
Sparsifying Networks via Subdifferential Inclusion

Sagar Verma 1 Jean-Christophe Pesquet 1

Abstract
Sparsifying deep neural networks is of paramount
interest in many areas, especially when those
networks have to be implemented on low-
memory devices. In this article, we propose a new
formulation of the problem of generating sparse
weights for a pre-trained neural network. By
leveraging the properties of standard nonlinear
activation functions, we show that the problem
is equivalent to an approximate subdifferential
inclusion problem. The accuracy of the
approximation controls the sparsity. We show
that the proposed approach is valid for a broad
class of activation functions (ReLU, sigmoid,
softmax). We propose an iterative optimization
algorithm to induce sparsity whose convergence
is guaranteed. Because of the algorithm flexibility,
the sparsity can be ensured from partial training
data in a minibatch manner. To demonstrate
the effectiveness of our method, we perform
experiments on various networks in different
applicative contexts: image classification,
speech recognition, natural language processing,
and time-series forecasting. Project page:
https://sagarverma.github.io/compression

1. Introduction
Deep neural networks have evolved to the state-of-the-art
techniques in a wide array of applications: computer vision
(Simonyan & Zisserman, 2015; He et al., 2016; Huang
et al., 2017), automatic speech recognition (Hannun et al.,
2014; Dong et al., 2018; Li et al., 2019; Watanabe et al.,
2018; Hayashi et al., 2019; Inaguma et al., 2020), natural
language processing (Turc et al., 2019; Radford et al., 2019;
Dai et al., 2019b; Brown et al., 2020), and time series
forecasting (Oreshkin et al., 2020). While their performance
in various applications has matched and often exceeded

1Université Paris-Saclay, CentraleSupélec, Inria, Centre
de Vision Numérique. Correspondence to: Sagar Verma
<sagar.verma@centralesupelec.fr>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

human capabilities, neural networks may remain difficult
to apply in real-world scenarios. Deep neural networks
leverage the power of Graphical Processing Units (GPUs),
which are power-hungry. Using GPUs to make billions of
predictions per day, thus comes with a substantial energy
cost. In addition, despite their quite fast response time,
deep neural networks are not yet suitable for most real-time
applications where memory-limited low-cost architectures
need to be used. For all those reasons, compression and
efficiency have become a topic of high interest in the deep
learning community.

Sparsity in DNNs has been an active research topic
generating numerous approaches. DNNs achieving the state-
of-the-art in a given problem usually have a large number of
layers with non-uniform parameter distribution across layers.
Most sparsification methods are based on a global approach,
which may result in a sub-optimal compression for a reduced
accuracy. This may occur because layers with a smaller
number of parameters may remain dense, although they
may contribute more in terms of computational complexity
(e.g., for convolutional layers). Some methods, also known
as magnitude pruning, use a hard or soft-thresholding
to remove less significant parameters. Soft thresholding
techniques achieve a good sparsity-accuracy trade-off at the
cost of additional parameters and increased computation
time during training (Kusupati et al., 2020). Searching
for a hardware efficient network is another area that has
been proven quite useful, but it requires a huge amount of
computational resources. Convex optimization techniques
such as those used in (Aghasi et al., 2017) often rely upon
fixed point iterations that make use of the proximity operator
(Moreau, 1962). The related concepts are fundamental
for tackling nonlinear problems and have recently come
into play in the analysis of neural networks (Combettes
& Pesquet, 2020a) and nonlinear systems (Combettes &
Woodstock, 2021).

This paper shows that the properties of nonlinear activation
functions can be utilized to identify highly sparse
subnetworks. We show that the sparsification of a
network can be formulated as an approximate subdifferential
inclusion problem. We provide an iterative algorithm
called subdifferential inclusion for sparsity (SIS) that uses
partial training data to identify a sparse subnetwork while
maintaining good accuracy. SIS makes even few-parameter

https://sagarverma.github.io/compression

Sparsifying Networks via Subdifferential Inclusion

layers sparse, resulting in models with significantly lower
inference FLOPs than the baselines. For example, SIS for
90% sparse MobileNetV3 on ImageNet-1K achieves 66.07%
top-1 accuracy with 33% fewer inference FLOPs than its
dense counterpart and thus provides better results than
the state-of-the-art method RigL. For non-convolutional
networks like Transformer-XL trained on WikiText-103,
SIS is able to achieve 70% sparsity while maintaining 21.1
perplexity score. We experiment on the following activation
functions: Capped ReLU (Jasper), QuadReLU (MobileNet-
V3), and ReLU/SoftMax (all networks). We evaluate our
approach across four applicative domains and show that our
compressed networks can achieve competitive accuracy for
potential use on commodity hardware and edge devices.

2. Related Work
2.1. Inducing sparsity post training

Methods inducing sparsity after a dense network is trained
involve several pruning and fine-tuning cycles till desired
sparsity and accuracy are reached (Mozer & Smolensky,
1989; LeCun et al., 1990; Hassibi et al., 1993; Han et al.,
2015; Molchanov et al., 2017; Guo et al., 2016; Park et al.,
2020). (Renda et al., 2020) proposed weight rewinding
technique instead of vanilla fine-tuning post-pruning. Net-
Trim algorithm (Aghasi et al., 2017) removes connections
at each layer of a trained network by convex programming.
The proposed method works for networks using rectified
linear units (ReLUs). Lowering rank of parameter tensors
(Jaderberg et al., 2014; vahid et al., 2020; Lu et al., 2016),
removing channels, filters and inducing group sparsity (Wen
et al., 2016; Li et al., 2017; Luo et al., 2017; Gordon et al.,
2018; Yu et al., 2019; Liebenwein et al., 2020) are some
methods that take network structure into account. All these
methods rely on pruning and fine-tuning cycle(s) often from
full training data.

2.2. Inducing sparsity during training

Another popular approach has been to induce sparsity during
training. This is achieved by modifying the loss function to
consider sparsity as part of the optimization (Chauvin, 1989;
Carreira-Perpinan & Idelbayev, 2018; Ullrich et al., 2017;
Neklyudov et al., 2017). Bayesian priors (Louizos et al.,
2017), L0, L1 regularization (Louizos et al., 2018), and
variational dropout (Molchanov et al., 2017) get accuracy
comparable to (Zhu & Gupta, 2018) but at a cost of 2×
memory and 4× computations during training. (Liu et al.,
2019; Savarese et al., 2020; Kusupati et al., 2020; Lee,
2019; Xiao et al., 2019; Azarian et al., 2020) have proposed
learnable sparsity methods through training of the sparse
masks and weights simultaneously with minimal heuristics.
Although these methods are cheaper than pruning after
training, they need at least the same computational effort

as training a dense network to find a sparse sub-network.
This makes them expensive when compressing big networks
where the number of parameters ranges from hundreds
of millions to billions (Dai et al., 2019b; Li et al., 2019;
Brown et al., 2020). Methods like (Zhu & Gupta, 2018;
Bellec et al., 2018; Mocanu et al., 2018; Dai et al., 2019a;
Lin et al., 2020b) can be sub-classified as methods where
dynamic pruning is performed during training by observing
the network flow. (Mostafa & Wang, 2019; Dettmers &
Zettlemoyer, 2020; Evci et al., 2020) computes weight
magnitude and reallocates weights at every step of model
training.

2.3. Training sparsely initialized networks

(Frankle & Carbin, 2019) showed that it is possible to find
sparse sub-networks that, when trained from scratch, were
able to match or even outperform their dense counterparts.
(Lee et al., 2019) presented SNIP, a method to estimate,
at initialization, the importance that each weight could
have later during training. In (Lee et al., 2020) the authors
perform a theoretical study of pruning at initialization from a
signal propagation perspective, focusing on the initialization
scheme. Recently, (Wang et al., 2020) proposed GraSP, a
different method based on the gradient norm after pruning,
and showed a significant improvement for moderate levels
of sparsity. (Ye et al., 2020) starts with a small subnetwork
and progressively grow it to a subnetwork that is as accurate
as its dense counterpart. (Tanaka et al., 2020) proposes
SynFlow that avoids flow collapse of a pruned network
during training. (Jorge et al., 2020) proposed FORCE, an
iterative pruning method that progressively removes a small
number of weights. This method is able to achieve extreme
sparsity at little accuracy expense. These methods are not
usable for big pre-trained networks and are expensive as
multiple training rounds are required for different sparse
models depending on deployment scenarios (computing
devices).

2.4. Efficient Neural Architecture Search

Hardware-aware NAS methods (Zoph et al., 2018; Real
et al., 2019; Cai et al., 2018; Wu et al., 2019; Tan et al., 2019;
Cai et al., 2019; Howard et al., 2019) directly incorporate
the hardware feedback into efficient neural architecture
search. (Cai et al., 2020) proposes to learn a single network
composed of a large number of subnetworks from which a
hardware aware subnetwork can be extracted in linear time.
(Lin et al., 2020a) proposes a similar approach wherein
they identify subnetworks that can be run efficiently on
microcontrollers (MCUs).

The proposed algorithm applies to possibly large pre-
trained networks. In contrast with methods presented
in Section 2.1, ours can use a small amount of training

Sparsifying Networks via Subdifferential Inclusion

data during pruning and fewer epochs during fine-tuning.
As we will see in the next section, a key feature of our
approach is that it is based on a fine analysis of the
mathematical properties of activation functions, so allowing
the use of powerful convex optimization tools. Through its
block-iterative structure, our algorithm makes it possible
to perform minibatch processing, while offering sound
convergence guarantees. In Section 4, extensive numerical
experiments show the good performance of this strategy.

3. Proposed Method
3.1. Variational principles

A basic neural network layer can be described by the
relation:

y = R(Wx+ b) (1)

where x ∈ RM is the input, y ∈ RN the output, W ∈
RN×M is the weight matrix, b ∈ RN the bias vector, and
R is a nonlinear activation operator from RN to RN . A
key observation is that most of the activation operators
currently used in neural networks are proximity operators of
convex functions (Combettes & Pesquet, 2020a;b). We
will therefore assume that there exists a proper lower-
semicontinuous convex function f from RN to R ∪ {+∞}
such that R = proxf . We recall that f is a proper lower-
semicontinuous convex function if the area overs its graph,
its epigraph

{
(y, ξ) ∈ RN × R

∣∣ f(y) 6 ξ
}

, is a nonempty
closed convex set. For such a function the proximity
operator of f at z ∈ RN (Moreau, 1962) is the unique
point defined as

proxf (z) = argmin
p∈RN

1

2
‖z − p‖2 + f(p). (2)

It follows from standard subdifferential calculus that Eq. (1)
can be re-expressed as the following inclusion relation:

Wx+ b− y ∈ ∂f(y), (3)

where ∂f(y) is the Moreau subdifferential of f at y defined
as

∂f(y) =
{
t ∈ RN

∣∣ (∀z ∈ RN)f(z) > f(y) + 〈t | z − y〉
}
.

(4)
The subdifferential constitutes a useful extension of the
notion of differential, which is applicable to nonsmooth
functions. The set ∂f(y) is closed and convex and, if y
satisfies Eq. (1), it is nonempty. The distance to this set of a
point z ∈ RN is given by

d∂f(y)(z) = inf
t∈∂f(y)

‖z − t‖. (5)

We thus see that the subdifferential inclusion in Eq. (3) is
also equivalent to

d∂f(y)(Wx+ b− y) = 0. (6)

Therefore, a suitable accuracy measure for approximated
values of the layer parameters (W, b) is d∂f(y)(Wx+b−y).

3.2. Optimization problem

Compressing a network consists of a sparsification of its
parameters while keeping a satisfactory accuracy. Let
us assume that, for a given layer, a training sequence of
input/output pairs is available which results from a forward
pass performed on the original network for some input
dataset of length K. The training sequence is split in J
minibatches of size T so that K = JT . The j-th minibatch
with j ∈ {1, . . . , J} is denoted by (xj,t, yj,t)16t6T . In
order to compress the network, we propose to solve the
following constrained optimization problem.

Problem 1 We want to

minimize
(W,b)∈C

g(W, b) (7)

with

C =
{

(W, b) ∈ RN×M × RN | (∀j ∈ {1, . . . , J})
T∑
t=1

d2
∂f(yj,t)

(Wxj,t + b− yj,t) 6 Tη
}
, (8)

where g is a sparsity measure defined on RN×M × RN and
η ∈ [0,+∞[is some accuracy tolerance.

Since, for every j ∈ {1, . . . , J}, the function (W, b) 7→∑T
t=1 d

2
∂f(yj,t)

(Wxj,t+ b− yj,t) is continuous and convex,
C is a closed and convex subset of RN×M×RN . In addition,
this set is nonempty when there exist W ∈ RN×M and b ∈
RN such that, for every j ∈ {1, . . . , J} and t ∈ {1, . . . , T},

d2
∂f(yj,t)

(Wxj,t + b− yj,t) = 0. (9)

As we have seen in Section 3.1, this condition is satisfied
when (W, b) are the parameters of the uncompressed layer.
Often, the sparsity of the weight matrix is the determining
factor whereas the bias vector represents a small number of
parameters, so that we can make the following assumption.

Assumption 2 For every W ∈ RN×M and b ∈ RN ,
g(W, b) = h(W) where h is a function from RN×M to
R ∪ {+∞}, which is lower-semicontinuous, convex, and
coercive (i.e. lim‖W‖F→+∞ h(W) = +∞). In addition,
there exists (W, b) ∈ C such that h(W) < +∞ and there
exists (j∗, t∗) ∈ {1, . . . , J} × {1, . . . , T} such that yj∗,t∗
lies in the interior of the range of R.

Under this assumption, the existence of a solution to
Problem 1 is guaranteed (see Appendix A). A standard

Sparsifying Networks via Subdifferential Inclusion

choice for such a function is the `1-norm of the matrix
elements, h = ‖ · ‖1, but other convex sparsity measures
could also be easily incorporated within this framework, e.g.
group sparsity measures. Another point worth being noticed
is that constraints other than (8) could be imposed. For
example, one could make the following alternative choice
for the constraint set

C =
{

(W, b) ∈ RN×M × RN |

sup
j∈{1,...,J},t∈{1,...,T}

d∂f(yj,t)(Wxj,t + b− yj,t) 6
√
η
}
.

(10)

Although the resulting optimization problem could be
tackled by the same kind of algorithm as the one we will
propose, Constraint (8) leads to a simpler implementation.

3.3. Optimization algorithm

A standard proximal method for solving Problem 1 is
the Douglas-Rachford algorithm (Lions & Mercier, 1979;
Combettes & Pesquet, 2007). This algorithm alternates
between a proximal step aiming at sparsifying the weight
matrix and a projection step allowing a given accuracy to be
reached. This algorithm reads as shown below.

Algorithm 1 Douglas-Rachford algorithm for network
compression

Initialize :Ŵ0 ∈ RN×M and b0 ∈ RN
for n = 0, 1, . . . do

Wn = proxγh(Ŵn)

(W̃n, b̃n) = projC(2Wn − Ŵn, bn)

Ŵn+1 = Ŵn + λn(W̃n −Wn)

bn+1 = bn + λn(̃bn − bn).

The Douglas-Rachford algorithm uses positive parameters
γ and (λn)n∈N. Throughout this article, projS denotes
the projection onto a nonempty closed convex set S. The
convergence of Algorithm 1 is guaranteed by the following
result (see illustrations in Subsection 4.3).

Proposition 3 (Combettes & Pesquet, 2007) Assume that
Problem 1 has a solution and that there exists (W, b) ∈
C such W is a point in the interior of the domain of
h. Assume that γ ∈]0,+∞[and (λn)n∈N in]0, 2[is
such that

∑
n∈N λn(2 − λn) = +∞. Then the sequence

(Wn, bn)n∈N generated by Algorithm 1 converges to a
solution to Problem 1.

The proximity operator of function γh has a closed-form for
standard choices of sparsity measures1. For example, when
h = ‖ · ‖1, this operator reduces to a soft-thresholding (with

1http://proximity-operator.net

threshold value γ) of the input matrix elements. In turn,
since the convex set C has an intricate form, an explicit
expression of projC does not exist. Finding an efficient
method for computing this projection for large datasets
thus constitutes the main challenge in the use of the above
Douglas-Rachford strategy, which we will discuss in the
next section.

3.4. Computation of the projection onto the constraint
set

For every mini-batch index j ∈ {1, . . . , J}, let us define the
following convex function:

(∀(W, b) ∈ RN×M × RN)

cj(W, b) =

T∑
t=1

d2
∂f(yj,t)

(Wxj,t + b− yj,t)− Tη. (11)

Note that, for every j ∈ {1, . . . , J}, function cj is
differentiable and its gradient at (W, b) ∈ RN×M × RN
is given by

∇cj(W, b) = (∇Wcj(W, b),∇bcj(W, b)), (12)

where

∇Wcj(W, b) = 2

T∑
t=1

ej,tx
>
j,t, ∇bcj(W, b) = 2

T∑
t=1

ej,t

(13)
with, for every t ∈ {1, . . . , T},
ej,t = Wxj,t + b− yj,t − proj∂f(yj,t)(Wxj,t + b− yj,t).

(14)

A pair of weight/bias parameters belongs to C if and only
if it lies in the intersection of the 0-lower level sets of
the functions (cj)16j6J . To compute the projection of
some (W, b) ∈ RN×M × RN onto this intersection, we
use Algorithm 2 (‖ · ‖F denotes here the Frobenius norm).

This iterative algorithm has the advantage of proceeding
in a minibatch manner. It allows us to choose the mini-
batch index jn at iteration n in a quasi-cyclic manner. The
simplest rule is to activate each minibatch once within J
successive iterations of the algorithm so that they correspond
to an epoch. The proposed algorithm belongs to the
family of block-iterative outer approximation schemes
for solving constrained quadratic problems, which was
introduced in (Combettes, 2003). The convergence of
the sequence (Wn, bn)n∈N generated by Algorithm 2 to
projC(W, b) is thus guaranteed. One of the main features
of the algorithm is that it does not require to perform any
projection onto the 0-lower level sets of the functions cj ,
which would be intractable due to their expressions. Instead,
these projections are implicitly replaced by subgradient
projections, which are much easier to compute in our
context.

http://proximity-operator.net

Sparsifying Networks via Subdifferential Inclusion

Algorithm 2 Minibatch algorithm for computing
projC(W, b)

Initialize :W0 = W and b0 = b
for n = 0, 1, . . . do

Select a batch of index jn ∈ {1, . . . , J}
if cjn(Wn, bn) > 0 then

Compute ∇Wcjn(Wn, bn) and ∇bcjn(Wn, bn) by
using Eqs. (13) and (14)
δWn =

cjn (Wn,bn)∇Wcjn (Wn,bn)

‖∇Wcjn,n(Wn,bn)‖2F+‖∇bcjn (Wn,bn)‖2

δbn =
cjn (Wn,bn)∇bcjn (Wn,bn)

‖∇Wcjn,n(Wn,bn)‖2F+‖∇bcjn (Wn,bn)‖2

πn = tr((W0 −Wn)>δWn) + (b0 − bn)>δbn
µn = ‖W0 −Wn‖2F + ‖b0 − bn‖2
νn = ‖δWn‖2F + ‖δbn‖2
ζn = µnνn − π2

n

if ζn = 0 and πn > 0 then
Wn+1 = Wn − δWn

bn+1 = bn − δbn

else if ζn > 0 and πnνn > ζn then
Wn+1 = W0 − (1 + πn

νn
)δWn

bn+1 = b0 − (1 + πn

νn
)δbn

else
Wn+1 = Wn + νn

ζn
(πn(W0 −Wn)− µnδWn)

bn+1 = bn + νn
ζn

(πn(b0 − bn)− µnδbn)

else
Wn+1 = Wn

bn+1 = bn

3.5. Dealing with various nonlinearities

For any choice of activation operator R, we have to
calculate the projection onto ∂f(y) for every vector y
satisfying Eq. (1). This projection is indeed required in
the computation of the gradients of functions (cj)16j6J ,
as shown by Eq. (14). Two properties may facilitate this
calculation. First, if f is differentiable at y, then ∂f(y)
reduces to a singleton containing the gradient ∇f(y) of f
at y, so that, for every z ∈ RN , proj∂f(y)(z) = ∇f(y).
Second, R is often separable, i.e. consists of the application
of a scalar activation function ρ : R→ R to each component
of its input argument. According to our assumptions, there
thus exists a proper lower-semicontinuous convex function
ϕ from R to R ∪ {+∞} such that ρ = proxϕ and, for
every z = (ζ(k))16k6N ∈ RN , f(z) =

∑N
k=1 ϕ(ζ(k)).

This implies that, for every z = (ζ(k))16k6N ∈ RN ,
proj∂f(y)(z) = (proj∂ϕ(υ(k))(ζ

(k)))16k6N , where the
components of y are denoted by (υ(k))16k6N . Based on
these properties, a list of standard activation functions ρ
is given in Table 1, for which we provide the associated

expressions of the projection onto ∂ϕ. The calculations are
detailed in Appendix B.

An example of non-separable activation operator frequently
employed in neural network architectures is the softmax
operation defined as

(∀z = (ζ(k))16k6N ∈ RN)

R(z) =

(
exp(ζ(k))∑N

k′=1 exp(ζ(k′))

)
16k6N

. (15)

It is shown in Appendix C that, for every y = (υ(k))16k6N

in the range of R,

(∀z ∈ RN) proj∂f(y)(z) = Q(y) +
1>(z −Q(y))

N
1,

(16)
where 1 = [1, . . . , 1]> ∈ RN and

Q(y) = (ln υ(k) + 1− υ(k))16k6N . (17)

3.6. SIS on multi-layered networks

Algorithm 3 Parallel SIS for multi-layered network
Input: input sequence X ∈ RM×K , compression

parameter η > 0, weight matrices W (1), . . . ,W (L),
and bias vectors b(1), . . . , b(L)

Y (0) ← X
for l = 1, . . . , L do
Y (l) = Rl(W

(l)>Y (l−1) + b(l))

Ŵ (l), b̂(l) ← SIS(η,W (l), b(l), Y (l), Y (l−1))

Output: Ŵ (1), . . . , Ŵ (L) and b̂(1), . . . , b̂(L)

Algorithm 3 describes how we make use of SIS for a multi-
layered neural network. We use a pre-trained network and
part of the training sequence to extract layer-wise input-
output features. Then we apply SIS on each individual layer
l by passing η, layer parameters (W (l), b(l)) and extracted
input-output features (Y (l−1), Y (l)) to Algorithm 1. The
benefit of applying SIS to each layer independently is that
we can run SIS on all the layers of a network in parallel.
This reduces the time required to process the whole network
and compute resources are optimally utilized.

4. Experiments
In this section, we conduct various experiments to validate
the effectiveness of SIS in terms of test accuracy vs. sparsity
and inference time FLOPs vs. sparsity by comparing against
RigL (Evci et al., 2020). We also include SNIP (Lee et al.,
2019), GraSP (Wang et al., 2020), SynFlow (Tanaka et al.,
2020), STR (Kusupati et al., 2020), and FORCE (Jorge et al.,
2020). These methods start training from a sparse network

Sparsifying Networks via Subdifferential Inclusion

Name ρ(ζ)ρ(ζ)ρ(ζ) proj∂ϕ(υ)(ζ)proj∂ϕ(υ)(ζ)proj∂ϕ(υ)(ζ)

Sigmoid (1 + e−ζ)−1 − 1
2 ln(υ + 1/2)− ln(υ − 1/2)− υ

Arctangent (2/π) arctan(ζ) tan(πυ/2)− υ

ReLU max{ζ, 0}
{

0 if υ > 0 or ζ > 0

ζ otherwise

Leaky ReLU

{
ζ if ζ > 0

αζ otherwise

{
0 if υ > 0

(1/α− 1)υ otherwise

Capped ReLU ReLUα(ζ) = min{max{ζ, 0}, α}


ζ if (υ = 0 and ζ < 0)

or (υ = α and ζ > 0)

0 otherwise

ELU

{
ζ if ζ > 0

α
(

exp(ζ)− 1
)

otherwise

{
0 if υ > 0

ln
(
υ+α
α

)
− υ otherwise

QuadReLU
(ζ + α)ReLU2α(ζ + α)

4α


υ if υ = 0 and ζ 6 −α
−υ + 2

√
αυ − α if υ ∈]0, α]

or (υ = 0 and ζ > −α)

υ − α otherwise

Table 1. Expression of proj∂ϕ(υ)(ζ) for ζ ∈ R and υ in the range of ρ, for standard activation functions ρ. α is a positive constant.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG19 (Baseline) 94.23 - - 74.16 - -
SNIP (Lee et al., 2019) 93.63 93.43 92.05 72.84 71.83 58.46
GraSP (Wang et al., 2020) 93.30 93.04 92.19 71.95 71.23 68.90
SynFlow (Tanaka et al., 2020) 93.35 93.45 92.24 71.77 71.72 70.94
STR (Kusupati et al., 2020) 93.73 93.27 92.21 71.93 71.14 69.89
FORCE (Jorge et al., 2020) 93.87 93.30 92.25 71.9 71.73 70.96

LRR (Renda et al., 2020) 94.03 93.53 91.73 72.12 71.36 70.39
RigL (Evci et al., 2020) 93.47 93.35 93.14 71.82 71.53 70.71
SIS (Ours) 93.99 93.31 93.16 72.06 71.85 71.17

ResNet50 (Baseline) 94.62 - - 77.39 - -
SNIP (Lee et al., 2019) 92.65 90.86 87.21 73.14 69.25 58.43
GraSP (Wang et al., 2020) 92.47 91.32 88.77 73.28 70.29 62.12
SynFlow (Tanaka et al., 2020) 92.49 91.22 88.82 73.37 70.37 62.17
STR (Kusupati et al., 2020) 92.59 91.35 88.75 73.45 70.45 62.34
FORCE (Jorge et al., 2020) 92.56 91.46 88.88 73.54 70.37 62.39

LRR (Renda et al., 2020) 92.62 91.27 89.11 74.13 70.38 62.47
RigL (Evci et al., 2020) 92.55 91.42 89.03 73.77 70.49 62.33
SIS (Ours) 92.81 91.69 90.11 73.81 70.62 62.75

Table 2. Test accuracy of sparse VGG19 and ResNet50 on CIFAR-10 and CIFAR-100 datasets.

and have some limitations when compared to methods that
prune a pre-trained network (Blalock et al., 2020; Gale
et al., 2019). For a fair comparison we also include LRR
(Renda et al., 2020) which uses a pre-trained network and
multiple rounds of pruning and retraining by leveraging
learning rate rewinding. The experimental setup is described
in Appendix D.

4.1. Modern ConvNets on CIFAR and ImageNet

We compare SIS with competitive baselines on CIFAR-
10/100 for three different sparsity regimes 90%, 95%, 98%,
and the results are listed in Table 2. It can be observed
that LRR, RigL and SIS are able to maintain high accuracy
with increasing sparsity. LRR performs better than both
RigL and SIS for VGG19 on CIFAR-10 at 90% and 95%

Sparsifying Networks via Subdifferential Inclusion

Sparsity 60% 80% 90% 96.5%

Train/Prune Top-1 Infer Train/Prune Top-1 Infer Train/Prune Top-1 Infer Train/Prune Top-1 Infer
FLOPs Acc(%) FLOPs FLOPs Acc(%) FLOPs FLOPs Acc(%) FLOPs FLOPs Acc(%) FLOPs
(×e16) (×e16) (×e16) (×e16)

SNIP 0.978 74.06 1.88G 0.696 72.34 941M 0.537 66.97 409M 0.502 59.16 292M
GraSP 0.903 75.95 1.63G 0.650 74.21 786M 0.555 70.71 470M 0.501 69.55 290M
SynFlow 0.898 76.54 1.61G 0.665 74.14 776M 0.553 71.01 465M 0.500 70.10 288M
FORCE 0.833 75.47 1.39G 0.619 73.42 685M 0.550 72.59 455M 0.497 72.04 276M

SparseVD 1.827 76.75 1.71G 1.737 74.68 811M 1.702 69.73 461M 1.685 67.13 286M
BC-GHS. 1.825 76.45 1.69G 1.737 74.15 813M 1.701 71.33 454M 1.684 68.54 282M
L0hc

, λ = e− 5 1.825 76.98 1.69G 1.736 76.67 802M 1.702 71.61 459M 1.684 68.61 276M
STR 0.891 77.75 1.59G 0.625 76.11 704M 0.516 75.72 341M 0.449 71.87 117M

NetTrim 1.148 74.52 1.71G 0.866 72.88 842M 0.465 67.62 461M 0.283 62.01 281M
SIS (Ours) 0.923 77.05 1.34G 0.435 76.96 647M 0.351 76.31 298M 0.102 73.11 101M

Table 3. Pruning phase compute cost, test Top-1 accuracy and single image inference FLOPs of sparse ResNet50 on ImageNet where
baseline accuracy and inference FLOPs are 77.37% and 4.14G, respectively. All methods were applied on same pre-trained "dense"
ResNet50. 20% samples per class were used during pruning phase of all the methods and were run for 40 epochs.

sparsity. When compared to SNIP, our method achieves
impressive performance for VGG19 on CIFAR-100 (58.46
→ 71.17). In the case of ResNet50, SIS outperforms all the
other methods for CIFAR-10/100 except for CIFAR-100 at
90%.

Sparsity 75% 90%

LRR RigL SIS (Ours) LRR RigL SIS (Ours)

V1 (70.90) 68.79 69.97 70.11 66.59 67.10 67.15
FLOPs (569M) 498M 461M 367M 401M 331M 284M

V2 (71.88) 68.83 69.60 69.83 64.17 65.23 65.11
FLOPs (300M) 267M 211M 182M 192M 174M 162M

V3 (72.80) 68.97 70.21 70.47 64.32 65.13 66.07
FLOPs (226M) 187M 198M 172M 185M 167M 151M

Table 4. Test accuracy and inference FLOPs of sparse MobileNet
versions using RigL and SIS on ImageNet, baseline accuracy and
inference FLOPs shown in brackets.

Due to its small size and controlled nature, CIFAR-10/100
may not appear sufficient to draw solid conclusions. We thus
conduct further experiments on ImageNet using ResNet50
and MobileNets. For ResNet50 on ImageNet experiment,
we adapt SNIP (Lee, 2019), GraSP (Wang et al., 2020),
SynFlow (Tanaka et al., 2020), STR (Kusupati et al., 2020),
FORCE (Jorge et al., 2020), SpraseVD (Molchanov et al.,
2017), Bayesian Compression (Louizos et al., 2017), and
L0 regularization (Louizos et al., 2018) methods to use
pre-trained weights. We also include results from NetTrim
(Aghasi et al., 2017) which is another convex optimization
based pruning method. Table 3 shows that, in the case
of ResNet50, STR performs marginally better than SIS
at 60% sparsity. At 80%, 90%, and 96.5% sparsity SIS
outperforms all other methods. For all sparsity regimes,
SIS achieves least inference FLOPs. Training FLOPs is
best for SIS in 80%, 90%, and 96.5% regimes, FORCE
achieves best training FLOPs in 60% regime. MobileNets
are compact architectures designed specifically for resource-
constrained devices. Table 4 shows results for RigL and

SIS on MobileNets. We observe that SIS outperforms
all MobileNet versions at 75% sparsity level. For a 90%
sparsity level, SIS outperforms RigL for MobileNet V1
and V3 whereas, for MobileNetV2, RigL performs slightly
better than SIS at 90% sparsity level. In all the cases, we
can see that the resulting SIS sparse network uses fewer
FLOPs than RigL. A possible explanation for this fact is
that SIS leverages activation function properties during the
sparsification process.

4.2. Sequential Tasks

Jasper on LibriSpeech. Jasper is a speech recognition
model that uses 1D convolutions. The trained network is
a 333 million parameter model and has a word error rate
(WER) of 12.2 on the test set. We apply SIS on this network
and compare it with RigL and SNIP in terms of sparsity.
Table 5 reports WER and inference FLOPs for all three
methods. SIS marginally performs better than LRR on this
task in terms of WER and FLOPs for 70% sparsity. The
main advantage of our approach lies in the fact that we can
use a single pre-trained Jasper network and achieve different
sparsity level for different types of deployment scenarios
with less computational resources than RigL.

Transformer-XL on WikiText-103. Transformer-XL is
a language model with 246 million parameters. The trained
network on WikiText-103 has a perplexity score (PPL) of
18.6. In Table 5, we see that SIS performs better than SNIP
and RigL in terms of PPL and has 68% fewer inference
FLOPs. This is due to the fact that large language models
can be efficiently trained and then compressed easily, but
training a sparse sub-network from scratch is hard (Li et al.,
2020), as is the case with SNIP and RigL. SNIP uses
one-shot pruning to obtain a random sparse sub-network,
whereas RigL is able to change its structure during training,
which allows it to perform better than SNIP.

Sparsifying Networks via Subdifferential Inclusion

Network JASPER Transformer-XL N-BEATS

WER FLOPs PPL FLOPs SMAPE FLOPs

Dense 12.2 4.53G 18.6 927.73G 8.3 41.26M

SNIP (Lee et al., 2019) 14.3 2.74G 24.6 398.92G 10.1 21.45M
LRR (Renda et al., 2020) 13.7 2.61G 23.1 339.21G 9.3 14.47M
RigL (Evci et al., 2020) 13.9 2.69G 22.4 326.56G 10.2 15.13M
SIS (Ours) 13.1 2.34G 21.1 290.38G 9.7 14.21M

Table 5. Test accuracy and inference FLOPs of JASPER, Transformer-XL, and
N-BEATS at 70% sparsity.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
η

80

85

90

95

100

S
pa

rs
it

y
(%

)

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Figure 1. Effect of η on LeNet-FCN

0 200 400 600
Iterations

0.00

0.05

0.10

0.15

c m
ax

(a)

0 200 400 600
Iterations

3000

3500

4000

4500

5000

5500

6000

||W
|| 1

(b)

0 5000 10000 15000
Iterations

3500

4000

4500

5000

5500

6000

||W
|| 1

(c)

0 350 700
Iterations

0

500

1000

1500

2000

2500

3000

c m
ax

(d)

0 350 700
Iterations

0

50

100

150

||W
|| 1

(e)

0 350 700
Iterations

50

60

70

80

||W
|| 1

(f)

Figure 2. Convergence of SLIC: Top row coresponds to the first layer (ReLU activated) and bottom row corresponds to the last one
(softmaxed) in LeNet-FCN. (a) and (d) show the evolution of the maximum value cmax of the constraint functions (cj)16j6J , (b) and (e)
show the evolution of ‖W‖1 along Algorithm 1 iterations. (c) and (f) show ‖W‖1 evolution in Algorithm 2.

N-BEATS on M4. N-BEATS is a very deep residual fully-
connected network to perform forecasting in univariate time-
series problems. It is a 14 million parameter network. The
Symmetric Mean Absolute Percentage Error (SMAPE) of
the dense network on the M4 dataset is 8.3%. We apply SIS
on this network and compare its performance with respect to
RigL and SIS. As shown Table 5, SIS performs better than
both methods and results in 65% fewer inference FLOPs.

4.3. Empirical Convergence Analysis

The η parameter in our algorithm controls the accuracy
tolerance. The higher, the more tolerant we are on the
loss of precision and the sparser the network is. Thus, this
parameter also controls the network sparsity. The choice of
this parameter should be the result of an accuracy-sparsity
trade-off. This is illustrated in Figure 1.

We illustrate the convergence of our method on LeNet-FCN
trained on MNIST. LeNet-FCN is a fully-connected network
having four layers with 784-300-1000-300-10 nodes (two
300 nodes and one 1000 node hidden layers). Figure 2
shows the convergence of SIS when applied to dense LeNet-

FCN. We observe that the convergence is smooth and SIS
finds a global solution for the first (ReLU activated) and last
(softmax) layer cases. This fact is in agreement with our
theoretical claims. SIS attains a sparsity of 99.21% at an
error of 1.86%. The trained dense network has an error of
1.65%. This result is obtained at η = 2.

5. Conclusion
In this article, we have proposed a novel method for
sparsifying neural networks. The compression problem for
each layer has been recast as the minimization of a sparsity
measure under accuracy constraints. This constrained
optimization problem has been solved by means of advanced
convex optimization tools. The resulting SIS algorithm is

i) reliable in terms of iteration convergence guarantees,

ii) applicable to a wide range of activation operators,

iii) able to deal with large datasets split into mini-batches.

Our numerical tests demonstrate that the approach is
not only appealing from a theoretical viewpoint but also
practically efficient.

Sparsifying Networks via Subdifferential Inclusion

Acknowledgements
J.-C. Pesquet would like to thank P. L. Combettes for fruitful
discussions concerning the mathematical formulation of
the problem. Part of this work was supported by Institut
Universitaire de France and the ANR Research and Teaching
Chair in Artificial Intelligence BRIDGEABLE.

References
Aghasi, A., Abdi, A., Nguyen, N., and Romberg, J. Net-

trim: Convex pruning of deep neural networks with
performance guarantee. In NeuIPS, 2017.

Azarian, K., Bhalgat, Y., Lee, J., and Blankevoort,
T. Learned threshold pruning. arXiv preprint
arXiv:2003.00075, 2020.

Bauschke, H. H. and Combettes, P. L. Convex Analysis and
Monotone Operator Theory in Hilbert Spaces. Springer,
2019.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep
rewiring: Training very sparse deep networks. In ICLR,
2018.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
What is the state of neural network pruning? In Dhillon,
I., Papailiopoulos, D., and Sze, V. (eds.), Proceedings of
Machine Learning and Systems, volume 2, pp. 129–146,
2020.

Brown, T. B., Mann, B. P., Ryder, N., Subbiah, M., Kaplan,
J., et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Cai, H., Yang, J., Zhang, W., Han, S., and Yu, Y. Path-level
network transformation for efficient architecture search.
arXiv preprint arXiv:1806.02639, 2018.

Cai, H., Zhu, L., and Han, S. ProxylessNAS: Direct neural
architecture search on target task and hardware. In ICLR,
2019.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-
for-all: Train one network and specialize it for efficient
deployment. In ICLR, 2020.

Carreira-Perpinan, M. A. and Idelbayev, Y. "Learning-
Compression” algorithms for neural net pruning. In
CVPR, 2018.

Chauvin, Y. A back-propagation algorithm with optimal use
of hidden units. In NeurIPS. 1989.

Combettes, P. L. A block-iterative surrogate constraint
splitting method for quadratic signal recovery. IEEE TSP,
2003.

Combettes, P. L. and Pesquet, J.-C. A Douglas–Rachford
splitting approach to nonsmooth convex variational signal
recovery. IEEE JSTSP, 2007.

Combettes, P. L. and Pesquet, J.-C. Deep neural network
structures solving variational inequalities. SVVA, 2020a.

Combettes, P. L. and Pesquet, J.-C. Lipschitz certificates for
layered network structures driven by averaged activation
operators. SIMODS, 2020b.

Combettes, P. L. and Woodstock, Z. C. A fixed
point framework for recovering signals from nonlinear
transformations. In EUSIPCO, 2021.

Dai, X., Yin, H., and Jha, N. K. NeST: A neural network
synthesis tool based on a grow-and-prune paradigm.
IEEE TC, 2019a.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., et al.
Transformer-XL: Attentive language models beyond a
fixed-length context. In ACL, 2019b.

Dettmers, T. and Zettlemoyer, L. Sparse networks from
scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2020.

Dong, L., Xu, S., and Xu, B. Speech-transformer: A
no-recurrence sequence-to-sequence model for speech
recognition. In ICASSP, 2018.

Evci, U., Elsen, E., Castro, P., and Gale, T. Rigging the
lottery: Making all tickets winners. In ICML, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In ICLR, 2019.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Gordon, A., Eban, E., Nachum, O., Chen, B., Wu, H., et al.
Morphnet: Fast simple resource-constrained structure
learning of deep networks. In CVPR, 2018.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery
for efficient dnns. In NeurIPS, 2016.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks. In
NeurIPS, 2015.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos,
G., Elsen, E., et al. Deepspeech: Scaling up end-to-
end speech recognition. arXiv preprint arXiv:1412.5567,
2014.

Hassibi, B., Stork, D. G., and Wolff, G. J. Optimal brain
surgeon and general network pruning. In ICNN, 1993.

Sparsifying Networks via Subdifferential Inclusion

Hayashi, T., Yamamoto, R., Inoue, K., Yoshimura, T.,
Watanabe, S., et al. ESPnet-TTS: Unified, reproducible,
and integratable open source end-to-end text-to-speech
toolkit. arXiv preprint arXiv:1910.10909, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan,
M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V.,
and Adam, H. Searching for mobilenetv3. In ICCV, 2019.

Huang, G., Liu, Z., and Weinberger, K. Q. Densely
connected convolutional networks. In CVPR, 2017.

Inaguma, H., Kiyono, S., Duh, K., Karita, S., Soplin, N.
E. Y., et al. ESPnet-ST: All-in-one speech translation
toolkit. arXiv preprint arXiv:2004.10234, 2020.

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up
convolutional neural networks with low rank expansions.
In BMVC, 2014.

Jorge, P., Sanyal, A., Behl, H., Torr, P., Rogez, G., and
Dokania, P. Progressive skeletonization: Trimming
more fat from a network at initialization. arXiv preprint
arXiv:2006.09081, 2020.

Kusupati, A., Ramanujan, V., Somani, R., Wortsman,
M., Jain, P., Kakade, S., et al. Soft threshold weight
reparameterization for learnable sparsity. In ICML, 2020.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In NeurIPS, 1990.

Lee, N., Ajanthan, T., and Torr, P. SNIP: Single-shot
network pruning based on connection sensitivity. In ICLR,
2019.

Lee, N., Ajanthan, T., Gould, S., and Torr, P. H. S. A signal
propagation perspective for pruning neural networks at
initialization. In ICLR, 2020.

Lee, Y. Differentiable sparsification for deep neural
networks. arXiv preprint arXiv:1910.03201, 2019.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
Pruning filters for efficient convnets. In ICLR, 2017.

Li, J., Lavrukhin, V., Ginsburg, B., Leary, R., Kuchaiev,
O., Cohen, J. M., Nguyen, H., and Gadde, R. T. Jasper:
An end-to-end convolutional neural acoustic model. In
Interspeech, 2019.

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D.,
et al. Train large, then compress: Rethinking model size
for efficient training and inference of transformers. arXiv
preprint arXiv:2002.11794, 2020.

Liebenwein, L., Baykal, C., Lang, H., Feldman, D., and Rus,
D. Provable filter pruning for efficient neural networks.
In ICLR, 2020.

Lin, J., Chen, W.-M., Lin, Y., Cohn, J., Gan, C., and Han, S.
Mcunet: Tiny deep learning on iot devices. In NeurIPS,
2020a.

Lin, T., Stich, S. U., Barba, L., Dmitriev, D., and Jaggi, M.
Dynamic model pruning with feedback. In ICLR, 2020b.

Lions, P.-L. and Mercier, B. Splitting algorithms for the sum
of two nonlinear operators. SIAM Journal on Numerical
Analysis, 1979.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T.
Rethinking the value of network pruning. In ICLR, 2019.

Louizos, C., Ullrich, K., and Welling, M. Bayesian
compression for deep learning. In NeurIPS, 2017.

Louizos, C., Welling, M., and Kingma, D. P. Learning sparse
neural networks through l0 regularization. In ICLR, 2018.

Lu, Z., Sindhwani, V., and Sainath, T. N. Learning compact
recurrent neural networks. In ICASSP, 2016.

Luo, J., Wu, J., and Lin, W. Thinet: A filter level pruning
method for deep neural network compression. In ICCV,
2017.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In ICLR, 2017.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of artificial
neural networks with adaptive sparse connectivity
inspired by network science. Nature Communications,
2018.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. In ICML, 2017.

Moreau, J.-J. Fonctions convexes duales et points
proximaux dans un espace hilbertien. Comptes rendus
hebdomadaires des séances de l’Académie des sciences,
1962.

Mostafa, H. and Wang, X. Parameter efficient training of
deep convolutional neural networks by dynamic sparse
reparameterization. In ICML, 2019.

Mozer, M. C. and Smolensky, P. Skeletonization: A
technique for trimming the fat from a network via
relevance assessment. In NeurIPS, 1989.

Neklyudov, K., Molchanov, D., Ashukha, A., and Vetrov, D.
Structured bayesian pruning via log-normal multiplicative
noise. In NeurIPS, 2017.

Sparsifying Networks via Subdifferential Inclusion

Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio,
Y. N-BEATS: Neural basis expansion analysis for
interpretable time series forecasting. In ICLR, 2020.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S.
Librispeech: An ASR corpus based on public domain
audio books. In ICASSP, 2015.

Park, S., Lee, J., Mo, S., and Shin, J. Lookahead: A far-
sighted alternative of magnitude-based pruning. In ICLR,
2020.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V.
Regularized evolution for image classifier architecture
search. In AAAI, 2019.

Renda, A., Frankle, J., and Carbin, M. Comparing rewinding
and fine-tuning in neural network pruning. In ICLR, 2020.

Savarese, P., Silva, H., and Maire, M. Winning the
lottery with continuous sparsification. arXiv preprint
arXiv:arXiv:1912.04427, 2020.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In ICLR,
2015.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. Mnasnet: Platform-aware
neural architecture search for mobile. In CVPR, 2019.

Tanaka, H., Kunin, D., Yamins, D., and Ganguli,
S. Pruning neural networks without any data by
iteratively conserving synaptic flow. arXiv preprint
arXiv:2006.05467, 2020.

Turc, I., Chang, M.-W., Lee, K., and Toutanova, K.
Well-read students learn better: On the importance
of pre-training compact models. arXiv preprint
arXiv:1908.08962v2, 2019.

Ullrich, K., Meeds, E., and Welling, M. Soft weight-sharing
for neural network compression. In ICLR, 2017.

vahid, K. A., Prabhu, A., Farhadi, A., and Rastegari,
M. Butterfly transform: An efficient fft based neural
architecture design. In CVPR, 2020.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. In
ICLR, 2020.

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J.,
et al. Espnet: End-to-end speech processing toolkit. In
Interspeech, 2018.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. In NeurIPS.
2016.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y.,
et al. FBNet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In CVPR,
2019.

Xiao, X., Wang, Z., and Rajasekaran, S. Autoprune:
Automatic network pruning by regularizing auxiliary
parameters. In NeurIPS. 2019.

Ye, M., Gong, C., Nie, L., Zhou, D., Klivans, A., and Liu,
Q. Good subnetworks provably exist: Pruning via greedy
forward selection. In ICML, 2020.

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. Slimmable
neural networks. In ICLR, 2019.

Zhu, M. and Gupta, S. To prune, or not to prune: Exploring
the efficacy of pruning for model compression. In ICLR,
2018.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In CVPR, 2018.

