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Abstract

We propose a generative model that can infer a
distribution for the underlying spatial signal con-
ditioned on sparse samples e.g. plausible images
given a few observed pixels. In contrast to sequen-
tial autoregressive generative models, our model
allows conditioning on arbitrary samples and can
answer distributional queries for any location. We
empirically validate our approach across three im-
age datasets and show that we learn to generate
diverse and meaningful samples, with the distri-
bution variance reducing given more observed
pixels. We also show that our approach is appli-
cable beyond images and can allow generating
other types of spatial outputs e.g. polynomials,
3D shapes, and videos.

1. Introduction

Imagine an artist with an empty canvas. She starts with a
dab of sky blue paint at the top, and a splash of fresh green
at the bottom. What is the painting going to depict? Perhaps
an idyllic meadow, or trees in garden under a clear sky? But
probably not a living room. It is quite remarkable that given
only such sparse information about arbitrary locations, we
can make guesses about the image in the artist’s mind.

The field of generative modeling of images, with the goal
of learning the distribution of possible images, focuses on
developing similar capabilities in machines. Most recent
approaches can be classified as belonging to one of the two
modeling frameworks. First, and more commonly used, is
the latent variable modeling framework (Kingma & Welling,
2013; Goodfellow et al., 2014). Here, the goal is to represent
the possible images using a distribution over a bottleneck
latent variable, samples from which can be decoded to ob-
tain images. However, computing the exact probabilities
for images is often intractable and it is not straightforward
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to condition inference on sparse observations e.g. pixel
values. As an alternative, a second class of autoregres-
sive approaches directly model the joint distribution over
pixels. This can be easily cast as product of conditional
distribution (van den Oord et al., 2016b;c) which makes
it tractable to compute. Conditional distributions are esti-
mated by learning to predict new pixels from previously
sampled/generated pixels. However, these approaches use
fixed sequencing (mostly predicting pixels from top-left to
bottom-right) and therefore the learned model can only take
a fixed ordering between query and sampled pixels. This
implies that these models cannot predict whole images from
a few random splashes — similar to what we humans can do
given a description of the artist’s painting above.

In this work, our goal is to build computational genera-
tive models that can achieve this — given information about
some random pixels and their associated color values, we
aim to predict a distribution over images consistent with
the evidence. To this end, we show that it suffices to learn
a function that estimates the distribution of possible val-
ues at any query location conditioned on an arbitrary set
of observed samples. We present an approach to learn this
function in a self-supervised manner, and show that it can
allow answering queries that previous sequential autoregres-
sive models cannot e.g. mean image given observed pixels,
or computing image distribution given random observations.
We also show that our proposed framework is generally
applicable beyond images and can be learned to generate
generic dense spatial signals given corresponding samples.

2. Formulation

Given the values of some (arbitrary) pixels, we aim to in-
fer what images are likely conditioned on this observation.
More formally, for any pixel denoted by random variable x,
let v denote the value for that pixel and let Sy = { v, } o,
correspond to a set of such sampled values. We are then in-
terested in modeling p(I|Sp) i.e. the conditional distribution
over images I given a set of sample pixel values Sy.

From Image to Pixel Value Distribution. We first note
that an image is simply a collection of values of pixels
in a discrete grid. Assuming an image has N pixels with
locations denoted as {g,, }\_;, our goal is therefore to model
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p(I|So) = p(Vg,,Vgss- .- Vgn|S0). Instead of modeling
this joint distribution directly, we observe that it can be
further factorized as a product of conditional distributions
using the chain rule:

p(v917v927 S 7VgN|SO) = Hp(vgn‘SO7vgl7 s 7vgn71)

n

Denoting by S,, = Sp U {v,;, }}_,, we obtain:
p(I150) = [ [ P(vg.|Sn-1) (D

Sample Conditioned Value Prediction. The key observa-
tion from Eq. 1 is that all the factors are in the form of
p(vx|S). That is, the only queries we need to answer are:
‘given some observed samples S, what is the distribution
of possible values at location x’? To learn a sample condi-
tioned generative model for images, we therefore propose
to learn a function fy to infer p(vx|S) for arbitrary inputs x
and S. Concretely, we formulate our task as that of learn-
ing a function fy(x, {(xx, vx)}) that can predict the value
distribution at an arbitrary query location x given a set of
arbitrary sample (position, value) pairs {(xx, vg)}-

In summary:

o The task of inferring p(I|Sp) can be reduced to queries
of the form p(vy|S).

e We propose to learn a function fp(x, {(xx, vy)}) that
can predict p(vx|{vx, }) for arbitrary inputs.

While we used images as a motivating example, our for-
mulation is also applicable for modeling distributions of
other dense spatially varying signals. For RGB images,
x € R2, v € R?, but other spatial signals e.g. polynomials
(x € R, v € RY), 3D shapes represented as Signed Dis-
tance Fields, (x € R3, v € R!) or videos (x € R3, v € R3)
can also be handled by learning fy(x, {(xx,vx)}) of the
corresponding form (see Section 6).

3. Related Work

Autoregressive Generative Models. Closely related to our
work, autoregressive generative modeling approaches also
factorize the joint distribution into per-location conditional
distributions. Seminal works such as Wavenet (van den
Oord et al., 2016a), PixeIRNN (van den Oord et al., 2016c¢)
and PixelCNN (van den Oord et al., 2016b) showed that
we can learn the distribution over the values of the ‘next’
timestep/pixel given the values of the previous ones, and
thereby learn a generative model for the corresponding
domain (speech/images). Subsequent approaches have
further improved over these works by modifying the
parametrization (Salimans et al., 2017), incorporating hier-
archy (van den Oord et al., 2017; Razavi et al., 2019), or
(similar to ours) foregoing convolutions in favor of alternate

base architectures (Chen et al., 2020; Parmar et al., 2018)
such as Transformers (Vaswani et al., 2017).

While this line of work has led to impressive results, the
core distribution modeled is that of the ‘next’ value given
‘previous’ values. More formally, while we aim to predict
p(vx|S) for arbitrary x, S, the prior autoregressive genera-
tive models only infer this for cases where S contains pixels
in some sequential (e.g. raster) order and x is the immediate
‘next’ position. Although using masked convolutions can
allow handling many possible inference orders (Jain et al.,
2020), the limited receptive field of convolutions still limits
such orders to locally continuous sequences. Our work can
therefore be viewed as a generalization of previous ‘sequen-
tial’ autoregressive models in two ways: a) allowing any
query position x, and b) handling arbitrary samples .S for
conditioning. This allows us to answer questions that prior
autoregressive models cannot e.g. ‘if the top-left pixel is
blue, how likely is the bottom-right one to be green?’, ‘what
is the mean image given some observations?’, or ‘given
values of 10 specific pixels, sample likely images’.

Implicit Neural Representations. There has been a grow-
ing interest in learning neural networks to represent 3D tex-
tured scenes (Sitzmann et al., 2019), radiance fields (Milden-
hall et al., 2020; Martin-Brualla et al., 2021; Zhang et al.,
2020) or more generic spatial signals (Sitzmann et al., 2020;
Tancik et al., 2020). The overall approach across these
methods is to represent the underlying signal by learning
a function g4 that maps query positions x to correspond-
ing values v (e.g. pixel location to intensity). Our learned
fo(, {(xx,VvE)}) can similarly be thought of as mapping
query positions to a corresponding value (distribution),
while being conditioned on some sample values. A key
difference however, is the ability to generalize — the above
mentioned approaches learn an independent network per
instance e.g. a separate g4 is used to model each scene,
therefore requiring from thousands to millions of samples to
fit g4 for a specific scene. In contrast, our approach uses a
common fy across all instances and can therefore generalize
to unseen ones given only a sparse set of samples. Although
some recent approaches (Xu et al., 2019; Park et al., 2019;
Mescheder et al., 2019) have shown similar ability to gener-
alize and infer novel 3D shapes/scenes given input image(s),
these cannot handle sparse input samples and do not allow
inferring a distribution over the output space.

Latent Variable based Generative Models. Our approach,
similar to sequential autoregressive models, factorizes the
image distribution as products of per-pixel distributions.
An alternate approach to generative modeling, however,
is to transform a prior distribution over latent variables
to the output distribution via a learned decoder. Several
approaches allow learning such a decoder by leveraging
diverse objectives e.g. adversarial loss (Goodfellow et al.,
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2014), variational bound on the log-likelihood (Kingma
& Welling, 2013), nearest neighbor matching (Bojanowski
et al., 2018; Li & Malik, 2018), or the log-likelihood with a
restricted decoder (Rezende & Mohamed, 2015). While all
of these methods allow efficiently generating new samples
from scratch (by randomly sampling in the latent space),
it is not straightforward to condition this sampling given
partial observations — which is the goal of our work.

Bayesian Optimization and Gaussian Processes. As al-
luded to earlier, any spatial signal can be considered a func-
tion from positions to values. Our goal is then to infer a
distribution over possible functions given a set of samples.
This is in fact also a central problem tackled in bayesian
optimization (Brochu et al., 2010), using techniques such as
gaussian processes (Rasmussen, 2003) to model the distri-
bution over functions. While the goal of these approaches
is similar to ours, the technique differs significantly. These
classical methods assume a known prior over the space of
functions and leverage it to obtain the posterior given some
samples (we refer the reader to (Murphy, 2012) for an ex-
cellent overview). Such a prior over functions (that also
supports tractable inference), however, is not easily avail-
able for complex signals such as images or 3D shapes —
although some weak priors (Ulyanov et al., 2018; Osher
et al., 2017) do allow impressive image restoration, they do
not enable generation given sparse samples. In contrast, our
approach allows learning from data, and can be thought of as
learning this prior as well as performing efficient inference
via the learned model fy.

4. Learning and Inference

Towards inferring the distribution of images given a set
of observed samples, we presented a formulation in Sec-
tion 2 that reduced this task to that of learning a function to
model p(vx|{vx, }). We first describe in Section 4.1 how
we parametrize this function and how one can learn it from
raw data. We then show in Section 4.2 and Section 4.3 how
this learned function can be used to query and draw sam-
ples from the conditional distribution over images p(I|Sp).
While we use images as the running example, we reiterate
that the approach is more generally applicable (as we also
empirically show in Section 6).

4.1. Learning to Predict Value Distributions

We want to learn a function fy that can predict the proba-
bility distribution of possible values at any query location
x conditioned on a (arbitrary) set of positions with known
values. More formally, we want fo(x, {(xx, Vvg)}) to ap-
proximate p(vx|{vx, })-

Distribution Parametrization. The output of fy is sup-

posed to be a distribution over possible values at location x
and not a single value estimate. How should we parametrize
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Figure 1. Prediction Model. Given a set of (position, value)
pairs {(xx,Vvk)}, our model encodes them using a Trans-
former (Vaswani et al., 2017) encoder. A query position x is
then processed in context of this encoding and a value distribution
is predicted (parametrized by w).

this distribution? Popular choices like gaussian parametriza-
tion may not capture the multimodal nature of the distribu-
tion e.g. a pixel maybe black or white, but not gray. An
alternate is to discretize the output space but this may re-
quire a large number of bins e.g. 2562 for possible RGB
values. Following PixelCNN++ (Salimans et al., 2017), we
opt for a hybrid approach — we predict probabilities for the
value belonging to one of B discrete bins, while also pre-
dicting a continuous gaussian parametrization within each
bin. This allows predicting multimodal distributions while
enabling continuous outputs.

Concretely, we instantiate B bins (roughly) uniformly
spaced across the output space where for any bin b, its
center corresponds to c®. The output distribution is then
parametrized as w = {(¢®, ub,0%)} 2. Here ¢* € R is
the probability of assignment to bin b, ¢” 4 1i® is the mean of
the corresponding gaussian distribution with uniform vari-
ance o” € R'. Assuming the values v € R?, our network
therefore outputs w € RE*(4+2)  We note that this distri-
bution is akin to a mixture-of-gaussians, and given a value
v, we can efficiently compute its likelihood p(v; w) under it
(see appendix for details). We can also efficiently compute
the expected value v as:

B

v= [oveviv =Y dud) @

b=1

Model Architecture. Given a query position x, we
want fo(x, {(Xxx,Vvr)}) to output a value distribution as
parametrized above. There are two design considerations
that such a predictor should respect: a) allow a variable
number of input samples {(xx, Vi) }, and b) be permutation-
invariant w.r.t. the samples. We leverage the Trans-
former (Vaswani et al., 2017) architecture as our backbone
as it satisfies both these requirements. As depicted in Fig-
ure 1, our model can be considered as having two stages:
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Figure 2. Training Overview. Given an image, we randomly sam-
ple pixels to obtain the conditioning set S as well as a query pixel
x with value vi. Our model predicts the conditional value distri-
bution for this arbitrary query location and we use the negative
log-likelihood for the true value as our learning objective.

a) an encoder that, independent of the query x, processes
the input samples {(x, vi)} and computes a per-sample
embedding, and b) a decoder that predicts the output distri-
bution by processing the query x in context of the encodings.

As shown in Figure 1, we first independently embed each
input sample (xy, v ) using position and value encoding
modules respectively, while following the insight from (Tan-
cik et al., 2020) to use fourier features when embedding po-
sitions. These per-sample encodings are then processed by a
sequence of multi-headed self-attention modules (Vaswani
et al., 2017) to yield the encoded representations for the
input samples. The query position x is similarly embedded,
and processed via multi-headed attention modules in context
of the sample embeddings. A linear decoder finally predicts
w € RBE*(4+2) to parametrize the output distribution.

Training Objective. Recall that our model
fo(x,{(xxk,vi)}) aims to approximate p(vx|{Vvx,})
for arbitrary query positions x and sample sets S = {vx, }.
Given a collection of training images, we can in fact
generate training data for this model in a self-supervised
manner. As illustrated in Figure 2, we can simply
sample arbitrary x, .S from any image, and maximize the
log-likelihood of the true value v under the predicted
distribution p(vx|{vx, })-

While we described the processing for a single query posi-
tion x, it is easy to parallelize inference and process a batch
of queries @) conditioned on the same input sample set S.
In this case, we can consider the model as independently
predicting p(vx|{vx, }) for each x € Q. Instead of using a
single query x, we therefore use a batch of queries ) and
minimize the negative log-likelihood across them. More
formally, given a dataset D of images, we randomly sample
an image I, and then choose arbitrary sample and query sets
S, @, and minimize the expected negative log-likelihood of
the true values as our training objective:

L=E E E -—logp(viw)
I~D S,Q~I x~Q (3)

where, w = fo(x; {(x%, Vi)})

4.2. Inferring Marginals and Mean

Section 4.1 introduced our approach to enable learning fy
that can approximate p(v|S). But given such a learned
function, what can it enable us to do? One operation that
we focus on later in Section 4.3 is that of sampling images
I ~ p(I]S). However, there is another question of interest
which is not possible to answer with the previous sequential
autoregressive models (van den Oord et al., 2016b;a), but
is efficiently computable using our model: ‘what is the
expected image I given the samples S?°.

We reiterate that an image can be considered as a collection
of values of pixels located in a discrete grid {g, })_,. In-
stead of asking what the expected image I is, we can first
consider a simpler question — what is the expected value
vy, for the pixel g,, given S? By definition:

vgn = /p(vgn|S) Vgn dvgn

As our learned model fy allows us to directly estimate the
marginal distribution p(vy,, |S), the above computation is
extremely efficient to perform and can be done indepen-
dently across all locations in the image grid {g,, })_;.

‘_fgn = /p(v§wn) \4 dV; Wnp = f@(g’m {(kavk)}) 4)

Given the estimate of v, , the mean image I is then just
the image with each pixel assigned its mean value v, i.e.
I = {v,,}_,. The key difference compared to sequen-
tial autoregressive models (van den Oord et al., 2016b;a)
that enables our model to compute this mean image is that
our model allows computing p(v,, |S) for any location gy,
whereas approaches like (van den Oord et al., 2016b;a) can
only do so for the ‘next’ pixel.

4.3. Autoregressive Conditional Sampling

One of the driving motivations for our work was to be able
to sample the various likely images conditioned on a sparse
set of pixels with known values. That is, we want to be able
to draw samples from p(I]Sy). Equivalently, to sample an
image from p(1|Sy), we need to sample the values at each
pixel {vg, } from p(vg,,Vg,,...,Vgy|So).

As we derived in Eq. 1, this distribution can be factored
as a product of per-pixel conditional distributions. We can
therefore sample from this distribution autoregressively —
sampling one pixel at a time, with subsequent pixels being
informed by ones sampled prior. Concretely, we iteratively
perform the following computation:

wn = folgn, {Xn, vic} U{g;, Vi 1)) o)
V; Np(v;wn> (6)

Here, w,, denotes the parameters for the predicted distribu-
tion for the pixel g,. Note that this prediction takes into
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Figure 3. Inferred Mean Images. We visualize the mean image predicted by our learned model on random instances of the Cat Faces
dataset. Top row: ground-truth image. Rows 2-8: Predictions using increasing number of observed pixels |S]|.

account not just the initial samples Sy, but also the subse-
quent n — 1 samples (hence the difference from w,, in Eq. 4).
v/, represents a value then sampled for the pixel g,, from
the distribution parametrized by wy,.

Randomized Sampling Order. While we sample the val-
ues one pixel at a time, the ordering of pixels g1,...,gn
need not correspond to anything specific e.g. it is not nec-
essary that g; should be the top-left pixel and gy be the
bottom-right one. In fact, as our model fy is trained using
arbitrary sets of samples .S, using a structured sampling or-
dering e.g. raster order would make the testing setup differ
from training. Instead, for every sample I ~ p(I|S) that we
draw, we use a new random order in which the pixels of the
image grid are sampled.

Sidestepping Memory Bottlenecks. As Eq. 5 indicates,
the input to f when sampling the (n + 1)!" pixel is a set of
size K +n — the initial K observations and the subsequent n
samples. Unfortunately, our model’s memory requirement,
due to the self-attention modules, grows cubically with this
input size. This makes it infeasible to autoregressively sam-
ple a very large number of pixels. However, we empirically
observe that given a sufficient number of (random) samples,
subsequent pixel value distributions do not exhibit a high
variance. We leverage this observation to design a hybrid
sampling strategy. When generating an image with N pix-
els, we sample the first N’ (typically 2048) autoregressively
i.e. following Eq. 5 and Eq. 6. For the remaining N — N’
pixels, we simply use their mean value estimate conditioned
on the initial and generated K + N’ samples (using Eq. 4).
While this may lead to some loss in detail, we qualitatively
show that the effects are not prohibitive and that the sample
diversity is preserved.

5. Experiments

To qualitatively and quantitatively demonstrate the efficacy
of our approach, we consider the task of generating images
given a set of pixels with known values. The goal of our
experiments is twofold — a) to validate that our predictions
account for the observed pixels, and b) to show that the
generated samples are diverse and plausible.

Datasets. We examine our approach on three different im-
age datasets — CIFAR10 (Krizhevsky, 2009), MNIST (Le-
Cun et al., 1998), and the Cat Faces (Wu et al., 2020) dataset
while using the standard image splits. Note that we only
require the images for training — class or attribute labels are
not leveraged for learning our models i.e. even on CIFAR10,
we learn a class-agnostic generative model.

Training Setup. We vary the number of observed pixels S
randomly between 4 and 2048 (with uniform sampling in
log-scale), while the number of query samples @ is set to
2048. During training, the locations x are treated as varying
over a continuous domain, using bilinear sampling to obtain
the corresponding value — this helps our implementation
be agnostic to the image resolution in the dataset. While
we train a separate network fy for each dataset, we use the
exact same model, hyper-parameters efc. across them.

Qualitative Results: Mean Image Prediction. We first
examine the expected image I inferred by our model given
some samples S. We visualize in Figure 3 our predictions
on the Cat Faces dataset using varying number of input
samples. We observe that even when using as few as 4
pixels in .S, our model predicts a cat-like mean image that,
with some exceptions, captures the coarse color accurately.
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Figure 4. Image Samples. Sample images generated by our learned model on three datasets (left: MNIST, middle: Cat Faces, right:
CIFAR10) given |.S| = 32 observed pixels. Top row: ground-truth image from which .S is drawn. Row 2: A nearest neighbor visualization
of S — for each image pixel we assign it the color of the closest observed sample in S. Rows 3-5: Randomly sampled images from p(I|S).

Figure 5. Image Composition. Generation results when drawing
pixels from two different images. Top row: the composed image
from which S is drawn. Row 2: A nearest neighbor visualization
of S. Row 3: Randomly sampled image from p(I]5).

A very small number of pixels, however, is not sufficiently
informative of the pose/shape of the head, which become
more accurate given around 100 samples. As expected,
the mean image becomes closer to the true image given
additional samples, with the later ones even matching finer
details e.g. eye color, indicating that the distribution p(I|S)
reduces in variance as | S| increases.

Qualitative Results: Sampling Images. While examining
the mean image assures us that our average prediction is
meaningful, it does not inform us about samples drawn from
p(I]S). In Figure 4, we show results on images from each
of the three datasets considered using |.S|=32 randomly ob-
served pixel values in each case. We see that the sampled
images vary meaningfully (e.g. face textures) while pre-
serving the coarse structure, though we do observe some
artefacts e.g. missing horse legs.

As an additional application, we can generate images by
mixing pixel samples from different images. We showcase
some results in Figure 5 where we show one generated im-

Reconstruction Accuracy on CIFAR10 Classification Accuracy on CIFAR10

Accuracy

02 = Decoder + Optimization
b = Ours (Mean Image)
Ours (Image Samples)

0 500 1000 1500 2000 0 500 1000 1500 2000
sl Isl

Figure 6. Reconstruction Accu- Figure 7. Classification Accu-
racy of generated images. racy of generated images.

age given some pixels from top/bottom of two different
images. We see that, despite some mismatch in the align-
ment/texture of the underlying faces, our model is able to
compose them to generate a plausible new image.

Reconstruction and Classification Accuracy. In addition
to visually inspecting the mean and sampled images, we
also quantitatively evaluate them using reconstruction and
classification based metrics on the CIFAR10 dataset. First,
we measure how similar our obtained images are to the
underlying ground-truth image. Figure 6 plots this accuracy
for varying size of .S — we compute this plot using 128 test
images, varying |.S| from 4 to 2048 for each. When reporting
the accuracy for sampled images, we draw 3 samples per
instance and use the average performance. We also report
a baseline that uses a pretrained decoder(from a VAE) and
optimizes the latent variable to best match the pixels in S
(see appendix for details). We observe that our predicted
images, more so than the baseline, match the true image.
Additionally, the mean image is slightly more ‘accurate’ in
terms of reconstruction than the sampled ones — perhaps
because the diversity of samples makes them more different.

We also plot the classification accuracy of the generated
images in Figure 7. To do so, we use a pretrained ResNet-
18 (He et al., 2016) based classifier and measure whether
the correct class label is inferred from our generated images.
Interestingly, we see that even if using images generated
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Figure 8. Shape Generation. Sample 3D shapes generated given |.S| = 32 observed SDF values at random locations. Top row: ground-
truth 3D shape. Row 2: A visualization of S — a sphere is centred at each position with color indicating value (red implies higher SDF).
Rows 3-5: Randomly sampled 3D shapes from our predicted conditional distribution.
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Figure 9. Polynomial Prediction. Mean and sampled polynomi-
als generated by our learned model. Row 1: Predictions using
|S| = 4 samples (red dots). Row 1: Predictions using |S| = 6.

from as few as 16 pixels, we obtain about a 30% classi-
fication accuracy (or over 60% with 128 pixels). As we
observe more pixels, the accuracy matches that of using the
ground-truth images. Finally, we see that using the sampled
images yields better results compared to the mean image, as
the sampled ones look more ‘real’.

6. Beyond Images: 1D and 3D Signals

While we leveraged our proposed framework for generat-
ing images given some pixel observations, our formulation
is applicable beyond images. In particular, assuming the

Figure 10. Video Synthesis. Sample videos generated by our
model given |S|=1024 observed pixels across 34 frames. Top
row: 4 uniformly sampled frames of the ground-truth video. Row
2: A nearest neighbor visualization of S. Rows 3-5: Randomly
sampled videos from the predicted conditional distribution.

availability of (unlabeled) examples, our approach can learn
to generate any dense spatial signal given some (position,
value) samples. In this section, we empirically demonstrate
this by learning to generate 1D (polynomial) and 3D (shapes
and videos) signals using our framework.

We would like to emphasize that across these settings, where
we are learning to generate rather different spatial signals,
we use the same training objective and model design. That
is, except for the dimensionality of input/output layers and
distribution parametrization to handle the corresponding
inputs/outputs x € R* v € RY, our model or learning
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objective is not modified in any way specific to the domain.

6.1. Polynomial Prediction

As an illustrative example to study our method, we consider
a classical task — given a sparse set of (z, g(x)) pairs, where
x,g9(x) € R, we want to predict the value of g over its
domain. We randomly generate 6-degree polynomials, draw
from 4 to 20 samples to obtain S, and learn fy to predict
distribution of values at |()|=20 query locations. One sim-
plification compared to the model used for images is we
use B = 1 instead of B = 256 (i.e. a simple gaussian
distribution) to parametrize the output distribution.

We visualize our predictions in Figure 9, where the columns
correspond to different polynomials, and the rows depict our
results with varying number of inputs in S. We see that the
various sample functions we predict are diverse and mean-
ingful, while being constrained by the observed position,
value pairs. Additionally, as the number of observations in
S increase, the variance of the function distribution reduces
and matches the true signal more closely.

6.2. Generating 3D Shapes

We next address the task of generating 3D shapes repre-
sented as signed distance fields (SDFs). We consider the
category of chairs using models from 3D Warehouse (3DW),
leveraging the subset recommended by Chang et al. (Chang
et al., 2015). We use the train/test splits provided by (Xu
et al., 2019), with 5268 shapes used for training, and 1311
for testing. We extract a SDF representation for each shape
as a grid of size 643, with each location recording a con-
tinuous signed distance value — this dense representation is
better suited for our approach compared to sparse occupan-
cies. Our training procedure is exactly the same as the one
used for 2D images — we sample the SDF grid at random
locations to generate .S, (), with the number of samples in .S
varying from 4 to 2048, and || being 2043.

We present some randomly chosen 3D shapes generated
by our model when using |S| = 32 in Figure 8. While
we actually generate a per-location signed distance value,
we extract a mesh using marching cubes to visualize this
prediction. As the results indicate, even when using only 32
samples from such a high-dimensional 3D spatial signal, our
model is able to generate diverse and plausible 3D shapes.
In particular, even though this is not explicitly enforced, our
model generates symmetric shapes and the variations are
semantically meaningful as well as globally coherent e.g.
slope of chair back, handles with or without holes. However,
as our model generates the SDF representation, and does
not directly produce a mesh, we often see some artefacts
in the resulting mesh e.g. disconnected components, which
can occur when thresholding a slightly inconsistent SDF.

6.3. Synthesizing Videos

Lastly, we examine the domain of ‘higher-dimensional’ im-
ages (e.g. videos). In particular, we use the subset of ‘beach’
videos in the TinyVideos dataset (Vondrick et al., 2016;
Thomee et al., 2016) (with a random 80% — 20% train-test
split) and train our model to generate video clips with 34
frames. Note that these naturally correspond to 3D spa-
tial signals, as the position x includes timeframe € R! in
addition to a pixel coordinate.

We train our model fy to generate the underlying signal
distribution given sparse pixel samples where we randomly
choose a frame and pixel coordinate for each sample. We
empirically observe that due to the high complexity of the
output space, using only a small number of samples does
not provide significant information for learning generation.
We therefore train our model using more samples than the
image generation task — varying |S| between 512 to 2048
(this corresponds to 30 pixels per frame).

We present representative results in Figure 10 but also en-
courage the reader to see the videos in the project page. Our
model generates plausible videos with some variation e.g.
flow of waves and captures the coarse structure of the output
well. However, the predictions lack precise detail. We at-
tribute this to the limited number of pixels we can generate
autoregressively (see discussion in Section 4.3 on memory
bottlenecks) and hypothesize that a higher number maybe
needed for modeling these richer signals.

7. Discussion

We proposed a probabilistic generative model capable of
generating images conditioned on a set of random observed
pixels, or more generally, synthesizing spatial signals given
sparse samples. At the core of our approach is a learned
function that predicts value distributions at any query loca-
tion given an arbitrary set of observed samples. While we
obtain encouraging results across some domains, there are
several aspects which could be improved e.g. scalability,
perceptual quality, and handling sparse signals. To allow
better scaling, it could be possible to generalize the outputs
from distributions over individual pixels to those over a
vocabulary of tokens encoding local patches or investigate
strategies to better select conditioning subsets (e.g. nearest
samples). The perceptual quality of our results could be
further improved and incorporating adversarial objectives
maybe a promising direction. Finally, while our framework
allowed generating pixel values, we envision that a similar
approach could predict other dense properties of interest e.g.
semantic labels, depth, generic features.
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Appendix

Log-likelihood under Value Distribution. The pre-
dicted value distribution for a query position x is of the
form p(v;w), where w = {(¢*, u®,a®)}2_,. We reiterate
q" € R! is the probability of assignment to bin b, c® 4 °
is the mean of the corresponding gaussian distribution with
uniform variance o® € R!.

Under this parametrization, we compute the log-likelihood
of a value v* by finding the closest bin b*, and computing
the log-likelihood of assignment to this bin as well as the
log-probability of the value under the corresponding gaus-
sian. We additionally use a weight o = 0.1 to balance the
classification and gaussian log-likelihood terms.
b* = argmin, ||v* — ||
* b* b*

log p(v*;w) =log ¥ — a(logo® + (V Cab* a )?)
VAE Training and Inference. We train a variational auto-
encoder (Kingma & Welling, 2013) on the CIFAR10 dataset
with a bottleneck layer of dimension 4 x 4 x 64 i.e. spa-
tial size 4 and feature size 64. We consequently obtain a
decoder D which we use for inference given some observed
samples S. Specifically, we optimize for an optimal latent
variable the minimizes the reconstruction loss for the ob-
served samples (with an additional prior biasing towards
the zero vector). Denoting by I(x) the value of image [
(bilinearly sampled) at position x, the image I* inferred
using a decoder D by optimizing over S can be computed

as:

z* = argmin, L(D(z),S) + 0.001 % ||z||%; I* = D(z*)
L {(xer, vie) }) = EI1(xx) = Villa
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