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Abstract
Current state-of-the-art algorithms for training ro-
bust decision trees have high runtime costs and
require hours to run. We present GROOT, an effi-
cient algorithm for training robust decision trees
and random forests that runs in a matter of sec-
onds to minutes. Where before the worst-case
Gini impurity was computed iteratively, we find
that we can solve this function analytically to
improve time complexity from O(n) to O(1) in
terms of n samples. Our results on both single
trees and ensembles on 14 structured datasets as
well as on MNIST and Fashion-MNIST demon-
strate that GROOT runs several orders of magni-
tude faster than the state-of-the-art works and also
shows better performance in terms of adversarial
accuracy on structured data.

1. Introduction
Recently it has been shown that neural networks (Szegedy
et al., 2014; Goodfellow et al., 2014) and similarly linear
models, decision trees and support vector machines (Paper-
not et al., 2016a) are vulnerable to adversarial examples:
perturbed samples that trick the model into misclassifying
them. Much research has gone into training robust neu-
ral networks (Papernot et al., 2016b; Meng & Chen, 2017;
Samangouei et al., 2018; Ilyas et al., 2019). These models
perform well on unstructured data such as images and au-
dio, but decision tree ensembles often outperform them on
structured data. Additionally, when using a single decision
tree, the models are easily interpreted by humans. Recently
the first methods have been proposed to train decision trees
and their ensembles robustly (Kantchelian et al., 2016; Chen
et al., 2019; Calzavara et al., 2020; Andriushchenko & Hein,
2019) but the state-of-the-art methods are expensive to run.

In this work we propose GROOT, an efficient algorithm
for training robust decision trees. Like Chen et al. (Chen
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et al., 2019), we closely mimic the greedy recursive split-
ting strategy that traditional decision trees use and we score
splits with the adversarial Gini impurity. We prove that
the adversarial Gini impurity is concave with respect to the
number of modified data points and use its analytical solu-
tion to compute the function in constant time. Our results
show that GROOT trains trees 3 to 6 orders of magnitude
faster than the state-of-the-art method TREANT (Calzavara
et al., 2020) and GROOT trains random forests 100-1000
times faster than provably robust boosting (Andriushchenko
& Hein, 2019). Leveraging this speedup we can fit robust
random forests using the adversarial Gini impurity and we
do not have to rely on a heuristic such as Chen et al.

Moreover, GROOT scores competitively on adversarial ac-
curacy which we evaluate on 14 structured datasets as well
as on MNIST and Fashion-MNIST. On the structured data,
both GROOT trees and GROOT forests outperform the state-
of-the-art robust tree and forest methods. GROOT trees
obtain a small performance improvement over TREANT.
GROOT forests outperform provably robust boosting. In-
terestingly, GROOT trees and forests obtain top and similar
ranks. Showing that in contrast to regular accuracy, there
is not much difference between the adversarial accuracy
obtained by robust decision trees and forests. On MNIST
and Fashion-MNIST, provably robust boosting outperforms
GROOT forests on robustness by respectively 0.8% and
5.5% but takes 122 times and 162 times longer to train. We
implement and publish GROOT’s source code in a Scikit-
learn (Pedregosa et al., 2011) compatible classifier. We take
inspiration from TREANT and allow users to easily config-
ure the perturbation range for each separate feature. Our
main contributions are:

• An efficient score function that allows us to fit trees
orders of magnitude faster than the state of the art.

• An algorithm that achieves competitive performance
to the state of the art in the adversarial setting.

• A flexible implementation that allows users to specify
attacks in terms of axis aligned perturbations.

2. Related Work
To the best of our knowledge we summarize all related
works on robust decision tree learning. In Table 1 we com-
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Table 1: Overview of algorithms for fitting robust deci-
sion trees. Runtimes in terms of n number of samples, all
algorithms also grow linearly in number of features and
exponentially in depth.

Algorithm Runtime Threat model

GROOT O(n log n) L∞ and variations
Provably robust boosting O(n2) L∞
TREANT O(n2) axis-aligned rules
Chen et al. exact O(n2) L∞
Chen et al. heuristic O(n log n) L∞
MILP hardening O(n log n) L0 / L1 / L2 / L∞
Approx. hardening O(n log n) L0

pare each algorithm’s runtime complexity and threat model.
We assume the reader to be familiar with regular decision
tree learning algorithms.

2.1. Hardening Tree Ensembles

Setting the foundations of robust decision trees, Kantche-
lian et al. (Kantchelian et al., 2016) propose a hardening
approach for tree ensembles and prove that finding adversar-
ial examples under distance constraints is NP-hard for tree
ensembles. They also provide a MILP formulation to solve
the problem for arbitrary Lp norm which we use to verify
the robustness of our models in Section 6.

2.2. Robust Decision Trees

Chen et al. (Chen et al., 2019) present an algorithm that
fits robust decisions trees against L∞ norm perturbations
by using a new splitting criterion. This criterion is the worst
case information gain or Gini impurity when an attacker
moves points within an L∞ radius. The authors find that
they can compute the criterion exactly using gradient de-
scent which takes O(n) time in terms of n samples. They
deem this computation intractable for boosting ensembles
and therefore give a fast heuristic based on four represen-
tative cases. GROOT’s criterion is equivalent to the exact
criterion but speeds up the computation to O(1) time and
thereby enables its use in ensembles.

2.3. TREANT

TREANT (Calzavara et al., 2020) introduces a more flexible
approach to specifying attacker capabilities. By allowing
the user to describe an adversary using axis-aligned rules, at-
tackers can be more realistically modelled with asymmetric
changes and different constraints for different axes. Also, at-
tackers can be modelled with a ‘budget’ that they can spend
on changing data points which allows the user to evaluate
robustness against attackers of different strengths. TREANT

Figure 1: Decision regions of GROOT trees attacked by
different threat models (indicated above each image). The
threat model greatly influences the learned trees, e.g. ro-
bust decision trees against L∞ perturbations (top right) are
different from trees robust against other attackers (bottom).

still greedily builds a tree but it directly optimizes a loss
function instead of using a splitting criterion. Although this
allows TREANT to train against a variety of attackers, their
algorithm deploys a solver to optimize the loss function and
pre-computes all possible attacks which takes in the order
of hours to run.

2.4. Provably Robust Boosting

Where Chen et al. and TREANT describe algorithms for
fitting a single robust tree, provably robust boosting (An-
driushchenko & Hein, 2019) directly fits a robust ensemble.
The authors find that they can efficiently compute the ad-
versarial loss for boosted decision stumps and use this to
derive an upper bound on the adversarial loss of boosted de-
cision trees. By optimizing this bound on boosted decision
trees they reach state-of-the-art performance on adversarial
accuracy in tree ensembles and can compete with results
from neural networks. While their ensembles contain many
shallow trees which grants fast inference time, the training
time of the method is in the order of hours.

3. Specifying Threat Models
In our work we assume existence of an attacker that knows
the model and perturbs samples according to a user-specified
threat model. Therefore to support a wide range of attack
types we take inspiration from TREANT (Calzavara et al.,
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2020) and let the user define the perturbation limits for each
individual feature. The specification is as follows:

• “”or None: This feature cannot be perturbed.
• > or <: This feature can be increased / decreased.
• >: This feature can only be perturbed to a higher value.
• <: This feature can only be perturbed to a lower value.
• <>: This feature can be perturbed to any value.
• ε: The feature can be perturbed by a distance of ε.
• (εl, εr): The feature can be perturbed εl left or εr right.

We visualize GROOT trees with a variety of threat models
in Figure 1. It is worth noting that all these cases can be
translated to the tuple notation, e.g. we can encode > as
(0,∞) or a number ε as (ε, ε). For conciseness we only
use the tuple notation in the algorithms in section 5. When
we set the threat model to ε for each feature, it behaves
identically to an L∞ norm. We also allow the user to choose
whether one or both of the classes can be perturbed.

In the rest of the paper we use an L∞ threat model where
both classes move and where features are scaled to the range
[0, 1] since this allows us to compare to existing work. To
foster further research we implemented GROOT according
to the Scikit-learn API and published the code on GitHub1.

4. Adversarial Gini Impurity
Similar to robust decision trees (Chen et al., 2019) we use
the worst-case Gini impurity to score threshold values. We
show that we can efficiently compute this function by lever-
aging its concavity.

4.1. Adversarial Gini Impurity for Two Moving Classes

We typically fit decision trees with a splitting criterion such
as the Gini impurity. To determine the quality of a split we
then take the weighted average of the scores on both sides.
We can define the Gini impurity for two classes as:

G(n0, n1) = 1−
(

n0
n0+n1

)2

−
(

n1
n0+n1

)2

(1)

Where n0 and n1 are the number of samples of label 0 and
1 respectively. Then we combine this into a score function
by taking the weighted average with respect to number of
samples on each side of the split (other works use the Gini
gain which behaves identically):

S(l0, l1, r0, r1) =

(l0 + l1) ·G(l0, l1) + (r0 + r1) ·G(r0, r1)

l0 + l1 + r0 + r1
(2)

Where l0 and l1 are the number of samples on the left side

1https://github.com/tudelft-cda-lab/GROOT

of the split of label 0 and 1 respectively. Similarly r0 and r1
represent samples on the right. Normally one searches for
a split that minimizes this score function. Instead, we keep
track of a set I that contains all samples close enough to the
split to cross it under adversarial influence. We minimize the
score function after the attacker maximizes it by perturbing
the samples in I .

Where one normally minimizes the Gini impurity, we as-
sume an attacker that aims to maximize S(l0, l1, r0, r1) by
moving samples from I to different sides of the split. We
visualize this maximization problem in Figure 2. Here, i1
is the number of points with label 1 that are close enough
to the split that the adversary can move them to either side.
Mathematically we are looking for the integer m1 ∈ [0, i1]
such that m1 points of I1 move to the left side of the split
and i1 −m1 to the right. Similarly we have an i0 and m0

for the class 0 samples. The score function under attacker
influence is:

Srobust(l0, l1, r0, r1, i0, i1) = max
m1∈[0,i1],m0∈[0,i0]

S(l0 +m0, l1 +m1, r0 + i0 −m0, r1 + i1 −m1) (3)

We can then write the m′
1 and m′

0 that maximize it as:

m′
1,m

′
0 = argmax

m1∈[0,i1],m0∈[0,i0]

(
(l0 +m0)(l1 +m1)

l0 + l1 +m1 +m0

+
(r0 + i0 −m0)(r1 + i1 −m1)

r0 + r1 + i0 + i1 −m1 −m0

)
(4)

The algorithm by Chen et al. (Chen et al., 2019) optimizes
a similar function by iterating through the I samples to per-
form gradient ascent. However, since the function is concave

Figure 2: Example of the adversarial Gini impurity where
samples can move in the range of the arrows. We want to
move a number of samples from I over the threshold (line,
center) to maximize the weighted average of Gini impurities.
In this example we can move the single blue (filled) sample
from RI into LI to maximize it.

https://github.com/tudelft-cda-lab/GROOT
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with respect to x and y, we can do this faster by maximiz-
ing the function analytically and rounding to a near integer
solution. The maxima form the following line (proofs in the
appendix):

m′
0 =

l1(r0 + i0)− l0(r1 + i1)

l1 + r1 + i1
+

(l0 + r0 + i0)m
′
1

l1 + r1 + i1
(5)

Using gradient ascent and given enough movable samples
one would end up on the optimal line, but not necessarily
on the closest point on the line to the starting values for
m1 and m0. We argue that the closest point is intuitively a
better solution than a random point on the line, because it
represents the least number of samples to move. Therefore
in GROOT we find the closest point on the solution line to
the starting values of m1,m0 (|LI1|, |LI0|) then round to
the nearest integers.

Computing the point and rounding it takesO(1) time. There-
fore we have an efficient method (constant time) to compute
Srobust (Equation 2).

5. GROOT
We introduce GROOT (Growing RObust Trees), an algo-
rithm that trains decision trees that are robust against ad-
versarial examples generated from a user-specified threat
model. The algorithm stays close to regular decision tree
learning algorithms but searches through more candidate
splits with a robust score function and propagates samples
according to an attacker. Like regular decision tree learning
algorithms, GROOT runs in O(n log n) time in terms of
n samples. Similar to these algorithms, GROOT greedily
makes splits according to a heuristic. This strategy performs
well in practice but has no provable bound (Kearns, 1996).

5.1. Scoring Candidate Splits

Similar to regular decision tree learning algorithms we can
search over all possible splits and compute a score function
to find the best split. In Algorithm 1 we iterate over each
sample in sorted order to identify candidate splits. We eval-
uate each candidate split with the adversarial Gini impurity
from Section 4 to find the split that is accurate against an
adversary. Below we describe our algorithm for numerical
features, for categorical features we refer to the Appendix.
The time complexity in terms of n samples for both cases is
bounded by O(n log n) per feature.

In regular decision tree learning algorithms we score candi-
date splits at each position in which a sample moves from
the right to the left side. However, when an adversary can
perturb samples there are more possible splits that affect
the sample counts on each side. Therefore we consider also
candidate splits where a movable sample becomes in or out

Algorithm 1 Find Best Robust Split on Numerical feature
Input: feature values X , perturbation limits (εl, εr)
X1 refers to the samples with label 1

1: S ← X ∪ {o− εl|o ∈ X} ∪ {o+ εr|o ∈ X}
2: for s ∈ S do
3: R← {o|o ∈ X ∧ o > s+ εr}
4: RI ← {o|o ∈ X ∧ s < o ≤ s+ εr}
5: LI ← {o|o ∈ X ∧ s− εl < o ≤ s}
6: L← {o|o ∈ X ∧ o ≤ s− εl}
7: (m1s,m0s) ← number of samples from I to move

left {See Eq. 5}
8: m1s ← round(m1s), m0s ← round(m0s)
9: gs ← S(|L0| + m0s, |L1| + m1s, |R0| + |I0| −

m0s, |R1|+ |I1| −m1s) {See Equation 2}
10: end for
11: s′ ← argmins gs
12: split with threshold s′

Output: (s′, gs′ ,m1s′ , ys′)

Algorithm 2 Fit Robust Tree on Numerical Data
Input: sample set X , perturbation limits (εl, εr)
X1 refers to the samples with label 1

1: if stopping criterion (e.g. maximum depth) then
2: create Leaf(|X0|, |X1|)
3: else
4: for f ← 1...F do
5: sf , gf ,m1f ,m0f ← BestRobustSplit(Xf , εl, εr)
6: end for
7: f ′ ← argminf gf
8: determine R, RI , LI , L for split f ′ as in Alg. 1
9: move m1f ′ random samples from I1 to LI1, the re-

maining |I1| −m1f ′ samples go to RI1
10: move m0f ′ random samples from I0 to LI0, the re-

maining |I0| −m0f ′ samples go to RI0
11: nodel ← FitRobustTree(L ∪ LI)
12: noder ← FitRobustTree(R ∪RI)
13: create DecisionNode(sf ′ , nodel, noder)
14: end if

of range of I . Take for example a sample at position 0.4 that
can be perturbed in a radius of 0.1, we score a split at 0.3,
0.4 and 0.5. At the start of Algorithm 1 we sort all candidate
splits. We can then compute the sample counts and evaluate
each split in O(1) time, as explained in Section 4. Recall
that we consider at maximum 3n splits, where n is number
of samples. Therefore the time complexity of evaluating
splits is O(n) per feature and this means the fitting run time
is dominated by the sorts of complexity O(n log n).
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Figure 3: Runtimes of decision trees and ensembles in seconds on a logaritmic scale. Decision trees, random forests and
gradient boosting enjoy Scikit-learn’s optimized implementation. GROOT and Chen et al. consistently run 100-1000 times
faster than TREANT and provably robust boosting. TREANT’s spambase runs were terminated after 24 hours.

5.2. Propagating Samples

When fitting regular decision trees one can simply move
all samples lower than a threshold left and higher to the
right. In our robust trees we account for samples that the
adversary moves by modifying this propagation which we
define in Algorithm 2. We do not only keep track of left (L)
and right (R) samples, but also store an ‘intersection’ set
I = LI ∪RI that contains samples that can move to both
sides. Here LI are the samples from I that were originally
on the left side and RI were originally on the right side.

In section 4 we showed that m′
1 and m′

0 are the optimal
values for the adversarial Gini impurity. From I1 we move
samples over the split to place m′

1 samples on the left and
I1 −m′

1 on the right. If there were, before moving, fewer
thanm′

1 samples on the left we move samples from the right.
If there were more samples on the left we move them to the
right. We do this to keep as many samples as possible on
the original side of the split. We repeat the same procedure
for m0 and I0.

The actual samples that move are randomly selected
from the intersection I this makes our algorithm non-
deterministic and therefore with different randomization
seeds the algorithm can fit different trees. Our intuition
behind random selection is that it prevents influence on the

data distribution in splits further down the tree. If we were
to move e.g. the closest samples to the threshold over the
split, these samples might correlate with other features and
cause any side of the split to become biased to specific val-
ues of that feature. The strategy differs between methods,
e.g. TREANT chooses to move a sample to the side where
it currently incurs the greatest loss. In future works, one
could fit trees by optimizing all splits at once instead of a
greedy method. In that case it is not needed to implement
a sample propagation strategy but algorithms for optimal
decision trees come at the cost of runtime.

5.3. GROOT Random Forests

To enable its use in ensembles we also implement a random
forest of GROOT decision trees. In random forests it is
important that the individual models have low covariance
which we achieve using the same techniques as regular ran-
dom forests (Breiman, 2001). Specifically, we train each
decision tree on a bootstrap sample of the original training
set and limit each decision node to scanning a random selec-
tion of

√
f features (given f the total number of features).

We do not limit the size of the decision trees. Similarly to
Scikit-learn’s implementation of random forests, the ensem-
ble makes predictions by averaging and then rounding all
individual tree predictions.
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6. Results
We present results on 14 structured datasets as well as
MNIST (LeCun et al., 2010) and Fashion-MNIST (Xiao
et al., 2017). We compare GROOT against regular tree
based models, the methods by Chen et al., TREANT and
provably robust boosting. For the regular models we use
scikit-learn’s (Pedregosa et al., 2011) implementation as it
is widely used for research in the field. The used hyper-
parameters are summarized in Table 5. All datasets can
be retrieved from OpenML2, their specific versions, size
and corresponding ε values can be found in Table 2. We
removed any data row with missing values as it is unclear
how to measure robustness against these samples.

6.1. Training Runtime

To compare the efficiency of the algorithms, we plot the run
times of each run in Figure 3, the results shown are averaged
over 5 data folds. All experiments ran on a Linux machine
with 16 Intel Xeon CPU cores and 72GB of RAM total.
Each algorithm instance ran on a single core and therefore
did not use any parallel optimizations.

Regarding the single decision tree models, regular decision
trees enjoy the optimized code by Scikit-learn which is
clearly the fastest. Comparing TREANT and GROOT, we
see that our algorithm runs three to six orders of magnitude
faster. TREANT exhaustively searches for attacks using
an exponential search and uses a sequential quadratic pro-
gramming solver to optimize the loss function which likely
contributes to the higher run time. The heuristic by Chen
et al. has a similar runtime as GROOT as it only uses a
different splitting criterion, which we implemented in the
code of GROOT.

In the ensemble model results we again see very fast results
from the optimized implementations by Scikit-learn (Ran-
dom forest and Gradient boosting) and Chen et al. boosting
which is built on XGBoost (Chen & Guestrin, 2016). Still,
GROOT and the Chen et al. forest run 2 to 3 orders of
magnitude faster than provably robust boosting.

6.2. Predictive Performance on Structured Data

To determine the quality of the models produced by each
algorithm we measure adversarial accuracy using the exact
MILP attack (Kantchelian et al., 2016) which we modified
to a feasibility problem as done in (Andriushchenko & Hein,
2019) to improve run time. The adversarial accuracy is
the accuracy after samples have been optimally perturbed
within an L∞ ball of radius ε.

We encoded the above threat models in TREANT’s attack
rules using precondition [−∞,∞] and postcondition ε or

2https://www.openml.org/

Table 2: Structured datasets used by OpenML (version)
name. Whenever possible, ε is taken from earlier work.

Dataset Samples Features ε

banknote-authentication (1) 1372 4 0.1
blood-transfusion (1) 748 4 0.1
breast-cancer (1) 683 9 0.3
climate-model-simulation (4) 540 18 0.1
cylinder-bands (2) 277 37 0.1
diabetes (1) 768 8 0.05
haberman (1) 306 3 0.1
ionosphere (1) 351 34 0.2
parkinsons (1) 195 22 0.1
planning-relax (1) 182 12 0.1
sonar (1) 208 60 0.1
spambase (1) 4601 57 0.05
SPECTF (2) 267 44 0.1
wine (1) 6497 11 0.05

−ε. Each rule has cost 1 and the attacker has a budget equal
to the depth of the trees. In the original TREANT imple-
mentation, it allows attack rules to be applied to the same
feature multiple times (in each decision node), resulting in
attacks larger than ε. To exactly match the threat model
specifications, we modify TREANT to only use attack rules
once per feature. Preliminary testing without this modifica-
tion gave poor results. Given these modifications the attack
rules exactly encode the L∞ radius attack model.

Another popular method for measuring robustness (e.g. in
(Kantchelian et al., 2016; Chen et al., 2019)) is to compute
the average perturbation distance required to cause a mis-
classification. We choose against this metric as it assumes
features can perturb arbitrarily and with equal cost.

We train each model on each dataset with 5 fold stratified
cross validation. All single decision trees were trained up to
a depth of 4 to maintain interpretability. We implemented
GROOT and the heuristic by Chen et al. in Python but used
TREANT’s existing implementation with before-mentioned
minor modifications. Scikit-learn uses the Gini impurity and
TREANT optimizes the sum of squared errors. All models
required at least 10 samples to make a split and 5 samples to
create a leaf. We allowed all models to split multiple times
on the same feature. All ensembles were limited to training
100 trees. We report the average adversarial accuracy and
regular accuracy over 13 of the 14 structured datasets in
Figure 4. We present the number of wins and average ranks
over the datasets in Table 3. In both, we left out the results
on spambase as TREANT did not finish fitting after multiple
days of running.

While all models considered scored well on accuracy, the
scores in the adversarial setting differ. Regarding single

https://www.openml.org/
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Figure 4: Average adversarial accuracy (left) and accuracy scores (right) over 13 structured datasets. TREANT and GROOT
fit the most robust decision trees while provably robust boosting and GROOT random forests fit the most robust ensembles.
More robust models tend to score up to 5% worse on regular accuracy.

trees, TREANT and GROOT perform similarly on adversar-
ial accuracy and both significantly improve on regular deci-
sion trees by approximately 33%. GROOT obtains just over
1% more adversarial accuracy on average than TREANT,
only one more win, but does obtain a higher mean overall
rank. The heuristic by Chen et al. score approximately 7%
worse than TREANT and GROOT. The individual results
for each dataset are given in the appendix.

The ensemble results show that the GROOT random forest
and provably robust boosting clearly achieve the best adver-
sarial accuracy scores by about 5% difference over Chen et
al. forest. Moreover, GROOT performs about 2.5% better
than provably robust forest on average and obtains the best
mean rank across all methods. The results from Chen et al.
boosting were significantly lower than the scores from the
random forest. We expect that the boosting model is more
sensitive to the specific hyperparameters and that one could
improve the scores using a hyperparameter search.

Interestingly, there is no clear difference between the best
ensemble models and single decision tree models with re-
gards to adversarial accuracy. This is in contradiction with
the regular accuracy scores of decision trees and random
forests. In those scores we see a clear 5% difference.

6.3. Predictive Performance on Images

To compare predictive performance on image data we
present results on MNIST and Fashion-MNIST. GROOT
is limited to binary classification problems so we modify
the datasets to MNIST 2 vs 6 and Fashion-MNIST san-
dals vs sneakers, similar to what previous works have done
(Kantchelian et al., 2016; Chen et al., 2019; Andriushchenko

Table 3: Summary of relative adversarial accuracy scores
on 13 structured datasets.

Model Nr. Wins Mean rank

Chen et al. boosting 0 7.5
Chen et al. forest 3 4.3
Chen et al. tree 0 5.1
Decision tree 0 7.9
GROOT forest 9 1.5
GROOT tree 7 1.8
Gradient boosting 0 9.8
Provably robust boosting 2 3.7
Random forest 0 8.2
TREANT tree 6 2.7

& Hein, 2019). The prediction scores and runtimes are given
in Table 4. On these datasets we ran provably robust boost-
ing with parallelization enabled. All models ran on a system
with 8GB RAM and 4 Intel i7-4710MQ CPU cores (8 log-
ical cores), the hyperparameters were the same as in the
previous experiment. The datasets were randomly split in
a 70%-30% stratified train-test split and were evaluated
against an L∞ radius of 0.4.

On both MNIST and Fashion-MNIST provably robust
boosting achieved the best scores on adversarial accuracy.
GROOT significantly improved on the adversarial accuracy
scores of the other two models and scores close (0.8% differ-
ence) to the adversarial accuracy of provably robust boosting
on MNIST. GROOT achieves these scores while running
more than 100 times faster.

Previous works (Tsipras et al., 2018) have described the
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(a) MNIST 2 vs 6 (b) Fashion-MNIST sandals vs sneakers

Figure 5: Minimal adversarial examples, L∞ distances from the original are given below each example, larger is better.
Some images already get misclassified without modification.

Table 4: Comparison of tree ensembles on image data. Prov-
ably robust boosting achieves the best adversarial accuracy
but takes in the order of hours to run while GROOT runs in
minutes and significantly improves on other fast models.

MNIST 2 vs 6
Model Acc. Adv. acc. Time

Random forest 99.7% 0.0% 3.9 sec.
Chen et al. forest 98.9% 89.1% 2.1 min.
GROOT forest 99.4% 91.9% 2.5 min.
Provably robust boosting 99.2% 92.7% 5.1 hr.

Fashion-MNIST sandals vs sneakers

Random forest 95.8% 0.0% 5.9 sec.
Chen et al. forest 90.0% 52.6% 4.3 min.
GROOT forest 89.0% 70.4% 5.0 min.
Provably robust boosting 88.9% 75.9% 13.5 hr.

accuracy-robustness trade-off and we find it here too. Par-
ticularly on the Fashion-MNIST dataset the most robust
model sacrifices 6.9% regular accuracy where on the MNIST
dataset this difference is 0.5%.

Figure 5 shows the minimal L∞ norm perturbations re-
quired to change the prediction of each model. We generate
the adversarial examples using a MILP formulation for at-
tack tree ensembles (Kantchelian et al., 2016). The random
forest models need visibly more perturbed feature values
than the provably robust boosting model so by optimizing
the L∞ norm they also increase robustness in the L0 norm.
We expect this is due to the random forest approach of train-

ing each decision node on a limited selection of features
which causes more variety in the selected features.

7. Discussion and Conclusions
We present GROOT, an algorithm for learning robust deci-
sion trees. It uses an analytical solution for computing the
adversarial Gini impurity and by doing so runs two to six or-
ders of magnitude faster than the state-of-the-art approaches.
Our results show that GROOT trees score competitively
with TREANT and so do GROOT random forests with prov-
ably robust boosting. While the single GROOT trees are the
same size as those of TREANT, there is a noticeable differ-
ence between the size of random forest and boosting models.
In the case of random forests we do not limit the size of
the trees, where gradient boosting trees were trained to a
maximum depth of 8 (this is intended and does not reduce
model performance). This means that while our method
trains quickly, the models suffer from relatively longer infer-
ence and robustness verification times. In further research,
the random forests may be post-processed to reduce the size.

For the sake of comparison, we experimented on the same
public datasets that similar works on robustness used, but
these datasets were originally not intended for research into
adversarial attacks. In the near future, we will apply the
methods we discussed to problems where adversarial modi-
fications are an important concern such as fraud, malware
and intrusion detection. Chen et al. (Chen et al., 2021) have
successfully applied robust decision trees for such security
applications. Our fast splitting criterion can also be used to
speed up their algorithm.
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Table 5: Hyperparameters of all models used in our experiments. Parameters that were not applicable were left blank.
Except for n estimators, the values were copied from their original works wherever possible.

Parameter
Decision

tree
Chen et al.

tree
GROOT

tree
TREANT

tree
Random

forest
Gradient
boosting

Chen et al.
boosting

Chen et al.
forest

GROOT
forest

Provably
robust

boosting

max depth 4 4 4 4 None 8 8 None None 8
min samples split 10 10 10 10 10 10 - 10 10 10
min samples leaf 5 5 5 - 5 5 - 5 5 5

n estimators - - - - 100 100 100 100 100 100
η - - - - - - 0.2 - - 0.2
γ - - - - - - 1.0 - - -

min child weight - - - - - - 1 - - -
affine - - - False - - - - - -

While greedy algorithms that choose locally optimal splits
are popular for fitting decision trees, they can theoretically
perform arbitrarily poorly. There have been many successful
efforts in training optimal decision trees (Bertsimas & Dunn,
2017; Rhuggenaath et al., 2018; Verwer & Zhang, 2019;
Aglin et al., 2020) and their results show that the greedy
algorithms come close to optimal performance. An optimal
algorithm for robust decision trees will determine whether
the greedy approaches for robust trees perform as well as
their regular counterparts.

We conclude that:

• By solving the adversarial Gini impurity analytically
we can now fit robust trees with the same time com-
plexity as regular trees: O(n log n), for n samples.

• This algorithm, GROOT, runs orders of magnitude
faster than the state-of-the-art works and as efficiently
as an existing heuristic.

• GROOT consistently achieves scores competitive with
the state-of-the-art work in terms of robustness.
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