SGLB: Stochastic Gradient Langevin Boosting Supplementary Materials

Aleksei Ustimenko Liudmila Prokhorenkova

A. Proof of Lemma 1

First, let us prove that $\Phi_{s_{\tau}} = (H_{s_{\tau}}^T H_{s_{\tau}})^{\dagger} H_{s_{\tau}}^T$.

We can rewrite Equation (3) from the main text as

$$\theta_*^{s_\tau} = \lim_{\delta \to 0} \operatorname*{arg\,min}_{\theta^{s_\tau}} \| - \epsilon \widehat{g}_\tau - H_{s_\tau} \theta^{s_\tau} \|_2^2 + \delta^2 \|\theta^{s_\tau}\|_2^2 \,.$$

Taking the derivative of the inner expression, we obtain:

$$\left(H_{s_{\tau}}^T H_{s_{\tau}} + \delta^2 I_N\right) \theta^{s_{\tau}} - \epsilon H_{s_{\tau}}^T \widehat{g}_{\tau} = 0.$$

So, $\Phi_{s_{\tau}}$ can be defined as $\lim_{\delta \to 0} (H_{s_{\tau}}^T H_{s_{\tau}} + \delta^2 I_N)^{-1} H_{s_{\tau}}^T$. Such limit is well defined and is known as the pseudo-inverse of the matrix (Gulliksson et al., 2000).

Let us now prove Lemma 1 from the main text.

The matrix
$$P_{s_{\tau}}$$
 is symmetric since $P_{s_{\tau}} = \lim_{\delta \to 0} H_{s_{\tau}} (H_{s_{\tau}}^T H_{s_{\tau}} + \delta^2 I_N)^{-1} H_{s_{\tau}}^T$.

Observe that if $H_{s_{\tau}}\theta^{s_{\tau}}=v$, then $P_{s_{\tau}}v=v$, since the problem in Equation (3) of the main text has an exact solution for the arg min subproblem. As a result, $\operatorname{im} P_{s_{\tau}}=\operatorname{im} H_{s_{\tau}}$. Also, for an arbitrary $v\in\mathbb{R}^N$, we have $P_{s_{\tau}}(P_{s_{\tau}}v)=P_{s_{\tau}}v$ since $P_{s_{\tau}}v\in\operatorname{im} H_{s_{\tau}}$.

B. CatBoost Implementation

We implemented SGLB as a part of the CatBoost gradient boosting library, which was shown to provide state-of-theart results on many datasets (Prokhorenkova et al., 2018). Now we specify the particular tuple $\mathcal{B} = (\mathcal{H}, p(s|g))$ such that all the required assumption are satisfied. Therefore, the implementation must converge globally for a wide range of functions, not only for convex ones.

Let us describe the weak learners set \mathcal{H} used by CatBoost. For each numerical feature, CatBoost chooses between a finite number of splits $\mathbb{1}_{\{x_i \leq c_{ij}\}}$, where $\{c_{ij}\}_{j=1}^{d_i}$ are some constants typically picked as quantiles of x_i estimated on \mathcal{D}_N and d_i is bounded by a hyperparameter border-count. So, the set of weak learners \mathcal{H} consists of all non-trivial binary oblivious trees with splits $\mathbb{1}_{\{x_i \leq c_{ij}\}}$ and with depth bounded by a hyperparameter depth. This set is finite, $|S| < \infty$. We take $\theta^s \in \mathbb{R}^{m_s}$ as a vector of leaf values of the obtained tree.

Now we are going to describe p(s|g). Assume that we are given a vector $g \in \mathbb{R}^N$ and already built a tree up to a depth j with remaining (not used) binary candidate splits $b_1, \ldots b_p$. Each split, being added to the currently built tree, divides the vector g into components $g_1 \in \mathbb{R}^{N_1}, \ldots, g_k \in \mathbb{R}^{N_k}$, where $k=2^{j+1}$. To decide which split b_l to apply, CatBoost calculates the following statistics:

$$s_l := \sqrt{\sum_{i=1}^k \operatorname{Var}(g_i)},$$

where $\mathrm{Var}(\cdot)$ is the variance of components from the component-wise mean. Denote also $\sigma:=\sqrt{\mathrm{Var}(g)}$. Then, CatBoost evaluates:

$$s_l' := \mathcal{N}\left(s_l, \left(\frac{\rho\sigma}{1 + N^{\epsilon\tau}}\right)^2\right),$$

where $\rho \geq 0$ is a hyperparameter defined by the random-strength parameter. After obtaining s'_l , CatBoost selects the split with a highest s'_l value and adds it to the tree. Then, it proceeds recursively until a stopping criteria is met.

Since $\epsilon \tau \to \infty$, we can assume that the variance of s'_l equals zero in the limit. Thus, the stationarity of sampling is preserved. So, p(s|g) is fully specified, and one can show that it satisfies all the requirements. Henceforth, such CatBoost implementation $\mathcal B$ must converge globally for a large class of losses as $\epsilon \to 0_+, \epsilon \tau \to \infty$.

C. Experimental Setup

C.1. Dataset Description

The datasets are listed in Table 1.

C.2. Parameter Tuning

For all algorithms, we use the default value 64 for the parameter *border-count* and the default value 0 for *random-strength* ($\rho \ge 0$).

For SGB, we tune *learning-rate* ($\epsilon > 0$), *depth* (the maximal tree depth), and the regularization parameter *l2-leaf-reg*. Moreover, we set *bootstrap-type=Bernoulli*.

Table 1. Datasets description

Dataset	# Examples	# Features
Appetency (KDD, 2009)	50000	231
Churn (KDD, 2009)	50000	231
Upselling (KDD, 2009)	50000	231
Adult (Kohavi and Becker, 1996)	48842	15
Amazon (Kaggle, 2017)	32769	9
Click (KDD, 2012)	399482	12
Epsilon (PASCAL Challenge, 2008)	500K	2000
Higgs (Whiteson, 2014)	11 M	28
Internet (KDD, 1998)	10108	69
Kick (Kaggle, 1998)	72983	36

For SGLB, we tune *learning-rate*, *depth*, *model-shrink-rate* $(\gamma \geq 0)$, and *diffusion-temperature* $(\beta > 0)$.

For all methods, we set *leaf-estimation-method=Gradient* as our main purpose is to compare first order optimization, and use the option *use-best-model=True*.

For tuning, we use the random search (200 samples) with the following distributions:

- For *learning-rate* log-uniform distribution over $[10^{-5}, 1]$.
- For l2-leaf-reg log-uniform distribution over $[10^{-1}, 10^{1}]$ for SGB and l2-leaf-reg=0 for SGLB.
- For *depth* uniform distribution over $\{6, 7, 8, 9, 10\}$.
- For *subsample* uniform distribution over [0, 1].
- For model-shrink-rate log-uniform distribution over $[10^{-5}, 10^{-2}]$ for SGLB.
- For diffusion-temperature log-uniform distribution over [10², 10⁵] for SGLB.

References

M. E. Gulliksson, P.-Å. Wedin, and Yimin Wei. 2000. Perturbation Identities for Regularized Tikhonov Inverses and Weighted Pseudoinverses. *BIT Numerical Mathematics* 40, 3 (2000), 513–523.

Kaggle. 1998. Don't Get Kicked! https://www. kaggle.com/c/DontGetKicked. (1998).

Kaggle. 2017. Amazon dataset. https://www.kaggle.com/bittlingmayer/amazonreviews. (2017).

KDD. 1998. KDD Internet Usage Data. https://www.kdd.org/kdd-cup/view/kdd-cup-2012-track-2.(1998).

KDD. 2009. KDD Cup 2009: Customer relationship prediction. https://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data. (2009).

KDD. 2012. KDD Cup 2012 (Track 2): Predict the click-through rate of ads given the query and user information. https://www.kdd.org/kdd-cup/view/kdd-cup-2012-track-2. (2012).

Ronny Kohavi and Barry Becker. 1996. Adult dataset. https://archive.ics.uci.edu/ml/datasets/Adult.(1996).

PASCAL Challenge. 2008. Epsilon dataset. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#epsilon. (2008).

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. 2018. Cat-Boost: unbiased boosting with categorical features. In *Advances in Neural Information Processing Systems*. 6638–6648.

Daniel Whiteson. 2014. Higgs dataset. https://archive.ics.uci.edu/ml/datasets/HIGGS. (2014).

Table 2. Notation used throughout the paper

Variable	Description
$x \in \mathcal{X}$	Features, typically from \mathbb{R}^k
$y\in\mathcal{Y}$	Target, typically from \mathbb{R} or $\{0,1\}$
$z\in\mathcal{Z}$	Prediction, typically from \mathbb{R}
${\cal D}$	Data distribution over $\mathcal{X} \times \mathcal{Y}$
$\mathcal{D}_{N} = \{(x_{i}, y_{i})\}_{i=1}^{N}$	I.i.d. samples from \mathcal{D}
$L(z,y): \mathcal{Z} \times \mathcal{Y} \to \mathbb{R}$	Loss function
$\mathcal{L}(f \mathcal{D})$	Expected loss w.r.t. \mathcal{D}
$\mathcal{L}_{N}(f)$	Empirical loss
$\mathcal{L}_N(F,\gamma)$	Regularized or implicitly regularized loss
${\cal H}$	Set of weak learners
$h^s(x, \theta^s) \in \mathcal{H}$	Weak learner parameterized by θ^s
$H_s:\mathbb{R}^{m_s} o\mathbb{R}^N$	Linear operator converting θ^s to $(h^s(x_i, \theta^s))_{i=1}^N$
$\Theta \in \mathbb{R}^m$	Ensemble parameters
$f_{\Theta}(x): \mathcal{X} \to \mathcal{Z}$	Model parametrized by $\Theta \in \mathbb{R}^m$
$ au\in\mathbb{Z}_{+}$	Discrete time
$t \in [0, \infty)$	Continuous time
$\hat{F}_{ au}$	Predictions' Markov Chain $\left(f_{\widehat{\Theta}_{\tau}}(x_i)\right)_{i=1}^N$
F(t)	Markov process $(f_{\Theta(t)}(x_i))_{i=1}^N$
$F(t) \ V_{\mathcal{B}} \subset \mathbb{R}^N$	Subspace of predictions of all possible ensembles
p(s g)	Probability distribution over weak learners' indices
$\Phi_s:\mathbb{R}^N o\mathbb{R}^{m_s}$	Weak learner parameters estimator
$P_s := H_s \Phi_s$	Orthoprojector
$P_{\infty} = N \mathbb{E}_{s \sim p(s \mathbb{O}_N)} P_s$	Implicit limiting preconditioner matrix of the boosting
$P = P_{\infty}$	Symmetric preconditioner matrix
$\Gamma = \sqrt{P^{-1}}$	Regularization matrix
$\delta_{\Gamma}(\gamma)$	Error from the regularization
$p_{eta}(\Theta)$	Limiting distribution of $\widehat{\Theta}_{\tau}$
λ_*	Uniform spectral gap parameter
$\epsilon > 0$	Learning rate
$\beta > 0$	Inverse diffusion temperature
$\gamma > 0$	Regularization parameter
$I_m \in \mathbb{R}^{m imes m}$	Identity matrix
$\mathbb{O}_m \in \mathbb{R}^m$	Zero vector
W(t)	Standard Wiener process
$\phi(x): \mathcal{X} \to \mathbb{R}^m$	Feature map, s.t. $f_{\Theta}(x) = \langle \phi(x), \Theta \rangle_2$
$\Psi := \left[\phi(x_1), \dots, \phi(x_N)\right]^T \in \mathbb{R}^{N \times m}$	Design matrix