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Abstract 
Subsampling a signal of interest can reduce costly 
data transfer, battery drain, radiation exposure 
and acquisition time in a wide range of problems. 
The recently proposed Deep Probabilistic Sub-
sampling (DPS) method effectively integrates sub-
sampling in an end-to-end deep learning model, 
but learns a static pattern for all datapoints. We 
generalize DPS to a sequential method that ac-
tively picks the next sample based on the informa-
tion acquired so far; dubbed Active-DPS (A-DPS). 
We validate that A-DPS improves over DPS for 
MNIST classifcation at high subsampling rates. 
Moreover, we demonstrate strong performance 
in active acquisition Magnetic Resonance Image 
(MRI) reconstruction, outperforming DPS and 
other deep learning methods. 

1. Introduction
Present-day technologies produce and consume vast 
amounts of data, which is typically acquired using an analog-
to-digital converter (ADC). The amount of data digitized by 
an ADC is determined not only by the temporal sampling 
rate, but also by the manner in which spatial acquisitions 
are taken, e.g., by using a specifc design of sensor arrays. 

Reducing the number of sample acquisitions needed, can 
lead to meaningful reductions in scanning time, e.g., in Mag-
netic Resonance Imaging (MRI), radiation exposure, e.g., in 
Computed Tomography (CT), battery drain, and bandwidth 
requirements. While the Nyquist theorem is traditionally 
used to provide theoretical bounds on the sampling rate, in 
recent years signal reconstruction from sub-Nyquist sam-
pled data has been achieved through a framework called 
Compressive Sensing (CS). 

1Department of Electrical Engineering, Eindhoven University 
of Technology, Eindhoven, The Netherlands 2Department of Com-
puter Science, University of Amsterdam, Amsterdam, The Nether-
lands 3Department of Computer Science, Eindhoven University 
of Technology, Eindhoven, The Netherlands 4Philips Research, 
Eindhoven, The Netherlands. Correspondence to: Hans van Gorp 
<h.v.gorp@tue.nl>. 

Proceedings of the 38 th International Conference on Machine 
Learning, PMLR 139, 2021. Copyright 2021 by the author(s). 

First proposed by Donoho (2006), and later applied for 
MRI by Lustig et al. (2007), CS leverages structural signal 
priors, specifcally sparsity under some known transform. 
By taking compressive measurements followed by iterative 
optimization of a linear system under said sparsity prior, 
reconstruction of the original signal is possible while sam-
pling at sub-Nyquist rates. Researchers have employed CS 
with great success in a wide variety of applications, such 
as radar (Baraniuk & Steeghs, 2007; Ender, 2010), seismic 
surveying (Herrmann et al., 2012), spectroscopy (Sanders 
et al., 2012), and medical imaging (Han et al., 2016; Lai 
et al., 2016). 

However, both the need to know the sparsifying basis of 
the data, and the iterative nature of the reconstruction algo-
rithms, still hamper practical applicability of CS in many 
situations. These limitations can be overcome by the use of 
deep learning reconstruction models that make the sparsity 
assumption implicit, and facilitate non-iterative inference 
once trained. Moreover, the (typically random) nature of 
the measurement matrix in CS does, despite adhering to 
the given assumptions, not necessarily result in an optimal 
measurement given the underlying data statistics and the 
downstream system task. This has recently been tackled 
by algorithms that learn the sampling scheme from a data 
distribution. 

In general, these data-driven sampling algorithms can be 
divided into two categories: algorithms that learn sam-
pling schemes which are fxed once learned (Huijben et al., 
2020a;b;c; Ravishankar & Bresler, 2011; Sanchez et al., 
2020; Bahadir et al., 2019; Bahadir et al., 2020; Weiss et al., 
2019), and algorithms that learn to actively sample (Ji et al., 
2008; Zhang et al., 2019; Jin et al., 2019; Pineda et al., 2020; 
Bakker et al., 2020); selecting new samples based on se-
quential acquisition of the information. The former type 
of algorithms learn a sampling scheme that - on average 
- selects informative samples of all instances originating
from the training distribution. However, when this distribu-
tion is multi-modal, using one globally optimized sampling 
scheme, can easily be sub-optimal on instance-level. 

Active acquisition algorithms deal with such shifts in under-
lying data statistics by conditioning sampling behavior on 
previously acquired information from the instance (e.g. the 
image to be sampled). This results in a sampling sequence 
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that varies across test instances, i.e. sampling is adapted to 
the new data. This adaptation as a result of conditioning, 
promises lower achievable sampling rates, or better down-
stream task performance for the same rate, compared to 
sampling schemes that operate equivalently on all data. 

In this work, we extend the Deep Probabilistic Subsam-
pling (DPS) framework (Huijben et al., 2020a) to an active 
acquisition framework by making the sampling procedure 
iterative and conditional on the samples already acquired, 
see Fig. 1. We refer to our method as Active Deep Proba-
bilistic Subsampling (A-DPS). We show how A-DPS clearly 
exploits the ten different modalities (i.e. the digits) present 
in the MNIST dataset to adopts instance-adaptive sampling 
sequences. Moreover, we demonstrate both on MNIST (Le-
Cun et al., 1998) and the real-world fast MRI knee dataset 
(Zbontar et al., 2018), that A-DPS outperforms other state-
of-the-art models for learned sub-Nyquist sampling. Our 
code is publicly available.1 

2. Related work
Recently, several techniques for learning a fxed sampling 
pattern have been proposed, especially in the feld of MR 
imaging, in which Ravishankar & Bresler (2011) were one 
of the frsts. In this work, the authors make use of non-
overlapping cells in k-space, and move samples between 
these cells.During training Ravishankar & Bresler (2011) 
alternate between reconstruction and relocation of sampling 
positions. After a reconstruction step they sort the cells in 
terms of reconstructing error and an infnite-p norm. Se-
lected samples from lower scoring cells are relocated to 
higher scoring cells in a greedy fashion. 

Sanchez et al. (2020) also propose a greedy approach, in 
which samples are not relocated between cells, but greed-
ily chosen to optimize a reconstruction loss on a batch of 
examples. Both of the types of greedy optimization do how-
ever not allow for joint learning of sampling together with 
a downstream reconstruction/task model, as the reconstruc-
tion has to either be parameter-free or pretrained to work 
well with a variety of sampling schemes. 

Bahadir et al. (2019) on the other hand propose to learn the 
sampling pattern by thresholding pixel-based i.i.d. samples 
drawn from a uniform distribution, dubbed Learning-based 
Optimization of the Under-sampling PattErn (LOUPE). The 
sample rate of LOUPE is indirectly controlled by promoting 
sparsity through the use of an ` 1 penalty on the thresholds. 

One of the frst active sampling schemes was proposed by 
Ji et al. (2008), who leverage CS reconstruction techniques 
that also give a measure of uncertainty of the reconstruction 

1https://github.com/IamHuijben/Deep-Probabilistic-
Subsampling 

using Bayesian modeling. Ji et al. (2008) leveraged this 
uncertainty in the reconstruction to adaptivly select the next 
measurement that will reduce this uncertainty by the largest 
amount. However, this method - and other similar works 
from (Carson et al., 2012; Li et al., 2013) - rely on linearly 
combined measurements, rather than discrete sampling, with 
which we concern ourselves here. 

In the feld of MRI, Zhang et al. (2019) propose an active 
acquisition scheme by leveraging a reconstruction and adver-
sarial neural network. Whereas the reconstruction network 
is trained to reconstruct MR images from the subsampled 
Fourier space (k-space), the adversarial network is trained 
to distinguish between already sampled, and omitted lines in 
this space. The k-space line that is most believed to be ‘fake’ 
(i.e. flled in by the reconstruction network) by the adver-
sarial network, is sampled next. However, This framework 
only works for undersampled Fourier to image reconstruc-
tion tasks, as the discriminator requires mappings of the 
image in k-space. Jin et al. (2019) put forth an active acqui-
sition scheme for MRI by leveraging reinforcement learning 
(RL). Two neural networks, one for sampling and one for 
reconstruction are trained jointly using a Monte-Carlo tree 
search, resulting in a sampling policy that is dependent on 
the current reconstruction of the image. 

More recently, both Pineda et al. (2020) and Bakker et al. 
(2020) proposed RL-based active acquisition techniques. 
Pineda et al. (2020) leverages a Double Deep Q-Network. 
The model is trained using a modifed �-greedy policy, in 
which the best action is taken with probability 1 − �, and an 
exploratory action is taken with probability �. Bakker et al. 
(2020) compare greedy with non-greedy training, fnding 
that the greedy method leads to a higher degree of adapt-
ability, especially for tasks with a long horizon (i.e. more 
samples to be taken). Both of the frameworks proposed by 
Pineda et al. (2020) and Bakker et al. (2020) make use of a 
pretrained reconstruction network, which differs from the 
proposed A-DPS method that enables joint training of both 
the reconstruction (task) network and sampling network. 

Even though subsampling is an extreme form of data com-
pression, we differentiate from typical data compression 
architectures like deep encoder-decoder structures (Theis 
et al., 2017; Ballé et al., 2017), as these methods do not 
reduce data rates at the measurement stage. The feedback 
recurrent autoencoder proposed by Yang et al. (2020) is 
however related to A-DPS through its use of a recurrent 
context. But whereas Yang et al. (2020) learn a context to 
inform the encoder stage of the network, A-DPS uses this 
to inform the sampling pattern. 

https://github.com/IamHuijben/Deep-Probabilistic-Subsampling
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Figure 1. A-DPS learns to actively pick new samples in a sequential setup based on contextual information generated by the task model on 
previously acquired samples. Here we show an example of an MRI reconstruction task. Note however that A-DPS can be used for more 
tasks besides reconstruction, e.g., classifcation. The extension over DPS is shown in orange. 

3. Method 
3.1. General framework 

Given a prediction task s we are interested in learning to 
predict an optimal subsampling scheme A ∈ {0, 1}M×N 

(with M � N ) on an input signal x ∈ RN , resulting in a 
measurement ỹ ∈ RM : 

ỹ = Ax. (1) 

Each row in A is constrained to have ` 0-norm of 1, while 
each column in A is constrained to have an ̀  0-norm of either 
0 or 1, i.e. each of the N candidate samples is selected at 
most once. In the rest of this paper we will index these 
candidate samples with n ∈ {1, . . . , N}, and the selected 
samples with m ∈ {1, . . . ,M}. The percentage of selected 
samples from the candidate samples is called the sampling 
ratio r = M/N · 100%. 

We also introduce a non-compressed form of the measure-
ment ỹ, called y ∈ RN , that contains N − M zeros, and 
M non-zeros at the sampled indices specifed by A, i.e., the 
masked input. This way, the location of samples from x is 
preserved, which is especially useful when A changes dur-
ing training. To acquire y from x, one seeks a subsampling 
mask d that can be applied on x via: 

y = d x = AT Ax, (2) 

where denotes an element-wise multiplication. From 
the resulting measurement y we then aim at predicting the 

downstream task s through: 

ŝ = fθ(y), (3) 

where fθ(.) is a function that is differentiable with respect to 
its input and parameters θ, e.g., a neural network. Normally, 
optimization of the task model fθ(.) is achieved through 
backpropagation of some loss function L(s, ŝ). However, 
calculating gradients on the sampling matrix is blocked by 
its combinatorial nature, inhibiting joint training of the task 
with the sampling operation. The DPS framework provides 
a solution to this problem, on which we will elaborate in the 
next section. 

3.2. DPS: Deep Probabilistic Subsampling 

To enable joint training of the sampling operation with the 
downstream task model, Huijben et al. (2020a) introduce 
DPS. Rather than optimizing A directly, they propose to 
optimize a generative sampling model P (A|φ), where φ 
are learned unnormalized logits of (possibly multiple) cat-
egorical distribution(s). Each distribution expresses the 
probabilities for sampling any of the elements xn from x 
through sampling matrix A. More specifcally, φm,n is the 
log-probability for setting am,n = 1, and thus sampling xn 

as mth sample. 

To generate a sampling pattern from these unnormalized 
logits, i.e. implementation of this conditional model, the 
Gumbel-max trick is leveraged (Gumbel, 1954). In the 
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Gumbel-max trick the unnormalized logits are perturbed 
with i.i.d. Gumbel noise samples em,n ∼ Gumbel(0, 1). 
By selecting the maximum of this perturbation a realization 
of the sampling mask can be found using: � � 

Am,: = one-hotN argmax {wm−1,n + φm,n + em,n} , 
n 

(4) 
where Am,: denotes the m-th row of A and one-hotN cre-
ates a one-hot vector of length N , with the one at the index 
specifed by the argmax operator. Moreover, the cumula-
tive mask wm−1,n ∈ {−∞, 0} masks previously selected 
samples by adding minus infnity to those logits, thereby 
ensuring sampling without replacement. 

During backpropagation, gradients are computed by re-
laxing this sampling procedure using the Gumbel-softmax 
trick (Jang et al., 2016; Maddison et al., 2017), resulting in: 

rφm Am,: := 

rφm Eem [softmaxτ {wm−1,n + φm,n + em,n}] , 
(5) 

where τ denotes the temperature parameter of the softmax 
operator. Setting τ > 0 results in a smoothed sampling 
matrix A (i.e. elements can have values between 0 and 1 as 
well), allowing gradients to distribute over multiple logits 
during training. In the limit of τ → 0 the softmax operator 
approaches the one-hot argmax function of equation (4). 
Although this approach – also known as straight-through 
Gumbel-softmax – leads to biased gradients, it has been 
shown to work well in practice, and Huijben et al. (2020a) 
keep τ at a fxed value during training. 

Huijben et al. (2020a) propose two regimes of DPS. First, 
Top-1 sampling, an expressive form of DPS where each 
of the M selected samples are separately conditioned on 
all N candidate samples, resulting in M × N trainable 
logits φm,n. Second, Top-M sampling (called Top-K in their 
paper), a constrained form where all M samples together are 
conditioned on all N candidate samples, i.e. the logits φn 

are shared between the M rows of A, resulting in only N 
trainable logits. While Top-1 sampling is more expressive, 
Huijben et al. (2020a) noticed slightly better results for 
the Top-M regime, possibly thanks to the smaller number 
of trainable logits, therefore facilitating optimization. For 
scaleability reasons, we thus choose to continue with Top-M 
sampling in this work and refer to this regime as DPS in 
the rest of this paper. We refer the reader to Huijben et al. 
(2020a) for more details regarding DPS. 

3.3. A-DPS: Active Deep Probabilistic Subsampling 

We have seen how DPS enables the learning of a sampling 
scheme that selects M out of N samples. However, these 
samples are selected simultaneously. A-DPS selects its 
samples in an iterative fashion, separating the logits into I 

acquisition steps, i.e. φi with i ∈ {0, 1, 2, . . . , I − 1} and 
I = M . 

Active acquisition is then achieved by introducing depen-
dency between samples, i.e. the sampling distribution at 
acquisition step i should depend on the information acquired 
in previous acquisition steps. To that end, we introduce a 
context vector ci, that encodes information about the cur-
rent task. We then condition the sampling distribution on 
this context by learning a transformation φ = gκ(c), where 
gκ(.) is a function that is differentiable with respect to its 
input and parameters κ. Thus, instead of optimizing the pa-
rameters directly (as DPS does), we optimize gκ(c), which 
we will refer to as the sampling model. 

The question then arises how to best generate this context 
from previous samples. Here, we follow the analysis-by-
synthesis principle, and let the analysis (the sampling model) 
depend on the synthesis (the task model). This way, the task 
model can inform the sampling model what information it 
needs to achieve its assigned task. The iterative analysis-by-
synthesis scheme of A-DPS is formalized as follows: 

Algorithm 1 A-DPS 
Input: acquisition steps I 
Data: input signal x and associated task s 
c0 , d, l, i = 0 
while i < I do 

φi = gκ(ci) 
d += DPS(φi) 
iy = d x 
i i+1ŝ , c = fθ(yi) 

il += L(ŝ , s) 
i += 1 

end 

Where DPS() signifes the operation to create a sampling 
mask from logits as described in section 3.2. By accu-
mulating the loss over all acquisition steps we train in a 
semi-greedy fashion, which promotes the network to select 
more interesting samples early on. We visualize the archi-
tecture of the A-DPS framework in Fig.1 and discuss its 
computational complexity in the Appendix. 

4. Experiments 
To show the applicability of A-DPS on both classifcation as 
well as reconstruction tasks we evaluate its performance in 
two experiments. First, we will compare A-DPS with DPS 
at different subsampling ratios on an MNIST classifcation 
example in Section 4.1. Second, we will compare A-DPS 
with contemporary CS and deep learning methods on an 
MRI example in sections 4.2 and 4.3, leveraging the fast 
MRI knee dataset (Zbontar et al., 2018). 
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Figure 2. A-DPS outperforms DPS on classifcation accuracy for 
MNIST when the sampling ratio is less than 5%.The ‘all samples’ 
line indicates the accuracy achieved without subsampling. Both 
DPS and A-DPS approach this upper bound. 

4.1. MNIST 

Experiment setup Classifcation performance at different 
sampling rates was tested on the MNIST database (LeCun 
et al., 1998), consisting of 70,000 grayscale images of 28 × 
28 pixels of handwritten digits between 0 and 9. We split 
the original 60,000 training images into 50,000 training 
and 10,000 validation images. We keep the original 10,000 
testing examples. We train both DPS top-M and A-DPS to 
take partial measurements in the pixel-domain at different 
sampling rates. 

Reaching back to Fig.1 and algorithm 1, DPS top-M sam-
pling only consists of the DPS sampling and task model 
(fθ(.)). All M samples are selected at the same time and 
used once by fθ(.) to predict which digit the network is 
looking at. In the case of A-DPS however, only 1 sample 
is taken at a time and used as input for fθ (.). Here, fθ(.) 
also creates a context that is used by the sampling network 
gκ(.) to select the next sample. A-DPS iterates through this 
loop M times in order to select all the samples. We keep 
fθ(.) the same for both DPS and A-DPS. Resulting in the 
fact that the last iteration of A-DPS is similar to that of DPS 
top-M (i.e. M samples are selected and fed through fθ(.)). 

Task model In the classifcation network fθ (.) all 784 
(28 × 28) zero-masked samples are used as input for 5 fully 
connected layers. The fully connected layers have 784, 256, 
128, 128, and 10 nodes, respectively. Moreover, all but the 
last layers are activated by leaky ReLU activation functions 
with a negative slope of 0.2. The last layer uses a softmax 
activation function to output class label probabilities. The 
frst three layers also have a dropout of 30%. 

The output vector of the fourth layer is used as the context 
vector for A-DPS. The sampling network gκ(.) consists of 
an LSTM with a hidden size of 128, followed by two linear 
layers with output sizes of 256 and 784, respectively. More-
over, after the frst layer a leaky ReLU activation function 

Figure 3. A-DPS uses different sampling patterns for different dig-
its in classifcation, while DPS uses only one static sampling pat-
terns across the entire dataset. The color scale indicates the order 
in which samples are taken. The sampling ratio is 2%, resulting in 
15 samples. 

is used with a negative slope of 0.2, and a dropout of 30% 
is applied. The last layer is not followed by any activation 
function as its output are the unnormalized logits φi used to 
create the next sampling mask. 

Training details Both sampling strategies were trained to 
minimize the categorical cross-entropy loss. The tempera-
ture parameter was fxed to 2. We employ SGD with the 
Adam solver (Kingma & Ba, 2015) (lr = 2e − 4, β1 = 0.9, 
β2 = 0.999, and � = 1e − 7) to minimize the loss function. 
Training was performed on batches of 256 examples for 100 
epochs. 

Results The resulting accuracy on the test set is shown 
in Fig. 2. A-DPS outperforms DPS especially when the 
sampling ratio is less than 5%. It is hypothesized that it is 
especially important to select those candidate samples that 
carry a lot of information based on the previous samples 
for very low data rates. In Fig. 2 we also show the upper 
bound on accuracy our task model can achieve without any 
subsampling, both DPS and A-DPS approach this limit very 
quickly. Two examples of the selected sampling masks at 
r = 2% are displayed in Fig. 3. Here, it is shown how DPS 
selects all samples at once, while A-DPS selects them in an 
iterative fashion, resulting in different sampling patterns for 
the two examples. 

To analyze the sampling patterns across the entire test set we 
plot all of the patterns together in Fig. 4 for a sampling ratio 
of 3%. Here we show the relative chance to sample a pixel 
at each acquisition step. The same candidate sample (index 
489 in this case) is always sampled frst, as the context is 
zero there for all examples. After the frst step the sampling 
patterns diverge with a preference for candidate samples 
near the center of the image. 

We also employ t-SNE (Van Der Maaten & Hinton, 2008) 
to see if we can observe clustering in the sample patterns 
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Figure 4. Visualization of all sampling patterns across the test set 
for a sampling ratio of 3%. The color scale indicates the relative 
occurrence of the sample at the current acquisition step. 
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Figure 5. Sampling patterns selected by A-DPS are clustered per 
digit when applying t-SNE analysis on them. The color scale 
indicates the ground truth label of the corresponding image. This 
image was made using a sampling ratio of 3%. 

generated by A-DPS on this task. t-SNE maps the multi-
dimensional sampling patterns to points in 2D space. In 
this 2D space t-SNE aims to preserve spatial relationships 
from the higher dimension, i.e. similar high dimensional 
vectors get mapped close to together, while dissimilar ones 
are mapped further apart. The resulting plot is shown in 
Fig. 5, where each dot is colored with the ground truth label 
(digit) of the corresponding image. The clustering in this 
fgure indicates how similar selected sampling patterns are. 
For example, the sampling patterns for digit zero and one 
tend to be dissimilar from one another. Interestingly, the 
digit seven seems to have two sampling patterns associated 
with it, one dissimilar from all others, while the other one is 
close to that of digit two. 

4.2. MRI with (learned) fxed baselines 

Experiment setup To show the applicability of A-DPS, 
we demonstrate its performance on line-based MRI. We 
make use of the NYU fastMRI database of knee MRI vol-
umes (Zbontar et al., 2018). Only the single-coil measure-
ments were selected, from which the outer slices were re-
moved. The resulting data was split into 8,000 training, 
2,000 validation, and 3,000 testing MRI slices. All slices 

were cropped to the central 208×208 pixels and normalized 
between 0 and 1. The subsampling operation on one of these 
MRI slices is then performed in k-space (Fourier-space): 

Y = |FH D FX|, (6) 

where |.| is the magnitude operator. Moreover, X ∈ RN×N 

is the fully sampled ground truth image and Y ∈ RN×N 

is the subsampled image, both in the pixel domain. In this 
case N is equal to 208. Furthermore, F and FH denote 
the forward and inverse 2D-Fourier transform, respectively. 
D ∈ {0, 1}N×N denotes the sampling mask in k-space. 

Normally Y would be complex, due to the asymmetrical 
nature of MRI measurements and the incomplete subsam-
pling mask. Here, we choose to take the magnitude of Y to 
simplify reconstruction. We hypothesize that doing so does 
not signifcantly change the problem, as the imaginary part 
of fully sampled images in the NYU fastMRI dataset is very 
small compared to the real part. 

Task model To reconstruct an estimate of the original 
image X̂ from the partial measurement Y a deep unfolded 
proximal gradient method is used (Mardani et al., 2018), 
in which K iterations of a proximal gradient method are 
unfolded as a feed forward neural network following: 

X̂ (k+1) = n � �o 
(k) (k)

X̂ (k) − αP |FH D FX̂ (k)| − Y , 
(7) 

(ζ) (ψ) 

(k)where P(ζ) (.) is a trainable image-to-image proximal map-

ping and α(k) is the step size, parameterized by ζ and ψ, re-(ψ)
spectively. We implement this proximal gradient method for 
k = 3 steps, with the trainable step size α(k) implemented(ψ) 
as a 3 × 3 convolutional layer. Each proximal mapping 
is implemented as a series of 4 convolutions with 16, 16, 
16, and 1 feature(s) each and a kernel size of 3 × 3. All 
convolutions but the last are followed by ReLU activation 
functions. 

We will compare A-DPS to to several relevant sampling 
baselines, namely, random uniform, low-pass, variable den-
sity (VDS), greedy mask selection (Sanchez et al., 2020), 
LOUPE (Bahadir et al., 2019; Bahadir et al., 2020), and 
DPS. We compare A-DPS to the active baselines of Zhang 
et al. (2019) and Pineda et al. (2020) in section 4.3. 

Under a random uniform regime all N lines are equally 
likely to be sampled, while under a low-pass regime the M 
lines closest to the DC frequency will be selected. VDS on 
the other hand is a heuristic regime that employs a proba-
bility density from which the desired amount of samples 
are drawn. Following (Lustig et al., 2007), we here use a 
polynomial probability density function with a decay factor 
of 6. 
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Figure 6. A-DPS MR image reconstruction of a test-set image by 
adaptively sampling 26 k-space lines. From left to right: 1) k-space, 
2) sequence of line indices selected by A-DPS, 3) reconstructed 
image, 4) fully sampled MR image (ground truth). 

For the greedy mask selection we follow the approach by 
Sanchez et al. (2020) and frst optimize the sampling mask 
using the NESTA solver (Becker et al., 2011). After this, 
we fx the sampling mask and train our proximal gradient 
network. Results for both reconstruction algorithms are 
reported. 

To generate a sampling mask D using A-DPS we use a sam-
pling network gκ(.). As context the sampling network takes 
the current reconstruction as input. This image is analyzed 
using 3 convolutional layers with kernels sizes of 3 × 3 
followed by ReLU activation functions. The output features 
are of sizes 16, 32, and 64, respectively. The fnal feature 
map is aggregated into a feature vector using global average 
pooling. This feature vector is then fed into an LSTM cell 
of size 64. The output of the LSTM is transformed by a 
fully connected layer to the logits of size 208 used to create 
the sampling mask for the next acquisition step. 

Training details To promote the reconstruction of visu-
ally plausible images, we leverage both a Mean Squared 
Error (MSE) and adversarial loss (Ledig et al., 2016). To 
that end we introduce a discriminator network that is trained 
to distinguish between real and reconstructed MR images. 
The discriminator is implemented using three convolutional 
layers with kernel sizes of 3 × 3, stride 2, and 64 feature 
maps, each with Leaky ReLU activations. After the last 
convolutional layer the feature maps are aggregated into a 
feature vector using global average pooling, with a dropout 
rate of 40%, which is mapped to a single output probabil-
ity using one fully connected layer followed by a sigmoid 
activation function. Next to the MSE loss and adversarial 
loss, we add a third loss term that penalizes the MSE loss 
between the discriminator features of real and generated 
images. The total loss function is a weighted summation 
of these three losses, with weights 1, 5e − 6, and 1e − 7, 
respectively. 

All sampling mask selection strategies were then trained 
using SGD on batches of 2 images for a total of 10 epochs. 
We again employ the Adam solver (lr = 2e − 4, β1 = 0.9, 
β2 = 0.999, and � = 1e − 7) to minimize the loss function, 
and set the temperature parameter to 2. We choose M = 26, 
which results in an acceleration factor of 8 (r = 12.5%). 

Table 1. Average results over 5 runs on the hold-out test set of size 
208 × 208 for an acceleration factor of 8 compared to the (learned) 
fxed baselines. 

Sampling Model NMSE PSNR SSIM 

Random uniform 0.4645 17.7 0.268 
Low pass 0.0474 24.4 0.507 
Variable density 0.0450 24.6 0.540 
Greedy Mask NESTA 0.0425 23.3 0.494 
Greedy Mask Prox. Grad. 0.0442 24.9 0.530 
LOUPE 0.0476 25.0 0.567 
DPS 0.0401 25.3 0.568 
A-DPS (proposed) 0.0389 25.5 0.582 

Results We score the different strategies based on 3 met-
rics: the normalized mean square error (NMSE), the peak 
signal-to-noise ratio (PSNR), and the structural similarity 
index (SSIM) (Wang et al., 2004). The averaged results 
over 5 runs on the hold-out test set for an acceleration factor 
of 8 are shown in Table 1. A-DPS outperforms all other 
baselines on the three metrics. An example of an A-DPS 
reconstruction is shown in Fig. 6, while a comprehensive 
overview of all baselines for this example can be found in 
the Appendix. 

4.3. MRI with active baselines 

Training details We also compare A-DPS with the mod-
els created by Zhang et al. (2019) and Pineda et al. (2020) 
using the implementations and checkpoints provided by 
Pineda et al. (2020)2. We here compare using their ”Eval-
uator” and ”DS-DDQN” checkpoints. Moreover, different 
preprocessing is used. No cropping or removal of the outer 
slices is applied. The input size of the k space is however 
cropped (where necessary) to a size of 368×640. Moreover, 
reconstructions are only scored on the central 320 × 320, as 
outside of that range there is mostly background. We use 
the same validation-testing split as the implementation of 
Pineda et al. (2020), resulting in a total of 34,742 training, 
1,785 validation, and 1,851 testing images. 

We use the exact same DPS and A-DPS models as in the 
previous experiment, with only the minor change in output 
size of the sampling model gκ(.) to account for the larger 
k space. Due to computational constraints training is per-
formed for 5 epochs on batches of size 1. We again employ 
the same loss function and Adam solver with lr = 2e − 4, 
β1 = 0.9, β2 = 0.999, and � = 1e − 7. 

Results We again compare the models for an accelera-
tion factor of 8. Note that the amount of samples taken is 

2https://github.com/facebookresearch/ 
active-mri-acquisition 

https://github.com/facebookresearch/active-mri-acquisition
https://github.com/facebookresearch/active-mri-acquisition
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Table 2. Results on the hold-out test set of size 368 × 640 for an 
acceleration factor of 8 compared to the active baselines. 

Sampling Model NMSE PSNR SSIM 

(Zhang et al., 2019) 0.0398 28.8 0.610 
(Pineda et al., 2020) 0.0371 29.2 0.623 
DPS 0.0360 30.1 0.650 
A-DPS (proposed) 0.0342 30.2 0.654 

different in that case. Whereas in the previous experiment 
26 lines are sampled, now that number has jumped up to 
46 (to account for the larger images used). We compare 
A-DPS and DPS with the baselines in the scenario-30L, 
which means that we always sample the 30 lines closest to 
DC. Resulting only in 16 candidate samples that the models 
need to choose. The results of this comparison are shown in 
Table 2. 

As can be seen from Table 2, A-DPS outperforms all other 
baselines. Important to note here is that DPS and A-DPS 
use a different reconstruction network when compared to 
the baselines. A-DPS and DPS make use of the proximal 
gradient network specifed in section 4.2. It is jointly trained 
with the sampling model, and has 93,919 parameters. The 
baselines on the other hand make use of an encoder-decoder 
resnets as proximal operator, also followed by data consis-
tency, and has 294,180,864 parameters. It cannot be jointly 
trained with the sampling model, but insead needs to be 
trained seperatly on random masks, a clear drawback of 
these baselines. 

5. Conclusion 
We proposed a generalization of DPS, which enables ac-
tive acquisition, called A-DPS. We demonstrated its appli-
cability on both an MNIST classifcation task as well as 
an MRI reconstruction task. Moreover, we found that the 
adaptive nature of A-DPS improves performance over other 
sampling pattern selection methods on downstream task 
performance. We fnd that A-DPS uses qualitatively dif-
fering sampling strategies depending on the context in the 
MNIST experiment. On a critical note, the black-box nature 
of A-DPS comes with the traditional machine learning chal-
lenges of out-of-distribution generalization and overftting. 
This means that in a practical application, the sub-sampling 
regime could obfuscate the information required to recog-
nize failure cases. 

Future work includes exploration on how to improve con-
ditioning of the sampling scheme on earlier acquired infor-
mation and meta-information (such as resolution, sampling 
ratio, and weighting). Potential future applications include 
3D and dynamic MRI, CT, ultrasound, radar, video, and 
MIMO systems. 
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