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Abstract

The Euclidean projection onto a convex set is
an important problem that arises in numerous
constrained optimization tasks. Unfortunately, in
many cases, computing projections is computa-
tionally demanding. In this work, we focus on
projection problems where the constraints are
smooth and the number of constraints is signif-
icantly smaller than the dimension. The runtime
of existing approaches to solving such problems
is either cubic in the dimension or polynomial
in the inverse of the target accuracy. Conversely,
we propose a simple and efficient primal-dual
approach, with a runtime that scales only linearly
with the dimension, and only logarithmically in
the inverse of the target accuracy. We empirically
demonstrate its performance, and compare it with
standard baselines.

1. INTRODUCTION
Constrained optimization problems arise naturally in numer-
ous fields such as control theory, communication, signal pro-
cessing, and machine learning (ML). A common approach
for solving constrained problems is to project onto the set
of constraints in each step of the optimization method. In-
deed, in ML the most popular learning method is projected
stochastic gradient descent (SGD). Moreover, projections
are employed within projected quasi-Newton (Schmidt et al.,
2009), and projected Newton-type methods.

The projection operation in itself requires solving a
quadratic optimization problem over the original constraints.
In this work, we address the case where we have several
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smooth constraints, i.e., our constraint set K is

K = {x ∈ Rn : hi(x) ≤ 0 ;∀i ∈ [m]} , (1)

where hi’s are convex and smooth. We focus on the case
where the dimension of the problem n is high, and the num-
ber of constraints m is low. This captures several important
ML applications, like multiple kernel learning (Ye et al.,
2007), semi-supervised learning (Zhu et al., 2006), triangu-
lation in computer vision (Aholt et al., 2012), applications
in signal processing (Huang and Palomar, 2014), solving
constrained MDPs (Altman and Asingleutility, 1999; Jin
and Sidford, 2020).

In some special cases like box constraints, `2 or `1 con-
straints, the projection problem can be solved very effi-
ciently. Nevertheless, in general there does not exist a
unified and scalable approach for projection. One generic
family of approaches for solving convex constrained prob-
lems are Interior Point Methods (IPM) (Karmarkar, 1984;
Nemirovski and Todd, 2008). Unfortunately, in general the
runtime of IPMs scales as O

(
n3m log(n/ε)

)
, where ε is

the accuracy of the solution, so these methods are unsuitable
for high dimensional problems.

Our contribution. We propose a generic and scalable
approach for projecting onto a small number of convex
smooth constraints. Our approach applies generally for any
constraint set that can be described by Eq. (1). Moreover,
our approach extends beyond the projection objective to any
strongly convex and smooth objective. The overall runtime
of our method for finding an approximate projection is
O(nm2.5 log2(1/ε) + m3.5 log(1/ε)) (see Thm. 3.2 and
the discussion afterwards). Thus, the runtime of our method
scales linearly with n, making it highly suitable for solving
high-dimensional problems that are ubiquitous in ML.
Furthermore, in contrast to the Frank-Wolfe (FW) algorithm
(Frank and Wolfe, 1956), our approach is generic (i.e., does
not require a linear minimization oracle) and depends only
logarithmically on the accuracy.

Moreover, we extend our technique beyond the case of
intersections of few smooth constraints. In particular, we
provide a conversion scheme that enables to efficiently
project onto norm balls using an oracle that projects onto
their dual. One can interpret this result as an algorithmic
equivalence between projections onto norm ball and its
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dual. This holds for both smooth and non-smooth norms.

On the technical side, our approach utilizes the dual
formulation of the problem, and solves it using a cutting
plane method. Our key observation is that in the special case
of projections, one can efficiently compute approximate
gradients and values for the dual problem, which we then
use within the cutting plane method. Along the way, we
prove the convergence of cutting plane methods with
approximate gradient and value oracles, which may be of
independent interest.

Related work. In the past years, projection free first order
methods have been extensively investigated. In particular,
the Frank-Wolfe (FW) algorithm (Frank and Wolfe, 1956)
(also known as conditional gradient method) is explored,
e.g., in (Jaggi, 2013; Garber and Hazan, 2015; Lacoste-
Julien and Jaggi, 2015; Garber and Meshi, 2016; Garber,
2016; Lan and Zhou, 2016; Allen-Zhu et al., 2017; Lan
et al., 2017). This approach avoids projections and instead
assumes that one can efficiently solve an optimization prob-
lem with linear objective over the constraints in each round.
Unfortunately, the latter assumption holds only in special
cases. In general, this linear minimization might be non-
trivial and have the same complexity as the initial problem.
Moreover, FW is in general unable to enjoy the fast conver-
gence rates that apply to standard gradient based methods 1.
In particular, FW does not achieve the linear rate obtained
by projected gradient descent in the case of smooth and
strongly-convex problems. Moreover, FW does not enjoy
the accelerated rate obtained by projected Nesterov’s method
for smooth and convex problems.

Further popular approaches for solving constrained prob-
lems are the Augmented Lagrangian method and ADMM
(Alternating Direction Method of Multipliers) (Boyd et al.,
2011; He and Yuan, 2012; Goldstein et al., 2014; Eckstein
and Yao, 2012). Such methods work directly on the La-
grangian formulation of the problem while adding penalty
terms. Under specific conditions, their convergence rate may
be linear (Nishihara et al., 2015; Giselsson and Boyd, 2014).
However, ADMM requires the ability to efficiently compute
the proximal operator, which as a special case includes the
projection operator. To project onto the intersection of con-
vex constraint sets ∩mi=1Ki, consensus ADMM can exploit
projection oracles for each Ki separately. For this general
case, only sublinear rate is shown (Xu et al., 2017; Peters
and Herrmann, 2019). In the special case of polyhedral sets
Ki, it can have linear rate (Hong and Luo, 2017).

Levy and Krause (2019) suggest a fast projection scheme

1Note that for some special cases like simplex constraints one
can ensure fast rates for FW (Garber and Hazan, 2013; Lacoste-
Julien and Jaggi, 2015). In general, FW requires O(1/ε) calls to
an oracle providing the solution to linear-minimization oracle to
obtain ε-accurate solutions.

that can approximately solve a projection onto a single
smooth constraint. However, their approach cannot ensure
an arbitrarily small accuracy. Li et al. (2020) extend this ap-
proach to a simple constraint like `1, `∞-ball in addition to
a single smooth constraint. Basu et al. (2017) address high-
dimensional QCQPs (Quadratically Constrained Quadratic
Programs) via a polyhedral approximation of the feasible set
obtained by sampling low-discrepancy sequences. Never-
theless, they only show that their method converges asymp-
totically, and do not provide any convergence rates. There
are also works focusing on fast projections on the sets with
a good structure like `1, `∞ balls (Condat, 2016; Gustavo
et al., 2018; Li and Li, 2020).

Primal-dual formulation of optimization problems is a stan-
dard tool that has been extensively explored in the literature.
For example, Arora et al. (2005), Plotkin et al. (1995) and
Lee et al. (2015) propose to apply the primal-dual approach
to solving LPs and SDP. Nevertheless, almost all of the
previous works consider problems which are either LPs or
SDPs, these are very different from the projection problem
that we consider here. In particular:
(i) These works make use of the specialized structure of
LP’s and SDP’s, which does not apply to our work where
we consider general constraints. Plotkin et al. (1995) con-
sider general convex constraints, but assume the availability
of an oracle that can efficiently solve LP’s over this set. This
is a very strong assumption that we do not make.

(ii) We devise and employ an approximate gradient oracle
for our dual problem is novel way, which is done by a natural
combination of Nesterov’s method in the primal together
with a cutting plane method in the dual. Furthermore, we
provide a novel analysis for the projection problem, showing
that an approximate solution to the dual problem can be
translated to an approximate primal solution.

Thus, the techniques and challenges in our paper are very
different from the ones in the aforementioned papers.

Preliminaries and Notation. We denote the Euclidean
norm by ‖ · ‖. For a positive integer t we denote [t] =
{1, . . . , t}. A function F : Rn 7→ R is α-strongly
convex if, F (y) ≥ F (x) + ∇F (x)>(y − x) + α

2 ‖x −
y‖2, ∀x, y ∈ Rn . It is well known that strong-convexity im-
plies ∀x ∈ Rn, α2 ‖x−x

∗‖2 ≤ F (x)−F (x∗), where x∗ =
arg minx∈Rn F (x) .

2. PROBLEM FORMULATION
The general problem of Euclidean projection is defined as a
constrained optimization problem

min
x∈Rn

‖x0 − x‖2

subject to hi(x) ≤ 0, ∀i = 1, . . . ,m, (P1)
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where the constraints hi : Rn → R are convex.

Goal: Our goal in this work is to find an ε-approximate
projection x̄, such that for any x : hi(x) ≤ 0 we have,
‖x̄− x0‖2 ≤ ‖x− x0‖2 + ε , and hi(x̄) ≤ ε ,∀i ∈ [m] .

Assumptions: Defining K := {x ∈ Rn : hi(x) ≤ 0; ∀i ∈
[m]}, we assume that K is compact. Furthermore, we as-
sume the hi’s to be L-smooth andG-Lipschitz continuous in
the convex hull of K and x0, i.e., |hi(x)− hi(y)| ≤ G‖x−
y‖ , ∀i ∈ [m] ∀x, y ∈ Conv{K, x0} and ‖∇hi(x) −
∇hi(y)‖ ≤ L‖x − y‖ , ∀i ∈ [m] ∀x, y ∈ Rn. We as-
sume both G and L to be known. We denote by H > 0
the bound maxx∈K |hi(x)| ≤ H, ∀i ∈ [m]. We further
assume that the distance between x0 and K is bounded
by B, minx∈K ‖x − x0‖ ≤ B. Our method does not re-
quire the knowledge of B,H . The Lipschitz continuity and
smoothness assumptions above are standard and often hold
in machine learning applications.

KKT conditions: Our final assumption is that Slater’s
condition holds, i.e., that there exists a point x ∈ Rn
such that ∀i ∈ [m]; hi(x) < 0. Along with convexity
this immediately implies that the optimal solution x∗ to
Problem (P1) satisfies the KKT conditions, i.e., there exist
λ

(1)
∗ , . . . λ

(m)
∗ ∈ R+ s.t. (x∗− x0) +

∑m
i=1 λ

(i)
∗ ∇hi(x∗) =

0 , λ
(i)
∗ hi(x

∗) = 0, ∀i ∈ [m] , and that there exists a fi-
nite bound on |λ(i)

∗ | ∀i ∈ [m]. Throughout this paper, we
assume the knowledge of an upper bound that we denote
by R: |λ(i)

∗ | ≤ R ; ∀i ∈ [m] . In appendix B.1, we show-
case two problems where we obtain such a bound explicitly.
When such a bound is unknown in advance, one can apply a
generic technique to estimating R “on the fly”, by applying
a standard doubling trick. This will only yield a constant
factor increase in the overall runtime. We elaborate on this
in appendix B.2. For simplicity we assume throughout the
paper that R ≥ 1.

3. FAST PROJECTION APPROACH
3.1. Intuition: the Case of a Single Constraint

As a warm-up, consider the case of a single smooth
constraint

min
x∈Rn:h(x)≤0

‖x0 − x‖2 . (2)

Our fast projection method relies on the (equivalent) dual
formulation of the above problem. Let us first define the La-
grangian ∀x ∈ Rn, λ ≥ 0, L(x, λ) := ‖x0−x‖2 +λh(x) .
Note that L(·, ·) is strongly convex in x and concave in λ.
Denoting the dual objective by d(λ), the dual problem is,

max
λ≥0

d(λ), where d(λ) := min
x∈Rn

‖x0 − x‖2 + λh(x). (3)

We denote an optimal dual solution by λ∗ ∈
arg maxλ≥0 d(λ). Our approach is to find an approximate

optimal solution to the dual problem maxλ≥0 d(λ). Here
we show how to do so, and demonstrate how this translates
to an approximate solution for the original projection
problem (Eq. (2)).

The intuition behind our method is the following. L(x, λ)
is linear in λ, and d(λ) := minx∈Rn L(x, λ), therefore
maxλ≥0 d(λ) is a one-dimensional concave problem.
Moreover, d(λ) is differentiable and smooth since the
primal problem is strongly convex (see Lemma 3.2). Thus,
if we could access an exact gradient oracle for d(·), we
could use bisection (see Alg. 6 in the appendix) in order
to find an ε-approximate solution to the dual problem
within O(log(1/ε)) iterations (Juditsky, 2015). Due to
strong duality, this translates to an ε-approximate solution
of the original problem (Eq. (2)). While an exact gradient
oracle for d(·) is unavailable, we can efficiently compute
approximate gradients for d(·). Fixing λ ≥ 0, this can be
done by (approximately) solving the following program,

min
x∈Rn

L(x, λ) := ‖x− x0‖2 + λh(x). (4)

Letting x∗λ = arg minx∈Rn ‖x − x0‖2 + λh(x) one can
show that ∇d(λ) = h(x∗λ). Thus, in order to devise an
approximate estimate for ∇d(λ), it is sufficient to solve
the above unconstrained program in x to within a sufficient
accuracy. This can be done at a linear rate using Nesterov’s
Accelerated Gradient Descent (AGD) (see Alg. 3) due
to the fact that Eq. (4) is a smooth and strongly-convex
problem (recall that h(·) is smooth). These approximate
gradients can then be used instead of the exact gradients of
d(·) to find an ε-optimal solution to the dual problem within
O(log(1/ε)) iterations. The formal description for the case
of a single constraint can be found in Appendix A. Next we
discuss our approach for the case with several constraints.

Remark Note that using Nesterov’s AGD method for the
dual problem in the same way as we do for the primal
problem sounds like a very natural idea. However, we can-
not guarantee the strong concavity of the dual problem and
hence, we cannot hope for the linear convergence rate of this
approach. In contrast, the bisection algorithm can guarantee
the linear convergence rate even for non-strongly concave
dual problems.

3.2. Duality of Projections Onto Norm Balls

As a first application, we show how the approach from
Section 3.1 has applications for efficient projection on norm
balls. The dual of a norm is an important notion that is
often used in the analysis of algorithms. Here we show an
algorithmic connection between the projection onto norms
and onto their dual. Concretely, we show that one can use
our framework in order to obtain an efficient conversion
scheme that enables to project onto a given unit norm ball
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using an oracle that enables to project onto its dual norm
ball. This applies even if the norms are non-smooth, thus
extending our technique beyond constraint sets that can be
expressed as an intersection of few smooth constraints. Our
approach can also be generalized to general convex sets and
their dual (polar) sets.

Given a norm P : Rn 7→ R, its dual norm is defined as,

P∗(x) := max
P (z)≤1

z>x ; ∀x ∈ Rn

As an example, for any p ≥ 1 the dual of the `p-norm is the
`q-norm with q = p/(p− 1). Furthermore, the dual of the
spectral norm (over matrices) is the nuclear norm; finally
for a PD matrix A ∈ Rd×d we can define the induced norm
‖x‖A = x>Ax, whose dual is (‖x‖A)∗ := ‖x‖A−1 :=
x>A−1x.

Our goal is to project onto the norm ball w.r.t. P (·), i.e.,

min
x∈Rn:P (x)≤1

‖x0 − x‖2 . (5)

Next we state our main theorem for this section,

Theorem 3.1. Let P (·) be a norm, and assume that we
have an oracle that enables to project onto its dual norm
ball P∗(·). Then we can find an ε-approximate solution to
Problem (5), by using O(log(1/ε)) calls to that oracle.

The idea behind this conversion scheme between norm ball
projections is to start with the dual formulation of the prob-
lem as we describe in Eq. (3). Interestingly, one can show
that the projection oracle onto the dual norm, enables to
compute the exact gradients of d(λ) in this case. This in
turn enables to find an approximate solution to the dual
problem using only logarithmically many calls to the dual
projection oracle. Then we can show that such a solution
can be translated to an approximate primal solution. We
elaborate on our approach in Appendix C.

3.3. Projecting onto the Intersection of Several
Non-Linear Smooth Constraints.

In the rest of this section we will show how to extend
our method from Section 3.1 to problems with several
constraints. Similarly to Section 3.1, we solve the dual
objective using approximate gradients, which we obtain
by running Nesterov’s method over the primal variable
x. Differently from the one-dimensional case, the dual
problem is now multi-dimensional, so we cannot use
bisection. Instead, we employ cutting plane methods like
center of gravity (Levin, 1965; Newman, 1965), the Ellip-
soid method (Shor, 1977; Iudin and Nemirovskii, 1977),
and Vaidya’s method (Vaidya, 1989). These methods are
especially attractive in our context, since their convergence
rate depends only logarithmically on the accuracy, and
their runtime is linear in the dimension n. Our main

result, Theorem 3.2, states that we find an ε-approximate
solution to the projection problem (P1) within a total
runtime of O

(
nm3.5 log(m/ε) +m4 log(m/ε)

)
if we

use the classical Ellipsoid method, and a runtime of
O
(
nm2.5 log(m/ε) +m3.5 log(m/ε)

)
if we use the more

sophisticated method by Vaidya (1989).

The Lagrangian of the original problem (P1) is de-
fined as follows: ∀x ∈ Rn, λ(1), . . . , λ(m) ≥ 0,
L(x, λ) := ‖x − x0‖2 + λ>h(x) , where λ :=
(λ(1), . . . , λ(m)),h(x) := (h1(x), . . . , hm(x)) ∈ Rm.
Defining d(λ) := minx∈Rn L(x, λ), the dual problem is
now defined as follows,

max
λ∈Rm,λ≥0

d(λ) , (6)

where λ ≥ 0 is an elementwise inequality. Recall that
we assume that we are given R ≥ 0 such that λ∗ ∈ {λ :
‖λ‖∞ ≤ R}, for some λ∗ ∈ arg maxλ≥0 d(λ). Thus, our
dual problem can be written as

max
λ∈D

d(λ) , (P2)

where D := {λ ∈ Rm : ∀i ∈ [m]; λ(i) ∈ [0, R]}, and
λ(i) is the ith component of λ. Thus, D is an `∞-ball of
diameter R centered at [R/2, . . . , R/2]T . In the rest of this
section, we describe and analyze the two components of
our fast projection algorithm. In Sec. 3.4 we describe the
first component, which is a cutting plane method that we
use to solve the dual objective. In contrast to the standard
cutting plane approach where exact gradient and value or-
acles are available, we describe and analyze a setting with
approximate oracles. Next, in Sec. 3.5 we show how to
construct approximate gradient and value oracles using a
fast first order method. Finally, in Sec. 3.6 we show how to
combine these components to our fast projection algorithm
that approximately solves the projection problem.

3.4. Cutting Plane Scheme with Approximate Oracles

We first describe a general recipe for cutting plane methods,
which captures the center of gravity, Ellipsoid method, and
Vaidya’s method amongst others. Such schemes require
access to exact gradient and value oracles for the objective.
Unfortunately, in our setting we are only able to devise
approximate oracles. To address this issue, we provide a
generic analysis, showing that every cutting plane method
converges even when supplied with approximate oracles.
This result may be of independent interest, since it will
enable the use of Cutting plane schemes in ML application
where we often only have access to approximate oracles.

Cutting Plane Scheme: We seek to solve maxλ∈D d(λ),
where D is a compact convex set in Rm and d(·) is concave.
Now, assume that we may access an exact separation oracle
Os for D, that is, for any λt /∈ D, Os outputs w ∈ Rm such
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that D ⊆ {λ ∈ Rm : w>(λ − λt) ≤ 0}. We also assume
access to (εg, εv)-approximate gradient and value oracles
Og : D 7→ Rm,Ov : D 7→ R for d(·), meaning, ‖∇d(λ)−
Og(λ)‖ ≤ εg, |d(λ)−Ov(λ)| ≤ εv. Finally, assume that
we are given a point λ1 = [R/2, . . . , R/2] ∈ D, and R > 0
such that D ⊆ M1 := {λ ∈ Rm+ : ‖λ− λ1‖∞ ≤ R/2}. A
cutting plane method works as demonstrated in Alg. 1.

Algorithm 1 Cutting Plane Method with Approximate Ora-
cles

Input: gradient and value oraclesOg,Ov with accuracies
(εg, εv), and exact separation oracle Os
for t ∈ [T ] do

if λt ∈ D then
call gradient oracle gt ← Og(λt), set wt = −gt;

else
call separation oracle and set wt ← Os(λt).

end if
Construct Mt+1 such that {λ ∈ Mt : w>t (λ − λt) ≤
0} ⊆Mt+1, and choose λt+1 ∈Mt+1.

end for
Output: λ̄ ∈ arg maxλ∈{λ1,...,λT }∩DOv(λ).

Remark 1: The output of the scheme in Alg. 1 is always
non-empty since we have assumed λ1 ∈ D.

Cutting plane methods differ from each other by the con-
struction of sets Mt’s and choices of query points λt’s. For
such methods, the volume of Mt’s decreases exponentially
fast with t, and this gives rise to linear convergence guaran-
tees in the case of exact gradient and value oracles.

Definition 3.1 (θ-rate Cutting Plane method). We say that
a cutting plane method has rate θ > 0 if the following
applies: ∀t, Vol(Mt)/Vol(M1) ≤ e−θt ; and Vol is the
usual m-dimensional volume.

For example, for the center of mass method as well as
Vaidya’s method, we have θ = O(1), for the Ellipsoid
method we have θ = O(1/m). Our next lemma extends the
convergence of cutting plane methods to the case of approx-
imate oracles. Let us first denote Dε := {λ ∈ D : d(λ) ≥
d(λ∗) − ε} the set of all ε-approximate solutions , where
λ∗ ∈ arg maxλ∈D d(λ). We need Dε to have nonzero vol-
ume to ensure the required accuracy after the sufficient
decrease of volume of Mt. Later we show that in our case
with Lipschitz continuous and convex h1, . . . , hm, then Dε
contains `∞-ball of radius r(ε) ∝ ε/m (Corollary 3.1).

Lemma 3.1. Let λ1 ∈ D, R > 0 such, D ⊆ {λ : ‖λ −
λ1‖∞ ≤ R/2}. Given ε > 0 assume that there exists
an `∞-ball of diameter r(ε) > 0 that is contained in Dε.
Now assume that d(λ) is concave and we use the cutting
plane scheme of Alg. 1 with oracles that satisfy εg ≤ ε

R
√
m

,
and εv ≤ ε . Then after T = O(mθ log(R/r(ε))) rounds

it outputs λ̄ ∈ D such that, maxλ∈D d(λ) − d(λ̄) ≤ 4ε,
where θ is the rate of the cutting plane method.

Proof. We denote TActive = {t ∈ [T ] : λt ∈ D}, clearly
this set is non-empty since λ1 ∈ D. Also, for any t ∈
TActive we denote gt := Og(λt) (note that in this case
wt = −gt). We divide the proof into two cases: when Dε is
separated by wt from all λt ∈ D, and when not.

Case 1: Assume that there exists t ∈ TActive, and λε ∈
Dε such that, w>t (λε − λt) = g>t (λt − λε) ≥ 0. In
this case, using the concavity of d(·) and definitions of
gt, R, we get, d(λt) ≥ d(λε) + ∇d(λt)

>(λt − λε) =
d(λε) + g>t (λt − λε) + (∇d(λt) − gt)

>(λt − λε) ≥
d(λ∗)−ε−R

√
m(ε/(R

√
m)) = d(λ∗)−2ε,where we used

‖y‖2 ≤
√
m‖y‖∞, ∀y ∈ Rm. Thus, d(λ̄) ≥ Ov(λ̄)− ε ≥

Ov(λt)− ε ≥ d(λt)− 2ε ≥ d(λ∗)− 4ε.

Case 2: Assume that for any t ∈ TActive, and any λε ∈ Dε,
we have w>t (λε − λt) = g>t (λt − λε) ≤ 0. This implies
that ∀t ∈ [T ],∀λε ∈ Dε, w>t (λε − λt) ≤ 0. Hence ∀t ∈
[T ], Dε ⊆Mt, implying that

∀t ∈ [T ] Vol(Dε) ≤ Vol(Mt). (7)

Next, we show that the above condition can hold only if
T ≤ m

θ log(R/r(ε)). Indeed, according to our assumption
Vol(Dε) ≥ Vol(`∞-ball of radius r(ε)) = rm(ε).
On the other hand, we assume that Vol(Mt) ≤
e−θtVol(`∞-ball of radius R/2) = e−θt(R/2)m. Com-
bining these with Eq. (7) implies that in order to satisfy
Case 2, we must have T ≤ m

θ log(R/2r(ε)). Thus, for any
T > m

θ log(R/r(ε)), Case 1 must hold, which establishes
the lemma.

3.5. Gradient and Value Oracles for the Dual

Here we show how to efficiently devise gradient and value
oracles for the dual objective. Our scheme is described in
Alg. 2. Similarly to the one-dimensional case, given λ we
approximately minimize L(·, λ), which enables us to derive
approximate gradient and value oracles. The guarantees
of Alg. 2 are given in Lemma 3.3. Before we state the
guarantees of Alg. 2 we derive a closed form formula for
∇d(λ). Recall that, d(λ) = minx∈Rn L(x, λ), and that
L(x, λ) is 2-strongly-convex in x. This implies that the
minimizer of L(·, λ) is unique, and we therefore denote,

x∗λ := arg min
x∈Rn

L(x, λ) . (8)

The next lemma shows we can compute ∇d(λ) based on
x∗λ, and states the smoothness of∇d(λ).
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Algorithm 2O- approximate gradient/value oracles for d(·)
Input: λ ≥ 0, target accuracy ε̃
Compute xλ, an ε̃-optimal solution of
minx∈Rn L(x, λ) := ‖x− x0‖2 + λ>h(x) .
Method: Nesterov’s AGD (Alg. 3) with α = 2, β =
2 + ‖λ‖1L, and T = O(

√
β log(βB/ε̃)) .

Let: v := ‖xλ − x0‖2 + λ>h(xλ), g := h(xλ)
Output: (xλ, g, v)

Algorithm 3 Accelerated Gradient Descent (AGD) (Nes-
terov, 1998)

Input: F : Rn → R, x0 ∈ Rn, iterations T , strong-
convexity α, smoothness β
Set: y0 = x0, κ := β/α
for t = 0, . . . , T − 1 do
yt+1 = xt − 1

β∇F (xt) ,

xt+1 =
(

1 +
√
κ−1√
κ+1

)
yt+1 −

√
κ−1√
κ+1

yt .

end for
Output: yT

Lemma 3.2. For any λ ≥ 0 the following holds:
(i)∇d(λ) = h(x∗λ), and ∀λ1, λ2 ≥ 0,

‖∇d(λ1)−∇d(λ2)‖ ≤ mG2‖λ1 − λ2‖ ;

and, ‖x∗λ1
− x∗λ2

‖ ≤
√
mG‖λ1 − λ2‖.

Also, (ii) d(λ∗) − d(λ) ≤ m2G2‖λ − λ∗‖2∞ + mH‖λ −
λ∗‖∞. Moreover, (iii) x∗ = x∗λ∗

, where λ∗, x∗ are the opti-
mal solutions to the dual and primal problems.

The proof is quite technical and can be found in Appendix
D.1. From the above lemma we can show that for any ε there
exists an `∞-ball of a sufficiently large radius r(ε) contained
in the set of ε-optimal solutions to the dual problem in D.
Corollary 3.1. Let ε ∈ [0, 1]. Then there exists an `∞-
ball of radius r(ε) := (2m)−1 min{ε/H,

√
ε/G} that is

contained in the set of ε-optimal solutions within D.

The proof is in Appendix D.2. Eq. (8) together with
Lemma 3.2 suggest that exactly minimizing L(·, λ) enables
to obtain gradient and value oracles for d(·). In Alg 2 we
do so approximately, and the next lemma shows that this
translates to approximate oracles.
Lemma 3.3. Given, λ ≥ 0, running Alg. 2 it outputs,
(x, g, v) such that the following applies:

(i) ‖g −∇d(λ)‖ ≤
√
mG2ε̃ ; (ii) ‖x− x∗λ‖2 ≤ ε̃ ;

and (iii) |v − d(λ)| ≤ ε̃ .

Additionally, Alg. 2 requires TInternal =
O(
√

1 +mRL log(m/ε̃)) queries for the gradient
of h(·), and its total runtime is O(nmTInternal) ≈
O(nm3/2 log(m/ε̃)).

The proof is in Appendix D.3. The proof of the first part
is based on 2-strong-convexity of L(·, λ) and G-Lipschitz
continuity of h(·). The second part of the above result also
uses the convergence rate of Nesterov’s AGD (Nesterov,
1998) described in Appendix in Theorem A.1. Using the
notation that appears in the description of the cutting plane
method (Alg. 1) we can think of Alg. 2 as a procedure that
receives λ ≥ 0 and returns a gradient oracle Og(λ) :=
g, value oracle Ov(λ) := v, and primal solution oracle
Ox(λ) := xλ.

Remark: Notice that scaling the constraints h by a factor
α > 0 leaves the constraints set unchanged, while scaling
the smoothness L by a factor of α. Nonetheless, this nat-
urally also scales the bound of the Lagrange multipliers,
R, by a factor of 1/α. Lemma 3.3 tells us that the run-
time of our algorithm, TInternal, depends only on RL and is
therefore invariant to such scaling.

3.6. Fast Projection Algorithm

Below we describe how to compose the two components
presented in Sections 3.4 and 3.5 to a complete algorithm
for solving the projection problem of (P1).

Algorithm 4 Fast Projection Method
Input: Accuracy parameters ε̃ > 0, λ1 ∈ D, number of
rounds T
(1) For any λ ∈ Rm define three oracles: Og(λ) :=
g, Ov(λ) := v, and Ox(λ) := xλ according to the
output (g, v, xλ) of Alg. 2 with the inputs λ and ε̃,
(2) Define the separation oracle Os(λ)i := [1, if λ(i) >
R; 0, if λ(i) ∈ (0, R);−1, if λ(i) < 0],
(3) Employ a cutting plane method as in Alg. 1 for solving
the dual problem, maxλ∈D d(λ),
Output: λ̄ ∈ arg maxλ∈{λ1,...,λT }∩DOv(λt), and x̄ =

Ox(λ̄).

Our method in Alg. 4 employs a cutting plane scheme
(Alg. 1), while using Alg. 2 in order to devise the gradi-
ent and value oracles for d(·). Next we discuss the role of
the primal solution oracle Ox, and connect it to our overall
projection scheme. Recall that the cutting plane method
that we use above finds λ̄, which is an approximate solu-
tion to the dual problem. To extract a primal solution from
the dual solution λ̄, it makes sense to approximately solve
minx∈Rn L(x, λ̄), and this is exactly what the oracle Ox
provides (see Alg. 2). Next we state the guarantees of the
above scheme.

Theorem 3.2. Let ε > 0, and consider the projection prob-
lem of (P1), and its dual formulation in Eq. (6). Then upon
invoking the scheme in Alg. 4 with ε̃ = ε4

256(mRG)6 , and
T = O(mθ log(mR/ε)), it outputs x̄ such that ∀x ∈ K :=
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{x : h(x) ≤ 0},

‖x̄−x0‖2 ≤ ‖x−x0‖2 +6ε; and hi(x̄) ≤ ε, ∀i ∈ [m] .

Moreover, the total runtime of our method is
O
(
nm2.5θ−1 log2(m/ε) + τCP(m)mθ−1 log(mR/ε)

)
,

where θ is the rate of the cutting plane method (Def. 3.1),
and τCP(m) is the extra runtime required by the cutting
plane method for updating the sets Mt beyond calling the
gradient and value oracles.

Let us discuss two choices of a cutting plane method:
Ellipsoid method: In this case θ = O(1/m) and
τCP(m) = O(m2). Thus, when used within our scheme the
total runtime is O

(
nm3.5 log(m/ε) +m4 log(m/ε)

)
.

Vaidya’s method: In this case θ = O(1) and τCP(m) =
O(m2.5). Thus, when used within our scheme the total
runtime is O

(
nm2.5 log(m/ε) +m3.5 log(m/ε)

)
.

Proof of Thm. 3.2. First notice that we may apply the cut-
ting plane method of Alg. 1 since D is an `∞-ball of di-
ameter R, so we can set M1 := D, and λ1 as its center.
Moreover, according to Corollary 3.1 for any ε ≥ 0 there
exists r ∝ ε/m such that an `∞-ball of radius r is con-
tained in the set of ε-optimal solutions to the dual problem
in D. Let us denote ε̄ :=

(
ε

4mRG

)2
, and notice that we can

write ε̃ =
(

ε̄
mRG

)2
. Now by setting ε̃ as accuracy parame-

ter to Alg. 2, it follows from Lemma 3.3 that it generates
gradient and value oracles with the following accuracies,
εg =

√
mG2ε̃ ≤ ε̄

R
√
m

; and εv ≤ ε̃ ≤ ε̄ . Now apply-
ing Lemma 3.1 with these accuracies implies that within
T = m

θ log(mR/ε) calls to these approximate oracles it
outputs a solution λ̄ such that d(λ̄) ≥ d(λ∗)− 4ε̄. Next we
show that this guarantee on the dual translates to a guaran-
tee for x̄ w.r.t. the original primal problem (P1). We will
require the following lemma, proved in Appendix D.4.

Lemma 3.4. Let F : Rm → R be an L-smooth and con-
cave function, and let λ∗ = arg maxλ∈D F (λ). Also let D
is a convex subset of Rm. Then, ‖∇F (λ)−∇F (λ∗)‖2 ≤
2L (F (λ∗)− F (λ)) , ∀λ ∈ D .

Using the above lemma together with the mG2-smoothness
of d(·) (Lemma 3.2) implies,

‖∇d(λ̄)−∇d(λ∗)‖ ≤
√

8mG2ε̄ . (9)

Now, using ḡ := h(x̄) (Alg. 2), and ‖ḡ − ∇d(λ̄)‖ ≤√
mG2ε̃ (Lemma 3.3), as well as ∇d(λ∗) = h(x∗)

(Lemma 3.2), we conclude from Eq. (9):

‖h(x̄)− h(x∗)‖ ≤ ‖h(x̄)−∇d(λ̄)‖+ ‖∇d(λ̄)− h(x∗)‖

= ‖ḡ −∇d(λ̄)‖+ ‖∇d(λ̄)−∇d(λ∗)‖ ≤
√

16mG2ε̄ ,
(10)

where we used ε̃ ≤ ε̄. The above implies that ∀i ∈ [m],
hi(x̄) = hi(x

∗) + (hi(x̄)− hi(x∗)) ≤ hi(x
∗) + |hi(x̄)−

hi(x
∗)| ≤ 0 + ‖h(x̄)− h(x∗)‖∞ ≤ mG

√
16ε̄ ≤ ε, where

the second inequality uses the feasibility of x∗, and the
last line uses the definition of ε̄ (we assume R ≥ 1). This
concludes the first part of the proof. Moreover, from Eq. (10)
we also get,

− λ̄>h(x̄)

= −λ̄>(h(x̄)− h(x∗))− (λ̄− λ∗)>h(x∗)− (λ∗)
>h(x∗)

≤
√

16mG2ε̄‖λ̄‖+∇d(λ∗)
>(λ∗ − λ̄) + 0

≤ mG
√

16ε̄‖λ̄‖∞ + d(λ∗)− d(λ̄)

≤ mGR
√

16ε̄+ 4ε̄ ≤ 5ε . (11)

where the first inequality uses Eq. (10) as well as h(x∗) =
∇d(λ∗) (Lemma 3.2) and complementary slackness, which
implies (λ∗)

>h(x∗) = 0; the second inequality uses
the concavity of d(·) implying that d(λ∗) − d(λ̄) ≥
∇d(λ∗)

>(λ∗ − λ̄), and the last line uses the definition
of ε̄ as well as ε̄ ≤ ε. Using Eq. (11) together with ε̃-
optimality of x̄ with respect to L(·, λ̄) (Alg. 2) implies
that ∀x ∈ K := {x : hi(x) ≤ 0; ∀i ∈ [m]} we have,
‖x̄ − x0‖2 ≤ ‖x − x0‖2 + λ̄>h(x) − λ̄>h(x̄) + ε̃ ≤
‖x− x0‖2 + 6ε , and we used ε̃ ≤ ε, and λ̄ ≥ 0,h(x) ≤ 0.
This concludes the proof.
Runtime: for a single t ∈ [T ] we invoke Alg. 2, and its
runtime is O(nm1.5 log(m/ε)) (Lemma 3.3), additionally
τCP for the update. Multiplying this by T we get a runtime
of O(nm2.5θ−1 log2(m/ε) + τCPmθ

−1 log(m/ε)). Also,
every call to the separation oracle for D takes O(m) which
is negligible compared to computing the gradient and value
oracles.

Note that inside our algorithm we could use not only
Vaidya’s and Ellipsoid methods, but any other cutting plane
scheme. For example, the faster cutting plane methods pro-
posed by Lee et al. (2015), Jiang et al. (2020) can be used
as well.

4. EXPERIMENTAL EVALUATION
4.1. Synthetic Problem

We first demonstrate the performance of our approach on
synthetic problems of projection onto a randomly generated
quadratic set and onto their intersection.

min
x∈Rn

‖x− xp‖2 (12)

subject to (x− xi)TAi(x− xi) ≤ 0, i = 1, . . . ,m.

The matrices Ai are generated randomly in such a way
that they are positive definite and have norm equal to 1.
We compare our approach with the Interior Point Method
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(IPM) from the MOSEK solver, as well as with SLSQP
from the scipy.optimize.minimize package. For Algorithm 2,
to solve the primal subproblems we use the AGD method as
described before. We select the smoothness parameter L is
based on the norms of the matrices Ai, and tune the param-
eter R empirically using the doubling trick.The run-times
are shown in Table 4.1. The run-times are averaged over
5 runs of the method on the random inputs. The accuracy
is fixed to 10−4. The results demonstrate a substantial
performance improvement obtained by our fast projection
approach as the dimensionality increases. The runtime in
seconds is not a perfect performance measure, but is the
most reasonable measure we could think of. Comparing the
number of iterates hides the complexity of each iteration
which might be huge for interior point methods.

4.2. Learning the Kernel Matrix in Discriminant
Analysis via QCQP (Kim et al., 2006; Ye et al.,
2007; Basu et al., 2017)

We next consider an application in multiple kernel learning.
Consider a standard binary classification setup where X – a
subset of Rn – denotes the input space, and Y = {−1,+1}
denotes the output (class label) space. We assume that the
examples are independently drawn from a fixed unknown
probability distribution over X × Y. We model our data
with positive definite kernel functions (Schölkopf et al.,
2018). In particular, for any x1, . . . , xn ∈ X , the Gram
matrix, defined by Gjk = K(xj , xk) is positive semi-
definite. Let X = [x+

1 , . . . , x
+
n+
, x−1 , . . . , x

−
n−

] be a data
matrix of size n = n+ + n−, where {x+

1 , . . . , x
+
n+
} and

{x−1 , . . . , x−n−
} are the data points from positive and nega-

tive classes. For binary classification, the problem of ker-
nel learning for discriminant analysis seeks, given a set
of p kernel matrices Gi = Ki(xj , xk), xj , xk ∈ X, i ∈
[p], Gi ∈ Rn×n to learn an optimal linear combination
G ∈ G =

{
G |G =

∑p
i=1 θiG

i,
∑p
i=1 θi = 1, θi ≥ 0

}
.

This problem was introduced by Fung et al. (2004),
reformulated as an SDP by Kim et al. (2006), and
as a much more tractable QCQP by Ye et al. (2007).
Latter approach learns an optimal kernel matrix G̃ ∈
G̃ =

{
G̃ | G̃ =

∑p
i=1 θiG̃

i,
∑p
i=1 θiri = 1, θi ≥ 0

}
,

where G̃i = GiPGi, ri = Trace(G̃i), P = I − 1
n1n1Tn ,

and 1n is the vector of all ones of size n, by solving the
following convex QCQP

max
β,t
− 1

4
βTβ + βTa− λ

4
t (13)

subject to t ≥ 1

ri
βT G̃iβ, i = 1, . . . , p, (14)

where a = [1/n+, . . . , 1/n+,−1/n−, . . . ,−1/n−] ∈
Rn, β ∈ Rn. Hereby λ is a regularization parameter that we
set to λ = 10−4. The optimal θ corresponds to the dual solu-

tion of the above problem (13). Note that in this application,
the number of data points n is much larger than the number
of constraints (i.e., the number of kernel matrices), making
it ideally suited for our approach. We run our algorithm ap-
plied for this problem over β with fixed t = 5 · 10−8. Then
the problem becomes strongly convex: arg maxβ − 1

4β
Tβ+

βTa + λT t = arg maxβ − 1
4 (βTβ − 4βTa + 4aTa) =

arg maxβ − 1
4‖β−2a‖22.We use the doc-rna dataset (Uzilov

et al., 2006) from LIBSVM with n = 4000, 10000, 11000
data points and compare the results and the running time
with the IPM. We focus on learning a convex combination
of m Gaussian Kernels K(x, z) =

∑m
i=1 θie

−‖x−z‖2/σ2
i

with different bandwidth parameters σi, chosen uniformly
on the logarithmic scale over the interval [10−1, 102], as in
(Kim et al., 2006; Ye et al., 2007). Results are shown in
Table 4.2 below. Moreover, for the Kernel Learning problem
with ε̃ = 500ε2, we present the results for IPM and Fast
Projection algorithms for m = 3, n = 11000 dependent
on the target accuracy in Table 3. Note that quadratic con-
straints do not satisfy Lipschitz continuity assumption on
the whole Rn. However, the Lipschitz continuity holds on
any compact set inside Rn. Since the AGD algorithm keeps
the iterates on the compact set, this is enough to guarantee
the Lipschitz continuity. Moreover, the Lipschitz constant
G itself is needed only to specify the accuracy for AGD ε̃.
It only affects the runtime of AGD logarithmically. The pa-
rameterH is not needed to be known since it influences only
the upper bound on the runtime of the ellipsoid method. 2

5. CONCLUSION
We proposed a novel method for fast projection onto smooth
convex constraints. We employ a primal-dual approach, and
combine cutting plane schemes with Nesterov’s accelerated
gradient descent. We analyze its performance and prove
its effectiveness in high-dimensional settings with a small
number of constraints. The results are generalizable to any
strongly-convex objective with smooth convex constraints.
Our work demonstrates applicability of cutting plane algo-
rithms in the field of Machine Learning and can potentially
improve efficiency of solving high dimensional constrained
optimization problems. Enforcing constraints can be of
crucial importance when ensuring reliability and safety of
machine learning systems.
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