
LTL2Action: Generalizing LTL Instructions for Multi-Task RL (Appendix)

A. Proof of Theorem 3.1
Theorem 3.1. Let M� = hS0

, T
0
, A,P0

, R
0
, �, µ

0i be a
Taskable MDP constructed from an MDP without a reward
function Me = hS, T,A,P, �, µi, a finite set of proposi-
tional symbols P , a labelling function L : S ⇥A ! 2P , a
finite set of LTL formulas �, and a probability distribution
⌧ over � according to Definition 3.2. Then, an optimal
stationary policy ⇡

⇤
�(a|s,') for M� achieves the same

expected discounted return as an optimal non-stationary
policy ⇡⇤

'(at|s, a1, ..., st,') for Me w.r.t. R' for all s 2 S

and ' 2 �.

To prove Theorem 3.1, we use a theorem from Bacchus
& Kabanza (2000), which shows the correctness of LTL
progression:

Theorem A.1. Given any LTL formula ' and an infinite
sequence of truth assignments � = h�i,�i+1,�i+2, . . .i for
the variables in P , h�, ii |= ' iff h�, i+ 1i |= prog(�i,').

Proof sketch. Using induction and Theorem A.1, we can
prove that the reward given by R' and r

0 is identical
(at every time step) for any LTL formula ' 2 �, initial
state s1 2 S, and trace s1, a1, ..., st, at. Now, let’s con-
sider any state s 2 S and task ' 2 �. Given any opti-
mal policy ⇡

⇤
�(a|s,') for M�, we can construct a policy

⇡'(at|s, a1, ..., st,') for Me that mimics the actions selec-
tion of ⇡⇤

�(a|s,') step by step. Hence, as the probability
of reaching state s

0 given state s and action a is the same
for M� and Me, both policies will induce the same proba-
bility distribution over traces and, as the reward functions
are equivalent, both policies ⇡⇤

� and ⇡' achieve the same
expected discounted return. Finally, if we now have an
optimal policy ⇡

⇤
'(at|s, a1, ..., st,') for Me, we can con-

struct a non-stationary policy ⇡�(at|hs,'i, a1, ..., hst,'ti)
for M� that mimics the actions selection of ⇡⇤

' step by step.
Following the same argument as before, we can see that ⇡⇤

'

and ⇡� achieve the same expected discounted return. Since
M� is an MDP, we know that there exist a stationary policy
⇡
0
�(a|s,') that achieves at least as much return as any non-

stationary policy ⇡�(at|hs,'i, a1, ..., hst,'ti). Therefore,
we showed that optimal policies for M� are as good as
optimal policies for Me w.r.t. any R' (and vice versa).

B. Experimental Details
In this section we provide some details on the task gener-
ation process as well as the hyperparameters used for our

model training.

B.1. LTL Task Generation

Recall that we consider two task spaces: Partially-Ordered
Tasks and Avoidance Tasks. The random generation of
tasks is best described recursively with production rules of
a context-free grammar.

Partially-Ordered Tasks

formula ! sequence ^ formula | sequence
sequence ! ⌃(term ^ sequence) | ⌃term

term ! prop | prop _ prop

In the above description, ⌃,^,_ are the eventually, and, or
LTL operators, respectively and prop refers to any proposi-
tional variable.

Intuitively, Partially-Ordered Tasks presents k sequences of
propositions which can be solved simultaneously. A trace is
successful if and only if for every one of the k sequences,
all the propositions in that sequence occur at some point in
the trace (in the order of the sequence). Note that Partially-
Ordered Tasks can never be falsified. However, most tasks
are computationally intractable to solve in as few steps as
possible due to the exponential number of possible solutions
which must be considered. An example formula that is a
conjunction of 2 sequences, each of depth 2 is:

⌃((A _B) ^ ⌃C) ^ ⌃(C ^ ⌃D))

In our Letter World experiments, the number of conjuncts
was randomly sampled between 1 and 4, and the depth of
each sequence was randomly sampled between 1 and 5.
Each “term” had a 0.25 probability of being a disjunction
of two propositions, and a 0.75 probability of being a single
proposition.

To evaluate generalization to larger formulas, we considered
(separately) increasing the depth of sequences and increas-
ing the number of conjuncts. For increased depth tasks, the
depth was 15 and the number of conjuncts was randomly
sampled between 2 and 4. For increased number of con-
juncts, the depth was randomly sampled between 3 and 5,
and the number of conjuncts was 12.

Avoidance Tasks

formula ! sequence ^ formula | sequence
sequence ! ¬propU (prop ^ sequence) | ¬propU prop

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Table 2. PPO hyperparameters for LetterWorld. The same set of hyperparameters were used for both Avoidance and Partially-Ordered
tasks.

GNNpre
prog GRUpre

prog GNNprog GRUprog LSTMprog Myopic GRU No LTL

Env. steps per update ����������������������� 2, 048 �����������������������!
Number of epochs 4 8 4 8 8 8 4 4
Minibatch Size 256 256 256 256 256 256 1,024 1,024
Discount factor (�) ����������������������� 0.94 �����������������������!
Learning rate 3⇥ 10�4 3⇥ 10�4 3⇥ 10�4 3⇥ 10�4 3⇥ 10�4 10�4 3⇥ 10�4 3⇥ 10�4

GAE-� ����������������������� 0.95 �����������������������!
Entropy coefficient ����������������������� 0.01 �����������������������!
Value loss coefficient ����������������������� 0.5 �����������������������!
Gradient Clipping ����������������������� 0.5 �����������������������!
PPO Clipping (") ����������������������� 0.2 �����������������������!

Here, the ¬,U symbols are the not, until LTL operators,
respectively. Similar to Partially-Ordered Tasks, several par-
allel sequences of propositions must be satisfied. However,
this task space introduces the added challenge of proposi-
tions which must be avoided. The propositions to be avoided
change as different parts of the task are solved. An exam-
ple formula that is a conjunction of two sequences, each of
depth two is:

(¬AU (K ^ (¬H U J))) ^ (¬GU (L ^ (¬F U I)))

In order to guarantee that every formula can be solved, we
do not allow the same proposition to appear twice in the
same formula (avoiding conflicts such as (¬AUA), which
cannot be satisfied). In the Letter World, the number of
conjuncts was randomly sampled between 1 and 2 and the
depth of each sequence was randomly sampled between 1
and 3. For generalization to larger formulas, we considered
depth 6 formulas with 1 conjunct (increased depth), as well
as depth 2 formulas with 3 conjuncts (increased conjuncts).
For the safety gym environment, we considered 1 conjunct,
and randomly sampled the depth between 1 and 2 (longer
tasks suffered from sparse reward, which is not the focus on
this work).

B.2. Network Architectures

As mentioned in Section 4, we used PPO as the RL method
for our experiments. We used the same actor (3 fully-
connected layers with [64, 64, 64] units and ReLU acti-
vations) and critic (3 fully-connected layers with [64, 64,
1] units and Tanh activation) model for LetterWorld
and ZoneEnv. In LTLBootcamp (pretraining), we used
a single layer actor and critic with no hidden layers. This
was to encourage the LTL module to learn a self-sufficient
encoding (as the actor and critics cannot be transferred to
downstream tasks). For discrete action space environments,
the actor’s output was passed through a logit layer before
softmax. For the continuous case we assumed a Gaussian

We used torch-ac’s implementation of PPO (https://
github.com/lcswillems/torch-ac).

action distribution and parameterized its mean and standard
deviation by sending the actor’s output to two separate linear
layers.

The Env Module is determined by the observation space of
the underlying environment: in LetterWorld we used
a 3-layer convolutional neural network with 16, 32 and
64 channels, kernel size of 2 ⇥ 2 and stride of 1 and in
ZoneEnv we used a 2-layer fully-connected network with
[128, 128] units and ReLU activations. Naturally, there is
no Env Module for LTLBootcamp.

For LTL Module, we tested the following architectures with
roughly the same number of parameters (⇠ 104) to encode
LTL formulas:

• Graph Neural Networks (GNN): The R-GCN architec-
ture of Section 4 with T = 8 message passing steps
and 32-dimensional node embeddings, i.e., x(t)

v 2 R32.
To reduce the number of trainable parameters we share
the weight matrix across iterations for each edge type:
Wr = W

(t)
r (0  t  T). We observed better express-

ibility by concatenating the embedding of a node at
iteration t with its one-hot encoding before passing it
to the neighboring nodes for aggregation: (x(t)

u ,x(0)
u),

thus Wr 2 R(32+32)⇥32. We used Tanh as the element-
wise activation of Equation 2.
Note that the embedding does not consider information
from nodes more than T edges away from the root.
However, this did not appear to be an issue in our ex-
periments using T = 8, despite encountering formulas
with ASTs larger than 8. One mitigating factor is that
LTL progression generally reduces the size of formulas
as parts of the task are solved, and the information most
immediately relevant to the task tends to lie closer to
the root.

• Gated Recurrent Units (GRU): A 2-layer bidirectional
GRU with a 16-dimensional hidden layer.

• Long Short-Term Memory (LSTM): A 2-layer bidirec-
tional LSTM with a 16-dimensional hidden layer.

https://github.com/lcswillems/torch-ac
https://github.com/lcswillems/torch-ac

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Table 3. PPO hyperparameters for ZoneEnv. Only Avoidance
tasks were considered on this environment.

GNNpre
prog GNNprog Myopic

Env. steps per update 65,536 65,536 65,536
Number of epochs 10 10 10
Minibatch size 2,048 2,048 1,024
Discount factor (�) 0.998 0.998 0.998
Learning rate 3⇥ 10�4 3⇥ 10�4 3⇥ 10�4

GAE-� 0.95 0.95 0.95
Entropy coefficient 0.003 0.003 0.003
Value loss coefficient 0.5 0.5 0.5
Gradient Clipping 0.5 0.5 0.5
PPO Clipping (") 0.2 0.2 0.2

B.3. PPO Hyperparameters

All experiments were conducted on a compute cluster using
1 GPU and 16 CPU cores per run. The hyperparameters
used for PPO for each baseline are displayed in Table 2
for the LetterWorld, Table 3 for the ZoneEnv, and
Table 4 for the LTLBootcamp (pretraining). Using a GNN
architecture, training completed in approximately 26 hours
in LetterWorld and 24 hours in the ZoneEnv (both for
20 million frames). Using a GRU to encode formulas was
usually 2-3⇥ more wall-clock efficient compared to GNN.

Note that all baselines which treat the problem as partially
observable use an additional recurrent layer after the Env
Model (i.e., GRU and No LTL). As backpropagation through
all timesteps is computationally expensive, we backprop-
agate gradients only through the last 4 timesteps. We did
not observe better performance by increasing the number of
backpropagation steps.

C. Additional Results
C.1. Generalization to Unseen Objects

While the main focus of our work was generalization to
new instructions, an important related problem is gener-
alization to unseen objects (Hill et al., 2021; Leon et al.,
2020). We conduct a simple experiment in LetterWorld
to test object generalization in our framework by evaluat-
ing on unseen letters/propositions. While our framework
normally uses one-hot encodings for propositions, such an
approach is not conducive to generalization to new propo-
sitions. Here, we instead encode each letter as a random
(but fixed), normalized vector in a low-dimensional space
Rd (we use d = 3). Importantly, the same proposition is en-
coded in the same way in both the grid and in LTL formulas.
We consider Avoidance tasks with a depth of 2 and train our
agent on formulas over 12 fixed letters. We then evaluate
this agent (over 5 seeds and 1000 episodes per seed) on
formulas with the same structure, but over (a) 6 previously
seen and 6 unseen letters, and (b) 12 unseen letters.

Table 4. PPO hyperparameters for LTLBootcamp (pretraining).

GNNprog GRUprog

(a) Avoidance Tasks

Env. steps per update 8,192 8,192
Number of epochs 2 2
Minibatch size 1,024 1,024
Discount factor (�) 0.9 0.9
Learning rate 10�3 10�3

GAE-� 0.5 0.5
Entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Gradient Clipping 0.5 0.5
PPO Clipping (") 0.1 0.1

(b) Partially-Ordered Tasks

Env. steps per update 8,192 8,192
Number of epochs 2 4
Minibatch size 1,024 1,024
Discount factor (�) 0.9 0.9
Learning rate 10�3 3⇥ 10�3

GAE-� 0.5 0.95
Entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Gradient Clipping 0.5 0.5
PPO Clipping (") 0.1 0.2

Table 5. RL agents are trained on LTL tasks over 12 letters, and
are evaluated on tasks over some unseen letters. In each entry, we
report the mean return over 5 seeds and 1000 episodes per seed,
with 90% confidence error.

% Unseen Letters

50% 100%

Ours 0.667± 0.015 0.607± 0.016
Random �0.374± 0.021 �0.374± 0.021

Results are displayed in Table 5. Compared to a random
action-selection baseline, our framework generalizes well
to new tasks over unseen letters.

C.2. Pretraining Learning Curves

In Figure 6, we report the learning curves of GNNprog and
GRUprog on the LTLBootcamp environment. Note that
this is not meant to be an evaluation benchmark and is only
used for pretraining the LTL module in our other exper-
iments (see the main text, Figure 4). We observe, how-
ever, that the GNN is able to learn significantly faster than
the GRU. Note that the Partially-Ordered tasks still remain
extremely challenging to solve optimally, even in this ab-
stracted environment.

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Avoidance Tasks Partially-Ordered Tasks

D
is

co
un

te
d

re
tu

rn
Frames (millions)

GNNprog GRUprog

Figure 6. The learning curves of the GNN and GRU (both with progression) in the LTLBootcamp (pretraining) environment. Given
random formulas, the task is to choose propositions which satisfy it in as few steps as possible. We report discounted return over the
duration of training (averaged over 30 seeds, with 90% confidence intervals).

