Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

Marin Vlastelica! , Michal Rolinek ! Georg Martius '

.

input representation Dijkstra's shortest path predicted Hamming expert
2 frames learning t+1 trajectory distance trajectory

NN e t —
s cost- C |

predictor | _, — L

N -> -«

ResNet18 A

esNe ./{W

ToEL 773 s a i«

predictor | —» | ° 7 y(C)

ResNet18 Us, Ug

start goal

J

Figure 1: Architecture of the neuro-algorithmic policy. Two subsequent frames are processed by two simplified ResNet18s:
the cost-predictor outputs a tensor (width x height x time) of vertex costs C*(v) and the goal-predictor outputs heatmaps
for start and goal. The time-dependent shortest path solver finds the shortest path to the goal. Hamming distance between
the proposed and expert trajectory is used as loss for training. Videos and Code are available at martius-lab.github.io/NAP.

Abstract

Although model-based and model-free approa-
ches to learning the control of systems have
achieved impressive results on standard bench-
marks, generalization to task variations is still
lacking. Recent results suggest that generaliza-
tion for standard architectures improves only af-
ter obtaining exhaustive amounts of data. We
give evidence that generalization capabilities are
in many cases bottlenecked by the inability to
generalize on the combinatorial aspects of the
problem. We show that, for a certain subclass of
the MDP framework, this can be alleviated by a
neuro-algorithmic policy architecture that embeds
a time-dependent shortest path solver in a deep
neural network. Trained end-to-end via blackbox-
differentiation, this method leads to considerable
improvement in generalization capabilities in the
low-data regime.

'"Max Planck Institute for Intelligent Systems, Tiibingen,
Germany. Correspondence to: Marin Vlastelica <mvlastel-
ica@tue.mpg.de>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction

One of the central topics in machine learning research is
learning control policies for autonomous agents. Many dif-
ferent problem settings exist within this area. On one end
of the spectrum are imitation learning approaches, where
prior expert data is available and the problem becomes a su-
pervised learning problem. On the other end lie approaches
that require interaction with the environment to obtain data
for policy extraction, posing the problem of exploration.
Most Reinforcement Learning (RL) algorithms fall into the
latter category. In this work, we concern ourselves primarily
with the setting where limited expert data is available, and a
policy needs to be extracted by imitation learning.

Independently of how a policy is extracted, a central ques-
tion of interest is: how well will it generalize to variations
in the environment and the task? Recent studies have shown
that standard deep RL methods require exhaustive amounts
of exposure to environmental variability before starting to
generalize (Cobbe et al., 2020).

There exist several approaches addressing the problem of
generalization in control. One option is to employ model-
based approaches that learn a transition model from data
and use planning algorithms at runtime or to improve value-
learning. This has been argued to be the best strategy in the
presence of an accurate model and sufficient computation
time (Daw et al., 2005). Furthermore, one can use the transi-
tion model alongside a reward model to generate offline data
to improve value function learning (Sutton, 1991; Janner
et al., 2019). However, learning a precise transition model

https://martius-lab.github.io/NAP/

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

is often harder than learning a policy. The transition model
often has a much larger dimensionality than the policy since
it needs to model aspects of the environmental dynamics
that are perhaps irrelevant for the task. This is particularly
true for learning in problems with high-dimensional inputs,
such as raw images. In order to alleviate this problem, learn-
ing specialized or partial models has shown to be a viable
alternative, e.g. in MuZero (Schrittwieser et al., 2020).

We propose to use recent advances in making combinatorial
algorithms differentiable in a blackbox fashion (Vlastelica
et al., 2020) to train neuro-algorithmic policies with em-
bedded planners end-to-end. More specifically, we use a
time-dependent shortest path (TDSP) planner acting on a
temporally evolving graph generated by a deep network
from the inputs. By learning the time-evolving costs of the
graph, our method builds a specific model of the system
that is sufficient for planning. This choice is akin to goal-
conditioned MDPs since the shortest path algorithm expects
a goal to be reached. To tackle more general settings, we
predict subgoals as part of the algorithm. We demonstrate
the effectiveness of this approach in an offline imitation
learning setting where a few expert trajectories are pro-
vided. Due to the combinatorial generalization capabilities
of planners, our learned policy is able to generalize to new
variations in the environment out of the box and needs or-
ders of magnitude fewer samples than naive learners. Using
neuro-algorithmic architectures facilitates generalization by
shifting the combinatorial aspect of the problem to efficient
algorithms, while using neural networks to extract a good
representation for the problem at hand. They have the po-
tential to endow artificial agents with the main component
of intelligence, the ability to reason.

Our contributions can be summarized as follows: (i) We
show that combinatorial inductive biases implemented
through neuro-algorithmic policies can be used to tackle
the generalization problem in reinforcement learning. (ii)
We show that architectures embedding TDSP solvers are
applicable beyond goal-reaching environments. (iii) We
demonstrate learning neuro-algorithmic policies in dynamic
game environments from images.

2. Related Work

Planning There exist multiple lines of work aiming to
improve classical planning algorithms such as improving
sampling strategies of Rapidly-exploring Random Trees
(Gammell et al., 2014; Burget et al., 2016; Kuo et al., 2018).
Similarly, along this direction, Kumar et al. (2019) pro-
pose a conditional VAE architecture for sampling candidate
waypoints. Orthogonal to this are approaches that learn
representations such that planning is applicable in the la-
tent space. Hafner et al. (2019) employ a latent multistep
transition model. Savinov et al. (2018) propose a semi-

parametric method for mapping observations to graph nodes
and then applying a shortest path algorithm. Asai & Fuku-
naga (2017); Asai & Kajino (2019) use an autoencoder
architecture to learn a discrete transition model suitable for
classical planning algorithms. Li et al. (2020) learn com-
positional Koopman operators with graph neural networks
mapping to a linear dynamics latent space, which allows for
fast planning. Chen et al. (2018); Amos et al. (2017) per-
form efficient planning by using a convex model formulation
and convex optimization. Alternatively, the replay buffer
can be used as a nonparametric model to select waypoints
(Eysenbach et al., 2019) or in an MPC fashion (Blundell
et al., 2016). None of these methods perform differentia-
tion through the planning algorithm to learn better latent
representations.

Differentiation through planning Embedding differen-
tiable planners has been proposed in previous works, e.g.
in the continuous case with CEM (Amos & Yarats, 2020;
Bharadhwaj et al., 2020). Wu et al. (2020) use a (differen-
tiable) recurrent neural network as a planner. Tamar et al.
(2016) use a differentiable approximation of the value itera-
tion algorithm to embed it in a neural network. Silver et al.
(2017) differentiate through a few steps of value prediction
in a learned MDP to match the externally observed rewards.
Srinivas et al. (2018) use a differentiable forward dynam-
ics model in latent space. Karkus et al. (2019) suggest a
neural network architecture embedding MDP and POMDP
solvers and during the backward pass, they substitute the
algorithms by learned approximations. In comparison, we
do not perform any relaxation or approximation of the plan-
ner itself and we learn interpretable time-dependent costs of
the latent planning graph based on expert demonstrations by
differentiating through the planner. Similarly to our work,
Yonetani et al. (2020) embed an A* algorithm into a neural
network, but in comparison, their method does not operate
with time-dependent costs, subgoal selection and does not
provide a policy for closed-loop control.

Inverse reinforcement learning and imitation learning
Uncovering the expert’s objective function from demon-
strations has been a central topic in reinforcement learning
(Ng & Russell, 2000). Our method is connected to inverse
reinforcement learning in the sense that we learn the objec-
tive function that the expert optimizes to extract an optimal
policy, also called apprenticeship learning (Abbeel & Ng,
2004; Neu & Szepesvari, 2012; Aghasadeghi & Bretl, 2011).
What separates our approach is that the inferred costs are
inherently part of the learned neuro-algorithmic policy in
conjunction with the applied planner on the costs.

Our method is an offline imitation learning method, but
since we propose an end-to-end trainable policy, it is natu-
rally extendable to the online case with a method such as

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

DAgger (Ross et al., 2011) or other online reinforcement
learning methods augmented with expert datasets (Reddy
et al., 2019; Ho & Ermon, 2016).

Offline model-based reinforcement learning Model-
based methods have shown promise by facilitating better
generalization (Janner et al., 2019). These approaches fall
into two camps: using models to extract a policy in a Dyna-
style approach (Sutton, 1991; Janner et al., 2019; Sutton
et al., 2008; Yao et al., 2009; Kaiser et al., 2020), or incor-
porating the model in a planning loop, i.e. model-predictive
control (Finn & Levine, 2017; Racaniere et al., 2017; Oh
et al., 2017; Silver et al., 2017; Pinneri et al., 2021). In this
work, we consider the latter case where an implicit transi-
tion model is “hidden” within the predicted time-dependent
costs.

Combinatorial algorithms in end-to-end trainable net-
works We suggest a hybrid policy consisting of a neural
network and an accompanying expert (shortest path) dis-
crete solver that is trainable end-to-end. Incorporating ex-
pert discrete solvers into end-to-end trainable architectures
is a topic with exciting recent developments. For the sim-
pler setup of comparing to ground-truth values on the solver
output, numerous frameworks have been suggested such
as the “predict-and-optimize” framework and its variants
(Elmachtoub & Grigas, 2021; Demirovic et al., 2019; Mandi
et al., 2020). Moreover, specializations for concrete cases
such as sparse structured inference (Niculae et al., 2018),
logical satisfiability (Wang et al., 2019), submodular op-
timization (Djolonga & Krause, 2017), or mixed integer
programming (Ferber et al., 2020) have been proposed.

We are interested in the harder case of providing an entirely
hybrid architecture which may use the solver at intermedi-
ate levels and is trainable end-to-end. For this case, two
approaches have recently emerged (Vlastelica et al., 2020;
Berthet et al., 2020). Vlastelica et al. (2020) introduce an ef-
ficient implicit piecewise linear interpolation scheme, while
Berthet et al. (2020) introduce an estimation of a Gaussian
smoothing of the piecewise constant function. The approach
from Vlastelica et al. (2020) is especially appealing, since
it allows for uses in which the solver is the computational
bottleneck. By formulating the control problem as a time-
dependent shortest path problem (TDSP), we show that the
framework of Vlastelica et al. (2020) is applicable in specific
control settings.

3. Markov Decision Processes and Shortest
Paths

We consider the problem formulation in the context of a
Markov Decision Process (MDP). We concern ourselves
with policies that solve a time-dependent shortest path prob-

lem on a latent graph representation related to that MDP.
We start with a class of MDPs that can be directly mapped
to a shortest path problem and construct this mapping. Then
we consider conditions that allow for a reduced latent graph
where the optimal policy follows a time-dependent shortest
path problem.

First, we consider discrete MDPs with deterministic tran-
sitions. In addition, we follow a goal-conditioned set-
ting (Schaul et al., 2015). This is used in sequential decision
making problems where a specific terminal state has to be
reached.

Definition 1 A goal-conditioned Markov Decision Process
(gcMDP) M is defined by the tuple (S, A, p, g, 1), where
S is the state space, A the action space, p(s' | a,s) the
probability of making the transition s € S — s’ € S when
taking the action a € A, g € S is the goal, r(s,a, s, g) the
reward obtained when transitioning from state s to s’ while
taking action a and aiming for goal g.

In episodic reinforcement learning, the objective is to find
a policy that maximizes the return G = Z?:o ry of such a
process. In gcMDPs, the reward is such that the maximal
return can be achieved by reaching the goal state g, which
is also the terminal state.

Definition 2 A discrete and deterministic goal-conditioned
Markov Decision Process (ddgcMDP) Misa gcMDP with
discrete and finite state space S and action space A with
deterministic transitions, i.e. p(s' | a, s) is one-hot.

Let us consider the following graph representation
(G,vs,vg4): aweighted graph G = (V, E, C') together with
start vertex v, and goal vertex vy, where V is the vertex
set, E C (V x V) is the edge set, and C' € lel is the
cost matrix with positive entries. We write C(e) for the
cost of edge e. In addition, we consider an inverse model
¥ B — A, associating an edge to an action.

A direct translation of a ddgcMDP to a graph is given by
a bijective correspondence ¢: S — V between states and
vertices, for each possible transition (s, a, s’) there is an
edge e = (&(s), ¢(s’)) with 1p(e) = a, and the goal vertex
is vy = ¢(g). The cost matrix C takes the role of the reward
function with C'(¢(s), #(s)) = cmax — (s, a, ', g) where
Cmax 18 an upper bound on the reward ensuring positive cost
values. To deal with variable or infinite episode lengths, g
can be seen as an absorbing state where r(g, -, g, 9) = Cmax»
incurring a cost of 0 at the goal. Due to the deterministic
nature of the ddgcMDP, the optimal policy yields a path
with maximal return (sum of rewards) from start s to goal
g, which now coincides with the shortest path according to
C by definition.

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

3.1. Factorized MDPs and Time-dependent Shortest
Path

In many interesting environments, the state space is expo-
nentially large, e.g. due to independent dynamics of entities.
As an illustrative example, consider the game environment
shown in Fig. 1 and 3 — an agent with moving obstacles. For
such environments, the corresponding graph would become
intractably large. We now define conditions under which
the size of the graph can be drastically reduced, without
losing the property that its shortest path solves the MDP.
To this end, we assume the state space can be factorized
as § = Sy x Sg, where Sy is affected only by the ac-
tions and Sg by the environment dynamics independent
of the actions. We write the decomposition of each state
as s = (s%,s%). The mapping from state space to graph
vertices ¢: S — V is bijective only w.r.t. S4 and ignores
Sg, 1.e. Vs* € Sy v € V: ¢(s%,5%) = v,Vs® € Sg.
For brevity, we write ¢(s?). For instance, using S4 as the
agent’s positions on a discrete grid results in just as many
vertices as there are positions of the agent.

Next, we show how a solution to this factorized ddgcMDP
can be found by solving a time-dependent shortest path
(TDSP) problem on the reduced graph. The cost matrix C'
is now a time-dependent quantity, i.e. C' € REX‘E‘ that
assigns every edge e a positive cost value for each time
t € {1,2,..., H} of the planning horizon/episode. To ease
the notation, we write C*(e) for the cost of edge e at time .
The TDSP problem is defined as reaching the goal vertex v,
within at most H steps when starting at time step 1 in the
start vertex vg.

Two situations need to be modeled by the cost:' a) the envi-
ronment dynamics can make an edge e become unavailable
(for instance, an obstacle is moving in the way), then the
cost should be infinite: C(e) = oo, and b) the environment
dynamics changes the reward, thus for all other edges we
have

Ct(¢(5a)7 ¢(5/a)) = Cmax — r((sav Ste)7 a, (Sla7 Sf)) (1)

where a = ¥ (¢(s*), ¢(s'*)). Again, with this construction,
the time-dependent shortest path solution coincides with
the optimal policy of the specific ddgcMDP. We can also
deal with stochastic environment dynamics as long as the
action’s effect on the state stays deterministic. This changes
the reward term in Eq. 1 to an expectation over environment
dynamics:
Efr((s*,50) . (s s0))]-

In our architecture, described below, the policy gener-
ates a latent graph at every observation/state and solves

"Note that learning the exact costs is not necessary, since we
are only interested in optimal trajectories.

a ddgcMDP to optimality at every time step following a
model predictive control approach using receding horizon
planning.

4. Shortest Path Algorithm and its
Differentiation

We aim to predict the cost matrix C' via a deep neural net-
work and train the entire system end-to-end via gradient
descent on expert trajectories, as illustrated in Fig. 1. We
will employ an efficient implementation of Dijkstra’s algo-
rithm for computing the shortest path. For differentiation,
we rely on the framework for blackbox differentiation of
combinatorial solvers (Vlastelica et al., 2020).

Time-dependent shortest path with vertex costs. Inour
neuro-algorithmic policy, we use the TIME-DEPENDENT-
SHORTEST-PATH (TDSP) formulation based on vertex-costs
instead of edge-costs, due to the reduction in cost matrix size
by a factor of |.4]. The TDSP solver has as input the graph
G(V, E, C) with time-dependent cost matrix C' € fo Vi
and a pair of vertices vs, vy € V (start and goal). We write
C*(v) for the cost of vertex v at time ¢.

This version of the shortest path problem can be solved by
executing the Dijkstra’s shortest path algorithm® (Dijkstra,
1959) on an augmented graph. In particular, we set

V' ={(v,t):veV,te[l,H|}
E* = {((v1,t), (va, t4+1)): (v1,v2) € EC,t € [1, H-1]},

where the cost of vertex (v;,t) € V* is simply C*(i) and
E© is the original edge set £ appended with all self-loops.
This allows to “wait” at a fixed vertex v from timestep ¢ to
timestep ¢ + 1. In this graph, the task is to reach the vertex
(vg, H) from (v, 1) with the minimum traversal cost.

4.1. Applicability of Blackbox Differentiation

The framework presented in (Vlastelica et al., 2020) turns
blackbox combinatorial solvers into neural network building
blocks. The provided gradient is based on a piecewise linear
interpolation of the true piecewise constant (possibly lin-
earized) loss function, see Fig. 2. The exact gradient of this
linear interpolation is computed efficiently via evaluating
the solver on only one additional instance (see Algo. 1).

To apply this differentiation scheme, the solver at hand needs
to have a formulation in which it minimizes an inner-product
objective (under arbitrary constraints). To that end, for a
given graph G = (V| E, C) as described above, we define
Y € {0, 1}7*IVI an indicator matrix of visited vertices. In

2Even though the classical formulation of Dijkstra’s algorithm
is edge-based, all of its properties hold true also in this vertex-based
formulation.

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

Algorithm 1 Forward and backward pass for the shortest-
path algorithm
function FORWARDPASS(C, v, v4)
Y := TDSP(C, v, vs) /I Run Dijkstra’s algo.
save Y, C, vy, v, /I Needed for backward pass
return Y

function BACKWARDPASS(VL(Y), A)
load Y, C, v,, v,
Cr:=CH+AVL(Y)

Yy := TDSP(Cy, vs, vg)
return ; (Y, —Y)

/! Calculate modified costs
/I Run Dijkstra’s algo.

loss landscape interpolation for A =3 interpolation for A =5

y

Figure 2: Differentiation of a piecewise constant loss re-
sulting from incorporating a combinatorial solver. A two-
dimensional section of the loss landscape is shown (left)
along with two differentiable interpolations of increasing
strengths (middle and right).

particular, ;' = 1 if and only if vertex v; is visited at time
point t. The set of such indicator matrices that correspond
to valid paths in the graph (V*, E*) from start to goal will
be denoted as Y := Adm(G, v, vy). The time-dependent
shortest path optimization problem can be then rewritten as

TDSP(C,vs,vy) = arg minZYitC’f, 2)
Yey (i,t)

where) = Adm(G, vs, vg). This is an inner-product objec-
tive and thus the theory from (Vlastelica et al., 2020) applies
and allows us to learn the cost-matrix generating network
with gradient descent, as described below.

4.2. Cost Margin

The supervision signal for the costs C' of the latent graph
is only indirectly given via the shortest path solutions. At
training time, there is no incentive to make these costs robust
to small misestimations. Thus, inducing a margin on costs
can be beneficial for generalization. Similarly to Rolinek
et al. (2020), where it was used in the context of rank-based
metric learning, we induce a margin « by increasing the
cost of the ground-truth path and decreasing the rest in the
training stage of the algorithm:

if (v;,t) € Y*

(o) ¢ Y V(vi,t) €VE ()

@)
XN
—N

O

R W
+
[NI=EN}]

5. Neuro-algorithmic Policy Framework

We propose the Neuro-algorithmic Policy (NAP) frame-
work, which is an end-to-end trainable deep policy archi-
tecture embedding an algorithmic component using the
afore-mentioned techniques. Following the definitions from
Sec. 3, we concern ourselves with learning the mapping
wp : S — RIVIXT x V' x V, i.e. mapping from MDP states
to cost matrices and respective start and end vertices for the
TDSP problem® of planning horizon H. This enables us to
construct the policy

7g = 1 0o TDSP o ¢g. “4)

The mapping (g can be decomposed into g (cost-
predictor), o (start-predictor), § (goal-predictor), i.e.
mappings from state to costs, start vertex and goal vertex.
In practice, instead of learning ¢ and ¢ directly, we learn
the conditional probability densities p§(v|s) and p(v|s).

In this work, we examine the application of neuro-
algorithmic policies to the imitation learning setting, where
we have access to trajectories 7 sampled from the expert
policy distribution 7(7*). Given a fixed planning horizon
H, the objective that we consider consists of three main
parts, the latent cost term, start vertex term and goal vertex
term. The latent cost objective is defined as

JY0,.H)= E [d"(TDSP(gs(n)),¢'(1))], (5)

Teopr~n(m")

where d*(-, -) denotes the Hamming distance between pre-
dicted and expert paths in the latent graph, and ¢': S — V/
the mapping of the expert-visited states to latent graph ver-
tices. The second part of the objective is a standard cross-
entropy term for the start and goal vertices that allows us to
train a start- and goal-predictor:

JEO,HY= E) [— log pj (¢’ (1¢)|7¢)
oo () (6)

—log p (¢ (Te4m)|72)].

We assume access to ¢’ at training time in order to map
the expert to the latent graph for calculation of J¢ and J*.
Finally, we optimize for the sum of J¢ and J*.

We utilize a concrete architecture consisting of two main
components: a backbone ResNet18 architecture (without
the final fully connected layers (a detailed description is
available in Sec. C in the supplementary) and the shortest
path solver, see Fig. 1. At each time step, the policy receives
two images concatenated channel-wise from which it pre-
dicts the cost tensor C' for the planning horizon H with the
cost-predictor, the start vertex vs and goal vertex vy with
the goal-predictor, explained below.

3We hold the graph structure fixed, namely the set of edges E
and learn the costs C'. Therefore we replace G with costs C' in the
TDSP solver to simplify the notation.

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

The policy is used in a model-predictive control fashion, i.e.
at execution time, we predict the plan Y for horizon H at
each time step and execute the first action from the plan.

5.1. Global and Local Goal Prediction

In order to apply the solver to the learned latent graph rep-
resentation, we need to map the current state of the envi-
ronment to appropriate start and goal vertices (vs, vg). To
this end, we employ a second ResNet18 similar to the cost-
predictor that approximates p®(v|s) and p?(v|s), i.e. the
start and goal conditional densities.

At training time, given the expert trajectories, we have ac-
cess to the mapping ¢’ that maps the expert trajectory to
the latent graph. In the global setting, the last position of
the expert is the goal v,, corresponding to, for instance, the
jewel in CRASH JEWEL HUNT which is also the terminal
state, see Fig. 3.

In the local setting, we expect the end vertex to be an inter-
mediate goal (for instance “collect an orb”), which effec-
tively allows for high-level planning strategies, while the
low-level planning is delegated to the discrete solver. In
this case, the positively labeled supervision at time ¢ are
all locations of the (expert) agent between step ¢ + H and
t+2H.

The local setting allows to limit the complexity of our
method, which grows with the planning horizon. This is also
a trade-off between the combinatorial complexity solved by
the T'D S P solver and the goal predictor. Ideally, the plan-
ning horizon H used for the cost-prediction is long enough
to capture the combinatorial intricacies of the problem at
hand, such as creating detours towards the goal in the case
of future dangerous states, or avoiding dead-ends in a maze.

This formulation makes our architecture akin to hierarchi-
cal methods similar to Blaes et al. (2019); Nachum et al.
(2018), and allows for solving tasks that are not typical
goal-reaching problems, such as the CHASER environment.

6. Experiments

To validate our hypothesis that embedding planners into
neural network architectures leads to better generalization
in control problems, we consider several procedurally gen-
erated environments (from the ProcGen suite (Cobbe et al.,
2020) and CRASH JEWEL HUNT) with considerable varia-
tion between levels.

We compare with the following baselines: a standard be-
havior cloning (BC) baseline using a ResNet18 architecture
trained with a cross-entropy classification loss on the same
dataset as our method; the PPO algorithm as implemented in
Cobbe et al. (2020) and data-regularized actor-critic (DrAC)
(Raileanu et al., 2020). A comparison to DrAC is especially

(b) Game logic
+ moving L 4
—_ * boxes Goal

\/

N
W<.$_..E
S
(c) Cost prediction example

input frames predicted costs
t 1 t= 2

high
cost

A - l
‘ NIH \ l*
true env-dnamls

l, mM “H w

i ,'j,',f‘ lilj'ﬁ

Figure 3: The CRASH JEWEL HUNT environment. The
goal for the fox, see (a), is to obtain the jewel in the right
most column, while avoiding the moving wooden boxes
(arrows in (b)). When the agent collides with a wooden
box it instantly fails to solve the task. We observe that
the predictions of the costs in (c) are highly interpretable,
corresponding to (future) movements of the boxes.

interesting, since the method claims to improve generaliza-
tion by applying optimized data augmentations. As there
are multiple variations of data augmentation suggested by
Raileanu et al. (2020), we run all of them and select the
best result as DrAC* for performance comparison to our
method* We also ablate the start- and goal-predictor and
replace with the ground truth vertices, this serves as an up-
per baseline for NAP which we denote with NAP*. More
details on the training procedure and the hyperparameters
can be found in the supplementary Sec. D.

For the experimental validation, we aim to anwser the fol-
lowing questions: (i) Can NAP be trained to perform well in
procedurally generated environments? (ii) Can NAP gener-
alize in a low data regime, i.e. after seeing only few different
levels? (iii) Can we also solve non-goal-reaching environ-
ments?

6.1. CRASH JEWEL HUNT

For proof of concept, we first consider an environment we
constructed to test NAP, called CRASH JEWEL HUNT which
can be seen in Fig. 3. The environment corresponds to a

*We defer a more detailed description of DrAC along with
performance plots to Sec. F

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

CRASH 5 X 5 CRASH 5 x 10

success rate

1000
#levels

—— NAP

#levels

—— NAP"

—— PPO

MAZE LEAPER(GRID)

1.0
0.5
v/
0.0
1 10 100 1 10 100 1 10 100 1 10 100

1000

1000 1000

#levels #levels

—4— DrAC” i— BC

Figure 4: Performance on unseen test levels for a different number of training levels. We observe that NAP already shows

signs of generalization after only being trained on 100 levels.

grid-world of dimensions height X width where the goal is
to move the agent (Fox) from an arbitrary start position in
the left-most column to the goal position (jewel) arbitrarily
positioned in the right-most column. Between the agent and
the goal are obstacles, wooden boxes that move downwards
(with cyclic boundary conditions) with velocities that vary
across levels but not within a level, see Fig. 3 (right). At
each time step, the agent can choose to move horizontally
or vertically in the grid by one cell or take no action.

To make the task challenging, we sample distinct environ-
ment configurations for the training set and the test set,
respectively. More concretely, we vary the velocities, sizes
and initial positions of the boxes as well as the start and goal
positions.

6.2. ProcGen Benchmark

In addition to the jewel hunt environment, we evaluate our
method on the hard version MAZE, LEAPER and CHASER
environments from the ProcGen suite (Cobbe et al., 2020).
We have chosen these environments because their structure
adheres to our assumptions. For LEAPER, we modified
the environment such that grid-world dynamics applies and
denote it as LEAPER(GRID).

The MAZE and the LEAPER(GRID) tasks have a static
goal whose position only varies across levels, whereas the
CHASER requires collection of all orbs without contacting
the spiders, so the local goals need to be inferred on the fly.
The CHASER environment is also particularly challenging
as even the expert episodes require on average 150 steps,
most of which carry the risk of dying. For this reason, we
used three human expert trajectories per level.

6.3. Results

We train our method (NAP) and the imitation learning base-
line until saturation on a training set, resulting in virtually
100% success rate when evaluating on train configurations
in the environment. For the PPO baseline we use the code
from (Cobbe et al., 2020) and provide also two subsequent
frames and 200M time steps for training. For the DrAC

baselines we use the code from Raileanu et al. (2020). For
our method, we also report performance of a version with
access to the true start and end-point prediction (NAP*),
with the exception of the CHASER where true goals are not
well-defined.

In Fig. 4, we show the performance of the methods when
exposed to a different number of levels at training time. As
reported in Cobbe et al. (2020), the baselines have a large
generalization gap and poor performance when < 10000
levels are seen.

We find that NAP shows strong generalization performance
already for < 500 levels. In some environments, such as
MAZE we obtain near 80% success rate already with just
100 levels which is never reached by PPO or DrAC even

(a) Performance on CHASER

6 ’/’/Q———/.
—4— NAP test

—4— DrAC” test
—4— PPO test
! | T
100

D

N

avg reward

BC test

o

|
—
10

#levels

(b) Short-horizon plans

Figure 5: Performance of NAP against PPO on the CHASER
environment (a) trained on 10, 20, 50, 100 and 200 levels.
In (b) we show the short-horizon plans (white) of the agent
(blue) at step 5 and 110 in the environment.

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

CRASH 5X5 CRASH 5x10 MAZE LEAPER(GRID)

1.0
Q
&
(%]
& 0.5
o)
1)
2

0.0

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
#levels #levels #levels #levels
BC H=1 —4— H=5 —— H=10 —— H=15

Figure 6: Test success rate of our method with different horizon lengths. The solver assumes that the last horizon step costs
remain to infinity. In this sense, the horizon of length 1 corresponds to a static solver.

after seeing a 1000 levels. Our NAP trained on 1000 levels
reaches the same performance as PPO trained on 200 000
levels of the MAZE environment. For CRASH JEWEL HUNT
5 x b, already with 30 trajectories a third of the 1000 test-
levels can be solved, while the behavior cloning baseline
manages less than 50 out of the 1000.

In CHASER we learn a subgoal predictor from expert tra-
jectories that predicts a subgoal for the TDSP algorithm at
each time step, since there is no clear goal state specified by
the environment. The performance plots in Fig. 5 show that
NAP outperforms the baselines. Additionally, in Fig. 5(b)
we observe that using NAP the agent is able to perform
detours to collect orbs, indicating that the learned costs in
the latent planning graph reflect the actual task.

6.4. Sensitivity to the Planning Horizon

We provide a sensitivity analysis of the performance with
different planning horizons. Our results indicate that longer
horizons benefit environments with increased dynamical in-
teractions. As apparent from Fig. 6, our method outperforms
the behavior cloning baseline in all of the environments, the
gap between the methods being correlated with the complex-
ity of the environment. It can also be seen that making the
planning horizon smaller in environments with dynamics
hurts performance.

On the other hand, for environments with no dynamics,
such as the maze environment, there is no benefit in using a
longer planning horizon, as expected. Nevertheless, there is
still strong performance gain in generalization when using
NAP as opposed to vanilla imitation learning from expert
trajectories thanks to the introduced combinatorial inductive
bias.

6.5. Path Optimality

We have observed that introducing combinatorial structural
biases with a method such as NAP can benefit generalization
greatly. Another interesting question is how optimal are the
paths taken by NAP. Even though NAP has an advantage
in having access to expert optimal or near-optimal trajecto-

LEAPER(GRID) MAZE

W YYT TYY.

150 - - - .
100
50
0

DrAC” o

episode length

= NAP u PPO

Figure 7: Distributions of test level episode lengths after
training on 500 levels for the LEAPER(GRID) and MAZE en-
vironments over 3 seeds. We observe that NAP tends to take
shorter paths than DrAC* and PPO. We also observe that the
median episode length for the baselines in the MAZE task
is located in the upper part, which corresponds to unsolved
levels.

ries, this does not necessarily translate to being able to act
optimally in unseen situations.

For this analysis we have plotted the episode length distri-
bution across runs for NAP, DrAC* and PPO, which can
be seen in Fig. 7. This shows us that NAP generalizes
with more optimal (shorter) paths in comparison to DrAC*
and PPO, even when compared only to levels solved by all
methods. Even in the LEAPER(GRID) environment, where
DrAC* outperforms NAP by measure of success rate, NAP
still outperforms DrAC* in terms of path lengths.

7. Discussion

We have shown that hybrid neuro-algorithmic policies con-
sisting of deep feature extraction and a shortest path solver —
made differentiable via blackbox differentiation (Vlastelica
et al., 2020) — enable learning policies that generalize to
unseen environment settings in the low-data regime. Hy-
brid architectures are a stepping stone towards the usage of
better inductive biases that enable stronger generalization.
In NAP, the inductive bias that we impose is the topology

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

of the latent planning graph in conjunction with a planning
algorithm. Introducing the shortest-path solver as a module
shifts the combinatorial complexity of the planning problem
to efficient algorithmic implementations while facilitating
the learning of good representations for planning.

Although there is a clear benefit in using NAP, the method
comes with certain caveats. We assume that the topological
structure (i.e. that there is an underlying grid structure with
a set of 5 actions) of the latent planning graph is known
a priori. Furthermore, we assume that the structure of the
latent graph is fixed and not dynamically changing over
time, i.e. that each available action at a vertex corresponds
to the same edge. Any results allowing to abandon some of
these assumptions will vastly increase the applicability of
this method and should be of immediate interest.

Acknowledgment

We thank the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for supporting Marin
Vlastelica. Georg Martius is a member of the Machine
Learning Cluster of Excellence, EXC number 2064/1 —
Project number 390727645. We acknowledge the support
from the German Federal Ministry of Education and Re-
search (BMBF) through the Tiibingen AI Center (FKZ:
01IS18039B).

References

Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse
reinforcement learning. In International Conference on
Machine learning, ICML, pp. 1, 2004.

Aghasadeghi, N. and Bretl, T. Maximum entropy inverse
reinforcement learning in continuous state spaces with
path integrals. In International Conference on Intelligent
Robots and Systems, IROS, pp. 1561-1566. IEEE, 2011.

Amos, B. and Yarats, D. The differentiable cross-entropy
method. In International Conference on Machine Learn-
ing, ICML, 2020.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural net-
works. In International Conference on Machine Learning,

ICML, pp. 146-155, 2017.

Asai, M. and Fukunaga, A. Classical planning in deep la-
tent space: Bridging the subsymbolic-symbolic boundary.
arXiv preprint arXiv:1705.00154, 2017.

Asai, M. and Kajino, H. Towards stable symbol grounding
with zero-suppressed state autoencoder. In International
Conference on Automated Planning and Scheduling, vol-
ume 29, pp. 592-600, 2019.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-
P, and Bach, F. Learning with differentiable perturbed
optimizers. arXiv preprint arXiv:2002.08676, 2020.

Bharadhwaj, H., Xie, K., and Shkurti, F. Model-predictive
control via cross-entropy and gradient-based optimization.
arXiv preprint arXiv:2004.08763, 2020.

Blaes, S., Vlastelica, M., Zhu, J., and Martius, G. Control
what you can: Intrinsically motivated task-planning agent.
In Advances in Neural Information Processing Systems
32, NeurIPS, pp. 12541-12552. Curran Associates, Inc.,
2019.

Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman,
A., Leibo, J. Z., Rae, J., Wierstra, D., and Hass-
abis, D. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Burget, F., Bennewitz, M., and Burgard, W. Bi 2 rrt*: An
efficient sampling-based path planning framework for
task-constrained mobile manipulation. In Conference on
Intelligent Robots and Systems, IROS, pp. 3714-3721.
IEEE, 2016.

Chen, Y., Shi, Y., and Zhang, B. Optimal control via neural
networks: A convex approach. In International Confer-
ence on Learning Representations, ICLR, 2018.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. In International Conference on Machine Learn-
ing, ICML, pp. 2048-2056. PMLR, 2020.

Daw, N. D., Niv, Y., and Dayan, P. Uncertainty-based
competition between prefrontal and dorsolateral striatal

systems for behavioral control. Nature Neuroscience, 8
(12):1704-1711, 2005.

Demirovic, E., Stuckey, P. J., Bailey, J., Chan, J., Leckie, C.,
Ramamohanarao, K., and Guns, T. Predict+optimise
with ranking objectives: Exhaustively learning linear
functions. In International Joint Conference on Arti-
ficial Intelligence, 1JCAI, pp. 1078-1085, 2019. doi:
10.24963/ijcai.2019/151.

Dijkstra, E. W. A note on two problems in connexion with
graphs. Numer. Math., 1(1):269-271, December 1959.
doi: 10.1007/BF01386390.

Djolonga, J. and Krause, A. Differentiable learning of
submodular models. In Advances in Neural Information
Processing Systems, pp. 1013-1023, 2017.

Elmachtoub, A. N. and Grigas, P. Smart “predict, then
optimize”. Management Science, 2021. doi: 10.1287/
mnsc.2020.3922. in press, arXiv preprint 1710.08005.

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems 32, pp. 15246-15257. Curran Associates,
Inc., 2019.

Ferber, A., Wilder, B., Dilkina, B., and Tambe, M. MIPaaL.:
Mixed Integer Program as a Layer. In Conference on
Artificial Intelligence, AAAI, pp. 1504-1511, 2020.

Finn, C. and Levine, S. Deep visual foresight for planning
robot motion. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2786-2793. 1IEEE,
2017.

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. Informed
rrt*: Optimal sampling-based path planning focused via
direct sampling of an admissible ellipsoidal heuristic. In
2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2997-3004. IEEE, 2014.

Hafner, D., Lillicrap, T., Fischer, L., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International Conference on
Machine Learning, volume 97 of ICML, pp. 2555-2565,
Long Beach, California, USA, 2019.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Sys-
tems, pp. 4565-4573, 2016.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Advances in Neural Information Processing Systems, pp.
12519-12530, 2019.

Kaiser, L., Babaeizadeh, M., Mitos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., Mohiuddin, A., Sepassi, R.,
Tucker, G., and Michalewski, H. Model based rein-
forcement learning for Atari. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=S1xCPJHtDB.

Karkus, P., Ma, X., Hsu, D., Kaelbling, L. P, Lee, W. S.,
and Lozano-Pérez, T. Differentiable algorithm networks
for composable robot learning. In Robotics: Science and
Systems XV, RSS, 2019. doi: 10.15607/RSS.2019.XV.
039.

Kumar, R., Mandalika, A., Choudhury, S., and Srinivasa, S.
Lego: Leveraging experience in roadmap generation for
sampling-based planning. 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
1488-1495, 2019.

Kuo, Y.-L., Barbu, A., and Katz, B. Deep sequential models
for sampling-based planning. In 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 6490-6497. IEEE, 2018.

Li, Y., He, H., Wu, J., Katabi, D., and Torralba, A. Learning
compositional koopman operators for model-based con-
trol. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/
forum?id=H11dzA4tPr.

Mandi, J., Demirovic, E., Stuckey, P. J., and Guns, T. Smart
predict-and-optimize for hard combinatorial optimization
problems. AAAI Conference on Artificial Intelligence, 34
(02):1603-1610, 2020. doi: 10.1609/aaai.v34i02.5521.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Advances
in Neural Information Processing Systems, pp. 3303—
3313, 2018.

Neu, G. and Szepesvari, C. Apprenticeship learning us-
ing inverse reinforcement learning and gradient methods.
arXiv preprint arXiv:1206.5264, 2012.

Ng, A. Y. and Russell, S. Algorithms for inverse reinforce-
ment learning. In International Conference on Machine
Learning, ICML, 2000.

Niculae, V., Martins, A. F., Blondel, M., and Cardie, C.
Sparsemap: Differentiable sparse structured inference.
arXiv preprint arXiv:1802.04223, 2018.

Oh, J., Singh, S., and Lee, H. Value prediction network. In
Advances in Neural Information Processing Systems, pp.

6118-6128, 2017.

Pinneri, C., Sawant, S., Blaes, S., and Martius, G. Extracting
strong policies for robotics tasks from zero-order trajec-
tory optimizers. In International Conference on Learning
Representations, ICLR, 2021.

Racaniere, S., Weber, T., Reichert, D., Buesing, L., Guez, A.,
Jimenez Rezende, D., Puigdomenech Badia, A., Vinyals,
0., Heess, N., Li, Y., et al. Imagination-augmented agents
for deep reinforcement learning. Advances in Neural
Information Processing Systems, 30:5690-5701, 2017.

Raileanu, R., Goldstein, M., Yarats, D., Kostrikov, I., and
Fergus, R. Automatic data augmentation for general-

ization in deep reinforcement learning. arXiv preprint
arXiv:2006.12862, 2020.

Reddy, S., Dragan, A. D., and Levine, S. Sqil: Imitation
learning via reinforcement learning with sparse rewards.
arXiv preprint arXiv:1905.11108, 2019.

https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=H1ldzA4tPr
https://openreview.net/forum?id=H1ldzA4tPr

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

Rolinek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis,
C., and Martius, G. Optimizing ranking-based metrics
with blackbox differentiation. In Conference on Com-
puter Vision and Pattern Recognition, CVPR’20, 2020.

Ross, S., Gordon, G., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret

online learning. In International Conference on Artificial
Intelligence and Statistics, AISTATS, pp. 627-635, 2011.

Savinov, N., Dosovitskiy, A., and Koltun, V. Semi-
parametric topological memory for navigation. In Inter-
national Conference on Learning Representations, 2018.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Uni-
versal value function approximators. In International
Conference on Machine Learning, volume 37 of ICML,
pp. 1312-1320, 2015.

Schrittwieser, J., Antonoglou, 1., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering Atari, Go, chess and
shogi by planning with a learned model. Nature, pp.
604—-609, 2020. doi: 10.1038/s41586-020-03051-4.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A.,
Harley, T., Dulac-Arnold, G., Reichert, D., Rabinowitz,
N., Barreto, A., and Degris, T. The predictron: End-to-
end learning and planning. In International Conference
on Machine Learning, volume 70 of ICML, pp. 3191—
3199. PMLR, 2017.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn,
C. Universal planning networks: Learning generalizable
representations for visuomotor control. In International
Conference on Machine Learning, volume 80 of ICML’18,
pp. 4732-4741, 2018.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bulletin, 2(4):160—
163, 1991.

Sutton, R. S., Szepesvdri, C., Geramifard, A., and Bowling,
M. Dyna-style planning with linear function approxi-
mation and prioritized sweeping. In Proceedings of the
Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence, pp. 528-536, 2008.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P.
Value iteration networks. In Advances in Neural Informa-
tion Processing Systems, pp. 2154-2162, 2016.

Vlastelica, M., Paulus, A., Musil, V., Martius, G., and
Rolinek, M. Differentiation of blackbox combinatorial

solvers. In International Conference on Learning Repre-
sentations, ICLR’20, 2020.

Wang, P.-W., Donti, P, Wilder, B., and Kolter, Z. SAT-
Net: Bridging deep learning and logical reasoning using
a differentiable satisfiability solver. In International Con-
ference on Machine Learning, volume 97 of ICML, pp.
6545-6554, 2019.

Wu, G., Say, B., and Sanner, S. Scalable planning with
deep neural network learned transition models. Journal
of Artificial Intelligence Research, 68:571-606, 2020.

Yao, H., Bhatnagar, S., Diao, D., Sutton, R. S., and
Szepesvari, C. Multi-step dyna planning for policy eval-
uation and control. In Advances in Neural Information
Processing Systems, pp. 2187-2195, 2009.

Yonetani, R., Taniai, T., Barekatain, M., Nishimura, M.,
and Kanezaki, A. Path planning using neural A* search.
arXiv preprint arXiv:2009.07476, 2020.

	Introduction
	Related Work
	Markov Decision Processes and Shortest Paths
	Factorized MDPs and Time-dependent Shortest Path

	Shortest Path Algorithm and its Differentiation
	Applicability of Blackbox Differentiation
	Cost Margin

	Neuro-algorithmic Policy Framework
	Global and Local Goal Prediction

	Experiments
	Crash Jewel Hunt
	ProcGen Benchmark
	Results
	Sensitivity to the Planning Horizon
	Path Optimality

	Discussion

