Supplementary material for Online Graph Dictionary Learning

1. Notations & definitions
In this section we recall the notations used in the rest of the supplementary.

For matrices we note Sy (R) the set of symmetric matrices in RV and (-, -)  the Frobenius inner product defined for
real matrices Cy, Cs as (C1,Cs)p = tr(C1T C) where tr denotes the trace of matrices. Moreover C; ® C5 denotes the
Hadamard product of C1, Cs, i.e. (C1 ® Cs);; = C1(3, j)C2(i, j). Finally vec(C') denotes the vectorization of the matrix
C.

For vectors the Euclidean norm is denoted as || - |2 associated with the inner product (-, ). For a vector x € R” the operator
diag(x) denotes the diagonal matrix defined with the values of x. If M € Sy (R) is a positive semi-definite matrix we note
|| - [[m the pseudo-norm defined for x € RY by ||x||Z; = x " Mx. By some abuse of terminology we will use the term
Mahalanobis distance to refer to generalized quadratic distances defined as dng(x,y) = ||x — y||m. The fact that M is
positive semi-definite ensures that dy satisfies the properties of a pseudo-distance.

For a 4-D tensor L = (L;jx1)i;jx We note @ the tensor-matrix multiplication, i.e. given a matrix C, L ® A is the matrix

(Zk,l Li,j,k,lAk,l)

The simplex of histograms (or weights) with N bins is Xy = {h € Rm > hi= 1}. For two histograms h* ¢
Y X pY NXxNY X T Y :

Ynx,h" € X, thesettd(h™,h") := {T € R [ T1yy = h™,T'1yx = h' } is the set of couplings between

hX, hY.

Recall that for two graphs GX = (C* ,h*) and G¥ = (CY,h") the GW, distance between G* and GY is defined as

the result of the following optimization problem:

min Y (CF - cn)’ TwTy (1)

TeUh> hY) £

)

In the following we denote by GW,(CX,CY, hX hY') the optimal value of equation 1 or by GW,(CX, CY') when the
weights are uniform. With more compact notations:

GWo(C*,CY ,h*,AY)= min (L(CX,CY)aT,T)r 2)
TeU(hX,hY)

where L(C™, CY) is the 4-D tensor L(C*,CY) = ((C;} — C%)Q)ijkl

For graphs with attributes we use the Fused Gromov-Wasserstein distance (Vayer et al., 2019). More precisely consider
two graphs G* = (C*, AX h¥)and G¥ = (C¥, AY ,hY) where AX = (a%);c(nx] € RN xd AY — (@) )jevv) €
RN xd are the matrices of all features. Given o € [0, 1] and a cost function ¢ : R? x RY — R between vectors in R? the
FGWs, distance is defined as the result of the following optimization problem:

Teurgbig,hy)(l_a)z e(ai’, a; )Ty +QZ CH Tix T @)

17 ijkl
In the following we note FGW,,(CX, AX CY, AY h¥X hY) the optimal value of equation 3 or by
FGW, o (CX, A% CY, AY) when the weights are uniform. The term Z c(a;*,a) )T;; will be called the Wasserstein

objective and denoted as F(A™, AY, T) and the term }°, ., (C7¥ — C})? Ty Ty will be called the Gromov-Wasserstein
objective and denoted £(CX,CY | T).



2. Proofs of the different results
2.1. (F)GW upper-bounds in the embedding space

Proposition 1 (Gromov-Wasserstein) For two embedded graphs with embeddings w® and w? over the set of pairwise
relation matrices {C}se(s) C Sn(R), with a shared masses vector h, the following inequality holds

GWa | 30 wilC, Y wC | < fwl —w®ly @
s€[9] s€[S]

where M = ((DpC,,CyDp)r)pg and Dy, = diag(h). M is a positive semi-definite matrix hence engenders a
Mahalanobis distance between embeddings.

Proof. Let consider the formulation of the GW distance as a Frobenius inner product (see e.g (Peyré et al., 2016)).
Denoting T the optimal transport plan between both embedded graph and the power operation over matrices applied at
entries level,

GWo( Zw Cg,Zw 2)C'g,h Zw ne., 2thJrlNhT Zw 2 —2( Zw(l)C (ngQ)ﬁsT),Tﬂﬂ

®)
Using the marginal constraints of GW problem, i.e T' € U(h,h) := {T € ]RfXN\TlN = h,T"1x = h}, and the
symmetry of matrices {C, },equation 5 can be developed as follow,

a3 wVC, Y w?C h) = Ztr( Wy D(C, 0 Tybh" + wPuw@(C, © C)hh" — 20N wPC,TC TT)
(6)
With the following property of the trace operator:
tr ((C1 ©@ Co)za") = tr (C] diag(x)Cadiag(z)) (7
Denoting Dy, = diag(h), equation 6 can be expressed as:

WY w1 Gy, D wPCoh) = 3 (wfufl) + wPwi) (DG, CoDp)r — 2wl w(TTC, C T )r (g,
P q Pq
AsT € U(h, h) is a minimum of the GW objective, we can bound by above equation 6 by evaluating the GW objective in
Dy, € U(h, h), which is a sub-optimal admissible coupling.
GWa Z W, zwwc h) < Z 0 + 02w — 200 w®)(DACy, CyDa) i
)
— w(l) Muw® +w® Mw® — 20O Mew®
with M = ((D,C,, Cy;Dp)F)pq- 1t suffices to prove that the matrix M is a PSD matrix to conclude that it defines a

Mahalanobis distance over the set of embeddings w which bounds by above the GW distance between corresponding
embedded graphs. Let consider the following reformulation of an entry M, as follow,

(DKnC,,C,Dy,) = vec(B,) " vec(B,) (10)

where Vn € [S], B, = Di/QﬁnDi/Q. Hence with B = (B,,),, C RN*XS M can be factorized as BT B and therefore
is a PSD matrix. [J

A similar result can be proven for the Fused Gromov-Wasserstein distance:

Proposition 2 (Fused Gromov-Wasserstein) For two embedded graphs with node attributes, with embeddings w® and
w'®) over the set of pairwise relation matrices {(Cj, A )}sers) C Sn(R) x RN, and a shared masses vector h, the
Sollowing inequality holds Vo € (0, 1),

FGWao (Clw®), Aw™), C(w®), Aw®)) < ™ 0@ ars, a0, ()



with, _ _
C(w) = Zwsﬁs and A(w) = Zwsfs (12)

Where M, = ((D,C,, ﬁquF)pq and My = ((D}IL/QTP, D}L/QAiq)p)pqe[S], and Dy, = diag(h), are PSD matrices
and therefore their linear combination being PSD engender Mahalanobis distances over the unmixing space.

Proof. Let consider the optimal transport plan T' € U (h, h) of the FGW distance between both embedded structures.

FGWE, (C(w™M), A(w™M),C(w?), A(w?),h) = o€ (C(wM), C(w?),T) + (1 — a)F (A(wD), A(w®), T
o ) =t ) ( )
(13)

where £ and F denotes respectively the Gromov-Wasserstein objective and the Wasserstein objective. As a similar approach
than for Proposition 4 can be used for the GW objective involved in equation 13, we will first highlight a suitable factorization
of the Wasserstein objective . Note that for any feature matrices A; = (alﬁi)iem] LAy = (ag,i)ie[]\[] € RN*d F with an
euclidean ground cost can be expressed as follow using the marginal constraints on T' € U(h, h),

F(A1, Ay, T) = Z lai: — as;|3T;;
ij

= llarll3hi + Y llasll3h; =2 (a1, a0,)T; (14

= (D,11/2A17 D:L/2A1>F + (D;L/2A2, D;11/2A2>F —2(A1A] T

Returning to our main problem 13, a straigth-forward development of its Wasserstein term JF using equation 14 leads to the
following equality,

F (Av(w(l)), Av(w(Q)),T) = Z (wél)wél) + wl(,g)w((f)) <D,1L/2A7p, D}IL/QAiq}p — QwZ()l)ng)(ApAqT, T)p (15)
pq

Similarly than for the proof of Proposition 1, T' € U (h, h) is an optimal admissible coupling minimizing the FGW
problem, thus equation 13 is upper bounded by its evaluation in the sub-optimal admissible coupling Dy, € U(h, h). Let
M, = M = ((D,C), CyDp) F)p, the PSD matrix coming from the proof of Proposition 1.

Let M, = ((D,ll/QAp,D,lipAq)F) which is also a PSD matrix as it can be factorized as B’ B with B =
Pq

(vec(D,ll/ZAs))Se[S] € RNdxS,

Let us denote Vo € (0,1), M, = aM; + (1 — a)M> which is PSD as convex combination of PSD matrices, hence
engender a Mahalanobis distance in the embedding space. To summarize, equation 16 holds Vo € (0, 1),

FGWQQQ (é(w(l)), A(w(l)), C~’(w(2))7 Av(w@))7 h) < 'w(l)TMaw(l) + w(Q)TMa'w(Q) — Zw(l)TMaw(Q)
’ O (16)

= o™ —w® |,
2.2. Proposition 3. Gradients of GW w.r.t. the weights

In this section we will prove the following result:

Proposition 3 Let (C', h') and (C?, h?) be two graphs. Let T* be an optimal coupling of the GW problem between

(CL, 1), (C?, h?). We define the following cost matrix M (T*) := (Zkl(C'ilk - Cjzl)QT,:l) . Let o*(T™), B*(T*) be
ij

the dual variables of the following linear OT problem:

in (M(T*),T
Teaf?;i?,hz)< (T"),T)r

Then o* (T™*) (resp 3*(T*)) is a subgradient of the function GW3(C*,C?, « | h?) (resp GWZ(C*,C? ht, +)).



In the following T' > 0 should be understood as Vi, j T}; > 0. Let (C*, h') and (C?, h?) be two graphs of order n and
m with C! € S,(R),C? € S,,(R) and (h',h?) € ¥,, x X,,,. Let T* be an optimal solution of the GW problem i.e.
GW»(C', C? A, h?) = (L(C',C?) @ T*,T*) . We define M (T*) := L(C', C?) @ T™*. We consider the problem:
i M(T*),T)r = i L(C',C*)T* T 17

rediintnn M TIE = 0 i MO C) T Do an
We will first show that the optimal coupling for the Gromov-Wasserstein problem is also an optimal coupling for the problem
equation 17, i.e. minpeyp1 p2) (M (T*), T)r = (M (T*),T*) . This result is based on the following theorem which
relates a solution of a Quadratic Program (QP) with a solution of a Linear Program (LP):

Theorem 1 (Theorem 1.12 in (Murty, 1988)) Consider the following (QP):

min, f(x) =cx+x7Qx (18)
s.t. Ax=Db, x>0
Then if x, is an optimal solution of equation 18 it is an optimal solution of the following (LP):
min, f(x) = (c+xI'Q)x (19)
s.t. Ax=Db, x>0
Applying Theorem 1 to our case gives exactly that:
T" € argmin (M(T*),T)r (20)

Tel(hl,h?)
since T™ is an optimal solution of the GW problem and so mingey(p1 p2) (M (T*), T)r = (M (T*),T*) .

Now let a*(T™*), 3*(T™*) be an optimal solution to the dual problem of equation 17. Then by strong duality it implies that:

. * . * * 1 * * 2\ * *
Since (M (T*), T*)r = GWo(C!, C?, h', h?) we have:
GW»(C',C% ', h?) = (o (T"), k') + (B°(T"), h?) (22)

To prove Proposition 3 the objective is to show that 3*(T*) is a subgradient of F' : q — GW (C!, C?, h!, q) (by symmetry
the result will be true for a*(T™*)). In other words we want to prove that:

Va € By, (B7(T), q) — (B°(T"), h?) < F(q) - F(R?) (23)
This condition can be rewritten based on the following simple lemma:
Lemma 1 The dual variable 3*(T*) is a subgradient of F : q — GW,(C', C?, h', q) if and only if:
¥q € S, (B°(T7), q) + (o (T7), k') < F(q) 24)

Proof. Itis a subgradient if and only if:
Va € S, (B°(T%), q) — (B°(T7), h?) < F(a) — F(h?) (25)

However using equation 22 and the definition of I’ we have:

F(h?) = (a*(T*),h') + (B*(T"), h*) (26)
So overall:
(B°(T*),a) — (B*(T*), h?) < F(q) — (" (T"), h') + (B*(T*), h?)) 27
— (B°(T"),q) + (" (T*),h') < F(q)
[l

In order to prove Proposition 3 we have to prove that the condition in Lemma 1 is satisfied. We will do so by leveraging the
weak-duality of the GW problem as described in the next lemma:



Lemma 2 For any vectors o« € R™, 3 € R™ we define:

G(a,B) := ¥1i%<L(Cl, CHRT-al) —1,8",T)
Let T be an optimal solution of the GW problem. Consider:
min (M(T*),T)p (28)

TeU(h',h?)
where M(T*) := L(C!,C?) ® T*. Let a*(T*),3*(T*) be the dual variables of the problem in equation 28. If
G(a*(T*),B8*(T*)) = 0 then 3*(T*) is a subgradient of F : q — GW>(C*, C',h!,q)

Proof. Letq € ¥, be any weights vector be fixed. Recall that F' : q — GW,(C*!, C?, h', q) so that:

F(q) = GW,(C',C? hl,q) = min (L(C',CHaT,T) (29)
TeU(h',q)

The Lagrangian associated to equation 29 reads:

gﬂni%rmg( L(T, a, B) where L(T', o, 8) := (L(C*,C*) @ T, T) + (h' —T1,,,a) + (q—T'1,,08) (30)

Moreover by weak Lagrangian duality:

glinmaxL(T,a,ﬁ) > maxmir&L(T,a”B) 31

>0 o,8 a,f T>
However:

in L(T = ! in(L(C',C*)®T - al] —1,8",T
max min (T, e, B) Igg(a,h>+<ﬁ,q>+g1§%< (C,C)H®T -al,, -1,8 ,T)

) = maﬁx(a, h') +(8,q) + G(a, B)

(e
So by considering the dual variable o*(T™), 3*(T™*) defined previously we have:

maxmi%L(T, a,3) > (a*(T"), h1> +(B"(T"),q) + G (7"), B"(T™)) (32)

o, T>

Now combining equation 31 and equation 32 we have:

minmax I(T, o, 8) 2 {a*(T™), hY) +(B*(T*),q) + G(a™(T*), B*(T")) (33)

Since F'(q) = ming>¢ maxq g L(T, a, 3) we have proven that:
¥d € S, (B7(T), q) + (" (T"), h') + G(a" (T"), B7(T")) < F(q) (34)
However Lemma 1 states that 3*(T*) is a subgradient of F if and only if:
¥q € S, (B°(T7), q) + (o (T7), k') < F(q) (35)
So combining equation 34 with Lemma 1 proves:
G(a*(T"),B8"(T*)) >0 = B*(T) is a subgradient of F’ (36)

However we have F/(h?) = (a*(T*), h') + (3*(T*), h?) by equation 26. So G(a*(T*), 3*(T*)) < 0 using equation 34
with @ = h?%. So we can only hope to have G(a*(T*), 3*(T*)) = 0. O

The previous lemma states that it is sufficient to look at the quantity G(a*(T™*), 3*(T™*)) in order to prove that 3* (1) is a
subgradient of F. Interestingly the condition G(a*(T™*), 3*(T™*)) = 0 is satisfied which proves Proposition 3 as sated in
the next lemma:

Lemma 3 With previous notations we have G(a* (T™), 3*(T*)) = 0. In particular 8*(T™) is a subgradient of F' so that
Proposition 3 is valid.



Proof. We want to find:

G(a(T7),8°(T7)) = gg%(L(Clv CH T - (T, — 1.6°(T")",T)

We define H(T) = (L(C1,C2) ® T — o*(T*)1), — 1,8*(T*)",T). Since T* is optimal coupling for
mingey(n,n2) (M (T*), T)F by equation 20 then for all 4,5 we have T (M (T*);; — o (T*) — B;(T*)) = 0 by
the property of the optimal couplings for the Wasserstein problems. Equivalently:

V(i j) € [n] x [m], T5(IL(C", C*) @ T";; — o} (T*) — B;(T*)) = 0 37)
Then:
H(T") =t (T (L(C, C) @ T* — " (T")1], ~ 1,8"(T")"))

=Y THLICL.C) O T —a' (T, ~ 1,8 (T") ), .
j

=2 _TH(L(CLC) @ T — af (T") = 5;(T")) = 0

Which proves G(a*(T*), 8*(T*)) = 0. O

3. Algorithmic details
3.1. GDL for graphs without attributes

We propose to model a graph as a weighted sum of pairwise relation matrices. More precisely, given a graph G = (C, h)
and a dictionary {C}c(s) C Sn(R) we want to find a linear representation | €[s] w;C of the graph G, as faithful as
possible. The dictionary is made of pairwise relation matrices of graphs with order N. w = (w;)s¢[s) € X5 is referred as
embedding and denotes the coordinate of the graph G in the dictionary. We rely on the GW distance to assess the quality of
our linear approximation and propose to minimize it to estimate its optimal embedding.

3.1.1. GROMOV-WASSERSTEIN UNMIXING

We first study the unmixing problem that consists in projecting a graph on the linear representation discussed above, i.e.
estimate the optimal embedding w of a graph G. Our GW unmixing problem reads as

: 2 ~ _ 2
min - GW; (c, C(w)) w2 (39)
where, C(w) = Z w,Cy (40)

where A\ € R induces a negative quadratic regularization promoting sparsity on the simplex as discussed in Li et al. (2016).
In order to solve the non-convex problem in equation 39, we propose to use a Block Coordinate Descent (BCD) algorithms
(Tseng, 2001). We fully detail the algorithm in the following and refer our readers to the main paper for the discussion on
this approach.

Algorithm 1 BCD for GW unmixing problem 39
1: Initialize w = §1g
2: repeat
3:  Compute OT matrix T of GW?2 (C, 6’(w)> , with CG algorithm (Vayer et al., 2018, Alg.1 & 2).

4:  Compute the optimal w solving equation 39 for a fixed T" with CG algorithm 2
5: until convergence




Algorithm 2 CG for solving GW unmixing problem w.r.t w given T’
1: repeat N
2:  Compute g, gradients w.r.t w of £(C, C(w), T') following equation 42.
3:  Find direction z* = arg min, ¢y, x’g
4:  Line-search: denoting z(y) = y&* + (1 — v)w,

7* = argmin £(C, C(2(7)),T) = argmin ay? 4 by + ¢ (41)
~v€(0,1) ~v€(0,1)

50w+ z(v*)
6: until convergence

Partial derivates of the GW objective £ w.r.t w = (%)36[5} are expressed in equation 42, and further completed with
gradient of the negative regularization term .

o€

owg

(C,C(w),T) = 2tr{ (ﬁ ® é(w)) hhT —C,TTCTT) 42)
The coefficient of the second-order polynom involved in equation 50 used to solve the problem, are expressed as follow,

aztr{(é(w*—w)@é’(w*—w)) hh'} — \||z* — w3 43)
b= 2tr{ (é(:c* —w)e é(w)) hhT — C(z* — w)TTCTT) — 2\ (w, z — w) (44)

3.1.2. DICTIONARY LEARNING AND ONLINE ALGORITHM

Assume now that the dictionary {C,} ¢ (5] 18 not known and has to be estimated from the data. We define a dataset of K
graphs {G*) - (CH) h(R)} c(x- Recall that each graph G®) of order N*) is summarized by its pairwise relation matrix
C® ¢ Sy (R) and weights h(*¥) € 3 ) over nodes. The DL problem, that aims at estimating the optimal dictionary
for a given dataset can be expressed as:
K
min > GW} (C(k>,é(w<k>)) ~ A ™2 45)
{wlk)}ke[K] k=1
{Cs}sers

where w®) € ¥g, C, € Sy (R). We refer the reader to the main paper for the discussion on the non-convex problem 45.
To tackle this problem we proposed a stochastic algorithm 3

Algorithm 3 GDL: stochastic update of atoms {C'},¢(s]

1: Sample a minibatch of graphs B := {C*)},cp .
2: Compute optimal {(w®), T(*))} ke[B) by solving B independent unmixing problems with Alg.1.
3: Projected gradient step with estimated gradients 655 (see equation 47), Vs € [S]:

C, + Projs,m(Cs — 770665) (46)

Estimated gradients w.r.t {C} over a minibatch of graphs B := {C®)},.c given unmixing solutions {(w*), T(¥))} ke[B]
read:

_ _ 9 N

Voo (Z g™, C(w(k))’T(k)> -2 3w {Ew®) © kAT — TET W TT0} “n
keB keB

3.2. GDL for graph with nodes attribute

We can also define the same DL procedure for labeled graphs using the FGW distance. The unmixing part defined in
equation 39 can be adapted by considering a linear embedding of the similarity matrix and of the feature matrix parametrized
by the same w.



3.2.1. FUSED GROMOV-WASSERSTEIN UNMIXING

More precisely, given a labeled graph G = (C, A, h) (see Section 1) and a dictionary {(Cs, A5)}se(s) C Sn(R) X
we want to find a linear representation (3_ ¢ g w,Cy, 2 sels] wsAy) of the labeled graph G, as faithful as possible in
the sense of the FGW distance. The FGW unmixing problem that consists in projecting a labeled graph on the linear
representation discussed above reads as follow, Vo € (0, 1),

RNxd

min  FGW2Z, (c, A, é(w),j(w)) S (48)
wEXg ’
where, C(w) = Zwsﬁs and A(w Zws s (49)

where A € RT. A similar discussion than for the GW unmixing problem 39 holds. We adapt the BCD algorithm detailed in
1 to labeled graphs in Alg.4, to solve the non-convex problem of equation 48.

Algorithm 4 BCD for FGW unmixing problem 48
1: Initialize w = %15
2: repeat
3:  Compute OT matrix T of FGW3 , (C, A,C(w), g(w)) , with CG algorithm (Vayer et al., 2018, Alg.1 & 2).

4:  Compute the optimal w solving equation 48 for a fixed T with CG algorithm 5.
5: until convergence

Algorithm 5 CG for solving FGW unmixing problem w.x.t w given T’
1: repeat
2:  Compute g, gradients w.r.t w of equation 48 given T" following equation 51.
3:  Find direction z* = arg min,,y, xlg
4:  Line-search: denoting z(7y) = v&* + (1 — y)w,

~* = argmin o€ (C,C(2(7)), T) + (1 — a) F(A, A(z(7)), T) = argminay? + by + ¢ (50)
Y€(0,1) 7€(0,1)

50w+ z(v")
6: until convergence

Partial derivates of the FGW objective G, := af + (1 — «)F w.rt w are expressed in equations 42 and 51, and further
completed with gradient of the negative regularization term.

e (0, 4, 6(w), Aw), T) = 0o (C,Cw), T) + (1 ) 0o (A, Afw), T)
s s s (51)
- aaj (C,C(w),T) +2(1 — a)tr{DhA(w)A, —TTAA, }

where Dy, = diag(h). The coefficients of the second-order polynom involved in equation 50 used to solve the problem,
satisfy the following equations,

a= atr{( (" —w) e C(:B - w)) hh™} + (1 — a)tr{DhAv(w* - w)}lv(w - w)T} —Nz* — w3 (52)

b= 2atr{( (z* — w) ® C(w )) hh' — C(z* —w)TTCTT)
+(1—a)tr{DhA(z* —w)A(w)" —TTAA(z* —w)'} — 2\ (w, z — w)

(53)



3.2.2. DICTIONARY LEARNING AND ONLINE ALGORITHM

Assume now that the dictionary {(C, A, )}se[s) is not known and has to be estimated from the data. We define a dataset of
K labeled graphs {G®) : (C*), A h(’f))}ke[K]. Recall that each labeled graph G(*) of order N (*) is summarized by

its pairwise relation matrix C(%) € Sy (R), its matrix of node features A®) € RN *d and weights h(%) € ¥y, over
nodes. The DL problem, that aims at estimating the optimal dictionary for a given dataset can be expressed as:

K
min > FGWE, (C®, 4D, Cw®), Aw®)) — Aw®|3 (54)
{iu)i}ke[K] k=1
{(CSaAS)}sE[S]

where w*) € $g, C, € Sn(R), A, € RV*9, We refer the reader to the main paper for the discussion on the non-convex
problem 45 which can be transposed to problem 54. To tackle this problem we proposed a stochastic algorithm 6

Algorithm 6 GDL.: stochastic update of atoms {(Cj, A;)}se(s]

: Sample a minibatch of graphs B := {(C*), A}, 55
2 Compute optimal {(w®), T*))} kelB by solvmg B independent unmlxmg problems with Alg.4.

3: Gradients step with estimated gradlents V — (see equation 47), and V ~ (see equation 56), Vs € [S]. :

C — PT’O]SN(R)(C ncvc ) and As — 14G — ’I]AVI (55)

Estimated gradients w.r.t {C,} and {A,} over a minibatch of graphs B := {(C®), A(¥))}, 5 given unmixing solutions
{(w™ Tk} ke[B] can be computed separately. The ones related to the GW objective are described in equation 47, while
the ones related to the Wasserstein objective satisfy equation 56:

Vo <Z F(A®) | A(w®), T(k))> Zw(k){DhA( (B)y — T AR} (56)

keB keB

3.3. Learning the graph structure and nodes distribution

Here we extend our GDL model defined in equation 45 and propose to learn atoms of the form {Cj, E}Se[ 5]+ In this setting
we have two independent dictionaries modeling the relative importance of the nodes with h, € Yy, and their pairwise
relations through Cj. This dictionary learning problem reads:

K

Jmin Y ewE (W, ™), h®, h®)) = Aw® 3 - pullo® )3 (57)
{(w™® 0 M)} e i 1
{(057h5)}s€[s]

where w*), v(*) € ¥ are the structure and distribution embeddings and the linear models are defined as:

VE, h 'v(’c Zv w(k) Zw (58)

Here we exploit fully the GW formalism by estimating simultaneously the graph distribution h and its geometric structure
C. Optimization problem 57 can be solved by an adaptation of stochastic Algorithm 3. Indeed, in the light of the proposition
3, we can derive the following equation 59 between the input graph (C'*), h(k)) and its embedded representation C(w(*)

and E(v(k)), given an optimal coupling T'%) satisfying Proposition 3,
2AL(CH), Cw®)) @ T® , T®)y = (u® ™)) + @® hu®)) (59)
where u®), (%) are dual potentials of the induced linear OT problem.

First, with this observation we estimate the structure/node weights unmixings (w*), v(*)) for the graph G*). We proposed
the BCD algorithm 7 derived from the initial BCD 1. Note that the dual variables of the induced linear OT problems are
centered to ensure numerical stability.



Algorithm 7 BCD for extended GW unmixing problem inherent to equation 57

1: Initialize embeddings such as w = v = %1 s
2: repeat
3:  Compute OT matrix T of GW3 (C, C(w), h, h('u)), with CG algorithm (Vayer et al., 2018, Alg.1 & 2). From the

finale iteration of CG, get dual potentials (u, @) of the corresponding linear OT problem (see Proposition 3).
Compute the optimal v by minimizing equation 59 w.x.t v given u with a CG algorithm.

Compute the optimal w solving equation 39 given T" and v with CG algorithm 2.

6: until convergence

AN

Second, now that we benefit from an algorithm to project any graph G(*) = (C (k) h(k)) onto the linear representations
described in 58, we extend the stochastic algorithm 3. to the problem 57. This extension is described in algorithm 8.

Algorithm 8 extended GDL: stochastic update of atoms {(Cj, k) }se(s]

1: Sample a minibatch of graphs B := {(C*), h(*))}.c55 .

2: Compute optimal embeddings {(w*,v(*))}; (5] coming jointly with the set of OT variables (T®), u*) a*)) by
solving B independent unmixing problems with Alg.7.

3: Projected gradient step with estimated gradients V- (see equation 47) and V — (see equation 61), Vs € [S]:

C;  Projsy ) (Cs — ncvcj) and  hy < Projs, (hs — 0, V- -) (60)

For a minibatch a graphs {Cy, hk}ke[ B]» once each unmixing problems are solved independently estimating unmixings
{(w™,w*))}, and the underlying OT matrix T (k) associated with potential w(*), we perform simultaneously a projected
gradient step update of {C }s and {h}. The estimated gradients of equation 57 w.r.t {h,}, reads Vs € [5],

SR Z (k)N(k (61)

ke[B

4. Numerical experiments

4.1. Datasets
Table 1. Datasets descriptions
datasets features | #graphs | #classes | mean #nodes | min #nodes | max #nodes | median #nodes | mean connectivity rate
IMDB-B None 1000 2 19.77 12 136 17 55.53
IMDB-M None 1500 3 13.00 7 89 10 86.44
MUTAG {0..2} 188 2 17.93 10 28 17.5 14.79
PTC-MR {0,..,17} 344 2 14.29 2 64 13 25.1
BZR R3 405 2 35.75 13 57 35 6.70
COX2 R3 467 2 41.23 32 56 41 5.24
PROTEIN R% 1113 2 29.06 4 620 26 23.58
ENZYMES R? 600 6 32.63 2 126 32 17.14

We considered well-known benchmark datasets divided into three categories: i) IMDB-B and IMDB-M (Yanardag &
Vishwanathan, 2015) gather graphs without node attributes derived from social networks; ii) graphs with discrete attributes
representing chemical compounds from MUTAG (Debnath et al., 1991) and cuneiform signs from PTC-MR (Krichene
et al., 2015); iii) graphs with real vectors as attributes, namely BZR, COX2 (Sutherland et al., 2003) and PROTEINS,
ENZYMES (Borgwardt & Kriegel, 2005). Details on each dataset are reported in Table 1

4.2, Settings

In the following, we detail the benchmark of our methods on supervised classification along additional (shared) considerations
we made regarding the learning of our models. To consistently benchmark methods and configurations, as real graph
datasets commonly used in machine learning literature show a high variance considering structure, we perform a nested
cross validation (using 9 folds for training, 1 for testing, and reporting the average accuracy of this experiment repeated 10



times) by keeping same folds across methods. All splits are balanced w.r.¢ labels. In following results, parameters of SVM
are cross validated within C' € {1077,1076, ..., 107} and v € {2710,279 ... 210},

For our approach, similar dictionaries are considered for unsupervised classification presented in the main paper, than
for the supervised classification benchmark detailed in the following. So we refer the reader to the main paper for most
implementation details. For completeness, we picked a batch size of 16. We initialized learning rate on the structure {C;} at
0.1. In the presence of node features, we set a learning rate on {A,} of 0.1 if & < 0.5 and 1.0 otherwise. We optimized our
dictionaries without features over 20 epochs and those with features over 40 epochs. In the following, we denote GDL-w
the SVMs derived from embeddings w endowed with the Mahalanobis distance. While GDL-g denotes the SVMs derived
from embedded graphs with the (F)GW distance. (Xu, 2020) proposed a supervised extension to their Gromov-Wasserstein
Factorization (GWF), we refer to GWF-r and GWF-f when the dictionary atoms have random size or when we fix it to match
our method. His supervised approach consists in balancing the dictionary objective with a classification loss by plugging
a MLP classifier to the unconstrained embedding space. We explicitly regularized the learning procedure by monitoring
the accuracy on train splits. Note that in their approach they relaxed constraints of their unmixing problems by applying
a softmax on unconstrained embeddings to conduct barycenters estimation. Moreover, they constrain the graph atoms to
be non-negative as it enhances numerical stability of their learning procedure. For fair comparisons, we considered this
restriction for all dictionaries even if we did not observe any noticeable impact of this hypothesis on our approach. As for
unsupervised experiments, we followed their architecture choices. We further validated their regularization coefficient in
{1.,0.1,0.01,0.001}. Their model converge over 10 epochs for datasets without features, and 20 epochs otherwise.

We also considered several kernel based approaches. (FGWK) The kernels e ~7F'“W proposed by (Vayer et al., 2018) where
pairwise distances are computed using CG algorithms using POT library (Flamary & Courty, 2017). To get a grasp of the
approximation error from this algorithmic approach, we also applied the MCMC algorithm proposed by (Chowdhury &
Needham, 2020) to compute FGW distance matrices with a better precision (S-GWK). As the proper graph representations
for OT-based methods is still a question of key interest, we consistently benchmarked our approach and these kernels when
we consider adjacency and shortest-path representations. Moreover, we experimented on the heat kernels over normalized
laplacian matrices suggested by (Chowdhury & Needham, 2020) on datasets without attributes, where we validated the
diffusion parameter t € {5, 10,20}. We also reproduced the benchmark for classification on Graph Kernels done by (Vayer
et al., 2018) by keeping their tested parameters for each method. (SPK) denotes the shortest path kernel (Borgwardt &
Kriegel, 2005), (RWK) the random walk kernel (Girtner et al., 2003), (WLK) the Weisfeler Lehman kernel (Vishwanathan
et al., 2010), (GK) the graphlet count kernel (Shervashidze et al., 2009). For real valued vector attributes, we consider the
HOPPER kernel (HOPPERK) (Feragen et al., 2013) and the propagation kernel (PROPAK) (Neumann et al., 2016) . We
built upon the GraKel library (Siglidis et al., 2020) to construct the kernels.

Finally to compare our performances to recent state-of-the-art models for supervised graph classification, we partly replicated
the benchmark done by (Xu et al., 2018). We experimented on their best model GIN-0 and the model of (Niepert et al.,
2016) PSCN. r. For both we used the Adam optimizer (Kingma & Ba, 2014) with initial learning rate 0.01 and decayed the
learning rate by 0.5 every 50 epochs. The number of hidden units is chosen depending on dataset statistics as they propose,
batch normalization (Ioffe & Szegedy, 2015) was applied on each of them. The batch size was fixed at 128. We fixed a
dropout ratio of 0.5 after the dense layer (Srivastava et al., 2014). The number of epochs was 150 and the model with the
best cross-validation accuracy averaged over the 10 folds was selected at each epoch.

4.3. Results on supervised classification

The accuracies of the nested-cross validation on described datasets are reported in Tables 2, 3, 4. First, we observe as
anticipated that the model GIN-0 (Xu et al., 2018) outperforms most of the time other methods including PSCN, which has
been consistently argued in their paper. Moreover, (F)YGW kernels over the embedded graphs built thanks to our dictionary
approach consistently outperforms (F)GW kernels from input graphs. Hence, it supports that our dictionaries are able to
properly denoise and capture discriminant patterns of these graphs, outperforming other models expect GNN on 6 datasets
out of 8. The Mahalanobis distance over embeddings w demonstrates satisfying results compared to FGWK relatively to
the model simplification it brings. We also observe consistent improvements of the classification performances when we
use the MCMC algorithm (Chowdhury & Needham, 2020) to estimate (F)GW pairwise distance matrices, for all tested
graph representations reported. This estimation procedure for (F)YGW distances is computationally heavy compared to the
usual CG gradient algorithm (Vayer et al., 2018). Hence, we believe that it could bring significant improvements to our
dictionary learning models but would increase too consequently the run time of solving unmixing problems required for
each dictionary updates. Finally, results over adjacency and shortest path representations interestingly suggest that their



suitability w.z.t (F)GW distance is correlated to the averaged connectivity rate (see 1) in different ways depending on the
kind of node features. We envision to study these correlations in future works.

Table 2. Graphs without attributes: Classification results of 10-fold nested-cross validation on real datasets. Best results are highlighted
in bolt independently of the depicted model category, and the best performances from not end-to-end supervised methods are reported in
italic.

category model IMDB-B IMDB-M
OT (Ours) GDL-w (ADJ) | 70.11(3.13) | 49.01(3.66)
GDL-g (ADJ) | 72.06(4.09) | 50.64(4.41)
GDL-w (SP) | 65.4(3.65) | 48.03(3.80)
GDL-g (SP) | 68.24(4.38) | 48.47(4.21)
oT FGWK (ADJ) | 70.8(3.54) | 48.89(3.93)
FGWK (SP) | 65.0(3.69) | 47.8(3.84)
FGWK (heatLAP) | 67.7(2.76) | 48.11(3.96)
S-GWK (ADJ) | 71.95(3.87) | 49.97(3.95)
S-GWK (heatLAP) | 71.05(3.02) | 49.24(3.49)
GWF-r (ADJ) | 65.08(2.85) | 47.53(3.16)
GWF-f (ADJ) | 64.68(2.27) | 47.19(2.96)

Kernels GK (K=3) | 57.11(3.49) | 41.85(4.52)
SPK | 56.18(2.87) | 39.07(4.89)
GNN PSCN | 71.23(2.13) | 45.7(2.71)

GIN-0 | 74.7(4.98) | 52.19(2.71)

Table 3. Graphs with discrete attributes : Classification results of 10-fold nested-cross validation on real datasets with discrete attributes
(one-hot encoded). Best results are highlighted in bolt independently of the depicted model category, and the best performances from not
end-to-end methods are reported in italic.

category model MUTAG PTC-MR
OT (Ours) | GDL-w (ADJ) | 81.07(7.81) | 55.26(8.01)
GDL-g (ADJ) | 85.84(6.86) | 58.45(7.73)
GDL-w (SP) | 84.58(6.70) | 55.13(6.03)
GDL-g (SP) | 87.09(6.34) | 57.09(6.59)
oT FGWK (ADJ) | 82.63(7.16) | 56.17(8.85)
FGWK (SP) | 84.42(7.29) | 55.4(6.97)
S-GWK (ADJ) | 84.08(6.93) | 57.89(7.54)
GWF-r (ADJ) - -
GWF-f (ADIJ) - -
Kernels GK (K=3) | 82.86(7.93) | 57.11(7.24)
SPK | 83.29(8.01) | 60.55(6.43)
RWK | 79.53(7.85) | 55.71(6.86)
WLK | 86.44(7.95) | 63.14(6.59)
GNN PSCN | 91.4(4.41) | 58.9(5.12)
GIN-0 | 88.95(4.91) | 64.12(6.83)

Table 4. Graphs with vectorial attributes: Classification results of 10-fold nested-cross validation on real datasets with vectorial
features. Best results are highlighted in bolt independently of the depicted model category, and the best performances from not end-to-end
supervised methods are reported in italic.
category model BZR COX2 | ENZYMES PROTEIN
OT (ours) | GDL-w (ADJ) | 87.32(3.58) | 76.59(3.18) | 70.68(3.36) | 72.13(3.14)
GDL-g (ADJ) | 87.81(4.31) | 78.11(5.13) | 71.44(4.19) | 74.59(4.95)
GDL-w (SP) | 83.96(5.51) | 75.9(3.81) | 69.95(5.01) | 72.95(3.68)
GDL-g (SP) | 84.61(5.89) | 76.86(4.91) | 71.47(5.98) | 74.86(4.38)
OT FGWK (ADJ]) | 85.61(5.17) | 77.02(4.16) | 72.17(3.95) | 72.41(4.70)
FGWK (SP) | 84.15(6.39) | 76.53(4.68) | 70.53(6.21) | 74.34(3.27)
S-GWK (ADJ) | 86.91(5.49) | 77.85(4.35) | 73.03(3.84) | 73.51(4.96)
GWF-r (ADJ) | 83.61(4.96) | 75.33(4.18) | 72.53(5.39) | 73.64(2.48)
GWEF-f (ADJ) | 83.72(5.11) 74.96(4.0) | 72.14(4.97) | 73.06(2.06)

Kernels HOPPERK | 84.51(5.22) | 79.68(3.48) | 46.2(3.75) | 72.07(3.06)
PROPAK | 80.01(5.11) | 77.81(3.84) | 71.84(5.80) | 61.73(4.5)
GNN PSCN | 83.91(5.71) | 75.21(3.29) | 43.89(3.91) | 74.96(2.71)

GIN-0 | 88.71(5.48) | 81.13(4.51) | 68.6(3.69) | 76.31(2.94)




4.4. Complementary results on unsupervised classification

vanilla GDL As mentioned in section 4 of the main paper, we considered a fixed batch size for learning our models on
labeled graphs, which turned out to be a limitation for the dataset ENZYMES. We report in table 5 our models performance
on this dataset for a batch size fixed to 64 instead of 32 within the framework detailed above. These results are consistent
with those observed on the other datasets.

Table 5. Clustering : dataset ENZYMES

MODELS | ENZYMES
GDL 71.83(0.18)
GDL, | 72.92(0.28)

extended version of GDL.  We report here a companion study for clustering tasks which further supports our extension
of GDL to the learning of node weights. As there is no Mahalanobis upper-bound for the linear models learned with this
extension as their node weights are a priori different, we compare performances of K-means with GW distance applied on
the embedded graphs produced with vanilla GDL, the extended version of GDL denoted here GDL;, and GWF. Similar
considerations have been made for learning GDL,, than those detailed for GDL, and we completed these results with an
ablation of the quadratic negative regularization parameterized by . Results provided in 6 show that GW Kmeans applied
to the graph representations from our method GDL;, leads to state-of-the-art performances.

Table 6. Clustering: RI from GW Kmeans on embedded graphs.
models A IMDB-B IMDB-M
GDL (ours) 0 51.54(0.29) | 55.86(0.25)
>0 | 51.97(0.48) | 56.41(0.35)
GDLy, (ours) 0 52.51(0.22) | 57.12(0.3)
>0 | 53.09(0.38) | 56.95(0.25)
GWF-r NA | 51.39(0.15) | 55.80(0.21)
GWE-f NA | 50.93(0.39) | 54.48(0.26)

4.5. Runtimes

We report in Table 7 averaged runtimes for the same relative precision of 10~ to compute one graph embedding on learned
dictionaries from real datasets.

Table 7. Averaged runtimes.

dataset #atoms | GDL GWF
IMDB-B 12 52ms | 123 ms
16 69 ms | 186 ms

IMDB-M 12 44 ms | 101 ms
18 71 ms | 168 ms
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