear feature representation B̂ shared
across related tasks, our second goal is to transfer this rep-
resentation to a new, unseen task—the (t + 1)st task—to
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improve learning. In the context of the model in (1), the
approach taken in Algorithm 2 uses B̂ as a plug-in surrogate
for the unknown B, and attempts to estimate αt+1 ∈ Rr.
Formally we define our estimator α as follows:

α̂ = arg min
α
‖y −XB̂α‖2, (5)

where n2 samples (X,y) are generated from the model
in (1) from the (t + 1)st task. Effectively, the feature rep-
resentation B̂ performs dimension reduction on the input
covariates X, allowing us to learn in a lower-dimensional
space. Our focus is on understanding the generalization
properties of the estimator in Algorithm 2, since (5) is an
ordinary least-squares objective which can be analytically
solved.

Assuming we have produced an estimate B̂ of the true fea-
ture matrix B, we can present our main result on the sample
complexity of meta-learned linear regression.

Theorem 4. Suppose n2 data points, {(xi, yi)}n2
i=1, are

generated from the model in (1), where Assumption 1 holds,
from a single task satisfying ‖αt+1‖2 ≤ O(1). Then, if
sin θ(B̂,B) ≤ δ and n2 & r log n2, the output α̂ from
Algorithm 2 satisfies

‖B̂α̂−Bαt+1‖2 ≤ Õ
(
δ2 +

r

n2

)
, (6)

with probability at least 1−O(n−100
2 ).

Note that Bαt+1 is simply the underlying parameter in the
regression model in (1). We make several remarks about
this result:

• Theorem 4 decomposes the error of transfer learning
into two components. The first term, Õ(δ2), arises from
the bias of using an imperfect feature estimate B̂ to trans-
fer knowledge across tasks. The second term, Õ( r

n2
),

arises from the variance of learning in a space of reduced
dimensionality.

• Standard generalization guarantees for random design
linear regression ensure that the parameter recovery error
is bounded byO( d

n2
) w.h.p. under the same assumptions

(Hsu et al., 2012). Meta-learning of the linear representa-
tion B̂ can provide a significant reduction in the sample
complexity of learning when δ2 � d

n2
and r � d.

• Conversely, if δ2 � d
n2

the bounds in (6) imply that
the overhead of learning the feature representation may
overwhelm the potential benefits of transfer learning
(with respect to baseline of learning the (t + 1)st task
in isolation). This accords with the well-documented
empirical phenomena of “negative” transfer observed in
large-scale deep learning problems where meta/transfer-
learning techniques actually result in a degradation in

performance on new tasks (Wang et al., 2019). For
diverse tasks (i.e. κ ≤ O(1)), using Algorithm 1 to
estimate B̂ suggests that ensuring δ2 � d

n2
, where

δ2 = Õ( dr
νn1

), requires n1

n2
� r/ν. That is, the ratio of

the number of samples used for feature learning to the
number of samples used for learning the new task should
exceed the complexity of the feature representation to
achieve “positive” transfer.

In order to obtain the rate in Theorem 4 we use a bias-
variance analysis of the estimator error B̂α̂−Bαt+1 (and
do not appeal to uniform convergence arguments). Using
the definition of y we can write the error as,

B̂α̂−Bα0 = B̂(B̂>X>XB̂)−1B̂X>XBα0

−Bα0 + B̂(B̂>X>XB̂)−1B̂>X>ε.

The first term contributes the bias term to (6) while the
second contributes the variance term. Analyzing the fluctu-
ations of the (mean-zero) variance term can be done by
controlling the norm of its square, ε>Aε, where A =
XB̂(B̂>X>XB̂)−2B̂>X>. We can bound this (random)
quadratic form by first appealing to the Hanson-Wright in-
equality to show w.h.p. that ε>Aε . tr(A) + Õ(‖A‖F +
‖A‖). The remaining randomness in A can be controlled
using matrix concentration/perturbation arguments (see
Lemma 17).

With access to the true feature matrix B̂ (i.e., setting B̂ = B)
the term B̂(B>X>XB)−1BX>XBα0 −Bα0 = 0, due
to the cancellation in the empirical covariance matrices,
(B>X>XB)−1BX>XB = Ir. This cancellation of the
empirical covariance is essential to obtaining a tight anal-
ysis of the least-squares estimator. We cannot rely on this
effect in full since B̂ 6= B. However, a naive analysis
which splits these terms, (B̂>X>XB̂)−1 and B̂X>XB
can lead to a large increase in the variance in the bound.
To exploit the fact B̂ ≈ B, we project the matrix B in
the leading XB term onto the column space of B̂ and its
complement—which allows a partial cancellation of the
empirical covariances in the subspace spanned by B̂. The
remaining variance can be controlled as in the previous term
(see Lemma 18).

5. Lower Bounds for Feature Learning
To complement the upper bounds provided in the previ-
ous section, in this section we derive information-theoretic
limits for feature learning in the model (1). To our knowl-
edge, these results provide the first sample-complexity lower
bounds for feature learning, with regards to subspace recov-
ery, in the multi-task setting. While there is existing litera-
ture on (minimax)-optimal estimation of low-rank matrices
(see, for example, Rohde et al. (2011)), that work focuses on
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the (high-dimensional) estimation of matrices, whose only
constraint is to be low rank. Moreover, error is measured in
the additive prediction norm. In our setting, we must handle
the additional difficulties arising from the fact that we are
interested in (1) learning a column space (i.e., an element in
the Grr,d(R)) and (2) the error between such representatives
is measured in the subspace angle distance. We begin by
presenting our lower bound for feature recovery.
Theorem 5. Suppose a total of n data points are generated
from the model in (1) satisfying Assumption 1 with xi ∼
N (0, Id), εi ∼ N (0, 1), with an equal number from each
task, and that Assumption 2 holds with αj for each task
normalized to ‖αj‖ = 1

2 . Then, there are αj for r ≤ d
2 and

n ≥ max
(

1
8ν , r(d− r)

)
so that:

inf
B̂

sup
B∈Grr,d(R)

sin θ(B̂,B) ≥ Ω

(
max

(√
1

ν

√
1

n
,

√
dr

n

))
,

with probability at least 1
4 , where the infimum is taken over

the class of estimators that are functions of the n data points.

Again we make several comments on the result.

• The result of Theorem 5 shows that the estimator in Al-
gorithm 1 provides a close-to-optimal estimator of the
feature representation parameterized by B–up to loga-
rithmic and conditioning factors (i.e. κ, ν)6 in the task
diversity matrix–that is independent of the task number t.
Note that under the normalization for αi, as κ→∞ (i.e.
the task matrix A becomes ill-conditioned) we have that
ν → 0. So the first term in Theorem 5 establishes that
task diversity is necessary for recovery of the subspace B.

• The dimension of Grr,d(R) (i.e., the number of free param-
eters needed to specify a feature set) is r(d− r) ≥ Ω(dr)
for d/2 ≥ r; hence the second term in Theorem 5 matches
the scaling that we intuit from parameter counting.

• Obtaining tight dependence of our subspace recovery
bounds on conditioning factors in the task diversity ma-
trix (i.e. κ, ν) is an important and challenging research
question. We believe the gap between in condition-
ing/eigenvalue factors between Theorem 3 and Theorem 5
on the

√
dr/n term is related to a problem that persists for

classical estimators in linear regression (i.e. for the Lasso
estimator in sparse linear regression). Even in this setting,
a gap remains with respect to condition number/eigenvalue
factors of the data design matrix X, between existing up-
per and lower bounds (see Chen et al. (2016, Section 7),
Raskutti et al. (2011, Theorem 1, Theorem 2) and Zhang
et al. (2014) for example). In our setting the task diversity
matrix A enters into the problem in a similar fashion to
the data design matrix X in these aforementioned settings.

6Note in the setting that κ ≤ O(1), ν ∼ 1
r

.

The dependency on the task diversity parameter 1
ν (the first

term in Theorem 5) is achieved by constructing a pair of fea-
ture matrices and an ill-conditioned task matrix A that can-
not discern the direction along which they defer. The proof
strategy to capture the second term uses a f -divergence
based minimax technique from Guntuboyina (2011) (re-
stated in Lemma 20 in the Appendix), similar in spirit to the
global Fano (or Yang-Barron).

There are two key ingredients to using Lemma 20 and ob-
taining a tight lower bound. First, we must exhibit a large
family of distinct, well-separated feature matrices {Bi}Mi=1

(i.e., a packing at scale η). Second, we must argue this set
of feature matrices induces a family of distributions over
data {(xi, yi)}Bi

which are statistically “close” and funda-
mentally difficult to distinguish amongst. This is captured
by the fact the ε-covering number, measured in the space
of distributions with divergence measure Df (·, ·), is small.
The standard (global) Fano method, or Yang-Barron method
(see Wainwright (2019, Ch. 15)), which uses the KL di-
vergence to measure distance in the space of measures, is
known to provide rate-suboptimal lower bounds for para-
metric estimation problems.7 Our case is no exception. To
circumvent this difficulty we use the framework of Gun-
tuboyina (2011), instantiated with the f -divergence chosen
as the χ2-divergence, to obtain a tight lower bound.

The argument proceeds in two steps. First, although the
geometry of Grr,d(R) is complex, we can adapt results from
Pajor (1998) to provide sharp upper/lower bounds on the
metric entropy (or global entropy) of the Grassmann man-
ifold (see Proposition 9). The second technical step of
the argument hinges on the ability to cover the space of
distributions parametrized by B in the space of measures
{PB : B ∈ Grr,d(R)}—with distance measured by an ap-
propriate f -divergence. In order to establish a covering
in the space of measures parametrized by B, the key step
is to bound the distance χ2(PB1 ,PB2) for two different
measures over data generated from the model (1) with two
different feature matrices B1 and B2 (see Lemma 21). This
control can be achieved in our random design setting by
exploiting the Gaussianity of the marginals over data X and
the Gaussianity of the conditionals of y|X,B, to ultimately
be expressed as a function of the angular distance between
B1 and B2.

6. Simulations
We complement our theoretical analysis with a series of
numerical experiments highlighting the benefits (and lim-

7Even for the simple problems of Gaussian mean estimation
the classical Yang-Barron method is suboptimal; see Guntuboyina
(2011) for more details.
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its) of meta-learning8. For the purposes of feature learning
we compare the performance of the method-of-moments
estimator in Algorithm 1 vs. directly optimizing the objec-
tive in (4). Additional details on our set-up are provided
in Appendix G. We construct problem instances by gen-
erating Gaussian covariates and noise as xi ∼ N (0, Id),
εi ∼ N (0, 1), and the tasks and features used for the first-
stage feature estimation as αi ∼ 1√

r
· N (0, Ir), with B

generated as a (uniform) random r-dimensional subspace
of Rd. In all our experiments we generate an equal number
of samples nt for each of the t tasks, so n1 = t · nt. In
the second stage we generate a new, (t+ 1)st task instance
using the same feature estimate B used in the first stage and
otherwise generate n2 samples, with the covariates, noise
and αt+1 constructed as before. Throughout this section we
refer to features learned via a first-order gradient method
as LF-FO and the corresponding meta-learned regression
parameter on a new task by meta-LR-FO. We use LF-MoM
and meta-LR-MoM to refer to the same quantities save with
the feature estimate learned via the method-of-moments
estimator. We also use LR to refer to the baseline linear
regression estimator on a new task which only uses data
generated from that task.

We begin by considering a challenging setting for feature
learning where d = 100, r = 5, but nt = 5 for varying
numbers of tasks t. As Fig. 1 demonstrates, the method-of-
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Figure 1. Left: LF-FO vs. LF-MoM estimator with error measured
in the subspace angle distance sin θ(B̂,B). Right: meta-LR-FO
and meta-LR-MoM vs. LR on new task with error measured on
new task parameter. Here d = 100, r = 5, and nt = 5 while
n2 = 2500 as the number of tasks is varied.

moments estimator is able to aggregate information across
the tasks as t increases to slowly improve its feature estimate,
even though nt � d. The loss-based approach struggles to
improve its estimate of the feature matrix B in this regime.
This accords with the extra t dependence in Theorem 2 rel-
ative to Theorem 3. In this setting, we also generated a
(t+ 1)st test task with d� n2 = 2500, to test the effect of
meta-learning the linear representation on generalization in
a new, unseen task against a baseline which simply performs
a regression on this new task in isolation. Fig. 1 also shows

8An open-source Python implementation to reproduce
our experiments can be found at https://github.com/
nileshtrip/MTL.

that meta-learned regressions perform significantly worse
than simply ignoring first t tasks. Theorem 4 indicates the
bias from the inability to learn an accurate feature estimate
of B overwhelms the benefits of transfer learning. In this
regime n2 � d so the new task can be efficiently learned in
isolation. We believe this simulation represents a simple in-
stance of the empirically observed phenomena of “negative”
transfer (Wang et al., 2019).

We now turn to the more interesting use cases where meta-
learning is a powerful tool. We consider a setting where
d = 100, r = 5, and nt = 25 for varying numbers of
tasks t. However, now we consider a new, unseen task
where data is scarce: n2 = 25 < d. As Fig. 2 shows, in
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Figure 2. Left: LF-FO vs. LF-MoM estimator with error measured
in the subspace angle distance sin θ(B̂,B). Right: meta-LR-FO
and meta-LR-MoM vs. LR on new task with error measured on
new task parameter. Here d = 100, r = 5, nt = 25 while
n2 = 25 while the number of tasks is varied.

this regime both the method-of-moments estimator and the
loss-based approach can learn a non-trivial estimate of the
feature representation. The benefits of transferring this rep-
resentation are also evident in the improved generalization
performance seen by the meta-regression procedures on the
new task. Interestingly, the loss-based approach learns an
accurate feature representation B̂ with significantly fewer
samples then the method-of-moments estimator, in contrast
to the previous experiment. Finally, we consider an instance
where d = 100, r = 5, t = 20, and n2 = 50 with varying
numbers of training points nt per task. We see in Fig. 3
that meta-learning of representations provides significant
value in a new task. Note that these numerical experiments
show that as the number of tasks is fixed, but nt increases,
the generalization ability of the meta-learned regressions
significantly improves as reflected in the bound (2).

7. Conclusions
In this paper we show how a shared linear representation
may be efficiently learned and transferred between mul-
tiple linear regression tasks. We provide both upper and
lower bounds on the sample complexity of learning this
representation and for the problem of learning-to-learn. We
believe our bounds capture important qualitative phenom-
ena observed in real meta-learning applications absent from
previous theoretical treatments.

https://github.com/nileshtrip/MTL
https://github.com/nileshtrip/MTL
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Figure 3. Left: LF-FO vs. LF-MoM estimator with error measured
in the subspace angle distance sin θ(B̂,B). Right: meta-LR-FO
and meta-LR-MoM vs. LR on new task with error measured on
new task parameter. Here d = 100, r = 5, t = 20, and n2 = 50
while the number of training points per task (nt) is varied.
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