
Whitening and Second Order Optimization Impair Generalization

A. Isotropy of Weight Initialization Implies Conditional Independence
In this section we show that for isotropic initial weight distributions,

P (W 0R) = P (W 0) ∀R ∈ O(d) , (20)

the training activations Ztrain depend on the training data Xtrain only through the second moment matrix Ktrain. This is
summarized in Eq. 6 repeated here for convenience:

I(Z0
train;Xtrain | Ktrain) = 0.

The argument is as follows, the isotropy of the initial weight distribution implies that the distribution of first layer activations
conditioned on the training data is invariant under orthogonal transformations.

P (Z0
train|RXtrain) = P (Z0

train|Xtrain) ∀R ∈ O(d) . (21)

To derive this we can write the distribution over Z0
train in terms of the distribution over initial weights, P (Z0

train|Xtrain) =∫
DW 0P (W 0)δ(Z0

train−W 0Xtrain). Here DW 0 is the uniform measure over the components of W 0, DW 0. We then have

P (Z0
train|RXtrain) =

∫
DW 0P (W 0)δ(Z0

train −W 0RXtrain)

=

∫
DW̃ 0P (W̃ 0RT)δ(Z0

train − W̃ 0Xtrain)

=

∫
DW̃ 0P (W̃ 0)δ(Z0

train − W̃ 0Xtrain) = P (Z0
train|Xtrain) .

(22)

Here, δ denotes the Dirac delta function. To arrive at the second line we defined W̃ 0 := W 0R and used the invariance of
the measure DW 0. The third line follows from the O(d) invariance of the initial weight distribution. Now that we have
established the rotational invariance of the distribution over first layer activations we can derive Eq. 6.

By the first fundamental theorem of invariant theory (Kraft & Procesi, 1996), the only O(d) invariant functions of n vectors
in d dimensions are the n2 inner products Ktrain = X>trainXtrain. Thus P (Z0

train|Xtrain) = h(Ktrain) for some function h, and
P (Z0

train|Xtrain,Ktrain) = P (Z0
train|Ktrain). Eq. 6 then follows from the definition of conditional mutual information.

I(Z0
train;Xtrain | Ktrain) : = EKtrain

[
DKL(P (Z0

train, Xtrain|Ktrain)||P (Z0
train|Ktrain)P (Xtrain|Ktrain))

]
= EKtrain

[
P (Xtrain|Ktrain)DKL(P (Z0

train|Xtrain,Ktrain)||P (Z0
train|Ktrain))

]
= 0 .

(23)

B. Alternative Proof of Theorem 2.1.1
The proof statement in Eq. 5 can alternatively be directly established by identifying the sources of randomness and mutual
information in the update rules for Zttrain and θt, and making an inductive argument.

The base case, t = 0, is already discussed in the paper body. Assume Eq. 5 holds for t = i. By the chain rule,

I(Zi+1
train , θ

i+1;Xtrain | Ktrain, Ytrain) = I(Zi+1
train ;Xtrain | Ktrain, Ytrain) + I(θi+1;Xtrain | Ktrain, Ytrain, Z

i+1
train). (24)

The update rules for Ztrain and θ are given in Eqs. 4 and 3, respectively, where Li = L(gθi(Z
i
train);Ytrain). When Ktrain and

Ytrain are held fixed, the only sources of randomness in Zi+1
train and θi+1 are Zitrain and θi. By the initial assumption, these are

conditionally independent of Xtrain given Ktrain and Ytrain, and therefore both terms on the right-hand side of Eq. 24 evaluate
to zero.

C. Lower Dimensional Whitening
Here we prove Theorem 3.1.1 describing the loss of information when whitening d < n.

Whitening and Second Order Optimization Impair Generalization

Proof. By Theorem 2.2.1 and the causal diagram in Fig. 2(c), we know that the distribution over test set predictions depends
on model inputs only through K. Since K is positive semidefinite, it is fully specified by (n2+n)/2 entries. For d < n these
entries are not independent. K encodes the inner products between n vectors in d dimensions, These are specified by n
magnitudes and n(d− 1)− (d(d− 1))/2 independent angles.

Thus, for a model trained on unwhitened data,

c = min

(
nd− d2 − d

2
,
n2 + n

2

)
. (25)

Next we consider the case that full data whitening has been performed, such that F̂ = I . Recall the following identity,
where + indicates the pseudoinverse:

X̂> = X̂+X̂X̂>. (26)

Using this, we can rewrite K̂ as

K̂ = X̂>X̂ = X̂+X̂X̂>X̂ = X̂+F̂ X̂

= X̂+X̂. (27)

Next consider a modified dataset

X̃ = QX̂ = [I · · ·] , (28)

where the matrix Q ∈ Rd×d has been chosen such that the first d columns of X̃ correspond to the identity matrix (ie Q is
the inverse of the submatrix formed by the first d columns of X̂). Because its first d columns are deterministic, X̃ can be
stored using (n− d) d real values. Despite being represented by d2 fewer values, this compressed dataset can still be used
to reconstruct K̂,

K̂ = X̂+X̂ = X̂+Q−1QX̂ =
(
QX̂

)+
QX̂

= X̃+X̃. (29)

We further observe that when n > d, (n− d) d < (n2+n)/2. This is enough to establish

ĉ = (n− d) d < c. (30)

D. Whitening in Linear Models
Linear models are widely used for regression and prediction tasks and provide an instructive laboratory to understand the
effects of data whitening. Furthermore, linear models provide additional intuition for why whitening is harmful – whitening
puts signal and noise directions in the data second moment matrix, F , on equal footing (see Fig. 1). For data with a good
signal to noise ratio, unwhitened models learn high signal directions early during training and only overfit to noise at late
times. For models trained on whitened data, the signal and noise directions are fit simultaneously and thus the models overfit
immediately.

Consider a linear model with mean squared error loss,

f(X) = WX , L =
1

2
||f(X)− Y ||2 . (31)

This loss function is convex. Here we focus on the low dimensional case, d < n, where the loss has a unique global optimum
W ? = F−1trainXtrainYtrain. The model predictions at this global optimum, f?(X) = W ?X , are invariant under any whitening
transform (3.0.1). As a result, any quality metric (loss, accuracy, etc...) for this global minimum is the same for whitened
and unwhitened data.

Whitening and Second Order Optimization Impair Generalization

The story is more interesting, however, during training. Consider a model trained via gradient flow (similar statements can
be made for gradient descent or stochastic gradient descent). The dynamics of the weights are given by

dW

dt
= − ∂L

∂W
, W (t) = e−tFtrainW (0) + (1− e−tFtrain)W ∗ . (32)

The evolution in Eq. 32 implies that the information contained in the trained weights W (t) about the training data X is
entirely determined by F and W ?. In terms of mutual information, we have

I(W (t);X|Ftrain,W
?) = 0 . (33)

As whitening sets F̂train = I , a linear model trained on whitened data does not benefit from the information in Ftrain.

At a more microscopic level, we can decompose Eq. 32 in terms of the eigenvectors, vi, of F :

W (t) =

d∑
i=1

viwi(t), wi(t) = e−tλiwi(0) + (1− e−λit)w?i . (34)

We see that for unwhitened data the eigen-modes with larger eigenvalue converge more quickly towards the global optimum,
while the small eigen-directions converge slowly. For centered X , F is the feature covariance and these eigen-directions
are exactly the principle components of the data. As a result, training on unwhitened data is biased towards learning the
top principal directions at early times. This bias is often beneficial for generalization. Similar simplicity biases have been
found empirically in deep linear networks (Saxe et al., 2014) and in deep networks trained via SGD (Rahaman et al., 2018;
Ronen et al., 2019) where networks learn low frequency modes before high. In contrast, for whitened data, F̂train = I and
the evolution of the weights takes the form

ŵi(t) = e−tŵi(0) + (1− e−t)ŵ?i . (35)

All hierarchy between the principle directions has been removed, thus training fits all directions at a similar rate. For this
reason linear models trained on unwhitened data can generalize significantly better at finite times than the same models
trained on whitened data. Empirical support for this in a linear image classification task with random features is shown in
Fig. 3(a).

D.1. The Global Optimum

At the global optimum, W ? = F−1trainXtrainYtrain, the network predictions on test points can be written in a few equivalent
ways,

f?(Xtest) = Y TtrainX
T
trainF

−1
trainXtest = Y TtrainK

+
trainKtrain×test = Y TtrainK̂train×test . (36)

Here, the + superscript is the pseudoinverse, and K̂train×test is the whitened train-test data-data second moment matrix.
These expressions make manifest that the test predictions at the global optimum only depend on the training data through
Ktrain and Ktrain×test.

Let us briefly consider the case where n ≤ d with full data whitening. The global optimum W ? is still unique up
to a pseudoinverse: W ? = F+

trainXtrainYtrain. When full data whitening is performed, we have K̂ = I from Eq. 11,
and so the mixed second moment matrix ˆKtrain×test, which is an off-diagonal block of K̂, is a zero matrix. Therefore
f?(Xtest) = Y TtrainK̂train×test = 0 for all the test points, and it is particularly simple to see how whitening can destroy
generalization.

D.2. High Dimensional Linear Models

The discussion is very similar in the high dimensional case, d > n. In this case, there is no longer a unique solution to the
optimization problem, but there is a unique optimum within the span of the data.

W ?
‖ =

(
F
‖
train

)−1
X
‖
trainYtrain , W ?

⊥ = W⊥(0) . (37)

Whitening and Second Order Optimization Impair Generalization

Here, we have introduced the notation ‖ for directions in the span of the training data and⊥ for orthogonal directions. Explic-
itly, if we denote by V ‖ = {v1, v2, . . . , vn} ∈ Rn×d the non-null eigenvectors of Ftrain and V ⊥ = {vn+1, vn+2, . . . , vd} ∈
R(d−n)×d the null eigenvectors, then X‖train := V ‖Xtrain, W‖ := WV ‖, W⊥ := WV ⊥, and F ‖train := V ‖Ftrain(V ‖)T .

The model predictions at this optimum can be written as

f?(Xtest) = f0(Xtest)−
(
f0(Xtrain)− Ytrain

)T
K−1trainKtrain×test . (38)

This is the solution found by GD, SGD, and projected Newton’s method.

The evolution approaching this optimum can be written (again assuming gradient flow for simplicity) as

W‖(t) = e−tF
‖
trainW‖(0) + (1− e−tF

‖
train)W ∗‖ , W⊥(t) = W⊥(0). (39)

In terms of the individual components, [W‖(t)]i = e−tλi [W‖(0)]i + (1− e−tλi)[W ∗‖]i.

As above, the hierarchy in the spectrum allows for the possibility of beneficial early stopping, while whitening the data
results in immediate overfitting.

D.3. Supplementary Experiments with Linear Least Squares

In Fig. App.1 we present the same experiment as in Fig. 4(a) at three additional dataset sizes. In all cases, the best test
performance achievable by early stopping on whitened data was worse than on unwhitened data.

In Fig. App.2, we study the effect on generalization of using the entire dataset of 60000 CIFAR-10 images to compute the
whitening transform regardless of training set size. We call this type of whitening ‘distribution whitening’ to indicate that
we are interested in what happens when the whitening matrix is approaches its ensemble limit.

In Fig. App.3, we compare generalization performance of models trained on whitened versus unwhitened data from two
different parameter initializations. Initial distributions with larger variance produce models that generalize worse, but for a
fixed initial distribution, models trained on whitened data generally underperform models trained on unwhitened data.

E. Second Order Optimization of Wide Neural Networks
Here we consider second order optimization for wide neural networks. In recent years much progress has been made in
understanding the dynamics of wide neural networks (Jacot et al., 2018), in particular it has been realized that wide networks
trained via GD, SGD or gradient flow evolve as a linear model with static, nonlinear features given by the derivative of the
network map at initialization (Lee et al., 2019).

In this section we extend the connection between linear models and wide networks to second order methods. In particular
we argue that wide networks trained via a regularized Newton’s method evolve as linear models trained with the same
second order optimizer.

We consider a regularized Newton update step,

θt+1 = θt − η (ε1 +H)
−1 ∂L

t

∂θ
. (40)

This diagonal regularization is a common generalization of Newton’s method. One motivation for such an update rule in the
case of very wide neural networks is that the Hessian is necessarily rank deficient, and so some form of regularization is
needed.

For a linear model, flinear(x) = θ> · g(x), with fixed non-linear features, g(x), the regularized newton update rule in weight
space leads to the function space update.

f t+1
linear(x) = f tlinear(x)− η

∑
xa,xb∈Xtrain

Θlinear(x, xa) (ε1 + Θlinear)
−1
ab

∂Lb
∂flinear

. (41)

Here, Θlinear, is a constant kernel, Θlinear(x, x
′) = ∂f

∂θ

>
· ∂f∂θ = g>(x) · g(x′).

Whitening and Second Order Optimization Impair Generalization

100

te
st

 M
SE

384 training examples
unwhitened
train whitened

100

460 training examples

10−1 101 103 105 107

training time

0.6

0.8

1.0

1.2

te
st

 M
SE

 768 training examples

10−1 101 103 105 107

training time

0.44

0.48

0.52
 2560 training examples

Figure App.1. Whitening data speeds up training but reduces generalization in linear models. Here we show representative examples
of the evolution of test error with training time in a linear least-squares model where the training set consists of 384, 460, 768, 2560
examples, as labeled. In all cases, while models trained on train-whitened data (in green) reach their optimal mean squared errors in a
smaller number of epochs, they do no better than models trained on unwhitened data (in purple). In the large time limit of training, the
two kinds of models are indistinguishable as measured by test error. The y-axis in the top row of plots is in log scale for clarity. In all
cases, the input dimensionality of the data was 512.

For a deep neural network, the function space update takes the form

f t+1(x) =f t(x)− η
∑

xa,xb∈Xtrain

Θ(x, xa) (ε1 + Θ)
−1
ab

∂Lb
∂f

+
η2

2

P∑
µ,ν=1

∂2f

∂θµ∂θν
∆θtµ∆θtν + · · · .

(42)

Here we have indexed the model weights by µ = 1 . . . P , denoted the change in weights by ∆θt and introduced the neural
tangent kernel (NTK), Θ(x, x′) = ∂f>

∂θ ·
∂f
∂θ .

In general Eqs. 41 and 42 lead to different network evolution due to the non-constancy of the NTK and the higher order
terms in the learning rate. For wide neural networks, however, it was realized that the NTK is constant (Jacot et al., 2018)
and the higher order terms in η appearing on the second line in vanish at large width (Dyer & Gur-Ari, 2020; Huang & Yau,
2019; Littwin et al., 2020; Andreassen & Dyer; Aitken & Gur-Ari).2

2These simplifications were originally derived for gradient flow, gradient descent and stochastic gradient descent, but hold equally well

Whitening and Second Order Optimization Impair Generalization

102 103 104

training set size

0.42

0.44

0.46

0.48

0.50

0.52

te
st

 e
rro

r

linear model with distribution whitening
GD: unwhitened
GD: train whitened
GD: full whitened
GD: distribution whitened
input dimension

Figure App.2. Whitening using the entire dataset behaves similarly to conventional whitening, with only a slight improvement in
performance. Whitening using a whitening transform computed on the entire CIFAR-10 dataset of 50000 training and 10000 test images
(distribution whitening) improves performance over train- and full whitening, but does not close the performance gap with unwhitened
data. With the exception of the ‘distribution whitened’ line, gradient descent data in this plot is identical to Fig. 3(a).

With these simplifications, the large width limit of Eq. 42 describes the same evolution as a linear model trained with fixed
features g(x) = ∂f(x)

∂θ |θ=θ0 trained via a regularized Newton update.

F. MLP on MNIST
Here we present the equivalent of Fig. 3(b) for an MLP trained on MNIST. Experimental details are given in Appendix G.
Similar to the results in Fig. 3(b) on CIFAR-10, in Fig. App.4, we find that models trained on fully whitened data generalize
at chance levels (indicated by a test error of 0.9) in the high dimensional regime. Because MNIST is highly rank deficient,
this result holds until the size of the dataset exceeds its input rank. Models trained on train-whitened data also exhibit
reduced generalization when compared with models trained on unwhitened data, which exhibit steady improvement in
generalization with increasing dataset size.

G. Methods
G.1. Whitening Methods

G.1.1. PCA WHITENING

Consider a dataset X ∈ Rd×n. PCA whitening can be viewed as a two-step operation involving rotation of X into the PCA
basis, followed by the normalization of all PCA components to unity. We implement this transformation as follows. First,
we compute the the singular value decomposition of the unnormalized feature-feature second moment matrix XX>:

XX> = UΣV >, (43)

where the rank of Σ is min(n, d). The PCA whitening transform is then computed as M = Σ−1/2 · V >, where the dot
signifies element-wise multiplication between the whitening coefficients, Σ−1/2, and their corresponding singular vectors.
When Σ is rank deficient (n < d), we use one of two methods to stabilize the computation of the inverse square root: the
addition of noise, or manual rank control. In the former, a small jitter is added to the diagonal elements of Σ before inverting
it. This was implemented in the experiments in linear models. In the latter, the last d− n diagonal elements of Σ−1/2 are
explicitly set to unity. This method was implemented in the MLP experiments.

for the regularized Newton updates considered here. This can be seen, for example, by applying Theorem 1 of (Dyer & Gur-Ari, 2020).

Whitening and Second Order Optimization Impair Generalization

102 103

training set size

0.4

0.6

0.8

1.0

1.2

1.4

te
st

 e
rro

r

linear model with larger variance initializations

GD: unwhitened, variance 0
GD: unwhitened, variance 1/d
GD: train whitened, variance 0
GD: train whitened, variance 1/d
input dimension d

Figure App.3. The effect of whitening on linear models with non-zero parameter initialization. Linear models are initialized with
parameter variances of 0 or 1/d. In all cases the test loss is reported for the time during gradient flow training when the model achieves
the lowest validation loss. Unwhitened data was scaled to have the same norm accumulated over all samples in the training set as whitened
data, for each training set size, to avoid artifacts due to overall input scale. A model output of zero corresponds to a test loss of 0.5. All
configurations with loss greater than 0.5 are doing worse than an uninformative prediction of 0. At both initialization scales, the model
trained on whitened data performs worse than the model trained on unwhitened data for almost all dataset sizes, while for one dataset size
they perform similarly. Data for the variance 0 initialization is identical to Fig. 3(a).

G.1.2. ZCA WHITENING

ZCA (short for zero-phase components analysis) (Bell & Sejnowski, 1997) can be thought of as PCA whitening followed
by a rotation back into the original basis. The ZCA whitening transform is M = UΣ−1/2 · V >. ZCA whitening produces
images that look like real images, preserving local structure. For this reason, it is used in the CNN experiments.

G.2. Linear Model

Dataset composition. The dataset for this experiment was a modified version of CIFAR-10, where the images were first
processed by putting them through an off-the-shelf (untrained) four layer convolutional network with tanh nonlinearities
and collecting the outputs of the penultimate layer. This resulted in a dataset of 512-dimensional images and their associated
labels. Both the CIFAR-10 training and test sets were processed in this way. The linear estimator was trained to predict
one-hot (ten dimensional) labels.

Training set sizes ranged from 128 to 5120 examples, randomly sampled from the preprocessed CIFAR-10 data. For
experiments on unwhitened and train-whitened data, a validation set of 10000 images was split from the CIFAR-10 training
set, and test error was measured on the CIFAR-10 test set. For experiments on fully whitened data, validation and test sets of
10 images each were split from the CIFAR-10 training and test sets, respectively.

Whitening. At each training set size, four copies of the data were made, and three were whitened using the PCA whitening
method. For train-whitened data, the whitening transform was computed using only the training examples. For fully
whitened data, the twenty validation and test images were included in the computation of the whitening transform. For

Whitening and Second Order Optimization Impair Generalization

101 102 103 104 105

dataset size

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 e
rro

r

MLP on MNIST
unwhitened
train whitened
full whitened
dataset size > input rank
input dimension

Figure App.4. Whitening MNIST before training negatively impacts generalization in MLPs. Models trained on fully whitened data
(in blue) are unable to generalize until the size of the dataset exceeds its maximal input rank of 276, indicated by the solid black vertical
line. Regardless of how the whitening transform is computed, models trained on whitened data (blue and green) consistently underperform
those trained on unwhitened data (in purple).

distribution whitened data (Fig. App.2), the entire CIFAR-10 dataset of 60000 images (train as well as test) was used to
compute the whitening transform.

Training and Measurements. We used a mean squared error loss function. Weights were initialized to all-zeros, except for
the data in Fig. App.3, for which initial weights were drawn from a Gaussian with variance 1/d. At each training set size,
fifty models (initialized with different random seeds) were trained with full-batch gradient descent, with the optimization
path defined by the gradient flow equation. Writing the model parameters as φ, this equation is

φ(t) = φ∗ + e−tCB(φ∗ − φ(0))

for preconditioner B, feature-feature correlation matrix C, infinite-time solution θ∗, and initial iterate θ(0). In the case of
gradient descent, the preconditioner B is simply the identity matrix.

In order to generate the plot data for Fig. 3(a), we solved the gradient flow equation for the parameters φ that achieved the
lowest validation error, and calculated the test error achieved by those parameters. Mean test errors and their inner 80th
percentiles across the twenty different initializations and across whitening states were computed and plotted. To make the
plots in Fig. 4(a) and App.1, we tracked test performance over the course of training on unwhitened and train-whitened data.

On train-whitened datasets, we also implemented Newton’s Method. This was done by putting the preconditioner B in the
gradient flow equation equal to the inverse Hessian, i.e.

(
XX>

)−1
. The preconditioner was computed once using the whole

training set, and remained constant over the course of training. For experiments on whitened data, the data was whitened
before computing the preconditioner.

G.3. Multilayer Perceptron

G.3.1. ON MNIST

Architecture. We used a 784× 512× 512× 10 fully connected network with a rectified linear nonlinearity in the hidden
layers and a softmax function at the output layer. Initial weights were sampled from a normal distribution with variance
10−4.

Dataset composition. The term “dataset size" here refers to the total size of the dataset, i.e. it counts the training as well as
test examples. We did not use validation sets in the MLP experiments. Datasets of varying sizes were randomly sampled
from the MNIST training and test sets. Dataset sizes were chosen to tile the available range (0 to 70000) evenly in log space.
The smallest dataset size was 10 and the two largest were 50118 and 70000. For all but the largest size, the ratio of training

Whitening and Second Order Optimization Impair Generalization

to test examples was 8 : 2. The largest dataset size corresponded to the full MNIST dataset, with its training set of 60000
images and test set of 10000 images.

The only data preprocessing step (apart from whitening) that we performed was to normalize all pixel values to lie in the
range [0, 1].

Whitening. At each dataset size, three copies of the dataset were made and two were whitened. Of these, one was
train-whitened and the other fully whitened. PCA whitening was performed. The same whitening transform was always
applied to both the training and test sets.

Training and Measurements. We used sum of squares loss function. Initial weights were drawn from a Gaussian with
mean zero and variance 10−4. Training was performed with SGD using a constant learning rate and batch size, though these
were both modulated according to dataset size. Between a minimum of 2 and a maximum of 200, batch size was chosen to
be a hundredth of the number of training examples. We chose a learning rate of 0.1 if the number of training examples was
≤ 50, 0.001 if the number of training examples was ≥ 10000, and 0.01 otherwise. Models were trained to 0.999 training
accuracy, at which point the test accuracy was measured, along with the number of training epochs, and the accuracy on the
full MNIST test set of 10000 images. This procedure was repeated twenty times, using twenty different random seeds, for
each dataset. Means and standard errors across random seeds were calculated and are plotted in Fig. App.4.

For example, at the smallest dataset size of 10, the workflow was as follows. Eight training images were drawn from the
MNIST training and two as test images were drawn from the MNIST test set. From this dataset, two more datasets were
constructed by whitening the images. In one case the whitening transform was computed using only the eight training
examples, and in another by using all ten images. Three copies of the MLP were initialized and trained on the eight training
examples of each of the three datasets to a training accuracy of 0.999. Once this training accuracy was achieved, the test
accuracy of each model on the two test examples, and on the full MNIST test set, was recorded, along with the number of
training epochs. This entire procedure was repeated twenty times.

Computation of the input rank of MNIST data. MNIST images are encoded by 784 pixel values. However, the input
rank of MNIST is much smaller than this. To estimate the maximal input rank of MNIST, at each dataset size (call it n) we
constructed twenty samples of n images from MNIST. For each sample, we computed the 784× 784 feature-feature second
moment matrix F and its singular value decomposition, and counted the number of singular values larger than some cutoff.
The cutoff was 10−5 times the largest singular value of F for that sample. We averaged the resulting number, call it r, over
the twenty samples. If r = n, we increased n and repeated the procedure, until we arrived at the smallest value of n where
r > n, which was 276. This is what we call the maximal input rank of MNIST, and is indicated by the solid black line in the
plot in Appendix F.

G.3.2. ON CIFAR-10

The procedure for the CIFAR-10 experiments was almost identical to the MNIST experiments described above. The
differences are given here.

The classifier was of shape 3072× 2000× 2000× 10 - slightly larger in the hidden layers and of necessity in the input layer.

The learning rate schedule was as follows: 0.01 if the number of training examples was ≤ 504, then dropped to 0.005 until
the number of training examples exceeded 2008, then dropped to 0.001 until the number of training examples exceeded
10071, and 0.0005 thereafter.

The CIFAR-10 dataset is full rank in the sense that the input rank of any subset of the data is equal to the dimensionality,
3072, of the images.

G.3.3. FIG. 3(B), APP.4 PLOT DETAILS

In Figs. 3(b) and App.4, for models trained on unwhitened data and train-whitened data, we have plotted test error evaluated
on the full CIFAR-10 and MNIST test sets of 10000 images. For models trained on fully whitened data, we have plotted the
errors on the test examples that were included in the computation of the whitening transform.

Whitening and Second Order Optimization Impair Generalization

G.4. Convolutional Networks

G.4.1. WRN

Architecture. We use the ubiquitous Wide ResNet 28-10 architecture from (Zagoruyko & Komodakis, 2016). This
architecture starts with a convolutional embedding layer that applies a 3× 3 convolution with 16 channels. This is followed
by three “groups”, each with four residual blocks. Each residual block features two instances of a batch normalization layer,
a convolution, and a ReLU activation. The three block groups feature convolutions of 160 channels, 320 channels, and
640 channels, respectively. Between each group, a convolution with stride 2 is used to downsample the spatial dimensions.
Finally, global-average pooling is applied before a fully connected readout layer.

Dataset composition. We constructed thirteen datasets from subsets of CIFAR-10. The thirteen training sets ranged in
size from 10 to 40960, and consisted of between 20 and 212 examples per class. In addition, we constructed a validation
set of 5000 images taken from the CIFAR-10 training set which we used for early stopping. Finally, we use the standard
CIFAR-10 test set to report performance.

Whitening. We performed ZCA whitening using only the training examples to compute the whitening transform.

Training and Measurements. We used a cross entropy loss and the Xavier weight initialization. We performed full-batch
gradient descent training with a learning rate of 10−3 until the training error was less than 10−3. We use TPUv2 accelerators
for these experiments and assign one image class to each chip. Care must be taken to aggregate batch normalization statistics
across devices during training. After training, the test accuracy at the training step corresponding to the highest validation
accuracy was reported. At each dataset size, this procedure was repeated twice, using two different random seeds. Means
and standard errors across seeds were calculated and are plotted in Fig. 3(c).

G.4.2. CNN

Architecture. The network consisted of a single ResNet-50 convolutional block followed by a flattening operation and two
fully connected layers of sizes 100 and 200, successively. Each dense layer had a tanh nonlinearity and was followed by a
layer norm operation.

Dataset composition. Training sets were of eleven sizes: 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, and 10240
examples. A validation set of 10000 images was split from the CIFAR-10 training set.

Training and Measurements. We used a cross entropy loss. Initial weights were drawn from a Gaussian with mean zero
and variance 10−4. Training was accomplished once with the Gauss-Newton method (see (Botev et al., 2017) for details),
once with full batch gradient descent, and once with a regularized Gauss-Newton method. With a regularizer λ ∈ [0, 1], the
usual preconditioning matrix B of the Gauss-Newton update was modified as ((1− λ)B + λI)

−1. This method interpolates
between pure Gauss-Newton (λ = 0) and gradient descent (λ = 1). In the Gauss-Newton experiments, we used conjugate
gradients to solve for update directions; the sum of residuals of the conjugate gradients solution was required to be at most
10−5.

For the gradient descent and unregularized Gauss-Newton experiments, at each training set size, ten CNNs were trained
beginning with seven different initial learning rates: 2−8, 2−6, 2−4, 2−2, 1, 4, and 16. After the initial learning rate,
backtracking line search was used to choose subsequent step sizes. Models were trained until they achieved 100% training
accuracy. The model with the initial learning rate that achieved the best validation performance of the seven was then
selected. Its test performance on the CIFAR-10 test set was evaluated at the training step corresponding to its best validation
performance. The entire procedure was repeated for five random seeds. In Fig. 3(d), we have plotted average test and
validation losses over the random seeds as functions of dataset size and training algorithm. In Fig. 4(c), we have plotted an
example of the validation and training performance trajectories over the course of training for a training set of size 10240.

For the regularized Gauss-Newton experiment, the only difference is that we trained one CNN at each initial learning rate
per random seed, and then selected the model with the best validation performance. In Fig. 5, we have plotted average
metrics over the five random seeds. Errorbars and shaded regions indicate twice the standard error in the mean.

