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A. Proof of Lemma 1
First, let us prove that Φsτ = (HT

sτHsτ )†HT
sτ .

We can rewrite Equation (3) from the main text as

θsτ∗ = lim
δ→0

arg min
θsτ

‖ − εĝτ −Hsτ θ
sτ ‖22 + δ2‖θsτ ‖22 .

Taking the derivative of the inner expression, we obtain:(
HT
sτHsτ + δ2IN

)
θsτ − εHT

sτ ĝτ = 0 .

So, Φsτ can be defined as limδ→0(HT
sτHsτ + δ2IN )−1HT

sτ .
Such limit is well defined and is known as the pseudo-
inverse of the matrix (Gulliksson et al., 2000).

Let us now prove Lemma 1 from the main text.

The matrix Psτ is symmetric since Psτ =
limδ→0Hsτ (HT

sτHsτ + δ2IN )−1HT
sτ .

Observe that if Hsτ θ
sτ = v, then Psτ v = v, since the prob-

lem in Equation (3) of the main text has an exact solution
for the arg min subproblem. As a result, imPsτ = imHsτ .
Also, for an arbitrary v ∈ RN , we have Psτ (Psτ v) = Psτ v
since Psτ v ∈ imHsτ .

B. CatBoost Implementation
We implemented SGLB as a part of the CatBoost gradient
boosting library, which was shown to provide state-of-the-
art results on many datasets (Prokhorenkova et al., 2018).
Now we specify the particular tuple B = (H, p(s|g)) such
that all the required assumption are satisfied. Therefore, the
implementation must converge globally for a wide range of
functions, not only for convex ones.

Let us describe the weak learners setH used by CatBoost.
For each numerical feature, CatBoost chooses between a
finite number of splits 1{xi≤cij}, where {cij}dij=1 are some
constants typically picked as quantiles of xi estimated on
DN and di is bounded by a hyperparameter border-count.
So, the set of weak learners H consists of all non-trivial
binary oblivious trees with splits 1{xi≤cij} and with depth
bounded by a hyperparameter depth. This set is finite, |S| <
∞. We take θs ∈ Rms as a vector of leaf values of the
obtained tree.

Now we are going to describe p(s|g). Assume that we are
given a vector g ∈ RN and already built a tree up to a depth
j with remaining (not used) binary candidate splits b1, . . . bp.
Each split, being added to the currently built tree, divides the
vector g into components g1 ∈ RN1 , . . . , gk ∈ RNk , where
k = 2j+1. To decide which split bl to apply, CatBoost
calculates the following statistics:

sl :=

√√√√ k∑
i=1

Var(gi),

where Var(·) is the variance of components from the
component-wise mean. Denote also σ :=

√
Var(g). Then,

CatBoost evaluates:

s′l := N

(
sl,

(
ρσ

1 +N ετ

)2
)
,

where ρ ≥ 0 is a hyperparameter defined by the
random-strength parameter. After obtaining s′l, CatBoost
selects the split with a highest s′l value and adds it to the
tree. Then, it proceeds recursively until a stopping criteria
is met.

Since ετ → ∞, we can assume that the variance of s′l
equals zero in the limit. Thus, the stationarity of sampling
is preserved. So, p(s|g) is fully specified, and one can
show that it satisfies all the requirements. Henceforth, such
CatBoost implementation B must converge globally for a
large class of losses as ε→ 0+, ετ →∞.

C. Experimental Setup
C.1. Dataset Description

The datasets are listed in Table 1.

C.2. Parameter Tuning

For all algorithms, we use the default value 64 for the pa-
rameter border-count and the default value 0 for random-
strength (ρ ≥ 0).

For SGB, we tune learning-rate (ε > 0), depth (the maximal
tree depth), and the regularization parameter l2-leaf-reg.
Moreover, we set bootstrap-type=Bernoulli.



SGLB: Stochastic Gradient Langevin Boosting

Table 1. Datasets description

Dataset # Examples # Features

Appetency (KDD, 2009) 50000 231
Churn (KDD, 2009) 50000 231
Upselling (KDD, 2009) 50000 231
Adult (Kohavi and Becker, 1996) 48842 15
Amazon (Kaggle, 2017) 32769 9
Click (KDD, 2012) 399482 12
Epsilon (PASCAL Challenge, 2008) 500K 2000
Higgs (Whiteson, 2014) 11M 28
Internet (KDD, 1998) 10108 69
Kick (Kaggle, 1998) 72983 36

For SGLB, we tune learning-rate, depth, model-shrink-rate
(γ ≥ 0), and diffusion-temperature (β > 0).

For all methods, we set leaf-estimation-method=Gradient
as our main purpose is to compare first order optimization,
and use the option use-best-model=True.

For tuning, we use the random search (200 samples) with
the following distributions:

• For learning-rate log-uniform distribution over
[10−5, 1].

• For l2-leaf-reg log-uniform distribution over
[10−1, 101] for SGB and l2-leaf-reg=0 for SGLB.

• For depth uniform distribution over {6, 7, 8, 9, 10}.

• For subsample uniform distribution over [0, 1].

• For model-shrink-rate log-uniform distribution over
[10−5, 10−2] for SGLB.

• For diffusion-temperature log-uniform distribution
over [102, 105] for SGLB.
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Table 2. Notation used throughout the paper

Variable Description

x ∈ X Features, typically from Rk

y ∈ Y Target, typically from R or {0, 1}
z ∈ Z Prediction, typically from R
D Data distribution over X × Y

DN = {(xi, yi)}Ni=1 I.i.d. samples from D
L(z, y) : Z × Y → R Loss function

L(f |D) Expected loss w.r.t. D
LN (f) Empirical loss
LN (F, γ) Regularized or implicitly regularized loss
H Set of weak learners

hs(x, θs) ∈ H Weak learner parameterized by θs

Hs : Rms → RN Linear operator converting θs to (hs(xi, θ
s))Ni=1

Θ ∈ Rm Ensemble parameters
fΘ(x) : X → Z Model parametrized by Θ ∈ Rm

τ ∈ Z+ Discrete time
t ∈ [0,∞) Continuous time

F̂τ Predictions’ Markov Chain
(
fΘ̂τ

(xi)
)N
i=1

F (t) Markov process
(
fΘ(t)(xi)

)N
i=1

VB ⊂ RN Subspace of predictions of all possible ensembles
p(s|g) Probability distribution over weak learners’ indices

Φs : RN → Rms Weak learner parameters estimator
Ps := HsΦs Orthoprojector

P∞ = NEs∼p(s|0N )Ps Implicit limiting preconditioner matrix of the boosting
P = P∞ Symmetric preconditioner matrix

Γ =
√
P−1 Regularization matrix

δΓ(γ) Error from the regularization
pβ(Θ) Limiting distribution of Θ̂τ

λ∗ Uniform spectral gap parameter
ε > 0 Learning rate
β > 0 Inverse diffusion temperature
γ > 0 Regularization parameter

Im ∈ Rm×m Identity matrix
0m ∈ Rm Zero vector
W (t) Standard Wiener process

φ(x) : X → Rm Feature map, s.t. fΘ(x) = 〈φ(x),Θ〉2
Ψ :=

[
φ(x1), . . . , φ(xN )

]T ∈ RN×m Design matrix
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