Supplementary for
Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

Marin Vlastelica! , Michal Rolinek ! Georg Martius '

A. Data Generation

To do imitation learning, we require expert data. For CRASH
JEWEL HUNT (CRASH 5 x 5 and 5 x 10), LEAPER(GRID)
and MAZE we can determine the exact ground truth costs
leading to optimal behavior. As an example, CRASH 5 X 5
contains moving boxes that when encountered lead to instant
death, meaning infinite costs and otherwise the fixed cost of
moving around in the environment.

Since the environments become deterministic for a fixed
random seed, we first unrolled their dynamics for each level.
After obtaining the underlying grid structure and entities, we
labeled them with costs and constructed a graph that reflects
the grid structure. An expert trajectory is constructed by
applying Dijkstra’s algorithm on this graph and the human-
labeled costs and then executing in simulation.

For the CRASH JEWEL HUNT experiments, we randomly
sampled 2000 solvable levels by varying number of boxes
per column, their speed, the agent start position and the
jewel position. The training levels were taken from the first
half and the second half of levels was used for testing. For
the PROCGEN environments LEAPER(GRID) and MAZE
we have taken the levels determined by seeds 0-1000.

For CHASER, we applied a similar procedure but addition-
ally, we recorded two sets of human trajectories, as we
observed benefits in performance by incorporating more dif-
ferent expert trajectories for the same level. Since both the
search procedure and human labeling are time consuming
for this environment, we collected fewer expert trajectories
for the CHASER than for the other environments, 3 x 100,
two-thirds of which are from human players.

Level seeds 1000000-1001000 were taken for testing in the
PROCGEN experiments.

B. Environments

Our method is applicable in discrete environments, there-
fore we evaluated on environments from the PROCGEN
benchmark and the CRASH JEWEL HUNT environment.

We created the CRASH JEWEL HUNT environment to evalu-
ate our method, where the goal is for the fox (Crash) to reach
the jewel. We found this environment convenient since we
can influence the combinatorial difficulty directly, which is
not true for the PROCGEN benchmark where we are limited
to the random seeds used in the OpenAl implementation.
The sources of variation in the CRASH JEWEL HUNT are the
box velocities, initial positions, sizes, as well as the agent
initial position and the jewel position.

We modified the LEAPER environment to make grid steps
for our method to be applicable. This involved making the
logs on the river move in discrete steps as well as the agent.
Moreover, in our version, the agent is not transported by the
logs as they move, but has to move actively with them. For
an additional description of the PROCGEN environmnets,
we refer the reader to Cobbe et al. (2019).

C. Network Architecture and Input

For all of our experiments, we use the PyTorch implementa-
tion of the ResNet18 architecture as the base of our model.
All approaches receive two stacked frames of the two previ-
ous time steps as input to make dynamics prediction possi-
ble. For the PPO baseline, we did not observe any benefit
in adding the stacked frames as input and we used stable-
baselines implementation from OpenAl to train it on the
PROCGEN environments.

In the case of the behavior cloning baseline, the problem is
a multi-class classification problem with the output being a
multinomial distribution over actions.

For the variant NAP*, we train a cost prediction network

“Equal contribution 'Max Planck Institute for Intelligent Sys-
tems , T ubingen, Germany. Correspondence to: Marin Vlastelica
<mvlastelica@tue.mpg.de>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Supplementary for Neuro-algorithmic Policies

CRASHH x5 CRASHH x 10 LEAPER(GRID) MAZE
learning rate 1073 1073 1073 1073
@ 0.2 0.2 0.15 0.15
A 20 20 20 20
resnet layers 4 4 4 4
kernel size 4 4 6 6
batch size 32 32 16 16

Table S1: Training hyperparameters, where alpha denotes the margin that was used on the vertex costs and A the interpolation
parameter for blackbox differentiation of Dijkstra’s algorithm. We vary the kernel size of the initial convolution for ResNet18.

on top of which we run Dijkstra’s algorithm on the output
costs of the planning graph. This requires modifications to
the original ResNet18 architecture. We remove the linear
readout of the original ResNet18 architecture and replace
it with a convolutional layer of filter size 1 and adaptive
max pooling layer to obtain the desired dimensions of the
underlying latent planning graph. More concretely, the
output x of the last ResNetl8 block is followed by the
following operation (as output by PyTorch) to obtain the
graph costs:

Sequential(

Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))

Abs()

AdaptiveMaxPool2d(output_size=(grid_height, grid_width))
)

Where grid_{height,width} denotes the height and width
of the planning grid. For the full variant of NAP with goal
prediction and agent position prediction we have a separate
position classifier that has the same base architecture as the
cost prediction network with 2 additional linear readouts for
the likelihoods of the latent graph vertices, more concretely
(as output by PyTorch):

Sequential(
Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
Abs()
AdaptiveMaxPool2d(output_size=(grid_height, grid_width))
Flatten()
Linear(grid_height x grid_width, grid_height x grid_width)

For training the position classifier, we use a standard cross-
entropy loss on the likelihoods. For NAP with position
classification, we use the ground-truth expert start and goal
positions to calculate the Hamming loss of the predicted
path by the solver. At evaluation time, NAP uses the position
classifier to determine the start and end vertices in the latent
planning graph.

D. Training Procedure

For CRASH 5 x 5, CRASH 5 x 10, LEAPER(GRID) and
MAZE we train the models on the same #levels, namely
1,2, 5, 10, 20, 50, 100, 200, 500 and 1000. We evaluate
on unseen 1000 levels in order to show that NAP exhibits
superior generalization. The levels are generated as per
description in section A. Each dataset is normalize to be
zero mean and unit variancesize. For each dataset size
(#levels) we run experiments with 3 random restarts (seeds
for network initialization). For all experiments, we make
use of the ADAM optimizer.

We determine the number of epochs for training depend-
ing on each dataset size as min(150000/#levels, 15000) to
have roughly the same number of gradient updates in each
experiment. We take the minimum over the 2 values because
for smaller number of levels a large number iterations is
not necessary to achieve good performance, but for a larger
number of levels it is necessary. If we observe no error on
the training set, we stop the training.

For the CHASER, the training conditions were analogous to
the other environments, only of slightly smaller scale due to
its higher complexity. Models were trained on 10, 20, 50,
100 and 200 levels and evaluated on 200 unseen levels.

CHASER
learning rate | le™3
o 0.2
A 40
resnet layers 3
kernel size 4
batch size 16

Table S2: Training hyperparameters for the CHASER ex-
periment, where « denotes the margin that was used on the
vertex costs and A the interpolation parameter for blackbox
differentiation od Dijkstra.

Supplementary for Neuro-algorithmic Policies

D.1. PPO Training Procedure

The training of the PPO baseline is exactly the same
as described in Cobbe et al. (2019) using the of-
ficial code from https://github.com/openai/
train-procgen, see Table S3 for the used parameters.
The network architecture is the IMPALA-CNN. The algo-
rithm is trained on the specified number of levels for 200
million environments interactions gathered from 256 (in-
stead of 64 as in Cobbe et al. (2019)) to compensate for not
having access to 4 parallel workers. We report numbers for
3 independent restarts.

learning rate Se~4
o 0.2
discount y 0.999
entropy coefficient | 0.01
steps per update 216

Table S3: PPO hyperparameters, as used in Cobbe et al.
(2019).

D.2. DrAC Training Procedure

For the DrAC algorithm, we run all versions introduced
by Raileanu et al. (2020) (Meta-DrAC, RL2-DrAC, UCB-
DrAC and DrAC-Crop) and choose the best one in the
main plots, denoted as DrAC*. We used the original hy-
perparameters from Raileanu et al. (2020) and the imple-
mentation fromhttps://github.com/rraileanu/
auto-drac. As with the other experiments, we report
numbers from 3 different random seeds.

E. On Comparing Imitation Learning to
Reinforcement Learning

We compare our method to Data Augmented Actor Ceritic,
PPO and a behavior cloning baseline. Arguably, since NAP
is used in an imitation learning setting, it reaps benefits
from having access to expert trajectories. Nevertheless, it
is not straight forward that embedding a solver in a neural
architecture leads to better generalization in comparison to
reinforcement learning methods.

Behavior cloning with a standard neural architecture has
access to the same amount of data, whereas reinforcement
learning agents have access to orders of magnitude more
data for inference (2-10® transitions in comparison to ~ 10°
max). This would lead us to believe that reinforcement
learning agents are able to generalize well because of the
sheer amount of data that they have at their disposal, but we
show that nevertheless it is possible to extract meaningful
policies even with a small number of training levels seen
with expert trajectories, that are more optimal.

In addition, NAP is a general architecture paradigm that
may be composed with various different objective functions,
including a reinforcement learning formulation. It would be
interesting to see how NAP behaves when used in such a for-
mulation and if this would lead to even better generalization
properties with more data. We provide training performance
curves in Fig. S1 and density plots for different numbers of
training levels in Fig. S2.

F. Data Regularized Actor-Critic

The DrAC algorithm (Raileanu et al., 2020) attacks the
problem of generalization in reinforcement learning from
a different angle, namely applying (in some versions opti-
mized) data augmentations to the PPO algorithm. The main
insight is that naively applied data augmentations result in
faulty policy gradient estimates because the resulting policy
after applying the augmentation is too far from the behavior
policy.

To alleviate this, a policy regularization term G, and value
function regularization term Gy, are added to the PPO ob-
jective:

Jorac = Jepo — o (G + Gv).)]

Furthermore, various augmentations and augmentation se-
lection schemes were proposed. We ran all of the proposed
selectin schemes on our environments, Meta-DrAC, RL2-
DrAC, UCB-DrAC and DrAC. Meta-DrAC meta-learns the
weights of a convolutional neural network used for data
augmentation. RL2-DrAC meta-learns a policy that selects
an augmentation from a pre-defined set of augmentations.
UCB-DrAC is a bandit formulation of the augmentation
selection problem with application of a upper confidence
bound algorithm for selection strategy. DrAC denotes the
version with the crop augmentation, which has been shown
to work well with more than half of the environments in the
ProcGen benchmark. For more details, we refer the reader
to Raileanu et al. (2020).

DrAC’s approach to improving generalization is orthogonal
to NAP and the approaches may be composed in order to
achieve even better generalization capabilities.

G. Additional Related Work

Generalization in reinforcement learning In addition to
the work of Raileanu et al. (2020), there is a plethora of ap-
proaches that attempt to improve generalization in reinforce-
ment learning by considering various data augmentation
techniques while mainly drawing motivation from super-
vised learning approaches (Kostrikov et al., 2020; Laskin
et al., 2020). Other approaches combine unsupervised learn-
ing with data augmentation (Srinivas et al., 2020; Zhan et al.,
2020).

https://github.com/openai/train-procgen
https://github.com/openai/train-procgen
https://github.com/rraileanu/auto-drac
https://github.com/rraileanu/auto-drac

Supplementary for Neuro-algorithmic Policies

CRASH 5 x 10

CRASHH X 5

success rate

)@ * @i i ian e @

MAZE

LEAPER

1000 1 10 100 1000

1 10 100 1000 1 10 100 1000 1 10 100
#levels #levels #levels #levels
—4— NAP" —4— NAP —— PPO —4— DrAC” ¢ BC

Figure S1: The dotted lines denote the training performance of the methods. We observe that the behavior cloning baseline

and NAP have fitted the training set almost perfectly.

10 20 50

MAZE

episode length
o
o

u
=]

LEAPER

episode length
o
o

u
=]

25N

= NAP []

100 200 500

e YT YT . YYY IYY . YYY IYY _IYTY.

LR LD AT AT L]

YT T . YTY YYY . YIY YYT TITT.

HHEEEEREEE

DrAC” = PPO

Figure S2: Density plots of performance on the test set (1000 unseen levels) after different number of training levels for the
MAZE and LEAPER environments, the white point denotes the median performance on the test set.

Notably, the problem of sim-to-real transfer can be seen as
a problem of generalization to different system dynamics.
Domain randomization (Tobin et al., 2017), i.e. augmenting
system dynamics in a structured way, has emerged as one
of the main techniques for tackling this problem.

H. Cost Margin Ablation

Here we show the results for the Maze environment with
200, 500 and 1000 train levels evaluated on 1000 unseen
test levels, with and without margin. The results indicate
that using the margin on the costs improves generalization.

| 200 500 1000

w | 0.839£0.014 0.895+0.007 0.948 £ 0.006
w/o | 0.834 £0.015 0.883£0.008 0.855=£0.241

References

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. arXiv preprint:1912.01588, 2019.

Kostrikov, L., Yarats, D., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. arXiv preprint arXiv:2004.13649, 2020.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented data.
arXiv preprint arXiv:2004.14990, 2020.

Raileanu, R., Goldstein, M., Yarats, D., Kostrikov, 1., and
Fergus, R. Automatic data augmentation for general-

ization in deep reinforcement learning. arXiv preprint
arXiv:2006.12862, 2020.

Srinivas, A., Laskin, M., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
arXiv preprint arXiv:2004.04136, 2020.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W.,
and Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 23-30. IEEE, 2017.

Zhan, A., Zhao, P., Pinto, L., Abbeel, P., and Laskin, M.
A framework for efficient robotic manipulation. arXiv
preprint arXiv:2012.07975, 2020.

	Data Generation
	Environments
	Network Architecture and Input
	Training Procedure
	PPO Training Procedure
	DrAC Training Procedure

	On Comparing Imitation Learning to Reinforcement Learning
	Data Regularized Actor-Critic
	Additional Related Work
	Cost Margin Ablation

