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Abstract
We perform a rigorous study of private matrix analysis when only the last W updates to matrices are considered
useful for analysis. We show the existing framework in the non-private setting is not robust to noise required for
privacy. We then propose a framework robust to noise and use it to give first efficient o(W ) space differentially
private algorithms for spectral approximation, principal component analysis (PCA), multi-response linear regres-
sion, sparse PCA, and non-negative PCA. Prior to our work, no such result was known for sparse and non-negative
differentially private PCA even in the static data setting. We also give a lower bound to demonstrate the cost of
privacy.

1. Introduction
Matrix analysis manifests itself in many walks of life such as financial transactions, recommendation system, social networks,
machine learning, and learning kernels. In the recent past, there has been a paradigm shift in matrix analysis in the era of big
data. Two aspects that have become increasingly important are (i) protecting sensitive information and (ii) the increasing
frequency with which data is being continuously updated. An example that illustrates the importance of these two aspects
arises in several investment strategies in a financial firm. The strategies rely on matrix analysis (such as principal component
analysis) of financial data that get continuously updated. Most of these strategies make use of “recent data" as opposed to
the entire history. This heuristic is rooted in the empirical observation that recent data are better predictors of the future
behavior of assets than older data (Moore et al., 2013; Tsay, 2005), a theme also found in many other applications of matrix
analysis (Campos et al., 2014; Quadrana et al., 2018).

Moreover, the strategies are sensitive and have to be kept private. It is well documented that performing statistical analysis,
including matrix analysis, accurately can leak private information (Narayanan & Shmatikov, 2006). As a result, privacy
preserving algorithms for matrix analysis with robust privacy guarantees such as differential privacy are known (Amin
et al., 2019; Blum et al., 2005; Dwork et al., 2014; Kapralov & Talwar, 2013; McSherry & Mironov, 2009; Hardt &
Price, 2014; Hardt & Roth, 2012; Upadhyay, 2018)). However, these algorithms are not amenable to the scenario where a
collection of the most recent updates on data is pertinent for analysis. In contrast, the current practical deployment of private
algorithms (Erlingsson et al., 2014; Thakurta et al., 2017) favors using only recent data for a variety of reasons.

In view of this, we focus on a rigorous and comprehensive study of privacy-preserving matrix analysis in the sliding window
model of privacy (Bolot et al., 2013; Chan et al., 2012; Upadhyay, 2019). The model is parameterized by the window size
W , and assumes that the data arrive in the form of (possibly infinite) stream over time. An analyst is required to perform the
analysis only on the W most recent streams of data (usually referred to as a sliding window) using o(W ) space. On the
other hand, privacy is guaranteed for the entire historical data, i.e., even if the data is not in the current window, its privacy
should not be compromised.

We give o(W ) space differentially private algorithms for several matrix analysis problems in the sliding window model (see,
Table 1). Here and henceforth, o(W ) will ignore other factors such as matrix dimensions and privacy parameters.

A brief overview of our main contributions are as follows (and annotate each of the points below with the corresponding
appendix in the supplementary material).
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Privacy Additive error Space required Reference

η-spectral approximation (ε, δ)-DP O
(
r2 log2(1/δ)

ε2

)
1d O

(
r2d
η

logW
)

Theorem 13

Principal component analysis (PCA) (ε, δ)-DP O
(√

kd log(1/δ)
ε

)
O
(
dk2

η3
logW

)
Theorem 16

Sparse and Non-negative PCA (ε, δ)-DP O
(√

kd log(1/δ)
ε

)
O
(
dk2

η3
logW

)
Theorem 17

Multiple linear regression (ε, δ)-DP O
(
d
(
d+ log(1/δ)

ε

))
O
(
d3

η
logW

)
Theorem 18

Directional variance query (ε, δ)-DP O
(
d
(
d+ log(1/δ)

ε

))
O
(
d3

η
logW

)
Theorem 11

Table 1. Results presented in this paper (W : window size, k : target rank, d : dimension of streamed row, privacy parameters (ε, δ), 1d is
a d× d identity matrix, r: rank of streamed matrix).

1. (Limitations of known framework and algorithm). We show that existing framework of spectral histogram used in
the non-private setting (Braverman et al., 2020) is too stringent for privacy and algorithms in that framework are not
robust to perturbation required for privacy. We show rigorously that the strict constraint imposed by spectral histogram
only permits sub-optimal accurate private algorithms (Appendix B). That is, adding appropriately scaled noise to the
algorithm of (Braverman et al., 2020) does not suffice. This warrants a robust framework for private matrix analysis.

2. (New framework and data structure). We introduce a relaxation of spectral histogram property on a set of positive
semidefinite (PSD) matrices that is more robust to noise and call it approximate spectral histogram property. We also
design an update time efficient data structure that maintains the approximate spectral histogram property on a set of
PSD matrices while preserving differential privacy (Appendix C).

3. (Optimal algorithms for matrix analysis). We use approximate spectral histogram property to efficiently compute
private spectral approximation. Using this, we solve several matrix analysis problems in the sliding window model
while preserving privacy and optimal accuracy in Appendix D: (i) principal component analysis (PCA); (ii) directional
variance queries; and (iii) multi-response linear regression. We also give algorithm for private constrained PCA (Cohen
et al., 2015). This generalizes many variants of PCA studied in statistical machine learning such as sparse PCA and
non-negative PCA.

4. (Limitation of private sliding window algorithms). Finally, to complete the picture, we exhibit limitations of private
matrix analysis by giving a lower bound on differentially private algorithm for low-rank approximation in the sliding
window model (Appendix E).

There is a known separation between what is achievable with privacy and without privacy for real-valued functions in the
sliding window model (Upadhyay, 2019). Our work can be seen as extending this study to matrix-valued functions in a
unified manner. Conceptually, approximate spectral histogram property can be viewed as a generalization of subspace
embedding property (Sarlós, 2006). This allows us to use approximate spectral histogram property in the sliding window
model in the same way as subspace embedding is employed in the streaming model of privacy (Upadhyay, 2018). Given
the wide application of subspace embedding in streaming algorithms, we believe that the notion of approximate spectral
histogram will have further applications in the sliding window model of privacy.

A natural question one may ask is why we need to introduce approximate spectral histogram property in the sliding window
model of privacy. We end this section with a discussion on this (more details in Section 2). Let us consider the spectral
approximation of matrices. There is one private algorithm (Blocki et al., 2012) which relies on subspace embedding. They
explicitly compute the singular value decomposition of the matrix making it suitable only for static data matrix. Furthermore,
we cannot just take off-the-shelf algorithm and add noise matrix to preserve privacy as well as guarantee non-trivial utility
and efficiency. To begin with, standard noise mechanisms would result in a matrix that is not positive semidefinite. This is,
for example, the mechanism in Dwork et al. (2014). If we instead use the projection trick of Arora & Upadhyay (2019) on
top of Dwork et al. (2014), it would incur noise that scales with the dimension and have an inefficient update time. Moreover,
the existing randomized space-efficient algorithm of Braverman et al. (2020) performs sampling proportional to its leverage
score. As a result, the effect of a single row in the matrix formed by this sampling procedure can be arbitrarily large, and
consequently, the sensitivity is high1.

1There are counterexamples where leverage score for a row can change arbitrarily depending on whether it is in the span of the current
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Figure 1. Dependency graph of various results (bold lines shows optimal results and dashed lines shows suboptimal results, orange
boxes are datastructure). For example, a datastructure satisfying η-approximate spectral histogram implies an algorithm for spectral
approximation, and so on. All our algorithms extend to the streaming model as well by setting W = T .

Notations. For a natural number n, the notation [n] denotes the set {1, . . . , n}. The Euclidean norm of a vector v ∈ Rd is
denoted by ||v||2. For a rank-r matrix A ∈ Rn×d, we let the tuple (s1(A), s2(A), . . . , sr(A)) denote the non-zero singular
values of A arranged in decreasing order, A> to denote transpose of A, and ‖A‖F to denote its Frobenius norm. The i-th
row vector and the j-th column vector of a matrix A are denoted by A[i :] and A[: j], respectively. We use ‖A[: j]‖2 and
‖A[i :]‖2 to denote their Euclidean norms. We use 1d to denote identity matrix of dimension d. If all the eigenvalues of
a symmetrix matrix S ∈ Rd×d are non-negative, then the matrix is known as positive semidefinite (PSD for short) and is
denoted by S � 0. For symmetric matrices A,B ∈ Rd×d, the notations A � B implies that B − A is PSD and A 6� B
implies that B −A is not a PSD. For any T, d > 0, we use NT,d to denote the following set of T × d matrices:

NT,d :=
{
B ∈ RT×d : ∃i ∈ [T ] such that ‖B[i :]‖2 ≤ 1

and ‖B[j :]‖2 = 0 for all j 6= i} .

A comprehensive overview of preliminaries and notations is presented in Appendix A.

1.1. Sliding window, privacy, and matrix analysis

We start by defining some additional notations pertinent to studying matrix analysis in the sliding window model. The
matrix formed by d-dimensional row vectors streamed between time stamps t1 and t2 is denoted A[t1,t2]. We define
AW (T ) := A[T−W+1,t] for any current timestamp T where W is used to denote the window size and AT := A[0,T ]. The
matrix AT can be obtained by setting W = T and gives us the insertion only streaming model (Muthukrishnan, 2005). The
matrixAW (T ) ∈ RW×d is formed incrementally through a stream of d-dimensional row vectors {ai : T −W +1 ≤ i ≤ T}
as follows:

AW (T ) :=


aT−W+1

...
aT−1

aT

 ∈ RW×d. (1)

At start, the matrix AW (0) is an all zero matrix (with ai = 0d if i ≤ 0). At any time T , we are interested in performing
various analysis on the matrix AW (T ). Our results are independent of the current time stamp T , and we will slightly abuse
the notation by letting AW = AW (T ) as the matrix formed by rows streamed in the last W updates.

We now formalize the privacy model. We adhere to the neighboring relation employed in existing literature studying
matrix analysis in static setting (Blocki et al., 2012; Hardt & Roth, 2012; Dwork et al., 2014; Sheffet, 2019) and streaming
setting (Upadhyay, 2018).

matrix or not (see for example, (Arora & Upadhyay, 2019) in the context of graph sparsification). In fact, it is not clear if we can even use
the exponential mechanism because for most natural score functions, one can construct counterexamples where the sensitivity of the score
function is also large.
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In privacy literature, there are two well-studied levels of granularity when the data arrives in an online manner (Bolot et al.,
2013; Chan et al., 2011; 2012; Dwork et al., 2010; Dwork & Roth, 2014; Upadhyay, 2018; 2019): (i) user-level privacy,
where two streams are neighboring if they differ in a single user’s data; and (ii) event-level privacy, where two streams
are neighboring if they differ in one-time epoch. We follow previous works on private analysis in the sliding window
model (Bolot et al., 2013; Chan et al., 2012; Huang et al., 2021) and consider event-level privacy. We say that two streams
are neighboring if, at any time T > 0, they form matrices AT and A′T such that AT − A′T ∈ NT,d. We now define the
privacy notion that extends the privacy notion of Bolot et al. (2013); Chan et al. (2012); Huang et al. (2021); Upadhyay et al.
(2021) and Upadhyay (2019) to general matrices.
Definition 1 (Differential privacy under sliding window model). For ε ≥ 0, δ ∈ [0, 1], we say a randomized algorithmM
with range Y is (ε, δ)-differentially private in the sliding window model if for all T > 0, for every two matrices AT and A′T
formed by neighboring streams, and for all S ⊆ Y, Pr[M(AT ) ∈ S] ≤ exp(ε) Pr[M(A′T ) ∈ S] + δ, where the probability
is over the private coin tosses of M .

Note that the privacy guarantee is for the entire stream, i.e., even if the data has expired, its privacy is not lost. However,
accuracy is required only for the last W updates. This is in accordance with previous problem formulation (Bolot et al.,
2013; Chan et al., 2012; Upadhyay, 2019).

The central algebraic concept underlying all analysis of interest in this paper is the spectrum of a matrix (see Figure 1).
Therefore, we focus on privately computing (η, ζ)-spectral approximation, i.e., given parameters η, ζ ≥ 0 and a matrix
AW ∈ RW×d, find a matrix C ∈ Rd×d, such that

(1− η)A>WAW − ν1d � C � (1 + η)A>WAW + ν1d.

Here the parameter ν ≥ 0 is the cost of privacy in the terms of distortion in the spectrum. Our goal is to keep η as small as
possible so that they are useful in subsequent tasks, like PCA, multiple regression, etc. We show the following:
Theorem 1 (Informal version of Theorem 14). Let AW ∈ RW×d be a rank-r matrix formed by the current window. Then
for ν = ξ log ξ where ξ = O

(
r log2(W/δ)

ε2η

)
, there is an efficient (ε, δ)-differentially private algorithm under sliding window

model that uses O
(
dr2

η2 logW
)

space and outputs a matrix C at the end of the stream such that

(1− η)A>WAW − ν1d � C � (1 + η)A>WAW + ν1d.

A special case when the matrix is the edge-adjacency matrices was considered by Upadhyay et al. (2021). In the static
setting, using the result of Sarlós (2006) and Blocki et al. (2012), we get an O(d2) space private algorithm which guarantees
(η, ν, ν)-spectral approximation for ν = O

(
d log(1/δ)

ε2η

)
. Non-privately, there is an algorithm in the sliding window model

that uses O
(
rd
η logW

)
space if the matrix has a bounded condition number (Braverman et al., 2020). In many practical

scenarios, the rank is constant. In this scenario, the privacy overhead is only a constant factor. Our algorithm is also flexible
in the sense that we can also guarantee that the output is a PSD matrix.

Before giving a technical overview of our private algorithm, we begin by arguing why the existing private algorithms in
the static setting fail in the sliding window model. Blocki et al. (2012) gave the first privacy preserving approximation of
matrices. Their approach is to first compute the singular value decomposition of the given matrix A = USV >, and then
output CBBDS = Â>Φ>ΦÂ, where Â := U

√
S2 + σ21dV

> for a perturbation parameter σ chosen appropriately, and Φ is
a random Gaussian matrix. Since, the algorithm requires computing the SVD, one cannot extend this approach in the sliding
window model. Another approach, due to Dwork et al. (2014), computes CDTTZ = A>A+N , where N is a symmetric
Gaussian matrix with appropriate variance. In this case, we cannot revert the effect of the rows outside of the window.

Private principal component analysis has been extensively studied (Amin et al., 2019; Blum et al., 2005; Dwork et al., 2014;
Hardt & Roth, 2012; Upadhyay, 2018; Dwork et al., 2014; Hardt & Price, 2014; Kapralov & Talwar, 2013; Singhal &
Steinke, 2021), and matching lower and upper bounds are known on achievable accuracy in the static setting. With the
exception of Arora et al. (2018); Upadhyay (2018), these algorithms perform at least two passes over the matrix. Dwork
et al. (2014) gave an online algorithm for PCA using regularized follow-the-leader framework; however, online model is
very different from the sliding window model2. Finally, the algorithm of Arora et al. (2018) and Upadhyay (2018) does not

2The online learning model is a game between a decision-maker and adversary. The decision-maker makes decisions iteratively. After
committing to a decision, it suffers a (possible adversarially) loss. The goal is to minimize the total loss in retrospect to the best decision
the decision-maker should have taken.
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extend to the sliding window model because we cannot revert the effect of the rows that are outside of the current window.

2. Main lemma and overview of techniques
One-shot vs Continual release. In this section, we focus only on the case when the output is produced just once at the end
of the stream for the ease of presentation. Such algorithms are known as one-shot algorithm in the literature of differential
privacy and used as a building block for algorithms that continually release statistics. We cover the case of continual
release (Dwork et al., 2010) in Appendix F, where we propose two data structures that allow continual release depending on
whether space is more important or accuracy. The first approach uses the binary tree method introduced by Bentley & Saxe
(1980) and used in Dwork et al. (2010) and Chan et al. (2011). However, unlike them, we build the binary tree only over the
current window. This uses space linear in W but incur error that only grows polylogarithmically. In the second approach,
we reduce the space requirement to be sublinear in W at the cost of increasing the error. We subdivide each window in to√
W sub-windows, each of size

√
W . We then run an instance of our algorithm for each of these sub-windows.

We now focus our attention to design a one-shot algorithm. Algorithmically, our approach is closest to Smith et al. (2020).
They present a one-shot space-optimal algorithm for distinct element count in a data-stream by showing that the celebrated
Flajolet-Martin sketch initiated with some random “phantom” elements (guaranteed to be not in the data set) is differentially
private. Similar approaches has been used for computing low-rank approximation of a matrix formed in a streaming
manner (Upadhyay, 2018).

One-shot algorithm. Our one-shot algorithms (on which the continual release algorithms is based) can be seen as a
generalization of the technique of Smith et al. (2020) from real-valued functions to matrix-valued functions. We inject an
appropriate random matrix to the data stream. However, this would only allows us to perform the analysis on the entire data
stream and not just on the current window. That is, we need to resolve the following two related questions:

1. (Question 1). How to account only for only the relevant part of the streamed data, i.e., one in the window?

2. (Question 2). What distribution of random matrices is to be used to inject phantom random matrices?

One naive candidate algorithm, Apriv, for private spectral approximation is as follows: store a set of w = min {W,T}
positive semidefinite matrices at any time T , where the i-th matrix in this set is a sanitized version of the matrix formed by
the last i updates. In this case, question 1 is answered by just removing any matrix that is out of the window, and question 2
is answered by using Wishart matrix of appropriate scale. However, Apriv requires prohibitively large O(Wd2) space.

To answer question 1, while using significantly less space (as in Smith et al. (2020)) requires a conceptual contribution.
To this end, we introduce η-approximate spectral histogram property for a set of PSD matrices and timestamps. We will
occasionally refer to such a set as a data structure.

η-approximate spectral histogram property. For a matrix S � 0, denote by S̃ a matrix such that(
1− η

4

)
S̃ � S �

(
1 +

η

4

)
S̃.

Let the current window of our matrix analysis be from timestamp T −W + 1 to T and S(i) be the covariance matrix of the
matrix formed by rows streamed between timestamps ti and T . In other words,

S(i) = A>[ti,T ]A[ti,T ].

Let D be a data structure comprised of a collection of ` timestamps and PSD matrices {(t1, S̃(1)), . . . , (t`, S̃(`))} for some
` ∈ N. For all i ∈ [`], S̃i is an (η/4, 0)-spectral approximation of the matrix Si. Roughly speaking, such a data structure D
satisfies η-approximate spectral histogram property if following two listed properties are satisfied..

1. The timestamps satisfy the following two requirements:

t1 < · · · < t` = T and t1 ≤ T −W + 1 ≤ t2.
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Algorithm 1 PHASE 2(M′T+1 =
{
Ā(1), · · · , Ā (`+ 1)

}
)

1: If t2 < T −W + 1, set Ā(i) = Ā (i+ 1) , ti = ti+1 for all i ∈ [`− 1]. Set ` = `− 1
2: Define S̄(i) = Ā(i)>Ā(i) for all 1 ≤ i ≤ `+ 1.
3: For i = 1, · · · `− 2
4: Find j = max

{
u > i : (1− η

2 )S̄(i) � S̄(u)
}

.
5: Set M′T+1 ←M′T+1\{Ā (i+ 1) , · · · , Ā (j − 1)}.
6: Reorder the indices of remaining matrices.
7: Update ` := `+ i− j + 1.
8: Output MT+1 := M′T+1.

2. These two sets of matrices {S(i)}i∈[`] and {S̃(i)}i∈[`] satisfy the following three conditions:

∀i ∈ [`− 1], S (i+ 1) � S(i);

∀i ∈ [`− 1], (1− η)S(i) � S (i+ 1) ; and

∀i ∈ [`− 2],
(

1− η

2

)
S̃(i) 6� S̃ (i+ 2) .

(2)

When it is clear from context, we call a set of matrices
{
S̃1, · · · , S̃`

}
as the one satisfying the η-approximate spectral

histogram property. In contrast, spectral histogram in Braverman et al. (2020) requires S̃(i) = S(i) and uses the condition
(1− η)S(i) 6� S (i+ 2) instead of

(
1− η

2

)
S̃(i) 6� S̃ (i+ 2).

The properties in Equation 2 are required to get the desirable space bound. Likewise, the second condition in Equation 2 and
the restriction t1 ≤ T −W + 1 ≤ t2 are required to demonstrate the accuracy guarantee (see proof sketch of Theorem 1).
Before proving the accuracy guarantee, we answer how to maintain such a set of matrices. For brevity, we introduce the
following notation for matrices in the rest of this section: for any time T , we write A(i) to denote the i-th matrix stored in
the current data-structure.
Lemma 1. Let MT := {A (1) , . . . , A (`)} be the set of matrices such that {A (1)

>
A (1) , . . . , A (`)

>
A (`)} sat-

isfies η-approximate spectral histogram property at time T . Then there is an efficient algorithm, UPDATE, that
takes MT and a row aT+1 ∈ Rd as input and outputs a set of matrices MT+1 = {B (1) , . . . , B (m)}, such that
{B (1)

>
B (1) , . . . , B (m)

>
B (m)} satisfy the η-approximate spectral histogram property for some m ≤ `+ 1.

When a new row aT+1 ∈ Rd is streamed, an algorithm is invoked that updates the data structure. It works in two phases:
privatization and maintenance. Privatization is accomplished by (i) adding a linear sketch of aT+1 to all ` matrices in
MT to obtain a new set M′T , (ii) privatizing aT+1 to get a matrix A (`+ 1), and (iii) defining M′T+1 := M′T ∪A (`+ 1).
For privacy (or answering Question 2), adding a noise matrix that is a PSD matrix would incur additive error linear in
dimension. Moreover, it will not maintain structural properties of matrices such as low-rank, which are one of the reasons
why matrix analysis have such a wide array of applications. Therefore, just adding appropriately scaled noise is not an
option (see Appendix B for details). As it turns out, a variant of Johnson-Lindenstrauss mechanism (Blocki et al., 2012)
used in Upadhyay (2018) suffices for our purpose.

Now the set {Ā>Ā : Ā ∈ M′T+1} may not satisfy η-approximate spectral histogram property. The maintenance phase
(high-level description of this phase is provided in Algorithm 1) ensures that the final set of matrices satisfies η-approximate
spectral histogram property. In this phase, we greedily remove matrices if they do not satisfy any of the desired properties of
η-approximate spectral histogram property (Algorithm 7 in supplementary material). The computationally expensive part in
Algorithm 1 is Step 3. For this step, we can use known PSD testing algorithms (Bakshi et al., 2020).

Our greedy approach is reminiscent of the potential barrier method to compute spectral sparsification of a W × d
matrix (Batson et al., 2012). In the potential barrier method, we remove a large subset of rank-one matrices and show that
only storing Θ

(
dη−2

)
rank-one matrices suffices for (η, 0)-spectral sparsification. This approach does not extend over to

streaming matrices. In fact, two key technical features distinguish our method from theirs. In their setting, all PSD matrices
are rank-one matrices corresponding to a row of the matrix; whereas we have W positive semidefinite matrices that may
have different ranks (not necessarily rank-one). The second crucial point is that we aim to significantly reduce the number
of matrices stored for our application. This makes maintaining our data structure much more complicated than the potential
barrier method.



A Framework for Private Matrix Analysis in Sliding Window Model

The proof of Lemma 1 is subtle. While it is tempting to use the analysis of the deterministic algorithm by Braverman
et al. (2020) in our setting, their analysis is highly susceptible to noise. Their proof relies heavily on the fact that for all
i ∈ [`], S̃(i) = S(i), i.e., matrices are exact covariance matrices corresponding to the streamed rows. In contrast, our
analysis deals with the spectral approximation of the streamed matrix along with the perturbation required to preserve
privacy. That is, each of the matrices S̃(1), · · · , S̃(`) is an approximation of the input matrix and has both multiplicative
approximation as well as additive term. We give an arguably simpler analysis than Braverman et al. (2020) and crucially use
the slack of

(
1− η

2

)
factor in the third condition of approximation spectral histogram property (Equation 2). A detail proof

of Lemma 1 is presented in Appendix C.

Spectral approximation. Now that we have an algorithm to maintain η-approximate spectral histogram property, we
show how to use it to compute an (η, ν)-spectral approximation of AW . Let S̃ (1) , . . . , S̃ (`) be the set of matrices
satisfying η-approximate spectral histogram property. The algorithm outputs S = S̃(1)−σ21d, where σ2 is the perturbation
posit in the mechanism of Upadhyay (2018). Using the first condition of Equation 2 and that t1 < T −W + 1 < t2,
S (2) � A>WAW � S (1). The second condition of Equation 2 implies that (1−η)S (1) � S(2). Since S̃(1) and S̃(2) are a
(η/4, 0)-spectral approximation of S(1) and S(2), respectively, this allows us to prove that S̃(1) is a spectral approximation
of AW .

Proof sketch of Theorem 1. For space bound, properties in equation (2) imply that there is at least one singular value that
decreases by a factor of (1− η

2 ) in every successive timestamp. We will see later that our privacy mechanism ensures that
the spectrum of any matrix S̃i is lower bounded by a constant. Since updates have bounded entries, there can be at most
` := O

(
r log1− η2

(W )
)

= O
(
r
η log(W )

)
matrices satisfying η-approximate spectral histogram. For privacy, we use the

Johnson-Lindenstrauss mechanism (Blocki et al., 2012). In this mechanism, we first perturb the matrix to raise its singular
value and then multiply it with a random Gaussian matrix. The choice of perturbation used here is the one described in
Upadhyay (2018) because it can account for the streamed data.

Now we give a proof sketch of the accuracy guarantee. At any time T , let A(i) be the matrix formed between the time
interval [ti, T ]. Let {Ã(1), · · · , Ã(`)} be the set of matrices obtained by applying Johnson Lindenstrauss mechanism
on the streamed matrices {A(1), · · · , A(`)} and {Â(1), · · · , Â(`)} be the set of perturbed matrices before applying the
Johnson-Lindenstrauss transform. Fix the following notations for covariance matrices:

C(j) := A(j)>A(j), S̃(j) := Ã(j)>Ã(j)

S(j) := Â(j)>Â(j) = C(j) + σ21d.

The perturbation parameter σ is as chosen in Sheffet (2019). Since t1 ≤ T −W +1 ≤ t2, we have C(2) � A>WAW � C(1).
By design of our algorithm and the second property of η-approximate spectral histogram property, we have (1− η)S(1) �
S(2). We pick the dimension of the Johnson-Lindenstrauss transform so that S̃(j) is an (η/4, 0)-spectral approximation of
S(j) for all j ∈ [`] using Sarlós (2006)’s result. Therefore, for i ∈ {1, 2},(

1− η

4

)
S(i) � S̃(i) �

(
1 +

η

4

)
S(i).

This implies that
(
1− η

4

)
(C(1) + σ21d) � S̃(1). Since adding positive semidefinite matrices preserves the Loewner

ordering and A>WAW � C(1), we get the following:(
1− η

4

)
(A>WAW + σ21d) �

(
1− η

4

)
(C(1) + σ21d)

� S̃(1).

Similarly, for the upper bound, we have from the definition,

S̃(1) �
(

1 +
η

4

)
S(1) �

(
1 + η

4

)
(1− η)

S(2)

=

(
1 + η

4

)
(1− η)

(C(2) + σ21d).

Using the fact that C(2) � A>WAW , scaling η and setting the value of σ completes the proof.
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Additive Error Multiplicative Space Required Comments
Hardt & Roth (2012) Õ(k

√
d/ε2) O(1) O(d2) rank-2k, static data

Dwork et al. (2014) Õ
(
ε−1k

√
d
)

− Õ
(
d2
)

Static data

Upadhyay (2018) Õ
(
ε−1
√
kd
)

(1 + η) Õ
(
η−1dk

)
Streaming data

Lower Bound Ω
(√

kd
)

(1 + η) Ω
(
η−1dk logW

)
Sliding window

This Paper Õ
(
ε−1
√
kd
)

(1 + η) Õ
(
η−3dk2 logW

)
Sliding window

Table 2. Comparison of
(
ε,Θ

(
d− log d

))
-Differentially private PCA results (our results are in red).

3. Applications
We present three main applications of η-approximate spectral histogram property for matrix analysis.

Applications I: Principal component analysis. Principal component analysis is an extensively used subroutine in many
applications like clustering (Cohen et al., 2015), recommendation systems (Drineas et al., 2002), and learning distribu-
tions (Achlioptas & McSherry, 2005). In these applications, given a matrix A ∈ Rn×d and a target rank k, the goal is to
output a rank-k orthonormal projection matrix P ∈ Rd×d such that

‖A−AP‖F ≤ (1 + η) min
rank(X)≤k

‖A−X‖F + ζ.

The goal here is to minimize ζ for a given k, d, and privacy parameters ε and δ. In many applications, instead of optimizing
over all rank-k projection matrices, we are required to optimize over a smaller set of projection matrices, such as one with
only non-negative entries. In particular, let Π be any set of rank-k projection matrices (not necessarily set of all rank-k
projection matrices). Then the constrained principal component analysis is to find P ∗ = argminP∈Π ‖A−AP‖

2
F .

A naive application of approximate spectral histogram property to solve PCA leads to an additive error that depends linearly
on the rank of the streamed matrix. To solve these problems with optimal accuracy, we introduce an intermediate problem
that we call private projection preserving summary (Definition 8). This problem can be seen as a private analogue of PCP
sketches (Cohen et al., 2015). Solving this problem ensures that the additive error scales with the parameter k and not with
the rank of the matrix.

To remove the dependency on the rank of the streamed matrix, we consider the first k/η spectrum of the streamed matrix
and show that it suffices for our purpose. That is, let Ã1, · · · , Ã` be matrices such that their covariance matrices S̃1, · · · , S̃`
satisfy η-approximate spectral histogram property. We show that random projections of Ã1, · · · , Ã` to a k/η dimensional
linear subspace suffice. Let πk/η(Ã1), · · · , πk/η(Ã`) be the projected matrices. We show that the set of covariance matrices
corresponding to πk/η(Ã1), · · · , πk/η(Ã`) satisfy the approximate spectral histogram property. Using this, we show that
the first matrix in this set, Ã := πk/η(Ã1), is a private projection preserving summary for AW with a small additive error.
For this, we make use of the private version of one of the characterizations of projection preserving summary due to (Cohen
et al., 2015). This characterization is crucial as it defines the multiplicative approximation as well as additive error.

Lemma 2 (Informal version of Lemma 11). Let k be the desired rank, η be the approximation parameter, and (ε, δ) be the
privacy parameter. Let Π be the set of all rank-k projection matrices. Then there is an efficient (ε, δ)-differentially private
algorithm under sliding window model that for a given matrix AW formed by the current window, outputs a matrix Ã such
that for any P ∈ Π, ∥∥∥Ã(1d − P )

∥∥∥
F
≤ (1 + η) ‖AW (1d − P )‖F

+O

(
1

αε

√
kd log(d) log2

(
W

δ

))
.

This lemma allows us to show the first result to solve constrained PCA.

Theorem 2 (Informal version of Theorem 17). Let AW be the matrix formed by last W updates and Π be a given set of
rank-k projection matrices. Then there is an (ε, δ)-differentially private algorithm that outputs a matrix Ã at the end of the
stream, such that if ‖Ã(1d − P )‖F ≤ γ ·minX∈Π ‖Ã(1d −X)‖F for some γ > 0 and P ∈ Π, then
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‖AW (1d − P )‖F ≤(1 + η) γ · min
X∈Π

‖AW (1d −X)‖F

+O

(
1

αε

√
kd log(d) log2

(
W

δ

))
.

The matrix P in the above result can be computed by running any known non-private algorithm on Ã. There are existing
results for structured projection matrices, such as Asteris et al. (2014); Yuan & Zhang (2013). In particular, if Π is a set
of sparse or non-negative projection matrices, then Theorem 17 gives a way to solve these problems privately. Moreover,
Theorem 17 also implies a private algorithm for PCA by using any algorithm for PCA that achieves γ = 1 (Eckart & Young,
1936).

For traditional PCA, Corollary 4.5 in Hardt & Roth (2012) gives a rank-p projection matrix for p > 2k with a large constant
multiplicative approximation and O(k

√
d

ε2 ) additive error. The underlying reason for this large constant factor is because they
use Markov inequality after using the expectation bound of Halko et al. (2011). We avoid this by appealing to the results
that use the concentration property of random Gaussian matrices (Kane & Nelson, 2014).

We finally remark that we do not violate the lower bound of Dwork et al. (2014). Their lower bound holds when there is no
multiplicative approximation. They show similar upper bound as Theorem 17 when matrices has a singular value gap of
Ω(
√
d). In contrast to their O(d2) space algorithm, we make use of O

(
dk2

η3 logW
)

space in the sliding window setting,

which is an improvement whenever k log(W ) = o(η3d). We also note that Dwork et al. (2014) studied PCA in the online
learning model (Hazan, 2019), which is incomparable to the sliding window model.

Application II: Multi-response linear regression. Another application of Theorem 1 is solving multi-response linear
regression (also known as generalized linear regression) in the sliding window model. It is a widely studied generalization
of the standard `2-regression (Woodruff, 2014). Formally, given two matrices A ∈ Rn×d and B ∈ Rn×p as input, the
multi-response linear regression is defined as the minimization problem, minX∈Rd×p ‖AX −B‖

2
F .

Theorem 3 (Informal version of Theorem 18). Let AW ∈ RW×d and B ∈ RW×p be the matrix streamed during the
window of size W formed as defined in equation (1), ε, δ, η be as before. Then there exists an τ =

(
d+ 14

ε2 log( 4
δ )
)

log2(W )

and (ε, δ)-differentially private algorithm in the sliding window model that output a matrix X̃ ∈ Rd×p such that∥∥∥AW X̃ −BW∥∥∥2

F
≤ (1 + η) min

X∈Rd×p
‖AWX −B‖2F

+O

(
(τ + p)2 log(τ + p)

ε

)
.

This is the first result for multiple-response regression and matches the bound achieved in Sheffet (2019) when p = 1 even
though we are in a more restrictive setting.

Application III: Directional variance queries. The directional variance queries has the following form: the analyst gives
a unit-length vector x ∈ Rd and wish to know the variance of AW along x. Theorem 1 gives an algorithm to answer
directional covariance queries (and cut queries when the matrix is the edge-adjacency matrix of a graph).

Theorem 4 (Informal version of Theorem 15). Let AW be the matrix formed by last W updates as defined in equation (1)
and ε, δ, η be as before. Given a bound q on the number of queries that can be made, there is an efficient (ε, δ)-differentially
private algorithm that outputs a matrix C such that for any set of q unit vector queries x1, · · · , xq ∈ Rd, we have for all
i ∈ [q]

x>i A
>
WAWxi −

c log q log d

ε
≤ x>i Cxi

≤ (1 + η)x>i A
>
WAWxi +

c log q log d

ε
.

Even though we are in a more restrictive setting of sliding window, this matches the bound achieved in Blocki et al. (2012)
after we apply the improvement in Sheffet (2019).
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4. Concluding remarks
We believe that our approach will find applications beyond what is covered in this paper and will pave way for further
research in the intersection of differential privacy and sliding window model. We focus on the model where every data in the
current window is considered equally useful to explain the heuristics used in recent deployments. However, one can consider
other variants of the sliding window model as far as privacy is concerned. As an example, one can consider a model where
the privacy of a data decays as a monotonic function of time lapse. More so, there are more concrete questions to be asked
and answered even in the model studied in this paper.

As we mentioned earlier, one can see η-approximate spectral histogram property as a generalization of subspace embedding
property. We believe that any improvement in designing a more efficient data structure for maintaining a set of matrices
satisfying η-approximate spectral histogram property will have a profound impact on large-scale deployment of privacy-
preserving algorithms in the sliding window model. For example, we believe that space requirements can be reduced using
randomization. This randomization can be either oblivious or may depend on the current set of positive semidefinite matrices.
Since our set of positive semidefinite matrices are generated using a privacy mechanism, any such sampling can be viewed
as post-processing and hence privacy preserving. Hence, our main conjectures are concerning the space required by any
privacy-preserving algorithm. We elaborate them next.

The lower bound of Ω
(
d2
)

space for spectral approximation is required even in the static setting. We conjecture that there
should be 1

η logW factor due to the sliding window requirement. This is because, if the spectrum of a matrix is polynomially
bounded, then one can construct a sequence of updates that requires at least 1

η logW matrices such that successive matrices
are (1− η) apart in terms of their spectrum. For an upper bound, we believe randomization can help reduce a factor of d.
This is achieved in the non-private setting using online row sampling. It was shown by Upadhyay (2018) that one can design
private algorithms with space-bound comparable to a non-private algorithm in the streaming model of computation. The
situation in the sliding window model is more complicated, but we believe it is possible to achieve a matching upper bound.
In view of this, we conjecture the following.

Conjecture 1. The space required for differentially private spectral approximation is Θ
(
d2

η logW
)

.

We believe that the bound on the additive error is optimal. A positive resolution to this conjecture would imply that the price
of privacy is only in terms of the additive error.

Our second conjecture is for principal component analysis. We believe that our space-bound for principal component analysis
is tight up to a factor of k

η . A lower bound of Ω(dk) is trivial as one requires O(dk) space just to store the orthonormal
matrix corresponding to the rank-k projection matrix. As before, a factor of 1

η logW would be incurred due to the sliding
window model. The factor of 1

η comes from the fact that to extract the top-k subspace, we need k
η dimensional subspace.

Conjecture 2. The space required for differentially private PCA is Ω
(
dk
η2 logW

)
.

We believe that proving such a lower bound would require new techniques. This is because, in PCA, we only have access to
an orthonormal projection matrix, while in the case of low-rank approximation, we have far more information to solve the
underlying communication complexity problem.

Our work identifies another application of the Johnson-Lindenstrauss and Wishart mechanisms. Before our results, it was not
even clear whether the JL mechanism can be used to compute PCA (see Section V in Blocki et al. (2012))! They consider
their output matrix C̃ as a “test" matrix to test if the input matrix has high directional variance along some direction x ∈ Rd.
However, they do not give any guarantee as to how the spectrum of C relates to that of the input covariance matrix.
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A. Notation and Preliminaries
We use the notation R to denote the space of real numbers and N to denote the set of natural numbers. For n ∈ N, we let [n]
denote the set {1, . . . , n}.

Linear algebra. The space of n-dimensional vectors over reals is denoted Rn. The set of non-negative vectors (also
known as non-negative orthant) and the set of strictly positive vectors in Rn are denoted Rn+ and Rn++, respectively. For a
vector x, we let x> denote the transpose of the vector. We reserve the letters x, y, z to denote real vectors. The entries of a
vector x ∈ Rn is denoted as follows:

x =
(
x[1], x[2], · · · , x[n]

)>
.

We let {ēi : i ∈ [n]} (where [n] := {1, 2, · · · , n}) denote the set of standard basis vectors of Rn. That is,

ēi[j] =

{
1 if i = j,
0 if i 6= j.

We let the vector of all 1’s denoted by ē, i.e., ē = ē1 + ē2 + · · · + ēn. For two vectors x, y ∈ Rn, their inner product is
denoted 〈x, y〉. The set of real n×m matrices is denoted by Rn×m. For a real matrix A, its (i, j) entry is denoted by A[i, j]
and its transpose is denoted A>. The following special classes of matrices are relevant to this paper.

1. A real matrix A ∈ Rn×n is symmetric if A = A>. The set of symmetric matrices is denoted Sn and forms a vector
space over R. The eigenvalues of symmetric matrices are real.

2. A symmetric matrix A ∈ Sn is positive semidefinite (PSD) if all of its eigenvalues are non-negative. The set of such
matrices is denoted Sn+. The notation A � 0 indicates that A is positive semidefinite and the notations A � B and
B � A indicate that A − B � 0 for symmetric matrices A and B. We also use the notation A 6� B and B 6� A for
A,B ∈ Sn to say that A−B 6∈ Sn+.

3. A PSD matrix A ∈ Sn+ is positive definite if all of its eigenvalues are strictly positive. The set of such matrices is
denoted Sn++. The notation A � 0 indicates that A is positive definite and the notations A � B and B ≺ A indicate that
A−B � 0 for symmetric matrices A and B.

4. A matrix U ∈ Rn×n is orthonormal if UU> = U>U = 1n, where 1n is the identity matrix.

5. A symmetric matrix P ∈ Sn is a rank-k orthogonal projection matrix if it satisfies P 2 = P and it’s rank is k. Such
matrices have eigenvalues 0 and 1.

The eigenvalues of any symmetric matrix A ∈ Sn are denoted by (λ1(A), . . . , λn(A)) sorted from largest to smallest:
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). When discussing the largest and smallest eigenvalues, we alternately use the notation
λmax(A) and λmin(A) to denote λ1(A) and λn(A), respectively. Similarly, the singular values of A is denoted by the tuple
(s1(A), . . . , sn(A)) sorted from largest to smallest: s1(A) ≥ s2(A) ≥ · · · ≥ sn(A). We use the notation smax(A) and
smin(A) to denote the largest and smallest singular values of A, respectively. It is a well known fact that for any symmetric
matrix A smax(A) = max {|λmax(A)|, |λmin(A)|} and smin(A) = min {|λmax(A)|, |λmin(A)|} . The maximum number
of non-zero singular values of A ∈ Rn×m is min{n,m}. The spectral norm of a matrix A ∈ Rn×m is defined as

‖A‖2 = max{‖Ax‖2 : x ∈ Rm, ‖x‖2 = 1}.

The spectral norm of A is equal to the largest singular value of A. The trace norm of a rank-r symmetric matrix A is defined
as the sum of its singular values. The Frobenius norm of a matrix A is defined as

‖A‖F :=

∑
ij

|A[i, j]|2
1/2

=

(
r∑
i=1

|si(A)|2
)1/2

.

This directly implies that ‖A‖2F = Tr
(
A>A

)
for any n× d matrix A.

We use two types of matrix decomposition. The first matrix decomposition is spectral decomposition (or eigenvalue
decomposition), i.e., a symmetric matrix A ∈ Sn can be written as

A = UΛU> =

n∑
i=1

λi(A)xix
>
i
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where U is an orthonormal matrix, Λ is a diagonal matrix with eigenvalues of A on its diagonal, and the set
{xi ∈ Rn : i ∈ [n]} are set of orthonormal vectors known as eigenvectors of A. We note that orthonormal matrices
can also be decomposed in above form. The second matrix decomposition that is relevant to this paper is singular value
decomposition (or SVD for short). Any real matrix A ∈ Rn×d can be decomposed as follows:

A = USV > =

min{n,d}∑
i=1

si(A)xiy
>
i .

Here, U ∈ Rn×n and V ∈ Rd×d are orthonormal matrices, S is a diagonal matrix with diagonal entries singular values
of A, and the sets {xi ∈ Rn : i ∈ min{n, d}} and

{
yj ∈ Rd : j ∈ min{n, d}

}
are orthonormal sets of vectors. Associated

with any real matrix A ∈ Rn×d is a matrix A† called the Moore-Penrose pseudoinverse (or, pseudoinverse) and is defined as

A† =

min{n,d}∑
i=1

1

si(A)
xiy
>
i where A =

min{n,d}∑
i=1

si(A)xiy
>
i .

We use the notation

[A]k :=

min{k,n,d}∑
i=1

si(A)xiy
>
i

to denote the best rank-k approximation of matrix A under any unitary invariant norm.

We consider matrices formed by a streams of d-dimensional row vectors over R. For a row vector at ∈ Rd streamed at time
t, we use the notation Ā(at) ∈ RW×d to denote an all zero matrix except row t which is at if t ≤W and row W to be at if
t > W . For time epochs, t1 and t2, we define the matrix A[t1,t2] ∈ R(t2−t1)×W to denote the matrix formed by stacking the
row vectors at1 , · · · , at2 ∈ Rd streamed from time epoch t1 to t2:

A[t1,t2] :=
(
at1 at1+1 . . . at2

)>
.

Probability distributions. For a random variable X ∈ R, we denote the mean, µ, and variance, σ2, of X by E[X]
and Var(X), respectively. We say that a random variable X ∈ R has Gaussian (or normal) distribution, denoted by
X ∼ N

(
µ, σ2

)
, if its probability density function is given by

p(x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
.

We denote Gaussian distribution by N
(
µ, σ2

)
.

Throughout this paper, we discuss and work with random matrices. They are simply matrices with matrix entries drawn
from random variables that may or may not be independent. A special class of random matrices are Wishart matrices. They
are defined as below. Let C is a d× d positive definite matrix and m > d− 1. A d× d random symmetric positive definite
matrix R is said to have a Wishart distribution R ∼Wisd(m,C), if its probability density function is

p(W ) :=
|R|m−d−1

2

2md|C|m2 Γd(
m
2 )

exp

(
1

2
Tr
(
C−1R

))
,

We also consider the constrained PCA (Cohen et al., 2015). This is a generalization of many variants of principal component
analysis such as sparse and non-negative PCA.

Definition 2 (Constrained principal component analysis (Cohen et al., 2015)). Given a matrix AW formed by a window of
size W , a rank parameter k, a given set of rank-k projection matrices Π and an accuracy parameter 0 < η < 1, design a
differentially private algorithm under sliding window model which outputs a projection matrix P ∈ Π such that

‖A− PA‖F ≤ (1 + η) min
X∈Π

‖A−XP‖F + τ

with probability at least 1− β. Furthermore, the algorithm should satisfies (ε, δ)-differential privacy. When Π is a set of all
rank-k projection matrices, then we get the traditional PCA.
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Definition 3. An embedding for a set of points P ⊆ Rn with distortion α is a matrix E such that

∀x ∈ P, (1− η) ‖x‖22 ≤ ‖Ex‖
2
2 ≤ (1 + η) ‖x‖22 .

A subspace embedding is an embedding for a set K, where K is a k-dimensional linear subspace.

A key concept in randomized numerical linear algebra and low rank approximation is that of rank-k projection cost
preserving sketch. It was defined and characterized by Cohen et al. (2015).

Definition 4 (Rank-k projection-cost preserving sketch (Cohen et al., 2015)). A matrix Ã ∈ Rn×d is a rank k projection-cost
preserving sketch of A ∈ Rn×d with error 0 ≤ η < 1 if, for all rank k orthogonal projection matrices P ∈ Rn×n,

(1− η) ‖A− PA‖F ≤
∥∥∥Ã− PÃ∥∥∥

F
+ c ≤ (1 + η) ‖A− PA‖F

for some fixed non-negative constant c that may depend on A and Ã but is independent of P .

Differential privacy. An often easy to handle way to define (ε, δ)-differential privacy is in the terms of privacy loss
function. Let S be the support of the output of an algorithm M . Let P be the output distribution of M when its input is
AW (t) and Q be the output distribution of M when its input is A′W (t). Then for v ∈ S, we define the privacy loss function
as follows:

L(v) := log

(
P(v)

Q(v)

)
.

An algorithm M is (ε, δ) differentially private if Prv∼P [L(v;M) ≤ ε] ≥ 1− δ.

One concept that would be useful in our algorithm for continual release is that of partial sum.

Definition 5 (Partial sum). A P -sum is a partial sum of consecutive items,

S[i,j] =

j∑
`=i

A>i Ai.

Fact 1. Let M be an algorithm that releases a collection of P -sums such that a single entry in the stream can appear in at
most k of the P -sums. Then the sensitivity of the output is k. Further, if each of the answers are the result of at most these `
P -sums, then the error would scale as a factor of k

√
`.

A.1. Prior results used in this paper

Theorem 5 (Clarkson & Woodruff (2017)). Let A ∈ Rn×d be a rank r matrix and Φ ∈ Rn×
4r
η be random matrix with i.i.d.

copies of N (0, η4r ). Then we have

Pr
[(

1− η

4

)
A>A � A>Φ>ΦA �

(
1 +

η

4

)
A>A

]
≥ 1− 1

poly(d)
.

Lemma 3 (Sarlós (2006)). Let R ∈ Rt×n be a distribution of random Gaussian matrix, i.e., for R ∼ R, such that
R[i, j] ∼ N (0, 1/t). Then R satisfies subspace embedding for some t = O(η−2 log(1/β)).

Lemma 4 (Sufficient condition for rank-k PCP (Cohen et al., 2015; Sarlós, 2006)). A matrix Ã is a rank-k projection-cost
preserving sketch with c = min {0, η′2 ‖A− [A]k‖F } as long as we can write

Ã>Ã−A>A = E1 + E2 + E3 + E4

with η = η1 + η2 + η′2 + η3 + η4, such that

1. E1 is symmetric and −η1A
>A � E1 � η1A

>A.

2. E2 is symmetric, Tr (E2) ≤ η′2 ‖A− [A]k‖2F , and

k∑
i=1

|λi(E2)| ≤ η2 ‖A− [A]k‖2F .
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3. The span of columns of E3 is a subspace of span of columns of A>A and

Tr
(
E>3 (A>A)†E3

)
≤ η2

3 ‖A− [A]k‖2F .

4. The span of rows of E4 is a subspace of span of rows of A>A and

Tr
(
E>4 (A>A)†E4

)
≤ η2

4 ‖A− [A]k‖2F .

Proposition 6. For η ∈ (0, 1), we have (1− η) <
(
1− η

2

) ( 1− η4
1+ η

4

)
Proof. For η ∈ (0, 1), we have the following:

(1− η)
(

1 +
η

4

)
= 1− 3η

4
− η2

4
≤ 1− 3η

4
+
η2

8
=
(

1− η

2

)(
1− η

4

)
.

Since η2 > 0, the result follows.

Lemma 5 (Friedland & Torokhti (2007)). Let R be a matrix with orthonormal rows and C have orthonormal columns.
Then for a given matrix F of conforming dimensions, we have

min
X:rank(X)=k

‖CXR− F‖F = ‖C[C>FR>]kR− F‖F .

We use the following two results by Sheffet (2019), the latter first shown by (Blocki et al., 2012).

Theorem 7 (Wishart mechanism (Sheffet, 2019)). Draw a sample R ∼Wisd(τ,1d), where τ ≥ d+ 28 ln(4/δ)
ε2 . Then for a

matrix X ∈ Rn×d, X>X +R is (ε, δ)-differentially private.

Theorem 8 (Johnson-Lindenstrauss mechanism (Sheffet, 2019)). Fix a positive integer r and w =
4
√
r log(4/δ)+log(4/δ)

ε .
Let A ∈ Rn×d such that d < r. Given that sd(A) ≥ w, then publishing RA is (ε, δ)-differentially private if the entries of
R ∈ Rr×n are i.i.d samples from N (0, 1).

To prove our lower bound, we give a reduction to the augmented indexing problem, AIND: In this problem, Alice is given
an N -bit string x and Bob is given an index ind ∈ [N ] together with xind+1, · · · , xN . The goal of Bob is to output xind. The
complexity for solving AIND is well known.

Theorem 9 (Miltersen et al. (1995)). The minimum number of bits of communication required to solve AIND with probability
2/3 in one way communication model (the messages are sent either from Alice to Bob or from Bob to Alice), is Ω(N).

B. Limitation of spectral histogram framework in private analysis
The goal of this section is to show that the sufficient condition used in Braverman et al. (2020) that allows us to perform all
the matrix analysis tasks mentioned in Section 1 allows works in the private case, but making the deterministic algorithm
of Braverman et al. (2020) differentially private leads to a sub-optimal accuracy. In other words, we need a new framework
and algorithm.

Definition 6 (Spectral histogram property (Braverman et al., 2020)). A data structure D satisfy the spectral histogram
property if there exists an ` = poly(n, logW ) such that

1. D consists of ` timestamps T := {t1, · · · , t`} and PSD matrices M := {K(1), · · · ,K(`)}.

2. For 1 ≤ i ≤ `− 1, at least one of the following holds:

(a) If ti+1 = ti + 1, then (1− η)K(i) 6� K (i+ 1) .

(b) For all 1 ≤ i ≤ `− 2: (i) (1− η)K(i) � K (i+ 1), and (ii) (1− η)K (i) 6� K (i+ 2).

3. Let T be the current time stamp, then t1 ≤ T −W + 1 ≤ t2.
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Algorithm 2 UPDATE-EXACT(DS)

Require: A data structure DS a set of positive semidefinite matrices {K(1), · · · ,K(`)} such that K(1) � K(2) � . . . �
K(`) and corresponding a set of timestamps t1, · · · , t`.

Ensure: Updated set of positive semidefinite matrices K(1), · · · ,K(`) and timestamps t1, · · · , t`.
1: for i = 1, · · · `− 2
2: Find j := max {p : (1− η)K(i) � K(p) ∧ (i < p ≤ `− 1)} . {Find spectrally close checkpoints.}
3: Delete K(i+ 1), · · · ,K(j − 1). {It is important that we delete only up to index j − 1.}
4: Set k=1
5: while i+ k ≤ `
6: Update the checkpoints as follows: K(i+ k) = K(j + k − 1), ti+k = tj+k−1.
7: end
8: Update ` := `+ i− j + 1.
9: end

10: Return DSspectral := {(K(1), t1), . . . , (K(`), t`)}.

We later show that even a relative error approximation to these covariance matrices suffices for matrix analysis and gives
tighter bounds. The relative strength comes from the fact that Ki are exact covariance matrices (and not approximation).
The main purpose of this section is as follows: (i) demonstrate rigorously that using spectral histogram property gives
sub-optimal bounds and (ii) simplify the presentation of of our main algorithm by first presenting a special case of exact
computation at every timestamps stored in the spectral histogram data structure.

We first show existence of an algorithm (UPDATE-EXACT) that on takes a set of positive semidefinite matrices not necessarily
satisfying spectral histogram property as input and outputs a set of positive semidefinite matrices satisfying spectral histogram
property. The algorithm UPDATE-EXACT performs a sequential check over the current set of positive semidefinite matrices
and removes all the matrices that do not satisfy the spectral histogram property. Since we make no assumption on the input
except that they satisfy Loewner ordering, it is possible that, in the worst case, all but one matrix can be deleted in step 2.
However, as we will see later, UPDATE-EXACT will form a subroutine of our differentially private algorithms such that the
input to UPDATE-EXACT will have a particular form on top of satisfying the Loewner ordering. This will help us utilize
UPDATE-EXACT in a much better way. We being with showing the following for UPDATE-EXACT algorithm

Lemma 6 (Spectral histogram property). Let DS = {(K(1), t1), . . . , (K(`), t`)} be a set consisting of timestamps and
positive semidefinite matrices such that K(1) � K(2) � . . . � K(`) � 0. Let DSspectral ←UPDATE-EXACT(DS) be the
output of the algorithm defined in Algorithm 2. Then UPDATE(·) is an efficient algorithm and DSspectral satisfy spectral
histogram property.

Proof Sketch of Lemma 6. The proof of the above lemma can be derived from Lemma 7 which states a more general case of
approximation. We give a short proof sketch below.

Consider a time epoch T and a succeeding time epoch T ′ = T + 1. Let the data structure at time T be DSpriv(T ) and at
time T ′ be DSpriv(T ′). Let ti be a timestamp in DSpriv(T ) where i < ` . We can have two cases: (i) There is no 1 ≤ j ≤ s
such that t′j = ti and t′j+1 = ti+1, and (ii) There is a 1 ≤ j ≤ s such that t′j = ti and t′j+1 = ti+1. In both cases, spectral
histogram property follows from the update rules. This is because we delete indices up to j − 1 in Step 2 and the maximality
of the index j in Step 2 of Algorithm 2.

We next give an intuition why we need this lemma. Lemma 6 gives the guarantee that, if we are given a set of PSD
matrices in Loewner ordering, then we can efficiently maintain a small set of PSD matrices that satisfy spectral histogram
property. The idea of our algorithm is to ensure that UPDATE-EXACT always receives a set of PSD matrices. This is
attained by our algorithm PRIV-INITIALIZE, described in Algorithm 3. We use both these subroutines in our main algorithm,
SLIDING-PRIV. SLIDING-PRIV receives a stream of rows and call these two subroutines on every new update. We show
that SLIDING-PRIV, described in Algorithm 4, provides the following guarantee.

Theorem 10 (Private spectral approximation under sliding window). Given the privacy parameter ε, window size W ,
approximation parameter β, let S = (at)t>0 be the stream such that at ∈ Rd. Further define AW to be the matrix formed at

time T by the last W updates. Then SLIDING-PRIV(S; (ε, δ);W ), described in Algorithm 4, uses O
(
n3

η logW
)

space and
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Algorithm 3 PRIV-INITIALIZE(DSpriv; at; t; (ε, δ);W ; r)

Require: A new row at ∈ Rd, a data structure DSpriv storing a set of timestamps t1, · · · , t`, current time t, privacy
parameters (ε, δ), window size W , and set of matrices K̃(1), · · · , K̃(`+ 1).

Ensure: Updated matrices K̃(1), · · · , K̃(`+ 1) and timestamps t1, · · · , t`.
1: if t2 < t−W + 1
2: Set tj = tj+1, K̃(j) := K̃(j + 1) for 1 ≤ j ≤ s− 1 {Delete the expired timestamp.}
3: end
4: Set t`+1 = t, ε0 = αε

log(W )
. Sample R ∼Wisd(τ,1d), where τ =

⌊
d+ 14

ε20
log(1/δ)

⌋
.

5: Define K̃(`+ 1) = a>t at +R.

6: Include DSpriv ← DSpriv ∪ (K̃(`+ 1), t).
7: for i = 2, . . . , `

8: Compute K̃(i)← K̃(i) + a>t at. {Update the matrices.}
9: end

10: Find j := min {p : K(p) 6� K(`)} and delete K(p), · · · ,K(`− 1)
11: Update K(p) = K(`), ` = p. {Mantain PSD ordering.}

12: Return DSpriv :=
{

(K̃(i), ti)
}`
i=1

.

Algorithm 4 SLIDING-PRIV(S; (ε, δ);W )

Require: A stream, S, of row {at}, privacy parameters (ε, δ), and window size W .
Ensure: A positive semidefinite matrix C̃ at the end of the stream.

1: Initialize DSpriv to be an empty set, r = d.
2: while stream S has not ended
3: Include new row, DSpriv ← PRIV-INITIALIZE (DSpriv; at; t; (ε, δ);W ; r). {Algorithm 3}
4: Update the data structure, DSpriv ←UPDATE-EXACT(DSpriv). {Algorithm 2}
5: end
6: Let DSpriv =

{
(K̃(1), t1), . . . , (K̃(`), t`)

}
for some `.

7: Output C̃ = K̃(1).

is (ε, δ)-differential private. Further, C̃ ←SLIDING-PRIV(S; (ε, δ);W ) satisfies the following with probability 1− 1
poly(d)

(
A>WAW − (cτ log τ)1d

)
� C̃ �

(
1

(1− η)
A>WAW + (Cτ log τ)1d

)
, where τ := d+

14

ε2
.

Proof. Consider an index 1 ≤ i ≤ ` and the time epoch t when the stream of rows are different resulting in neighbor-
ing matrices A[ti,t] and A′[ti,t], we have A>[ti,t]A[ti,t] − (A′[ti,t])

>A′[ti,t] = u>u, where u is a unit row vector. That is
A>[ti,t]A[ti,t] − (A′[ti,t])

>A′[ti,t] is a rank-1 matrix.

Now W ∼Wisd(τ,1d). Let P denote the output distribution of our mechanism when run on the input matrix A[ti,t] and
Q denote the output of our algorithm on input matrix A′[ti,t]. Both distribution are supported on S := Rd×d matrices.

For M ∈ S, consider the privacy loss function L(M) := log
(
P(M)
Q(M)

)
. When T < t, the output distribution of P and

Q are identical, i.e., L(M) = 0. When T = t, the privacy proof follows by the choice of τ and Theorem 7. That is,
Pr[L(M) ≤ ε] ≥ 1− δ. For any time T ≥ t, we have differential privacy because of the post-processing property.

For the space bound, note that the number of checkpoints stored by DSpriv is O
(
d
η logW

)
. This is because there are

exactly d singular values and the matrix has polynomially bounded spectrum. Since at each checkpoints defined by ti for
i ≥ 1 stores an d× d matrix, the total space used by the data structure DSpriv, and hence the algorithm SLIDING-PRIV, is

O
(
d3

η logW
)

.

For the accuracy guarantee, we first note that the output of SLIDING-PRIV(S; (ε, δ);W ) is K̃(1), the first positive semidef-
inite matrix in the data structure DSpriv. Let K(1) and K(2) denote the covariance matrix formed between time epochs
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[t1, T ] and [t2, T ], respectively. Since the window is sandwiched between the first and second timestamp, we have

K(2) � A>WAW � K(1). (3)

Let R(1) and R(2) be matrices sampled from the Wishart distribution such that K̃(1) := K(1) + R(1) and
K̃(2) := K(2) + R(2). Note that DSpriv stores the set

{
K̃(1), K̃(2), · · · , K̃(`)

}
. Recall that σ := τ log(τ) =(

d+ log(1/δ)
ε2

)
log
(
d+ log(1/δ)

ε2

)
. Using the standard result on the eigenvalue bounds of matrices sampled from Wishart

distribution, we have that λ1(R(1)) ≤ cσ and λ1(R(2)) ≤ cσ for some constant c > 1 with probability 1− 1
poly(d) . Further

R(1) and R(2) are positive semidefinite. Therefore, for i ∈ {1, 2} we have

Pr
[
K(i)− cσ1d � K̃(i) � K(i) + cσ1d

]
≥ 1− 1

poly(d)
, (4)

where K(1) is the underlying covariance matrix formed during the time epochs [t1, t], K(2) is the underlying covariance
matrix formed during the time epochs [t2, t], and c > 0 is a constant.

We now condition on the event that Equation (4) holds for the rest of the proof. From the smooth-PSD property of the
matrices in DSpriv, we know that (1− η)Ã>Ã = (1− η)K̃(1) � K̃(2). Using this with Equations (3) and (4), we arrive at

(1− η) (K(1)− c1σ1d) � (1− η)K̃(1) � K̃(2) � K(2) + c2σ1d � A>WAW + c2σ1d (5)

Rearranging the terms in Equation (5) gives us

K(1) � 1

(1− η)
A>WAW + c3σ1d, where c3 = c1 +

c2
(1− η)

. (6)

Using Equation (6) in the right side positive semidefinite inequality of Equation (4), we have

(K(1)− c1σ1d) � K̃(1) � 1

(1− η)
A>WAW + c3σ1d. (7)

Using the left hand semidefinite inequality of Equation (3) in Equation (7), we get(
A>WAW − c1σ1d

)
� K̃(1) � 1

(1− η)
A>WAW + c3σ1d. (8)

Since C̃ = K̃(1) by the output of the algorithm, we have the desired bound.

B.1. Application of Algorithm 4: sub-optimal algorithms for private matrix analysis

Theorem 10 gives the guarantee that Algorithm 4 outputs a matrix that approximates the spectrum of A>WAW up to a small
additive error in the spectrum. This in particular means that Algorithm 4 can be used to solve directional variance and PCA;
however, the accuracy guarantees are sub-optimal.

The directional variance queries has the following form: the analyst gives a unit-length vector x ∈ Rd and wish to know the
variance of AW along x. A special case of directional variance queries is cut queries when at is the edges of a weighted
graph, d = n, and the query is of form {0, 1}n. Using Theorem 7 and the fact that 〈x, x〉 = ‖x‖2 = 1, we have the
following two results.
Theorem 11 (Directional variance queries). Let AW be the matrix formed by last W updates, η be the given approximation
parameter, (ε, δ) be the privacy parameter. Then there is an efficient (ε, δ)-differentially private algorithm that outputs a
matrix C such that for any unit vector x ∈ Rd,

x>A>WAWx− c1τ log(τ) ≤ x>Cx ≤ (1 + η)x>A>WAWx+ c3τ log(τ),where τ = d+
14

ε2
log(4/δ).

Corollary 1 (Cut queries). Let GW be the graph formed by last W updates. There is an efficient (ε, δ)-differentially private
algorithm that outputs a matrix C such that for any cut query S ⊆ [n],

ΦS(GW )− c|S|
√
τ log τ

ε
≤ OutS ≤ (1 + η)ΦS(GW ) +

c|S|
√
τ log τ

ε
, where τ = n+

14

ε2
log(4/δ).
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Since Theorem 10 preserves the spectrum of the covariance matrix, it can be used for a variety of tasks involving spectrum.
In particular, we can use it to compute the principal component of the matrix streamed in the window. Let Π be the set of
all rank-k orthonormal projection matrices, i.e., every matrix P ∈ Π has rank k and satisfy P 2 = P and P = P>. Now
consider the following algorithm, SLIDING-PCA: compute Ã>Ã←SLIDING-PRIV(S; (ε, δ);W ) and then solve the rank
constrained problem using Lemma 5

X̃ = argmin
P∈Π

∥∥∥Ã(1d − P )
∥∥∥2

F
.

Theorem 12. Given privacy parameters (ε, δ) and approximation parameter η ∈ (0, 1/2), let AW be the matrix formed
by the last W updates as defined in equation (1) and Π be the set of all rank-k orthonormal projection matrices. Then
SLIDING-PCA is an efficient (ε, δ)-differentially private algorithm that outputs a rank-k projection matrix X̃ ∈ Rd×d such
that

Pr

[∥∥∥AW (1d − X̃)
∥∥∥2

F
≤ (1 + 2η) min

P∈Π
‖AW (1d − P )‖2F +O (dτ log(τ))

]
≥ 1− 1

poly(d)
,

where τ :=
(
d+ 14

ε2 log(4/δ)
)
.

Proof. Let

X̂ := argmin
X∈Π

‖AW (1d −X)‖2F and X̃ := argmin
X∈Π

∥∥∥Ã(1d −X)
∥∥∥2

F
. (9)

Then from the optimality of X̃ and the fact that ‖Y ‖2F = Tr
(
Y >Y

)
for any matrix Y , we have∥∥∥Ã(1d − X̃)

∥∥∥2

F
≤
∥∥∥Ã(1d − X̂)

∥∥∥2

F
= Tr

(
(1d − X̂)>Ã>Ã(1d − X̂)

)
.

Using the right hand side semidefinite inequality in Equation (8), we have∥∥∥Ã(1d − X̃)
∥∥∥2

F
≤ 1

(1− η)
Tr
(

(1d − X̂)>A>WAW (1d − X̂)
)

+ c(1d − X̂)>(1d − X̂)τ log(τ)

≤ 1

(1− η)

∥∥∥AW (1d − X̂)
∥∥∥2

F
+ cd

(
d+

14

ε2
log(4/δ)

)
log

(
d+

14

ε2
log(4/δ)

)
, (10)

where the first inequality follows from the fact that (1d − X̂) is a rank d− k projection matrix and second equality follows
from equation (9). Similarly, the left hand side inequality of Equation (8) and the fact that (1d − X̂) is a rank d − k
projection matrix yields∥∥∥Ã(1d − X̃)

∥∥∥2

F
≥ Tr

(
(1d − X̃)>A>WAW (1d − X̃)

)
− c(1d − X̃)>(1d − X̃)τ log(τ)

≥
∥∥∥AW (1d − X̃)

∥∥∥2

F
− cd

(
d+

14

ε2
log(4/δ)

)
log

(
d+

14

ε2
log(4/δ)

)
. (11)

Combining equations (10) and (11), we have Theorem 12.

C. Approximate spectral histogram and proof of Theorem 1
The only source of randomness in the data structure in Section B is the one that enables us to preserve differential privacy.
However, the resulting matrix analysis are sub-optimal in terms of achievable accuracy. The main reason is that we did not
use any low-rank structure of the underlying matrix – adding a Wishart matrix makes the resulting matrix full rank. The
natural question is whether additional randomness can help improve the bound when the matrix has a low-rank structure.

In this section, we introduce the η-approximate smooth-PSD property. We later show in Section D that these properties are
sufficient to perform all the matrix analysis mentioned in Section 1 efficiently with respect to time, efficiency, and accuracy.
In particular, by maintaining this property, we can maintain an intrinsic rank dependent bound. To maintain this property,
our data structure stores a set of random matrices that approximates the spectrum of the original matrices.
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Algorithm 5 UPDATE-APPROX(DSpriv)

Require: A data structure DSpriv storing a set of matrices Ã[t1,t], · · · , Ã[t`,t] and corresponding time stamps t1, · · · , t`.
Ensure: Updated matrices Ã[t1,t], · · · , Ã[t`,t] and timestamps t1, · · · , t`.

1: Define for 1 ≤ i ≤ `,
K̃(i) := Ã>[ti,t]Ã[ti,t].

2: For i = 1, · · · `− 2
3: Find spectrally close checkpoints

j := max
{
p :
(

1− η

2

)
K̃(i) � K̃(p) ∧ (i < p ≤ `− 1)

}
(12)

4: Delete Ã[ti+1,t], · · · , Ã[tj−1,t]. {It is important that we delete only up to index j − 1.}
5: Set k=1
6: While i+ k ≤ `
7: Update the checkpoints: Ã[ti+k,t] = Ã[tj+k−1,t], ti+k = tj+k−1.
8: end
9: ` := `+ i− j + 1.

10: Define DSpriv :=
{

(Ã[t1,t], t1), · · · , (Ã[t`,t], t`)
}

.
11: Output DSpriv.

The difference between spectral histogram property and η-approximate smooth histogram property is that in η-approximate
smooth histogram property, we allow the matrices in the data structure to be a spectral approximation of the corresponding
original matrices and in properties defined in item 2. Let Ã denotes the η-spectral approximation of the matrix A. Then
η-approximate smooth histogram property is formally defined as follows:

Definition 7 (η-approximate-Smooth-PSD property). A data structure D satisfy η-approximate smooth-PSD property if
there exists an s = poly(n, logW ) such that

1. D consists of ` timestamps T := {t1, · · · , t`} and the corresponding matrices M := {M̃1, · · · , M̃`}.

2. For 1 ≤ i ≤ s− 1, at least one of the following holds:

• If ti+1 = ti + 1, then
(
1− η

2

)
M̃>i M̃i 6� M̃>i+1M̃i+1.

• For all 1 ≤ i ≤ `− 2:
(a) (1− η)M>i M̃i �M>i+1M̃i+1.

(b)
(
1− η

2

)
M̃>i M̃i 6� M̃>i+2M̃i+2, where M̃i is η

4 -spectral approximation of Mi and M̃i+2 is η
4 -spectral approx-

imation of Mi+2.

3. Let AW be the matrix formed by the window W . Then t1 ≤ T −W + 1 ≤ t2.

We next show that we can maintain a data structure that allows efficient updates and a sequence of matrices that satisfy the
η-approximate smooth-PSD property using an algorithm UPDATE-APPROX. We will show in equation (16) that the input
to the UPDATE-APPROX is constructed in a specific manner; therefore, the matrices in the sequence satisfy the Loewner
ordering.

Lemma 7. Let D be a data structure that at time T consists of ` tuples
{

(ti, Ã[ti,t])
}`
i=1

, where 0 < ti ≤ T for all i and

Ã>[t`,t]Ã[t`,t] � . . . � Ã
>
[t1,t]

Ã>[t1,t].

Let Dsmooth ←UPDATE-APPROX(D) be the output of the algorithm UPDATE-APPROX, defined in Algorithm 5. Then
Dsmooth satisfy the η-approximate smooth histogram property (Definition 7). Moreover, the algorithm Dsmooth runs in
poly(d, `) time.

Proof. The run-time of Dsmooth is straightforward, so we only concentrate on the correctness part. Consider a time epoch t
and a succeeding time epoch t′ = t + 1. First notice that if we cannot find a j in equation (12) for all i = 1, · · · , ` − 2,
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then ` = O
(
d logW

η

)
. This is because the data structure DSpriv satisfied η-approximate smooth-PSD property at time t

and if no such j exists, then none of the properties are violated due to an update. As a result, equation (15) gives us that
` = O

(
d logW

η

)
. Hence, we assume that this is not the case and the data structure got updated between time epochs t and

t+ 1. Let the data structure at time t be DSpriv(t) and at time t′ = t+ 1 be DSpriv(t′). That is,

DSpriv(t) :=
{

(t1, Ã[t1,t]); · · · , (t`, Ã[t`,t])
}

and DSpriv(t′) :=
{

(t′1, B̃[t′1,t+1]); · · · , (t′`, B̃[t′`,t+1])
}
.

Let ti be a timestamp in DSpriv(T ) where i < `. We can have two possibilities:

1. There is no c ∈ [`] such that t′c = ti and t′c+1 = ti+1.

2. There is a c ∈ [`] such that t′c = ti and t′c+1 = ti+1.

Fix the following notations for all 1 ≤ j ≤ `:

K̃(j) := Ã>[tj ,t]Ã[tj ,t] and L̃(j) := B̃>[tj ,t+1]B̃[tj ,t+1].

Let K(j) and L(j) be such that

(
1− η

4

)
K(j) � K̃(j) �

(
1 +

η

4

)
K(j) and

(
1− η

4

)
L(j) � L̃(j) �

(
1 +

η

4

)
L(j). (13)

As we will see later (in equation (16)), the input to the UPDATE-APPROX are constructed in a specific manner that will
ensure that K(j) and L(j) satisfy the Loewner ordering. Let us consider the first possibility, i.e., there is no j ∈ [s] such
that t′j = ti and t′j+1 = ti+1. By the update rule,(

1− η

2

)
L̃(j) � L̃(j + 1).

Using Proposition 6, we have

(1− η)L(j) ≺
(

1− η

2

)(1− η
4

1 + η
4

)
L(j).

Equation (13) gives us a relationship between L(j) and L̃(j):

(
1− η

2

)(1− η
4

1 + η
4

)
L(j) �

(
1− η

2

1 + η
4

)
L̃(j).

From the update rule, it follows that (
1− η

2

1 + η
4

)
L̃(j) � 1

1 + η
4

L̃(j + 1)

Finally, another application of Equation (13) gives us

1

1 + η
4

L̃(j + 1) � L(j + 1).

Therefore, we have the relation listed in item 2a in Definition 7. Furthermore, due to the maximality condition in the update
rule (lines 2 and 2), there exists an k ∈ [d] such that

sk(L̃(j + 2)) <
(

1− η

2

)
sk(L̃(j)),
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Algorithm 6 SLIDING-PRIV-APPROX(S; r; (ε, δ);W )

Require: A stream, S, of row vectors {at} and the desired rank of matrices, r, privacy parameters (ε, δ), and window size
W .

Ensure: A matrix Ã ∈ R
4r
η ×d at the end of the stream.

1: Initialize DSpriv to be an empty set and Φ ∈ R
4r
η ×(d+1) such that every entry Φ[i, j] ∼ N (0, η4r ).

2: while stream S has not ended
3: DSpriv ← PRIV-INITIALIZE-APPROX (

(
DSpriv; at; t;

(
η

log(W )ε,
η

log(W )δ
)

;W ; Φ; r
)

. {Algorithm 7}
4: Update the data structure DSpriv ←UPDATE-APPROX(DSpriv). {Algorithm 5}
5: end
6: Let DSpriv =

{
(ti, Ã[ti,t])

}`
i=1

for some `.

7: Output Ã = Ã[t1,t].

where {s1(D), · · · , sd(D)} denotes the singular values of an d× d matrix D. This proves the statement of the Lemma 7
for the first scenario.

Now let us consider the second possibility. Again by the update rule, we have(
1− η

2

)
L̃(j) � L̃(j + 1).

It follows from Proposition 6 and Theorem 5 that

(1− η)L(j) ≺
(

1− η

2

)(1− η
4

1 + η
4

)
L(j) �

(
1− η

2

1 + η
4

)
L̃(j).

Another application of the update rule and Theorem 5 gives us(
1− η

2

1 + η
4

)
L̃(j) � 1

1 + η
4

L̃(j + 1) � L(j + 1),

where the last positive semidefinite inequality follows from Theorem 5. The second part of η-approximate smooth-PSD
property follows similarly as in the case of the first case. This proves the statement of the Lemma 7 for the second
sdenario.

Lemma 7 gives the guarantee that if we are given a set of positive semidefinite matrices in the Loewner ordering, then
we can efficiently maintain a small set of positive semidefinite matrices that satisfy η-approximate smooth histogram
property. The idea of our algorithm for spectral approximation is to ensure that UPDATE-APPROX always receives a set
of positive semidefinite matrices. This is attained by our algorithm PRIV-INITIALIZE-APPROX, which gets as input a
new row and updates all the matrices in the current data structure. We use both these subroutines in our main algorithm,
SLIDING-PRIV-APPROX, that receives a stream of rows and call these two subroutines on every new update. Equipped with
Lemma 7, we show that SLIDING-PRIV-APPROX, described in Algorithm 6 provides the following guarantee.

Theorem 13 (Private spectral approximation under sliding window). Given the privacy parameter ε, δ, window size W ,
desired rank r approximation parameter η, and S = (at)t>0 be the stream such that at ∈ Rd. Let AW be the matrix formed
at time T using the last W updates as defined in equation (1). Then we have the following:

1. SLIDING-PRIV-APPROX(S; r; (ε, δ);W ) is (ε, δ)-differential privacy.

2. Ã←SLIDING-PRIV-APPROX(S; r; (ε, δ);W ) satisfies the following with probability 9/10:(
1− η

4

)(
A>WAW +

cr log2(1/δ) log(W )

ηε2
1d

)
� Ã>Ã �

(1 + η
4 )2

(1− η)
A>WAW +

cr log2(1/δ) log(W )

ηε2
1d.

3. The space required by SLIDING-PRIV-APPROX(S; r; (ε, δ);W ) is O(dr
2

η2 logW ).
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Algorithm 7 PRIV-INITIALIZE-APPROX(DSpriv; at; t; (ε, δ);W ; Φ; r)

Require: A new row at ∈ Rd, a data structure DSpriv storing a set of timestamps t1, · · · , t` and set of matrices

Ã[t1,t], · · · , Ã[t`,t],

current time t, window size W , and random matrix Φ ∈ R
4r
η ×(d+1).

Ensure: Updated matrices Ã[t1,t], · · · , Ã[t`,t] and timestamps t1, · · · , t`.
1: if t2 < t−W + 1
2: Set tj = tj+1, Ã[tj ,t] := Ã[tj+1,t] for 1 ≤ j ≤ `− 1 {Delete the expired timestamp.}
3: end
4: Set t`+1 = t, σ =

16
√
r log(4/δ0)+log(4/δ)

ε0
for ε0 = log(W )

η
ε, δ0 = log(W )

η
δ, and

Ã[t`+1,t] := Φ

(
σ1d
at

)
∈ R

4r
η
×d
, Ã := Φ

(
0d×d

at

)
∈ R

4r
η
×d
. (14)

5: Update DSpriv ← DSpriv ∪ (Ã[t`+1,t], t).
6: for i = 2, . . . , `

7: Compute Ã[ti,t] ← Ã[ti,t] + Ã. {Update the matrices.}
8: end
9: Return DSpriv :=

{
(Ã[ti,t], ti)

}`
i=1

.

Proof. We divide the proof of Theorem 13 in three parts: (i) the privacy proof (Lemma 9); (ii) accuracy proof (Lemma 10);
and (iii) the space complexity proof (Lemma 8).

Lemma 8 (Space complexity). Let η, ε, δ be as in Theorem 13. The total space required to maintain the data structure
DSprivis O

(
r2d
η log n logW

)
.

Proof. Note that there are at most r singular values. Since each checkpoints are at least (1 − η
2 ) apart for at least one

singular value and all the non-zero singular values are bounded by a polynomial, there can be at most

c log(1− η2 )(W ) = c
logW

log(1− η
2 )
≤ 2c

η
logW (15)

checkpoints that sees the jump in a specific singular value. Since each checkpoint defined by ti (for i ≥ 2) stores a covariance
matrix, using Theorem 5, the total space used by the checkpoints

{
Ã[ti,t], ti

}
i≥2

is O
(
rd
η logW

)
. This finishes the proof

of Lemma 8.

Lemma 9 (Privacy guarantee). Let S := {at}Tt=1 be the streams of row and AW be the rank r matrix formed in the time
epoch [T −W +1,W ] as defined in equation (1). Then Ã← SLIDING-PRIV-APPROX(S; r; (ε, δ);W ) is (ε, δ)-differentially
private.

Proof. Let P denote the output distribution of our algorithm when run on the input matrix A[ti,t] and similarly let Q denote
the output of our algorithm on input matrix A′[ti,t]. Both distribution are supported on S := Rd×d matrices. For M ∈ S,
consider the privacy loss function

L(M) := log

(
P(M)

Q(M)

)
.

Our goal is to show that PrM [L(M) ≤ ε] ≥ 1− δ for all T . There are three cases:

1. When T < t, the output distributions of P and Q are identical. It follows that L(M) = 0.

2. When T = t: In this case, we note that all singular values of matrix is at least σ. Therefore, Theorem 8 implies that
PrM [L(M) ≤ ε0] ≥ 1− δ0.
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3. When T > t, privacy follows due to the post processing property of differential privacy.

Now each of the streamed data appears in at most log(W )
η checkpoints (equation (15)) and the output is just one checkpoint

at the end of the stream. Note that each of the checkpoints is a P -sum (Definition 5) The privacy guarantee now follows
using Fact 1 and the composition theorem.

Lemma 10 (Accuracy guarantee). Let S := {at}Tt=1 be the streams of row and AW be the rank r matrix formed in the
time epoch [T −W + 1,W ] as defined in equation (1). Then Ã← SLIDING-PRIV-APPROX(S; r; (ε, δ);W ) satisfies the
following(

1− η

4

)(
A>WAW +

cr log2(1/δ) log(W )

ηε2
1d

)
� Ã>Ã �

(1 + η
4 )

(1− η)
A>WAW +

cr log2(1/δ) log(W )

ηε2
1d

for a constant c > 0 with probability at least 1 − β, where the probability is taken over the internal coin tosses of
PRIV-INITIALIZE-APPROX.

Proof. Note that the output of SLIDING-PRIV-APPROX (S; r; (ε, δ);W ) is Ã[t1,t], the first matrix in the data structure
DSpriv. Fix the following notations for j ∈ [`]:

K(j) := A>[tj ,t]A[tj ,t], K̃(j) := Ã>[tj ,t]Ã[tj ,t]

K̂(j) :=

(
σ1d
A[tj ,t]

)>(
σ1d
A[tj ,t]

)
= A>[tj ,t]A[tj ,t] + σ21d = K(j) + σ21d.

(16)

where

σ :=
16
√
r log(4/δ) + log(4/δ)

ε
and Â[tj ,t] :=

(
σ1d
A[tj ,t]

)
.

Since the starting time of the window is sandwiched between the first and second timestamps, the matrix A>WAW is
approximated in the following manner:

K(2) � A>WAW � K(1) (17)

Moreover, from the η-approximate smooth-PSD property, we have the following relation between K̂(1) and K̂(2) (equiva-
lently Â[t1,t] and Â[t2,t]):

(1− η)K̂(1) � K̂(2). (18)

Since K̃(j) is η
4 -spectral approximation of K̂(j) for all j ∈ [`], setting ζ = η

4 and A := Â[ti,t] for i = {1, 2} in Theorem 5,
we have with probability 1− β,(

1− η

4

)
K̂(1) � K̃(1) �

(
1 +

η

4

)
K̂(1),

(
1− η

4

)
K̂(2) � K̃(2) �

(
1 +

η

4

)
K̂(2). (19)

Using equation (16) and (19), we have that (
1− η

4

)
(K(1) + σ21d) � K̃(1). (20)

Since adding positive semidefinite matrices preserves the Loewner ordering, using equation (17) we can deduce the following
implication from equation (20), we get the following:(

1− η

4

)
(A>WAW + σ21d) �

(
1− η

4

)
(K(1) + σ21d) � K̃(1). (21)
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This completes the proof of the lower bound on K̃(1). To upper bound K̃(1), equation (19) gives us

K̃(1) �
(

1 +
η

4

)
K̂(1). (22)

Combined with equation (18), equation (22) gives us

K̃(1) �
(
1 + η

4

)
(1− η)

K̂(2). (23)

Combining equation (23) with equation (16) and equation (17) then gives us

K̃(1) �
(
1 + η

4

)
(1− η)

(
A>WAW + σ21d

)
. (24)

This completes the proof of the upper bound on K̃(1). The statement of the lemma follows by combining equations (21)
and (24) and substituting the value of σ.

Theorem 13 follows by combining Lemma 9, Lemma 10, and Lemma 8.

Note that (1 + η
4 ) ≤ (1 + 2η)(1− η) for η ≤ 3

8 . Scaling the value of η, we have the following:

Corollary 2. Let η ∈ (0, 3
8 ). Then SLIDING-PRIV-APPROX(S; r; (ε, δ);W ) outputs a matrix Ã such that, for some constant

c > 0,

(1− η)

(
A>WAW −

cr log(1/δ) log(W )

ηε2
1d

)
� Ã>Ã � (1 + η)

(
A>WAW +

cr log(1/δ) log(W )

ηε
1d

)
.

If instead, we compute Ã>Ã− σ21d, then we get the following theorem.
Theorem 14. Given the privacy parameters (ε, δ), window size W , desired rank r, and approximation parameter β, let
S = {at}t>0 be the streams such that at ∈ Rd. Let AW be the matrix formed at time T using the last W updates as defined
in equation (1). Let Ã← SLIDING-PRIV-APPROX(S; r; (ε, δ);W ). Then we can compute a positive semidefinite matrix C
such that

Pr

[
(1− η)A>WAW −

cηr log(1/δ) log(W )

4ηε2
1d � C � (1 + η)A>WAW +

cηr log(1/δ) log(W )

ηε2
1d.

]
≥ 1− β.

Proof. Compute Ã← SLIDING-PRIV-APPROX(S; r; (ε, δ);W ) and let C = Ã>Ã− σ21d. Then using Corollary 2 gives
us the required bound.

D. Applications of Theorem 1
Algorithm 6 can be used in solving many matrix analysis problems with better additive error. As a warm up, we consider
directional variance queries.

D.1. Directional covariance queries

Theorem 11 is true for any d-dimensional unit vector x ∈ Rd. However, in many practical scenarios, it is infeasible to ask
all possible questions, but only a bounded number of queries. If we are given an apriori bound q on the number of queries an
analyst can make, we can apply SLIDING-PRIV-APPROX to get dimension independent bound.
Theorem 15 (Directional variance queries). Given privacy parameters (ε, δ) and approximation parameter η ∈ (0, 1/2),
let AW be the matrix formed by last W updates as defined in equation (1). Given a bound q, on the number of queries that
can be made, there is an efficient (ε, δ)-differentially private algorithm that outputs a matrix C such that for any set of q unit
vector queries x1, · · · , xq ∈ Rd, we have for all i ∈ [q]

〈xiAW , AWxi〉 −
cη log q log d

ε
≤ 〈xi, Cxi〉 ≤

1

(1− η)
〈xiAW , AWxi〉+

cη log q log d

ε
.
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For the rest of this section, we will explore applications of Algorithm 6 in principal component analysis in both restricted
and unrestricted form. Recall that Theorem 12 gives an accuracy bound on PCA that depends linearly on the dimension of
the data. However, one would ideally like the dependencies to be sublinear in d. In this section, we give a method to achieve
this.

For this, we introduce a new concept which we call private projection preserving summary, which can be seen as the private
analogue of projection cost preserving sketches (Cohen et al., 2015). However, it is far from clear if the techniques used in
non-private literature extends straightforwardly. We show that Algorithm 6 with proper choice of parameters provides us
with one such summary. This can be later employed to solve restricted and unrestricted principal component analysis.

D.2. Private Projection Preserving Summary

In this section, we introduce a notion called private projection preserving summary. This notion would be useful in giving
our bounds on the principal component analysis and in giving the first bound on restricted principal component analysis.

Definition 8 (Private Projection Preserving Summary). Let k be a desired rank. Given a set of rank-k projection matrices
Π, a matrix Ã ∈ Rn×d is called a private projection preserving summary of A ∈ Rn×d with error 0 ≤ η < 1 if it is (ε, δ)
differentially private and for all P ∈ Π,

(1− η) ‖A− PA‖2F − τ1 ≤
∥∥∥Ã− PÃ∥∥∥2

F
≤ (1− η) ‖A− PA‖2F + τ2

for τ1, τ2 that depends on k, d, ε, δ.

Private projection preserving summary can be seen as the private analogue of projection-cost preserving sketches introduced
by (Cohen et al., 2015); however, there are some key differences. First of all, we do not require a constant c that depends
only on A and Ã. Second of all, there is a difference in quantifier. We do not require the private projection preserving
summary to be with respect to all rank-k projection matrices but a predefined set Π of projection matrices.

Lemma 11. Let k be the desired rank, η be the approximation parameter, and (ε, δ) be the privacy parameter. Let Π be the
set of all rank-k projection matrices. Then for a given matrix AW formed by the last W updates as defined in equation (1),
the output Ã←SLIDING-PRIV-PCP

(
S; k+log(1/β)

η ; (ε, δ);W
)

is (ε, δ)-differentially private and satisfies the following for
all P ∈ Π with probability at least 1− β,

(1− 6η)
∥∥∥Ã(1d − P )

∥∥∥
F
− c1K ≤ ‖A(1d − P )‖F ≤ (1 + 6η)

∥∥∥Ã(1d − P )
∥∥∥
F

+ c2K,

where

K :=

√
k′d log(1/δ) log(W )

ηε
for k′ := k + log(1/β).

Proof. Recall that

Â =

(
σ1d
A

)
where σ =

16
√
r log(4/δ) + log(4/δ)

ε

is as defined in Algorithm 5. By subadditivity of Frobenius norm, we have

‖A(1d − P )‖F −
√
k′d log(1/δ) log(W )

ηε
≤
∥∥∥Â(1d − P )

∥∥∥
F
≤ ‖A(1d − P )‖F +

√
k′d log(1/δ) log(W )

ηε
. (25)

We wish to use Lemma 4. For this, we designE1, E2, E3 andE4 that satisfy the conditions of Lemma 4. Let Â = V̂ ŜÛ> be
a singular value decomposition. Let Ûk be the top k-left singular vectors of Â and let P1 = ÛkÛ

>
k be a rank-k orthonormal

projection matrix. Then we define
E1 := P>1 Â

>Φ>ΦÂP1 − P>1 Â>ÂP1.

From the subspace embedding property of Φ (Clarkson & Woodruff, 2017), we have that

−η1Â
>Â � E1 � η1Â

>Â.
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Let P2 := (1d − P1) and define E2 := P>2 Â
>Φ>ΦÂP2 − P>2 Â>ÂP2. By construction E2 is symmetric. Moreover,

using Kane & Nelson (2014, Theorem 21) gives us

Tr (E2) = Tr
(
P>2 Â

>Φ>ΦÂP2 − P>2 Â>ÂP2

)
= Tr

(
P>2 Â

>(Φ>Φ− 1d)ÂP2

)
≤
∥∥∥ÂP2

∥∥∥
F

∥∥Φ>Φ− 1d
∥∥

2

∥∥∥ÂP2

∥∥∥
F

=
∥∥∥Â− ÂP1

∥∥∥
F

∥∥Φ>Φ− 1d
∥∥

2

∥∥∥Â− ÂP1

∥∥∥
F

=
∥∥∥Â− [Â]k

∥∥∥2

F

∥∥Φ>Φ− 1d
∥∥

2
≤ η

k

∥∥∥Â− [Â]k

∥∥∥2

F

because P2 is the orthogonal projection to the top-k singular space of Â. Using the inequality relationship between trace
norm and Frobenius norm, it follows that

k∑
i=1

|λi(E2)| ≤
√
k ‖E2‖F .

Now we define the matrices E3 and E4 using the cross terms as below.

E3 := P>1 Â
>Φ>ΦÂP2 − P>1 Â>ÂP2 and E4 := P>2 Â

>Φ>ΦÂP1 − P>2 Â>ÂP1.

We show the desired bound for the case of E3. The case for E4 follows similarly. First of all, by definition of P1 and the
fact that P1 and P2 are orthogonal to each other, we simply have

E3 = P>1 Â
>Φ>ΦÂP2 − P>1 Â>ÂP2 = P>1 Â

>Φ>ΦÂP2 (26)

Using Kane & Nelson (2014, Theorem 21), if follows from the singular value decomposition of Â and
∥∥∥Ûk∥∥∥

F
=
√
k, that

Tr
(
E>3 (Â>Â)†E3

)
=
∥∥∥ÛkΦ>ΦÂ(1− P1)

∥∥∥2

F
≤ η2

∥∥∥Â− [Â]k

∥∥∥2

F
(27)

as required. Using Lemma 4, we have

(1− 5η)
∥∥∥ΦÂ(1d − P )

∥∥∥
F
≤
∥∥∥Â(1d − P )

∥∥∥
F

+ η
∥∥∥Â− [Â]k

∥∥∥
F
≤ (1 + 5η)

∥∥∥ΦÂ(1d − P )
∥∥∥
F
.

Rearranging the term and using Equation (25) completes the proof of Lemma 11.

D.3. Private Principal Component Analysis

The additive error of (ε, δ)-differentially private algorithm under sliding window model to compute the principal component
using spectral histogram framework depends linearly on the dimension. In this section, we show that we can improve the
accuracy guarantee significantly. Let Π be the set of all rank-k orthonormal projection matrices. We use the following
algorithm for this purpose:

SLIDING-PRIV-PCA

1. Compute Ã←SLIDING-PRIV-APPROX
(
S; k+log(1/β)

η ; (ε, δ);W
)

.

2. Solve the following rank-constrained problem using the result of Friedland & Torokhti (2007)

X̃ := argmin
P∈Π

∥∥∥Ã(1d − P )
∥∥∥
F
.

Theorem 16. Given privacy parameters (ε, δ), Π be the set of all rank-k orthonormal projection matrices and approximation
parameter η ∈ (0, 1/2), letAW be the matrix formed by the lastW updates as defined in equation (1). Then SLIDING-PRIV-
PCA is an efficient (ε, δ)-differentially private algorithm that outputs a rank-k orthonormal projection matrix X̃ ∈ Rd×d
such that with probablity 1− β,∥∥∥AW −AW X̃∥∥∥

F
≤
(

1 + 6η

1− 6η

)
min
P∈Π
‖AW (1d − P )‖F +O

(
log(1/δ)

ηε

√
d log(W )(log(d))(k + log(1/β))

)
.
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Proof. Let k′ = k + log(1/β). Define

X̂ := argmin
X∈Π

‖AW (1d − P )‖F and X̃ := argmin
X∈Π

∥∥∥Ã(1d − P )
∥∥∥
F
.

Using the left hand inequality in Lemma 11, we have∥∥∥Ã(1d − X̃)
∥∥∥
F
≤
∥∥∥Ã(1d − X̂)

∥∥∥
F
≤ 1

(1− 6η)

(∥∥∥AW (1d − X̂)
∥∥∥
F

+
k′d log(1/δ)

ε

)
. (28)

Similarly, using the right hand inequality in Lemma 11, we have∥∥∥Ã(1d − X̃)
∥∥∥
F
≥ 1

(1 + 6η)

(∥∥∥AW (1d − X̃)
∥∥∥
F
− k′d log(1/δ)

ε

)
. (29)

Combining Equations (28) and (29), we have the result.

D.4. Private Restricted Principal Component Analysis

In this section, we prove our result on private restricted principal component analysis. The traditional notion of principal
component analysis minimizes over all possible set of rank-k projection matrices. However, recently researchers in machine
learning has found applications where the rank-k projection matrices also satisfy other structural properties, like sparsity and
non-negativity (Asteris et al., 2014; Yuan & Zhang, 2013; Zass & Shashua, 2006). There are also non-private algorithms for
such problems as well. On the other hand, there is no prior work in privacy preserving literature for structural principal
component analysis.

We show the following for restricted principal component analysis:

Theorem 17. Given privacy parameters (ε, δ) and approximation parameter η ∈ (0, 1/2), let AW be the matrix formed by
the last W updates as defined in equation (1) and Π be a given set of rank-k orthonormal projection matrices. Algorithm
SLIDING-PRIV-PCP outputs Ã satisfying (ε, δ)-differential privacy. Let P ∈ Π be a projection matrix satisfying∥∥∥Ã(1d − P )

∥∥∥
F
≤ γ · min

X∈Π

∥∥∥Ã(1d −X)
∥∥∥
F
. (30)

Then with probablity 1− β,

‖AW (1d − P )‖ ≤
(

1 + η

1− η

)
γ · min

X∈Π
‖AW (1d −X)‖+O

(√
k′d log(W ) log(1/δ)

ηε

)
.

Proof. Define
P̂ = argmin

P∈Π
‖AW (1d − P )‖F , P̃ = argmin

P∈Π

∥∥∥Ã(1d − P )
∥∥∥
F
.

Since P̃ is a minimizer, it implies the following∥∥∥Ã(1d − P̃ )
∥∥∥
F
≤
∥∥∥Ã(1d − P̂ )

∥∥∥
F

(31)

as P̂ ∈ Π. Combining with the equation (30), we have∥∥∥Ã(1d − P )
∥∥∥
F
≤ γ

∥∥∥Ã(1d − P̃ )
∥∥∥
F
. (32)

for P ∈ Π as defined in equation (30). Using the right hand side inequality of Lemma 11, we have

(1 + η)
∥∥∥Ã(1d − P )

∥∥∥
F

+

√
k′d log(1/δ)

ε
≥ ‖AW (1d − P )‖F (33)
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Combining Equation (32) and (33), we have

‖AW (1d − P )‖F ≤ (1 + η)γ
∥∥∥Ã(1d − P̃ )

∥∥∥
F

+

√
k′d log(1/δ)

ε
. (34)

Using the left hand side inequality of Lemma 11, we have∥∥∥Ã(1d − P̂ )
∥∥∥
F
≤
(

1

1− η

)∥∥∥AW (1d − P̂ )
∥∥∥
F

+

√
k′d log(1/δ)

ε(1− η)
. (35)

Combining Equations (35) and (33), we have the result.

D.5. Multi-response Linear Regression

The question of multi-response linear regression problem is as follows: given two matrices A ∈ Rn×d and B ∈ Rn×p as
input, multi-response linear regression is defined as the following minimization problem:

argmin
X∈Rd×p

‖AX −B‖2F .

This problem is also known as generalized linear regression, and is used in the analysis of low-rank approximation
(see Woodruff (2014) and references therein). We show the following:
Theorem 18 (Linear regression). Given privacy parameters (ε, δ) and approximation parameter η ∈ (0, 1/2), let AW ∈
RW×d and B ∈ RW×p be the matrix streamed during the window of size W formed as defined in equation (1). Then we
can efficiently output a matrix X̃ ∈ Rd×p while preserving (ε, δ)-differential privacy such that∥∥∥AW X̃ −BW∥∥∥2

F
≤
(

1

1− η

)
min

X∈Rd×p
‖AWX −B‖2F +

c(τ + p)2 log(τ + p) log(W )

ηε

for some large constant c > 0 and τ = d+ 14
ε2 log(4/δ).

Proof. To reduce the notation overhead, we use A = AW and B = BW to denote the matrices streamed in the last W
updates. We use

(
A B

)
∈ RW×(d+p) as the matrix that is being streamed and assume C>C ∈ R(d+p)×(d+p) as an output.

We solve the following minimization problem:

minimize: Tr

((
X> −1>p

)
C>C

(
X
−1p

))
where X ∈ Rd×p. Let X̃ be an optimal solution to the above minimization problem. In particular, this implies that for all
X ∈ Rd×p,

Tr

((
X̃> −1p

)
C>C

(
X̃
−1p

))
≤ Tr

((
X> −1p

)
C>C

(
X
−1p

))
.

Let
X̂ := argmin

X∈Rd×p
‖AWX −BW ‖2F

be an optimal solution for the original regression problem. It follows that for all X ∈ Rd×p,∥∥∥AW X̂ −BW∥∥∥2

F
≤ ‖AWX −BW ‖2F . (36)

The right side of Equation (8) gives us∥∥∥∥C ( X̃
−1p

)∥∥∥∥2

F

≤
∥∥∥∥C ( X̂

−1p

)∥∥∥∥2

F

≤ 1

(1− η)

∥∥∥∥(AW BW
)( X̂
−1p

)∥∥∥∥2

F

+
c(τ + p)2 log(τ + p)

ε

=
1

1− η

∥∥∥AW X̂ −BW∥∥∥2

F
+
c(τ + p)2 log(τ + p)

ε

=
1

1− η
min

X∈Rd×p
‖AWX −BW ‖2F +

c(τ + p)2 log(τ + p)

ε
, (37)
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where the second equality is by the definition of X̂ . Similarly, the left hand side inequality of Equation (8) gives us a lower
bound as follows: ∥∥∥∥C ( X̃

−1p

)∥∥∥∥2

F

≥
∥∥∥∥(AW BW

)( X̃
−1p

)∥∥∥∥2

F

− c(τ + p)2 log(τ + p)

ε

=
∥∥∥AW X̃ −BW∥∥∥2

F
− c(τ + p)2 log(τ + p) log(W )

ηε
. (38)

Combining Equation (37) and (38) gives us the claimed result.

E. Lower Bounds for Low-rank Approximation
This section is devoted to proving a lower bound on the space requirement for low-rank factorization with non-trivial
additive error. It is well known that no private algorithm (not necessarily differentially private) incurs an additive error
o(
√
kd) (Hardt & Roth, 2012) due to linear reconstruction attack. On the other hand, the only known space lower bound of

Upadhyay (2018) holds for streaming data where the entire historic data is considered important. While the entries can be
streamed in an arbitrary order, this paper considers the case when one row is streamed at a time. Hence, there might be
a possibility to construct an improved space algorithm for the special case of streaming we consider. However, we show
below that for any non-trivial values of τ , this is not the case.

We first note that the technique developed by Bar-Yossef (2002) can be used to give lower bounds on the number of rows to
be sampled by any sampling-based algorithm for low-rank matrix approximation. However, space lower bounds, in general,
is a harder problem as one can use methods other than row sampling. For example, Bar-Yossef (2002) showed that any
sampling-based algorithm for computing Euclidean norm of a stream of length W requires Ω(W ) samples, while Upadhyay
(2019) gave a privacy-preserving sliding window algorithm using O

(√
W log2W
η2

)
bits. Our lower bounds come from

reduction from the communication complexity of AIND problem.

Theorem 19. Let n, d, k ∈ N and η > 0. Then the space used by any randomized single-pass algorithm for low-rank
approximation in the sliding window model is at least Ω(Wk log(W )/η).

Proof. For a matrix A and set of indices C, we use the notation A(C) to denote the submatrix formed by the columns
indexed by C. We use the standard extension of the proof of Upadhyay (2018) for the sliding window model. The idea is
basically for Alice to generate a stream with heavier weights on the more recent rows. Then Bob simply discards the stream
not in the last W updates and use the rest of the state to compute the value of xind as in the case of Upadhyay (2018). Let
` = logW

η . Suppose n ≥ d and let a = k`
20η . Without loss of generality, we can assume that a is at most d/2. We assume

Alice has a string x ∈ {−1,+1}(W−a)a and Bob has an index ind ∈ [(W − a)a]. The idea is to define the matrix A with
high Frobenius norm. The matrix A is the summation of the matrix Ã constructed by Alice and Ā constructed by Bob. We
first define how Alice and Bob construct the instant A = Ã+ Ā. Alice constructs its matrix Ã as follows.

1. Alice partitions the set {1, · · · , a} in to ` disjoint sets I1, · · · , I` such that Ii := {(i− 1)a/`+ 1, · · · ia/`} .

2. Let M (Ii) be an (W − a)× a
` matrix for all 1 ≤ i ≤ `. Alice forms a bijection between entries of x and the entries of

M in the following manner. Every entry of M (Ii) is defined by a unique bit of x, i.e.,

M (Ii)j,k = (−1)xp(10)i, p =
(i− 1)(W − a)a

`
+ (k − 1)(n− a) + j.

3. Let M =
(
MI1 · · · MI`

)
. The matrix Ã is now defined as follows.

Ã =

(
0a×a 0a×(d−a)

M 0(n−a)×(d−a)

)
.

Suppose Bob is given an index ind ∈ [(W − a)a] such that xind corresponds to the sub-matrix M (Iθ) for some 1 ≤ θ ≤ `.
Then we can assume that Bob also knows every entry in the sub-matrix M (Iθ′) for θ′ > θ. The idea is that Bob inserts a
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scaled identity matrix in the stream, where the scaling parameter γ is large enough to make sure that most of the error of any
randomized algorithm is due to other columns of A. As we shall see later, we set the value of γ as a large polynomial in the
approximation error of the algorithm. Bob forms his matrix as follows:

1. Bob forms a second level partition of the columns of M (Iθ) into equal size groups G1, · · · , Ga/k`. There exists a
unique r such that xind maps to an entry in the sub-matrix formed by columns indexed by one of the second level
partition Gr.

2. Let C = {c, c+ 1, · · · , c+ k − 1} be the columns corresponding to the group of Iθ.

3. Bob expires the stream of Alice except for the current window in a matrix Ā which is an all-zero matrix, except for
entries Āc+i,c+i = γ for 0 ≤ i ≤ k − 1 and γ to be chosen later.

Let M be the algorithm that computes low-rank approximation under the turnstile model. Alice feeds its matrix Ã to M in
the turnstile manner and send the state of the algorithm by the end of her feed to Bob. Bob uses the state received by Alice
and feed the algorithm M with its own matrix Ā in a turnstile manner. Therefore, the algorithm M gets as input a matrix
A = Ã+ Ā and it is required to output a rank-k matrix B with additive error τ = O(W + d). We will show that any such
output allows us to solve AIND. Denote by A(C) the sub-matrix formed by the columns C := {c, c+ 1, · · · , c+ k − 1}.

Let us first understand the properties of the constructed matrix A. To compute the Frobenius norm of this matrix, we need to
consider two cases: the case for sub-matrices in which ind belongs, i.e, M (Ir), and the rest of the matrix. For the sub-matrix
corresponding to the columns indexed by C, the columns of A (Iθ) have Euclidean length (γ2 + (n − a)100θ)1/2. For
θ′ < θ, every columns have Euclidean norm (a(n− a))1/210θ

′
. Therefore, we have the following:

‖A− [A]k‖2F ≤
((a− k)(W − a)100θ

`
+
∑
θ′<θ

a(W − a)100θ
′

`

≤ ((a− k)(W − a)100θ

`
+
a(W − a)100θ

99`
≤ 2 · (100)θWd/` = τ

In order to solve low-rank approximation, the algorithm needs to output a matrix B of rank at most k such that, with
probability 5/6 over its random coins,

‖A−B‖2F ≤
[
(1 + η)

√
τ + τ

]2 ≤ 2(1 + η)τ + 2τ2

≤ 2τ + 100θk(W − a)

(
1

10
+

1

99

)
+ 2τ2 ≤ 4 · (100)θWd/`+

100θk(n− a)

5
+ 2τ2

Let Ψ := 4 · (100)θWd/`+ 100θk(W − a)
(

1
10 + 1

99

)
+ 2τ2. The proof idea is now to show the following: (i) columns of

B corresponding to index set in C are linearly independent, and (ii) bound the error incurred by ‖A−B‖F in terms of the
columns indexed by Gr.

The idea is to show that most of the error is due to the other columns in B; and therefore, sign in the submatrix A(C) agrees
with that of the signs of those in the submatrix B(C). This allows Bob to solve the AIND problem as Bob can just output
the sign of the corresponding position. Let R := {ra/k + 1, · · · , (r + 1)a/k} and C := {c, · · · , c+ k − 1} . Let Y be
the submatrix of B formed by the rows indexed by R and columns indexed by C. The following lemma proves that when γ
is large enough, then the columns of B corresponding to index set C are linearly independent.

Lemma 12. LetB(C) := [B:c · · ·B:c+k−1] be the columns corresponding to the sub-matrix formed by columns c, · · · , c+
k − 1 of B. If γ ≥ 2Ψ2, then the column space of B(C) is the same as that of [A]k.

Proof. We will prove the lemma by considering the k × k sub-matrix, say Y . Recall that Y is a submatrix of B formed
by the rows indexed by R and the columns indexed by C. For the sake of brevity and abuse of notation, let us denote the
restriction of B to this sub-matrix Y := [Y:1, · · · , Y:k]. In what follows, we prove a stronger claim that the submatrix Y is a
rank-k matrix.

Suppose, that the vectors {Y:1, · · · , Y:k} are linearly dependent. In other words, there exists a vector Y:i and real numbers
a1, · · · , ak, not all of which are identically zero, such that Y:i =

∑k
j=1,j 6=i ajY:j .
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From the construction, since Bob inserts a sub-matrix γ1k, we know that

k∑
j=1

(Yj,j − γ)2 ≤ ‖A−B‖2F ≤ Ψ and
k∑
j=1

∑
p 6=j

Y 2
p,j ≤ ‖A−B‖2F ≤ Ψ. (39)

From equation (39) and choice of γ, for all j, we have Yj,j ≥ Ψ2 and Yp,j ≤
√

Ψ. We thus have

Yi,i =

k∑
j=1,j 6=i

ajYi,j ≥ Ψ2

This imply that there is an p ∈ {1, · · · , k} \ {i} such that |ap| ≥ Ψ2

k
√

Ψ
.

Let î be the index in {1, · · · , k} \ {i} for which |âi| attains the maximum value. We have |âiYî,̂i| ≥ |âi|Ψ
2 and |ajYî,j | ≤

|âi|
√

Ψ. Now consider the î-entry of Y:i. Note that î 6= i. Since Ψ depends quadratically on m and τ , we have∣∣∣∣∣∣
k∑

j=1,j 6=i

ajYî,j

∣∣∣∣∣∣ ≥ |a|(Ψ2 − k
√

Ψ) ≥ (Ψ2 − k
√

Ψ)
Ψ2

k
√

Ψ
>
√

Ψ.

This is a contradiction because for p 6= j, Yp,j ≤
√

Ψ (equation (39)). This finishes the proof.

For the sake of brevity, let V:1, · · · , V:k be the columns of B(C) and Ṽ:1, · · · , Ṽ:k be the restriction of these column vectors
to the rows a+ 1, · · · ,m. In other words, vectors Ṽ:1, · · · , Ṽ:k are the column vectors corresponding to the columns in M .
We showed in Lemma 12 that the columns B(C) spans the column space of B. We can assume that the last n− a columns
of B are all zero vectors because B is a rank-k matrix. We can also assume without any loss of generality that, except for
the entries in the row indexed by R, all the other entries of B(C) are zero. This is because we have shown that the submatrix
of B(C) formed by rows indexed by R and columns indexed by C have rank k.

Now any row i of B can be therefore represented as
∑
ηi,jV:j , for real numbers ηi,j , not all of which are identically zero.

The following lemma proves part (ii) of our proof idea.

Lemma 13. Let V:1, · · · , V:k be as above. Then column i of B can be written as linear combination of real numbers
ηi,1, · · · ηi,k of the vectors V:1, · · · , V:k such that, for all j and i ∈ R, η2

i,j ≤ 4/Ψ3.

Proof. Let M:1, · · ·M:a be the columns of M , where M is the (W − a)× a submatrix of the matrix Ã corresponding to
the input of Alice. We have

Ψ ≥ ‖A−B‖2F
k∑
i=1

(γ − Vr(a/k)+i,i)
2 +

k∑
i=1

∑
j 6=i

V 2
r(a/k)+i,j +

k∑
i=1

‖M:r(a/k)+i − Ṽ:i‖2

+
∑
i/∈R

k∑
j=1

ηi,jVra/k+j,j +
∑
j′ 6=j

ηi,j′Vra/k+j,j′

2

+
∑
i/∈R

∥∥∥∥∥∥M:i −
k∑
j=1

ηi,j Ṽ:j

∥∥∥∥∥∥
2

.

As before, we have |V 2
r(a/k)+i,j | ≤

√
Ψ and |Vr(a/k)+i,i| ≥ Ψ2. Let ji be the index such that |ηi,ji | is the maximum. Then

the above expression is at least |ηi,ji |2(Ψ2 − k
√

Ψ)2 ≥ |ηi,ji |2Ψ4/4. Since this is less than Ψ, the result follows from the
definition of ji.

We can now complete the proof. First note that since M is a signed matrix, each Ṽi in the third term of the above expression
is at least

√
Ψ. Therefore, for all i /∈ S and all j∣∣∣∣∣∣

k∑
j=1

ηi,j Ṽ:j

∣∣∣∣∣∣ ≤ 4kΨ1/2

Ψ3/2
=

4k

Ψ
.
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As M:i is a sign vector and if τ = O(m+ n) = O(m), this implies that

∑
i/∈R

∥∥∥∥∥∥M:i −
k∑
j=1

ηi,j Ṽ:j

∥∥∥∥∥∥
2

≥
∑
i/∈R

‖M:i‖2
(

1− 4k

Ψ

)
≥ O((100)θWd/`)−O(100θa)

k∑
i=1

∥∥∥M:r(a/k)+i − Ṽ:i

∥∥∥2

=

k∑
i=1

W−a∑
j=1

(Mj,r(a/k)+i − (Ṽi)j)
2 ≤ 100θk(W − a)

5
+O(100θa)

Since there are k(n − a) entries in the submatrix formed by the columns indexed by C, at least 1 −
(

1
10 + 1

99 + o(1)
)

fraction of the entries have the property that the sign ofMj,ra/k+i matches the sign of Ṽj,i. Since ind is in one of the columns
of M:ra/k+1, · · ·M:ra/k+k, with probability at least 1−

(
1
10 + 1

99 + o(1)
)
, if Bob outputs the sign of the corresponding

entry in B, then Bob succeeds in solving AIND. This gives a lower bound of Ω((W − a)a) = Ω(Wk`/η) space.

F. Extension to continual release
Until now, we consider only one-shot algorithm, that is, an algorithm to compute spectral approximation with additive error
of O

(
cr log2(1/δ)

ε2

)
1d, but the output is produced just once. If we naively use this algorithm to publish a matrix continually

over the entire window, it would lead to a total accuracy loss of O
(
crW log2(1/δ)

ε2

)
1d. In this section, we show an algorithm

that computes spectral approximation with small additive error over the entire window, i.e., o(Wτ).

The continual release model was proposed by Dwork et al. (Dwork et al., 2010). In contrast to our setting, continual release
model consider the entire data useful and does not put any space constraints. We provide two different protocols, in both of
which we consider accuracy for only the update that came during the current window.

The first approach uses the same binary tree method introduced by (Bentley & Saxe, 1980) and used in (Dwork et al., 2010)
and (Chan et al., 2011), and in the sliding window model by (Bolot et al., 2013) and (Upadhyay, 2019). However, we depart
from their technique in the sense that we only build the binary tree. Let aT−W+1, · · · , aT be the updates at any time T . In
particular, we construct a binary tree as follows:

1. Every leaves consists of a single update privatized using Step 3.

2. For every other node, n, other than the leaf nodes, let C be the set of updates on the leaves of the subtree of n. Then we
first compute

Sn =
∑
ai∈C

a>i ai

Then we store S̃n on the node n, where S̃n is formed using the privitization step (Step 3) on Sn.

This construction mimics the construction of (Dwork et al., 2010) and hence using their analysis, we get the following result:

Theorem 20 (Private spectral approximation under sliding window). Given the privacy parameter ε, window size W ,
approximation parameter β, let Ω = (at)t>0 be the stream such that at ∈ Rd. For every t > 0, define AW (t) to be the
matrix formed at time t by the last W updates. Then SLIDING-PRIV(Ω; (ε, δ);W ) is (ε, δ)-differential private and requires

O
(
d2W
η logW

)
space. Further the mapping C̃ ←SLIDING-PRIV(Ω; (ε, δ);W ) satisfies the following:

Pr
[
A>WAW − (cτ log τ)1d � C̃ � A>WAW + (Cτ log τ)1d

]
≥ 1− 1

poly(d)

for constants c, C > 1 and τ :=
(
d+ 14 log(1/δ)

ε2

)
log3/2 (W ).

Note that this result uses η-approximate histogram property.

Making space requirement sublinear in window-size at the cost of accuracy loss. We now improve this bound by
incurring an accuracy loss that scales only logarithmic in the window size instead of linear. For this, we borrow the idea of
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(Bentley & Saxe, 1980) to move from one-shot algorithms to continually release algorithm. This technique was also used
in (Dwork et al., 2010) and subsequently improved in (Chan et al., 2011) and (Bolot et al., 2013). The idea is to build binary
tree with leaves being the graphs at the checkpoint. For this, we fix some notation:

1. B̃ be the binary tree formed by the leaves K̃(1), · · · , K̃(`).

2. B̃n be the subtree of the internal node, n, of the tree B̃.

3. L̃n be the leaves of B̃ in the subtree B̃n; i.e., a subset of the graphs K̃(1), · · · , K̃(`).

We divide our window in to
√
W sub-windows, each of size

√
W . We run an instantiation of our algorithm for each of these

subwindows. Let these subwindows terminates at timestamps T1, T2, · · · , T√W = T . For j-th subwindow that terminates
at time Tj , we also augment our data structure DSpriv for each of these windows to contains the following:

1. A set of covariance matrix for every timestamps stored in the data structure in Section B. That is, for timestamps,
t1, · · · , t`, apart from the privatized covariance matrix, K̃(1), · · · , K̃(`) we also store K(i) such that

K(i) =

Tj∑
t=ti

a>t at for all 1 ≤ i ≤ `.

2. A binary tree formed using an algorithm BINARY-TREE that uses covariance matrices K(1), · · · ,K(`) and
K̃(1), · · · , K̃(`). BINARY-TREE operates as follows:

(a) The leaves of the tree are K̃(1), · · · , K̃(`).
(b) For every internal node, n, let Ln be the covariance matrix from the set {K(1), · · · ,K(`)} corresponding to the

covariance matrices in the set L̃n. Then the covariance matrix stored in the node n is the privatization of the
following covariance matrix:

Kn =
∑

K̃(i)∈L̃n

K(i),

where the privatization is done as in Step 3.

3. Delete all the internal nodes whose leaves contains covariance matrix is formed before time t1.

Since the number of checkpoints is ` = O
(
n
ρ logW

)
, combining Theorem 10 with that of (Dwork et al., 2010), we have

the following theorem:

Theorem 21 (Private spectral approximation under continual release for a sliding window). Given the privacy parameter
(ε, δ), window sizeW , approximation parameter β, let Ω = (at)t>0 be the stream such that at ∈ Rd. For every t > 0, define
AW (t) to be the matrix formed at time t by the last W updates. Then SLIDING-PRIV(Ω; (ε, δ);W ) is (ε, δ)-differential

private and requires O
(
d3
√
W
η logW

)
. Further, the mapping C̃ ←SLIDING-PRIV(Ω; (ε, δ);W ) satisfies the following:

Pr

[(
A>WAW − (cτ log τ)1d

)
� C̃ �

(
A>WAW
(1− η)

+ (Cτ log τ)1d

)]
≥ 1− 1

poly(d)

for constants c, C > 1 and τ :=
(
d+ 14 log(1/δ)

ε2

)
W 3/4.


