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Abstract

Multivariate Hawkes processes (MHPs) are
widely used in a variety of fields to model the
occurrence of causally related discrete events in
continuous time. Most state-of-the-art approaches
address the problem of learning MHPs from per-
fect traces without noise. In practice, the process
through which events are collected might intro-
duce noise in the timestamps. In this work, we
address the problem of learning the causal struc-
ture of MHPs when the observed timestamps of
events are subject to random and unknown shifts,
also known as random translations. We prove that
the cumulants of MHPs are invariant to random
translations, and therefore can be used to learn
their underlying causal structure. Furthermore,
we empirically characterize the effect of random
translations on state-of-the-art learning methods.
We show that maximum likelihood-based estima-
tors are brittle, while cumulant-based estimators
remain stable even in the presence of significant
time shifts.

1. Introduction

From modeling the price change in financial markets (Bacry
et al., 2015), to analyzing epidemic pathways in global
outbreaks of infectious diseases (Colizza et al., 2007), or
yet uncovering the dynamics of information on social me-
dia (Gomez-Rodriguez et al., 2011), extracting the diffusion
patterns of sequences of discrete events is a problem that is
of interest in many fields. Event data typically consists of a
set of marked timestamps, where the mark of an occurrence
denotes its type, such as its geographical location.

To model such event data, temporal point processes, which
model the probability of occurrence of a set of events in con-
tinuous time, are rising as a popular framework. In finance,
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they are used to model the stochastic time evolution of limit
order books (Da Fonseca & Zaatour, 2014; Abergel & Jedidi,
2015). In neuroscience, they are used to model networks of
stochastic spiking neurons (Truccolo et al., 2005; Reynaud-
Bouret et al., 2013; Gerhard et al., 2017). In epidemiology,
they enable to get beyond the mean-field assumptions of
classic epidemic models based on differential equations,
and to capture the self and mutual excitation nature of dis-
ease spread across heterogeneous social systems (Kim et al.,
2019).

In practice, the process through which the sequences of
events are collected often introduces noise in the observed
timestamps. For instance, in neuroscience, the activity of
neurons is typically collected by measuring a continuous
signal coming from the action potential of neurons using
electrode micro-arrays. The signal is then converted into a
discrete sequence of events of firing neurons, called spike
trains, which are the times when the action potential ex-
ceeds a threshold. This procedure is inherently noisy and
prone to introduce inaccuracies in the measured timestamps.
Another example is in epidemiology, where the reported
times of infection have an approximate granularity, and do
not account for the latent incubation period. This could
lead to inaccuracies in the measured timestamps. As a re-
sult, a secondary case might be reported before the primary
case, which could interfere with learning the true causation
structure.

The current literature for learning temporal point-processes
assumes perfect information regarding the observation. In
this work, we consider inferring the causal network of a pop-
ular class of temporal point-processes, called multivariate
Hawkes processes (MHPs), when the observations are sub-
ject to a particular form of noise, called random translation.
In a randomly translated point process, every event within
a dimension is shifted randomly and independently in time
according to a fixed but unknown distribution. We show
that the cumulants of an MHP are invariant with respect to
random translations. Therefore, any inference method that
can obtain the causal network of an MHP from its cumulants
can also be used to learn its causal network under random
translation noise.
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2. Related Works

Learning the excitation matrix of an MHP from a set of
observations has been the focus of recent work (Xu et al.,
2016; Yang et al., 2017; Salehi et al., 2019). The main
approaches for inferring the excitation matrix of MHPs
are of two flavors: maximum likelihood-based approaches
such as (Ozaki, 1979; Zhou et al., 2013; Yang et al., 2017;
Salehi et al., 2019); or moment-based approaches that learn
the parameters of interest by solving a set of equations
obtained from first, second, or third-order moments of the
MHP (Hawkes, 1971b; Bacry et al., 2012; Bacry & Muzy,
2016; Etesami et al., 2016; Achab et al., 2017). All the
aforementioned approaches assume that the observations
are noiseless, that is, the arrival times of the events are
recorded accurately without any delay.

A recent study addressed the case where events are syn-
chronized (Trouleau et al., 2019). This is a special case
of the random translation framework that we study in this
work. More precisely, in our general random translation
noise model, the events of a dimension are shifted inde-
pendently according to some unknown distribution. In the
synchronized noise model, all events within a dimension
have the exact same delay. See Section 4 for more details.

The inference of temporal point processes in the presence
of noisy observations has also been studied for other types
of point processes, such as spatial Poisson processes (Cu-
cala, 2008; Bar-Hen et al., 2013). However, these studies
mostly focus on the special case of independent and known
noise, which is not applicable to MHPs. Another line of
research that tackles the inference problem in Hawkes pro-
cesses without perfect observations appears in (Xu et al.,
2017; Shelton et al., 2018), where the inference problem
with missing data is considered. In this work, data are not
missing, but timestamps are inaccurately measured.

Hoffmann & Caramanis (2019) consider a type of temporal
noise in the context of disease modeling. In particular, they
study the inference of epidemic pathways for a discrete-time
epidemic model spreading over a network of individuals,
when the infection times are not known exactly. The ap-
proaches developed in that work are designed for a discrete-
time model where each dimension has at most one event, i.e.,
the infection time of an individual. Hence, these methods
are not applicable to our setting. In the context of univariate
Hawkes processes, Deutsch & Ross (2021) have studied a
similar type of noise, referred to as “data distortion”. They
propose an approach to estimate the parameters of the pro-
cess based on Approximate Bayesian Computation (ABC)
and Markov Chain Monte Carlo (MCMC). However, the
method is limited to the univariate setting.

3. Preliminaries

We begin by introducing some notations. Plain letters denote
scalar values, while boldface letters denote column vectors,
matrices, and tensors. We denote the Dirac function by
d(t). For a given function f(t), we denote its time reversed
version f(t) := f(—t), and we define its convolution with
a function g(t) by f * g(t) £ [, f(t — x)g(x)dz. We use
f*™(t) to denote the convolutlon of f(t) w1th itself n times.
The n- dimensional Laplace transform of a function f(x) is
given by L[f j]R” x) exp(—sT x)dz. Finally, the
Laplace transform of a matrix function G(t) = [G, ;(t)],
denoted by L[G](s) £ [£[G; ;](s)], is done element-wise.

3.1. Temporal Point Process

Consider a sequence t = {t; } ;>0 of positive random vari-
ables representing the times of random occurrence of a set
of events. Let N(t) denote the number of events occur-
ring before time ¢ € R. The conditional probability, given
the past activity, of a new event occurring in the interval
(t,t + dt) is specified by the conditional intensity function
A(t). Additionally, we assume that the probability of two
or more events arriving simultaneously is negligibly small.
More specifically, up to first order, we have

P(dN(t) = 1|H;) = A(t)dt,
P(dN(t) > 1|H;) = o(dt)

where H; describes the history of the point process up to
time ¢.

3.2. Multivariate Hawkes process

Formally, a d-dimensional multivariate Hawkes process
(MHP) is a collection of d univariate temporal point-
processes N;(t),i = 1,...,d, also called dimensions, with
conditional intensity functions taking the form

d t
)\z(t|Ht) = W; + Z/ Gl"j(t
j=170

where H; = \U’_,Hi and H! is the history of the i-th
process up to time ¢. The constant y; is the exogenous part
of the intensity of the i-th process. The excitation function
G ;(t): R — Ry is causal, non-negative, and captures
the endogenous dynamics of influence of the arrivals in
the j-th dimension on the intensity of the i-th dimension'.
The matrix G(t) := [G; ;(t)] is called the excitation matrix.
The process is called stable if and only if the spectral radius
p(G) of the integrated excitation matrix

= /RG(t)dt

'The function G; ;(+) is causal in the sense that G; ;(t) = 0
fort < 0.

dN;(7), (1)
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is strictly less than 1, in which case the process is said to
have stationary increments.

It has been shown that the support of the excitation matrix
encodes the causal structure of the MHP in terms of Granger
causality, i.e., process j does not Granger-cause process ¢ if
and only if G;;(t) = 0 (Etesami et al., 2016; Eichler et al.,
2017). The Granger-causal graph of a d-dimensional MHP
is therefore a directed graph on d nodes (each dimension
is denoted by a node), with a directed edge from node j to
node ¢ if and only if G,;(¢) # 0. For more details on MHPs,
we refer the interested reader to (Liniger, 2009).

3.3. Poisson Cluster Representation

There exists an equivalent definition of MHPs based on the
Poisson cluster process, generated by a certain branching
structure. The cluster process representation is defined as
follows:

* Let I* be a realization, on the interval [0,7], of a
homogeneous Poisson process with rate p. We call
the points in I* immigrants of type k.

* For every k, each immigrant z € I* generates a cluster
of points C¥ . All such clusters are mutually indepen-
dent.

* The clusters C¥ are generated according to the follow-
ing branching structure:

— Each cluster C¥ consists of generations of off-
spring of all types, where the immigrant x itself
belongs to generation 0.

— Recursively, given the immigrant x and the off-
spring of generation 1, 2, ..., n of all types, every
“child” y of generation n and type 7, produces its
own offspring of generation n + 1 and type ¢, Vi,
by generating a realization of an inhomogeneous
Poisson process with rate A(¢) .= G, ;(t — y).

An illustration of the cluster representation is shown in
Figure 1.

3.4. Cumulants of a Hawkes Process

Consider an arbitrary n-dimensional random vector x =
(1,...,2p). The cumulant of order n, denoted by K (x),
is a measure of statistical dependence of the components of
x and is defined as

K(x) =Y (x| - D= ] &

T Cen

11 x] , @

ceC

where the sum is over all partitions 7 of the set {1,...,n},
and where |7| denotes the number of blocks of a given
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Figure 1: Illustration of the evolution of a Poisson cluster
on a network of 3 nodes and 4 directed links. Types (dimen-
sions) are coded by color. The immigrant is of type A (in
red). The first generations are one from type B (in black)
and one from type C (in blue). The evolution is shown up to
the second generation (i.e., tree structure for generations 0,
1 and 2, and the resulting point process over time).

partition (Lukacs, 1970). For example, for n = 1, the
first-order cumulant density K (x) = E[xz] is the expected
value; for n = 2, K(x1,29) = E[z125] — E[z1]E[zs] =
Cov(z1,x2) is the covariance; and for n = 3, the third-
order cumulant is the skewness.

For a given time vector ¢t = (t1, ..., t,,) and a multi-index
@ = (i1,...,%m), the m-th order cumulant density and
integrated cumulant of the Hawkes process are defined re-
spectively by

K(dNj, (t1),...,dN;, (tm))
K'L e 1 m ,
®) dty ...dt,,

where K () is the cumulant function defined in (2). For
more comprehensive details, we refer the reader to (Jo-
vanovi¢ et al., 2015).

4. Methodology

This section introduces a particular form of noise for point
processes, called random translations. We then characterize
the cumulants of a randomly translated MHP and character-
ize the robustness of cumulant-based estimators for learning
their excitation matrix.

4.1. Random Translations

In a randomly translated point process, all the events are
shifted randomly in time according to an unknown distri-
bution (Daley & Jones, 2003). More precisely, suppose
t={{t} }Z;O le is a sequence of discrete events, where
t}, denotes the k-th event in the i-th dimension. A random
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Figure 2: An example of events in a three-dimensional
point process and their translations. Events in dimension A,
(resp., B and C) are translated randomly by F4 (resp., F'p
and F).

translation of ¢ is denoted by £ and is defined by

E={{ih)in = {lh+ L ®
where {z}}}", are independent, identically distributed
random variables with distribution function F;(-), for all
1 < i < d. Figure 2 demonstrates a simple MHP in
three dimensions, in which events are translated accord-
ing to distribution functions { F4, F5, Fc}. Note that the
synchronization noise model proposed by Trouleau et al.
(2019) is a special case of the random translation, when all
the distributions are Dirac delta functions, i.e., for every ¢,
dF;(x) = §(x — z;)dx, where z; € R,..

Among the approaches to learn the randomly translated
MHP, a first candidate is a maximum-likelihood based es-
timation, such as expectation maximization. However, as
discussed in Trouleau et al. (2019), such method results in
a non-convex objective function, has a high computational
complexity, and fails even for the synchronized translations
as the noise power increases. For the sake of complete-
ness, we will demonstrate the similar shortcomings of the
maximum-likelihood estimator for the random translation
setting through empirical experiments.

4.2. Cumulants of Randomly Translated MHP

Jovanovic et al. (2015) showed that the cumulant densities
of an MHP can be calculated analytically through their clus-
ter representation. This result establishes the relationships
between the integrated cumulants of an MHP and its exci-
tation matrix. Achab et al. (2017) used this relationship to
develop an algorithm called NPHC to learn the causal net-
work of an MHP given its integrated cumulants. They also
provided an estimator for the first, second, and third-order
integrated cumulants given a set of observations.

We will compute the cumulant densities of a randomly trans-
lated MHP using its cluster representation and show how

Figure 3: The cluster of Figure 1, with the immigrant of
type A and its four descendants translated according to
distributions { Fa, Fg, Fc }.

they relate to the causal structure of the underlying MHP.
To do so, we have to study the effect of random translations
on the clusters of an MHP. We observe two key properties,
which we discuss in the context of a simple example illus-
trated in Figure 3. As the random translations occur after
the realization of the process, the Poisson cluster represen-
tation still holds. Hence, although the events within this
cluster are randomly displaced, the tree structure (i.e., the
parent-children relationships) of the cluster is unaffected.
Moreover, the clusters do not mix, i.e., two separate clusters
remain separated after translation. The next theorem follows
from these properties and expresses the cumulant densities
of a randomly translated MHP as functions of the translation
distributions and the parameters of the MHP.

Theorem 1. Consider an MHP with excitation matrix func-
tion G(t) and exogenous intensity vector p € Ri 'Af-
ter random translation of the event set t with distributions

{Fy("),...,Fy(-)}, the resulting event set t has the follow-
ing cumulants.

d
K= 3 i [ R, @

m=1

d
Kij(ti,t2) = Y Km / R TORE2D dg )
m=1 R

Kijr(l,t2,13) =

d
>k [ (RGBT RE 6 )y

m,n=1
d ~rF ~r7 ~r7 ~
o3 s [ (B ORG RG B Yy
m,n=1 R
d ~r7 ~r7 ~r7 ~
+ Y K / / (R,ﬁfi;””)R,Ef:;y>R§.’ff;y>\1/£g;f>>dydw
m,n=1 R
d — — —
+ Y Kn / (Rﬁf;‘z)Rffn‘z)R;f;;z))dx, ©)
m=1 R
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where R(®) := > n>0 G(t), ¥ (t):=R® — I5(t), and

éi’j(t) - fz * Gi,j * i](t)

-/ /R flt+ o= )Gy @)dsda.

where f;(x)dx = dF;(x).

A proof of the theorem is provided in the Appendix. This
result shows the relationships between the first, second,
and third-order cumulant densities of a randomly translated
MHP, the noise distributions, and the parameters of the
underlying MHP. Note that Equation (7) implies that the
matrices G(t) and G(t) have the same support. In the next
corollary, we further show that their integrated versions,

namely G := £[G](0) and G = L]G](0), are equal.

Corollary 1. Consider an MHP with stationary increments.
After a random translation, its corresponding matrix func-
tion R® given in Theorem 1 is bounded, and

(I1-G)', ®)
G )

Q=
I

where R := L[R](0), and G := L[G](0).

We use this equivalence to learn the support of G. Note
that, given a realization £ = {{tN}C }Z;O j:1 of a randomly
translated MHP, we can estimate the integrated cumulants?2.
In the remainder of this section, we transform the equa-
tions (4)-(6) into their integrated forms by evaluating their
Laplace transform at s = 0 and solve for R. Corollary 1
can then be applied to obtain G. More precisely, let

U, = L[T;;)(0),
K, ;= L[K;;](0),
Kijr = L[K;;x](0)

Then, the integrated cumulant of a randomly translated MHP

2See Appendix B for the estimators.

can be computed from (4)-(6) as follows.

d

Ki =Y Rk, (10)
k=1
d

Fi,j = Z KmRi,mEj,my (11D
m=1

d
Kijk= Y KnRinRjmRrm¥mn

KmRi,ij,mEk,ma (12)

where ¥ = R — I.

We would like to emphasize that the above equations are
analogous to those of an MHP without random translations
given in Jovanovi¢ et al. (2015). Together with the fact
that G = G, this implies that the integrated cumulants are
invariant with respect to random translations, a key result
that will enable to estimate them consistently.

In Equations (10)-(12), the first-order cumulants { K; } and
the integrated cumulants {{K; ;},{K; j}} can be empir-
ically estimated from the data. These estimates are then
used to solve for R = [R; ;], which yields the underlying
causal structure (i.e., the support of G) of the randomly
translated MHP, via Corollary 1. In the next section, we
review two approaches for learning MHPs based on their
cumulants and show how exactly they can be adapted to
infer the underlying causal structures of randomly translated
MHPs.

4.3. Cumulant-based Estimation Methods
4.3.1. THE NPHC ALGORITHM

Achab et al. (2017) proposed the NPHC algorithm, a non-
parametric approach inspired by the generalized method of
moments. First, note that (11) and (12) provide (d? + d)/2
and (d® + 3d? + 2d) /6 independent equations, respectively.
The number of unknowns, {{s;}¢_,, R}, is only d + d>.
Achab et al. (2017) then select a subset of size d? equations
out of the group of equations in (12), namely, ?m’,j for
1 <i,j <d,and use d? + (d? + d)/2 equations to obtain
the unknowns. The NPHC algorithm works in two steps.
First,Athe intggrated cuIAnulantsA are estimated from the data.
Let C := [K;;] and S := [K;; ;] denote the estimators
of the integrated covariance matrix and skewness matrix,
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respectively. Details of these estimators are provided in
Appendix B.

The NPHC estimator for R is then defined as the solution
of a polynomial optimization problem

R € argmin/,(R),
R
where the objective function is defined as
la(R) = (1 - a)|S(R) - 5|3 + al|C(R) - C|I5.

The weight o = ||§H§/ (HEI% + Hé”%) balances between
the two terms matching the integrated covariance ma-
trix C(R) = [K; ;] and the integrated skewness matrix
S(R) = [K,; ; ;. The authors prove that the NPHC estima-
tor is consistent®. Corollary 1 then implies that the NPHC
estimator is also consistent for randomly translated MHPs.
Therefore, applying the NPHC algorithm to a randomly
translated sequence of events will recover the matrix R and
consequently the integrated excitation matrix G.

4.3.2. THE WIENER-HOPF FORMULATION

Another cumulant-based approach for learning MHPs is
based on the second-order statistics (Bacry & Muzy, 2016).
More precisely, we define the covariance density matrix of
an MHP, E(tl, tz) = [Zi,j (tl, tz)] as

E[dN;(t1)]

Yt te) = K j(t1,t2) — dt,

Ei’jé(tl — t2),
where ¢; ; is the Kronecker symbol, which is always 0 ex-
cept when ¢ = j, in which case it is 1. Hawkes (1971a)
proved that 32(¢) := X(t, 0) is directly related to the excita-
tion matrix G(t) through the equation

() = (16 + ) « A(I5+ W) (t) — AS(¢), V¢, (13)

where A = diag([K7y, ..., Ky]) is the mean intensity of
the stationary process and ¥ (¢):=3_, -, G*"(t). Note that

this equation does not admit a unique* solution with respect
to G(t).

Bacry & Muzy (2016) derived the following d2-dimensional
Wiener-Hopf system of equations from (13):

X(t) =G(t)+ G X(t), vt >0, (14)

where X (t)=%7(t)A~! can be estimated from data. The
interesting aspect of this equation is that using the fact that
G (t) is causal results in a unique solution with respect to

3For more comprehensive details on the algorithm and its re-
lation to the generalized method of moments, we refer the reader
to (Achab et al., 2017).

4See the Appendix A for a proof.

G (t). It can therefore be used to infer the excitation matrix
G(t) of an MHP from data as done by Bacry & Muzy
(2016).

Similar to the aforementioned approach, we can use Theo-
rem 1 to define the covariance density matrix of a randomly
translated MHP, and explicit its relation to G(t) which was
defined in (7).

Corollary 2. Let 3(t) denotes the covariance density ma-
trix of a randomly translated MHP, defined as

~ - - - E[dN(t S
Yij(t,t2) = K j(t1,t2) — %emﬁ(tl —ta).
1

Then, forallt € R,
S(t) = (I6 + %) « A(Is + %) (1) — AS(t), (15)

where A = diag([K;, ...
Theorem 1.

. K4)) and ©(t) is defined as in

Similar to (13), Equation (15) does not admit a unique so-
lution with respect to G(t), but unlike G(t), G(t) is not a
causal function. This is evident from (7) because éL i ()
is obtained by convolving the causal function G; ;(t) with
functions { ij (t), f:(t)} in which at least one is an anti-
causal function. This is a major hurdle that was not present
in the noiseless case but comes with any non-zero amount
of noise. Indeed, it prevents us from obtaining a Wiener-
Hopf system of equations from (15) that, like (14), admits
a unique solution. Nevertheless, for a small amount of
noise, experiments show that we can successfully apply the
Wiener-Hopf approach in (Bacry & Muzy, 2016) to ran-
domly translated MHPs and solve the following system to
learn G(t)

X(t) =Gt +G=*X(t), vt >0, (16)

where X (t) = ST (t)A~L. However, because G{(t) increas-
ingly departs from being causal as the noise power increases,
this approach fails to learn the causal structure accurately.

5. Experimental Results

To illustrate the result of Theorem 1 and to characterize the
effect of random translations on the estimation of MHPs,
we carry out two sets of experiments. First, we simulate a
synthetic dataset from an MHP and quantify the ability of
two maximum likelihood-based and two cumulant-based
approaches for learning the ground-truth excitation matrix
under varying levels of noise power. Second, we evaluate
the stability of each approach to random translations on a
real dataset pertaining to Bund Future traded at Eurex. For
reproducibility, a detailed description of the experimental
setup is provided in Appendix C. In addition, the open-
source code is publicly available on GitHub’.

5 ] .
https://github.com/trouleau/noisy—-hawkes-cumulants
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We evaluate the effect of random translation on the following
four state-of-the-art approaches.

* NPHC. (Achab et al., 2017) This non-parametric ap-
proach is based on matching the empirical integrated
cumulants of the events, as discussed in Section 4.3.1.

* WH. (Bacry & Muzy, 2016) This method is a non-
parametric approach based on solving a set of Wiener-
Hopf equations for learning the excitation functions of
the process, as discussed in Section 4.3.2.

e ADMA4. (Zhou et al., 2013) This method is a paramet-
ric approach that maximizes the log-likelihood func-
tion with a sparse and low-rank regularization. It as-
sumes an exponential excitation function of the form
G ;(t) = a; ;k(t), where k(t) = [exp(—pt). The
exponential decay f3 is a given hyper-parameter.

Desync-MLE. (Trouleau et al., 2019) This method
is a parametric approach, which maximizes the log-
likelihood function of an MHP under synchroniza-
tion noise, i.e., a particular type of random transla-
tion where the noise is assumed to be distributed as
dF;(z) = §(x — z;)dx, Vi, such that all events within
a dimension are shifted by a constant. This method
jointly learns the parameters of the MHP as well as
the noise value {z;} using stochastic gradient descent.
Similar to ADM4, this approach assumes exponential
excitation functions where the exponential decay [ is
a given hyper-parameter.

5.1. Synthetic Data

We first apply the result of Theorem 1 to a synthetic 10-
dimensional MHP (d = 10). We considered a non-symmetric
block-matrix G* depicted in Figure 4(a), with exponential
excitation functions G () = «a; ;8 exp(—ft), Vi, j, with
[ =1, and baseline intensity u; = 0.01, Vi.

We simulated 20 datasets, each comprised of 5 realizations
of 10° events. We then randomly translated each dataset
with distributions® F; ~ N (0, 02), 1 <4 < d, for varying
noise powers 02, and we estimated the excitation matrix
for the aforementioned approaches. All reported values are
averaged over the 20 simulated datasets (& standard error).

Figure 4 depicts the estimated integrated excitation matrices
for a fixed noise level 02 = 5 for a qualitative visualiza-
tion of the results. We observe that, while the cumulant-
based NPHC method is able to accurately recover the exci-
tation matrix, the maximum likelihood-based ADM4 suffers
from both false positives and misses true positives. The
covariance-based WH approach is doing a better job than

5We also ran experiments with other noise distributions (i.e.,
exponential and uniform) and observed similar results.
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Figure 4: Comparison of the integrated kernel matrix esti-
mated by several methods under noisy observations.

ADM4 but tends to suffer from false positives. This is ex-
pected from Corollary 2, as WH wrongly assumes that G(t)
is a causal function.

To verify the findings of Theorem 1, we evaluated the sen-
sitivity of the estimators of the integrated cumulants used
in NPHC. This pertains to the estimation of the left-hand-
side of (5) and (6). In Figure 5, we report the squared
Lo 5 distance of the estimated integrated covariance and
skewness matrices to their corresponding ground-truth. As
expected, the cumulant estimators remain stable over a large
range of noise levels.
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Figure 5: Sensitivity analysis of the integrated cumulants
estimators with respect to the noise scale.
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To further quantitatively evaluate the sensitivity of each
approach to increasing noise levels, we also measured their
performance against several metrics for a large range of
noise variances o2. More specifically, we considered the
following metrics.

» Relative error. To evaluate the distance between the
estimated and the ground-truth values, we computed
the averaged relative error defined as

Gy — G1l/107, . G, > 0,
G; i — GY .|/ ming«= «o |G, |, otherwise.
N 5 o7 m,n

This metric is more sensitive to errors in small values
and therefore penalizes methods with large false posi-
tive entries learned in the excitation matrix (Zhou et al.,
2013; Figueiredo et al., 2018).

* Precision@n. To assess the performance of the ap-
proaches at recovering the top entries in G*, we
used precision@n, which is defined as the average
fraction of correctly identified entries in the top n
largest estimated values. We reported this metric for
n = 10 (Figueiredo et al., 2018; Salehi et al., 2019).

* PR-AUC. Considering that there is a Granger-causal
link between two dimensions if the learned value
G;; > n, we evaluate the performance of the result-
ing binary classification problem using the area under
the precision-recall curve over all thresholds n > 0.
Methods that accurately uncover the excitation patterns
from the randomly translated data will have a PR-AUC
close to 1.

* Ly Norm. We also measured the squared Lo
norm of the estinAlated excitation matrices, defined as
G35 = >, ; G7 ;- Methods that fail to uncover the
excitation patterns from the randomly translated data
tend to learn an almost-zero matrix with small Lo 5
norm.

The results are shown in Figure 6. As expected from Corol-
lary 1, the NHPC estimator provides stable estimates for a
large range of noise levels. On the other hand, Figure 6d
shows that the norm of the matrices estimated by the other
approaches tends to zero with increasing o2. This is partic-
ularly obvious for ADM4 and Desync-MLE. This result is
consistent with the findings of (Trouleau et al., 2019) for
the special case of synchronized noise. The WH method
performs well only for low noise. This is consistent with
the observation discussed in Section 4.3.2. This is because,
as expected, the non-causal property of G(t) in randomly
translated MHP violates the assumption of WH and hence
igtroduces a bias in the estimation. In smaller noise regime,
G (t) is closer to being causal and as a result the WH method
does a better job at learning it.
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Figure 6: Sensitivity analysis of the estimation methods
with respect to the noise scale for synthetic datasets.
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5.2. Real Data

We also evaluated the effect of random translations on a
publicly available real-world dataset of Bund Futures traded
at Burex’. This dataset was already modeled using MHPs
in (Bacry et al., 2016) using the WH algorithm. It contains
trades performed over 20 days in April 2014. Each event
corresponds to one of d = 4 types corresponding to the
following cases:

* mid-price movement up,
* mid-price movement down,
* buyer initiated trades that do not move the mid-price,

* seller initiated trades that do not move the mid-price.

Since there is no ground-truth available for this dataset,
we focus our experiments on evaluating the stability of the
estimates when a random translation is added to the obser-
vations. More precisely, for a large range of noise levels o2,
we randomly shifted the observed timestamps with distribu-
tions F; ~ N(0,0?), and compared the resulting estimated
ég to the noise-free estimate (A}’o based on the dataset with-
out random translation.

We show the results in Figure 7. We observe that they are
consistent with the conclusions reached on the synthetic
datasets. ADM4 converges to a zero excitation matrix as
the noise scale increases, whereas the cumulant-based ap-
proaches, NPHC and WH, remain stable for a wider range
of noise levels.

6. Conclusion

In this work, we studied the inference problem of multi-
variate Hawkes processes from noisy observations. We
introduced a general form of observation noise called ran-
dom translation and proved that the cumulants of MHPs are
invariant to such noise. We derived a set of equations for
the first, second, and third-order cumulants of a randomly
translated MHP with respect to its underlying parameters,
namely, the exogenous intensities and the excitation ma-
trix. Using these findings, we showed than cumulant-based
estimators are robust to random translations and can ac-
curately learn the causal structure of randomly translated
MHPs. In particular, the NPHC estimator remains consis-
tent under randomly translated observations. Because no
sample complexity bound was derived for the NPHC estima-
tor, this result only holds asymptotically. However, through
extensive experiments, we validated our results and demon-
strated that the state-of-the-art inference methods based on
maximum-likelihood fail to capture the structure when the
observations are affected by random translations.

"The dataset is publicly available at: https://github.

com/X-DataInitiative/tick-datasets/
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Figure 7: Sensitivity analysis of the estimation to noise scale
for the Bund Futures traded at Eurex.
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