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A. Organization and Notation
A.1. Organization

We break the appendix up into four parts. In Part I, we provide a formal overview of our work. In particular, Appendix B
formally defines our decision-making settings—martingale decision making (MDM) and linear dynamical decision making
(LDDM)—formally states our results and defines TOPLE, and provides a more detailed explanation of our frequency-domain
construction. This section also formally introduces the notion of a sequential open-loop policy, which figures prominently in
the analysis of TOPLE. Appendix C sketches out various extensions to our results, provides additional remarks, and states
and proves the formal version of the lower bound on low-regret algorithms.

Part II covers martingale decision making. Appendix D states and proves our upper and lower bounds for martingale
regression in general norms. Next, Appendix E formally introduces our martingale decision-making setting, and, through a
reduction to regression, proves a locally minimax lower bound on martingale decision making with smooth losses. Finally,
Appendix F proves a general upper bound on certainty equivalence decision making under a certain regularity assumption.
Of note, Part II does not assume we are operating in the setting of a linear dynamical system—the results here apply to the
more general martingale decision making setting.

Part III covers our results in the setting of linear dynamical decision making setting. We begin in Appendix G by introducing
additional notation specific to linear dynamical systems we will use throughout. In Appendix H, we apply the results of
Part II to prove our lower bound on optimal decision-making in linear dynamical systems. This section also shows that our
restricted policy class, Up

�2 , the set of periodic signals, contains a near-optimal policy. Appendix I shows that sequential
open-loop policies meet our regularity assumption and we therefore obtain a corollary on efficient certainty equivalence
decision making in linear dynamical systems. In addition, Appendix I provides rates at which the covariates of linear
dynamical systems concentrate, an important piece in our analysis. Finally, Appendix J proves the upper bound on the
performance of TOPLE. Our proof relies on showing that certainty equivalence experiment design plays near-optimal inputs,
and that TOPLE is itself a sequential open-loop policy, allowing us to apply our certainty equivalence bound proved in
Appendix I.

Lastly, Part IV covers applications of our results. Appendix K shows that the LQR problem is an instance of our general
smooth decision making setting, and that we can therefore apply all our results to this problem. Appendix L works out
explicitly the rates obtained by TOPLE and other exploration approaches in several LQR examples. Finally, Appendix M
provides additional details on our numerical experiments.

A.2. Notation

Below we present notation used throughout this work. We define our signal notation in more detail in Appendix B.5.1
and additional details on our notation for linear dynamical systems is presented in Appendix G. We will overload notation
somewhat throughout, using ✓ to refer to a vector as well as the concatenation of matrices, ✓ = (A,B). In the latter case,
k✓kop denotes the operator norm of the matrix (A,B) but we let k✓k2

M
= vec(✓)>Mvec(✓).

Mathematical Notation Definition
k · kop Matrix operator norm
k · kF Matrix Frobenius norm
k · k2 Vector 2-norm
k · kM Vector Mahalanobis norm, kxk2

M
= x

>
Mx

k · kH1
System H-infinity norm

◆ Imaginary number,
p
�1

Policy Notation
⇡/⇡exp Exploration policy
⇧�2 Policies with average expected power bounded by �

2

⇧sol
�2 Sequential open-loop policies with average expected power bounded by �

2

⇧p
�2 Periodic policies with average expected power bounded by �

2

⌧ Input-state trajectory, ⌧ = (x1:T+1, u1:T )
dec(⌧) Decision rule
ce(⌧) Certainty-equivalence decision rule
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Complexity Notation Definition
�T (⇡; ✓?) Idealized risk, �T (⇡; ✓?) := tr(H(✓?)�T (⇡; ✓?)�1)
�opt(�2; ✓?) Optimal risk, �opt(�2; ✓?) := lim infT!1 inf⇡exp2⇧�2 �T (⇡exp; ✓?)
�ss

opt(�
2; ✓?) Steady-state analogue of �opt(�2; ✓?)

M⇡exp(R;B) Local minimax risk
M�2(R;B) Exploration local minimax risk, lower bound on optimal policy risk

MDM Notation
✓ 2 R

d✓ Nominal instance
a 2 R

da Decision variable
J✓?(a) Loss function

R✓(a)/R(a; ✓) Excess risk
aopt(✓) Optimal decision for instance ✓

H(✓?) Hessian of certainty equivalence excess risk, H(✓?) = r2
✓
R(aopt(✓); ✓?)|✓=✓?

LRi, i = 1, 2, 3 Upper bound on kr(i)
a R(a; ✓)kop

Lai, i = 1, 2, 3 Upper bound on kr(i)
✓
aopt(✓)kop

Lhess Lipschitz constant of r2
aR(a; ✓) in ✓

µ Parameter for quadratic lower bound on R(a; ✓?)
Lquad

1
6 (LR3L

3
a1 + 3LR2La2La1 + LR1La3)

LH 6Lquad + LR2La1 + LhessL
2
a1

rquad(✓) Radius in which gradient bounds hold
LDS Notation
✓ = (A,B) System parameters

dx State dimension
du Input dimension
d dx + du

�
2
w

Process noise variance
x
u
t

Portion of state driven by input
x
w
t

Portion of state drive by noise (xt = x
u
t
+ x

w
t

)
⇢(A) Spectral radius of A

e✓ = ( eA, eB) Lifted dynamical system, eA =


A B

0 0

�
, eB =


0
I

�

⌧(A, ⇢) Scaling of upper bound on kAkkop, kAkkop  ⌧(A, ⇢)⇢k

⇢? max
n

1
2 ,

2kA?kH1
kA?kop

1+2kA?kH1
kA?kop

o

⌧? ⌧( eA?, ⇢?), scaling of upper bound on k eAk

?
kop

Signal Notation
F(·) Discrete-time Fourier transform (DFT)

F�1(·) Inverse discrete-time Fourier transform
u Vector signal, (ut)kt=1, ut 2 C

du

ǔ Discrete-time Fourier transform of u
ǔt Element of ǔ, DFT of (us)ks=1

U Matrix signal, (Ut)kt=1, Ut 2 C
du⇥du , Ut Hermitian

Ut Matrix signal element
U�2,k Set of length k matrix signals with power bounded by �

2
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Covariance Notation
⌃T Random covariates
� Kronecker of covariates, Idx ⌦ �

�noise
t

(✓,⌃u) Expected t-step noise covariance when ut ⇠ N (0,⌃u)
�noise
t

(✓,�u) �noise
t

(✓,�2
u
I)

�in
t
(✓,u, x0) Covariance obtained on noiseless system playing u starting from x0

�T (✓,u,�u, x0) Expected covariance on noisy system when playing u, input noise N (0,�2
I), starting from x0

�freq
k

(✓,U) Frequency-domain steady-state covariance for length-k matrix input U
�freq
t,k

(✓,U) t

k
�freq
k

(✓,U)
�ss
t,k

(✓,U ,�u) Expected steady state covariance when playing length-k input U and input noise N (0,�2
u
I)

�̄T High probability upper bound on covariates
�̄ High probability upper bound on covariates for sequential open-loop policies
� Lower bound on minimum eigenvalue of covariates

�
?

noise(�u) Minimum eigenvalue of noise Grammian, minimum excitation due to noise
�
?

noise �
?

noise(�/
p
2du)

Lcov(✓?, �2) Smoothness of covariates with respect to ✓

rcov(✓?) Radius in which smoothness of covariates holds
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Part I

Results and Extensions
B. Formal Results and Algorithm
In this section, we formally state the results given in Section 2 and present the full definition of TOPLE. This section is
organized as follows. We first formally define our decision-making settings, MDM and LDDM, in Appendix B.1. Next, we
present a lower bound on decision-making in the MDM setting in Appendix B.2. In Appendix B.3, we assume we are in the
stronger LDDM setting and present a lower bound on optimal decision-making. Appendix B.4 provides a sufficient condition
on exploration policies and shows that, under this condition, certainty equivalence decision-making is optimal in the MDM
setting. Appendix B.4.1 then introduces a restricted set of policies in the LDDM setting, sequential-open loop policies,
which we show contains TOPLE and is sufficiently regular. Appendix B.5 provides an overview of frequency-domain
representations of signals, an essential piece in our construction of TOPLE, and formally defines several sub-routines of
TOPLE. Finally, in Appendix B.6 we formally state TOPLE and provide an upper bound on its performance.

B.1. Martingale and Linear Dynamical Decision Making (MDM and LDDM)

Our decision making setting considers smooth loss functions parameterized by models ✓ 2 R
d✓ , J✓(a) : Rda ! R. The

loss function induces the excess risk function

R(ba; ✓?) := J✓?(a)� inf
a0

J✓?(a0),

We denote the plug-in optimal decision

aopt(✓) := argmin
a

R(a; ✓),

that is, the optimal decision when ✓ is the nominal parameter. We are, in particular, interested in the case when R and aopt
are smooth functions. Formally, we will stipulate that the excess risk function R(·; ·), and the plug-in optimal decision
aopt(✓) satisfy the following conditions:
Assumption 3 (Smooth Decision-Making). There exist rquad(✓?) and constants µ > 0, Lai, LRi, i 2 {1, 2, 3}, and Lhess

such that for any ✓ and a satisfying

k✓ � ✓?k2  rquad(✓?), ka� aopt(✓?)k2  La1rquad(✓?), (B.1)

the following conditions hold

• The optimal action aopt(✓) is unique, and moreover, there is a parameter µ such that R(a0; ✓) � µ

2 ka
0 � aopt(✓)k22 for

all a0 2 R
da (not restricted to a0 satisfying Eq. (B.1)).

• kraR(a; ✓)kop  LR1, kr2
aR(a; ✓)kop  LR2, and kr3

aR(a; ✓)kop  LR3.

• kr✓aopt(✓)kop  La1, kr2
✓
aopt(✓)kop  La2, and kr3

✓
aopt(✓)[�, �, �]kop  La3 for all � 2 R

d✓ with k�k2 = 1.

• r2
aR(a; ✓) is Lipschitz in ✓ with Lipschitz constant Lhess.

We also define:

Lquad :=
1

6
(LR3L

3
a1 + 3LR2La2La1 + LR1La3), LH := 6Lquad + LR2La1 + LhessL

2
a1.

In the most general case, which we will refer to as martingale decision making, we assume that we have observations of the
form

yt = h✓?, zti+ wt, wt | Ft�1 ⇠ N (0,�2
w
), zt is Ft�1-adapted. (B.2)

for a filtration (Ft)t�1 and scalar observations yt. We allow the distribution of the covariates zt to be arbitrary: for example,
there may be some function f(. . . ) of appropriate shape such that zt = f(t, z1:t�1, y1:t�1, w1:t, u1:t, ✓?), for inputs of our
choosing u1:t. We are now ready to define our decision-making setting.
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Definition B.1 (Martingale Decision Making (MDM)). Assume our excess risk R(ba; ✓?) satisfies Assumption 3 and our
observations are generated by (B.2). Then we call the problem of choosing a decision ba to minimize R(ba; ✓?) martingale
decision making (MDM).

Our goal in MDM is to estimate ✓? from our observations well enough to find a decision rule ba that minimizes R(ba; ✓?). We
will be interested in particular in the special case when (B.2) is a linear dynamical system:

xt+1 = A?xt +B?ut + wt (B.3)

for wt ⇠ N (0,�2
w
I). As we show in Appendix G.3, linear dynamical systems are a special case of (B.2). This special case

defines the following restriction of MDM.
Definition B.2 (Linear Dynamical Decision Making (LDDM)). Assume our excess risk R(ba; ✓?) satisfies Assumption 3 and
that our observations are generated by a linear dynamical system, (B.3). Then we call the problem of choosing a decision ba
to minimize R(ba; ✓?) linear dynamical decision making (LDDM).

Given these formalizations of our problem setting, we recall our interaction protocol:
Task-Specific Pure Exploration Problem. The learner’s behavior is specified by an exploration policy ⇡exp :
(x1:t, u1:t�1)! ut and decision rule dec executed in the dynamics Eq. (B.2).

1. For steps t = 1, . . . , T , the learner executes ⇡exp and collects a trajectory ⌧ = (y1:T , z1:T , u1:T ).

2. For a budget �2 � 0, the inputs u1:T must satisfy the constraint E⇡exp [
P

T

t=1 kutk2]  T�
2.

3. Finally, the learner proposes a decision ba = dec(⌧) as a function of ⌧.

We emphasize the generality of this set of decision-making problems. While we will show that the LQR problem satisfies
this assumption, many other decision-making problems can be cast as an instance of MDM or LDDM, as we discuss in
Section 1.3.

Before stating our results, we remind the reader of our definition of power constrained policies:
Definition 2.4 (Power-Constrained Policies). Let ⇧�2 denote the set of causal polices that have expected average power
bounded as �2. That is, for any ⇡ 2 ⇧�2 , we will have E✓,⇡[

P
T

t=1 kutk22]  T�
2 for all ✓.

Finally, recall that the H1-norm of A? is defined as:

kA?kH1
:= max

!2[0,2⇡]
k(e◆!I �A?)

�1kop (B.4)

where ◆ denotes the imaginary number,
p
�1.

B.2. Lower Bound for Decision Making in MDM

We first present a lower bound in the general MDM setting. We will assume we are playing a particular exploration policy,
⇡exp 2 ⇧�2 , and our goal is to derive lower bounds on decision-making given that our trajectory is generated by ⇡exp.
Recall the definition of the local minimax risk:

M⇡exp(R;B) := min
dec

max
✓2B

E⌧⇠✓,⇡exp [R(dec(⌧); ✓)],

and the idealized risk:
�T (⇡; ✓?) := tr(H(✓?)�T (⇡; ✓?)

�1).

Our argument will show that the local minimax risk is lower bounded by the estimation error of ✓ in a relevant Mahalanobis
norm, which yields the familiar “inverse-trace of the covariance” sample complexity. In the MDM setting, we denote our
covariance as

⌃T :=
TX

t=1

ztz
>

t
, �T (⇡; ✓) :=

1

T
E✓,⇡ [⌃T ]

For our lower bound to hold, the covariance matrices in question must satisfy two rather mild regularity conditions.
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Assumption 4 (Sufficient Excitation). For some � > 0 independent of T , and under our exploration policy ⇡exp 2 ⇧�2 :

�min(�T (⇡exp; ✓?)) � �.

In the special case of linear dynamical systems, Assumption 4 can be enforced by adding a small amount of white noise to
any exploration policy, and the budget constraint can still be met by scaling down inputs by a constant factor.
Assumption 5 (Smooth Response). There exist parameters rcov(✓?) > 0, Lcov(✓?, �2) > 0, Ccov > 0, ccov > 0, and
↵ > 0 such that, under our exploration policy ⇡exp 2 ⇧�2 , for all ✓ satisfying k✓ � ✓?k2  rcov(✓?), we have:

�T (⇡exp; ✓) � ccov�T (⇡exp; ✓?) +

✓
Lcov(✓?, �

2) · k✓ � ✓?k2 +
Ccov

T↵

◆
· I.

Intuitively, Assumption 5 says that the covariance matrices do not vary too wildly in the ground truth instances. This will be
true for any “reasonable” policy, and in fact, we can show that, without loss of generality, a comparable condition holds for
the policies which perform near optimal experiment design in LDDM. Under these assumptions, we obtain the following
lower bound.
Theorem B.1 (Part 2 of Theorem 2.1). Assume we are in the MDM setting, that R satisfies Assumption 3, our exploration
policy ⇡exp 2 ⇧�2 satisfies Assumption 4 and Assumption 5, and suppose that the time horizon T satisfies

�T � max

⇢⇣
80d✓

rquad(✓?)2

⌘6/5
,

⇣
�
2
wLR2

5µ

⌘6
,

⇣
Lcov(✓?,�

2)
p
5d✓

ccov�

⌘12/5
,

⇣
2Ccov

ccov�
1�↵

⌘1/↵
,

⇣
5d✓

rcov(✓?)2

⌘6/5�

Then, defining the localizing ball BT := {✓ : k✓ � ✓?k22  5d✓/(�T )5/6}, and letting ⌧ denote a trajectory generated by
⇡exp on ✓, we have

M⇡exp(R;BT ) = min
dec

max
✓2BT

E⌧⇠✓,⇡exp [R(dec(⌧); ✓)] � �
2
w

1 + 2ccov
·�T (⇡exp; ✓?)

T
� Clb

(�T )5/4

where,

Clb = c1

⇣
(La1La2LR2 + L

3
a1LR3 + Lhess)d

3/2
✓

+ L
2
a1LR2

⌘

for a universal constant c1.

This result is itself a corollary of a more general result, Theorem E.3, which provides a lower bound without Assumption 4
or Assumption 5. We prove this result in Appendix E. We emphasize again that Theorem B.1 does not require that the data
be generated from a linear dynamical system—it holds for any loss satisfying Assumption 3 so long as our observations
follow Eq. (B.2). However, as we show in Appendix H.1, Assumption 4 and Assumption 5 are met for a fairly general set of
policies in linear dynamical systems, and a clean corollary of this result may be stated in the LDDM setting.

B.3. Lower Bound for Optimal Decision Making in LDDM

We turn now to the LDDM setting, and prove a lower bound that holds for all exploration policies ⇡exp 2 ⇧�2 . We first
define the following:

�
?

noise(�u) := min
n
�min

⇣
�
2
w

P
dx�1
s=0 A

s

?
(As

?
)> + �

2
u

P
dx�1
s=0 A

s

?
B?B

>

?
(As

?
)>
⌘
,�

2
u

o

and in particular set:
�
?

noise := �
?

noise(�/
p
2du)

Note that

�
?

noise(�u) = �min

 
E

"
xdx

udx

� 
xdx

udx

�>
| us ⇠ N (0,�2

u
I), s = 0, . . . , t

#!

so it follows that �?noise(�u) is the minimum eigenvalues of the covariates when we play isotropic noise, and can be thought
of as a measure of how easily the system can be excited. We make the following assumption.
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Assumption 6. ✓? and �w are such that �?noise > 0. In particular, it suffices that �w > 0, or the system is controllable.

Before stating our result, we recall the definition of the exploration local minimax risk:

M�2(R;B) := min
⇡exp2⇧�2

min
dec

max
✓2B

E⌧⇠✓,⇡exp [R(dec(⌧); ✓)].

and the optimal risk:

�opt(�
2; ✓?) := lim inf

T!1

inf
⇡exp2⇧�2

�T (⇡exp; ✓?),

We then have the following.
Theorem B.2 (Part 2 of Theorem 2.2). Assume we are in the LDDM setting and consider a loss function J✓(a) : Rda ! R

with induced excess risk R(a; ✓?) := J✓?(a)� infa0 J✓?(a0). Fix a model ✓? and time horizon T . Suppose that

• R satisfies the smoothness condition, Assumption 3.

• The model ✓? satisfies the excitation assumption Assumption 6 with parameter �?noise > 0.

• The time horizon satisfies T � max

(
C

init
lb ,

⇣
80(d2

x+dxdu)
(�?

noise)
5/6rquad(✓?)2

⌘6/5
,

✓
�
2
wLR2

5µ

◆6
)

.

Finally, define the localized ball of instances

BT := {k✓ � ✓?k2F  5(d2
x
+ dxdu)/(�

?

noiseT
5/6)}

Then, any decision rule dec(⌧) suffers the following lower bound

M�2(R;BT ) = min
⇡exp2⇧�2

min
dec

max
✓2BT

E⌧⇠✓,⇡exp [R(dec(⌧); ✓)] � �
2
w

64
· �opt(�2; ✓?)

T
� Clb

(�?noiseT )
5/4

where above,

C
init
lb = poly

⇣
dx, du, kB?kop, kA?kH1

, �
2
,�

2
w
,

1
�
?
noise

, log T
⌘

and Clb is defined as in Theorem B.1 with d✓ = d
2
x
+ dxdu.

We emphasize that this result holds for any exploration policy with bounded power, ⇡exp 2 ⇧�2 . As such, it provides a
lower bound on optimal decision-making. We prove Theorem B.2 in Appendix H.2.

B.4. Upper Bound for Certainty Equivalence Decision Making in MDM

We next consider upper bounds on decision making in the MDM setting when we are playing a fixed exploration policy
⇡exp. Given some data {(yt, zt, ut)}Tt=1 generated by playing ⇡exp on Eq. (B.2), we define our estimator of ✓? as

b✓ls = min
✓

TX

t=1

kyt � ✓
>
ztk22 (B.5)

The following is a sufficient assumption on ⇡exp to guarantee the efficiency of certainty equivalence decision making. Recall
that ⌃T denotes the random covariates.
Assumption 7 (Exploration Policy Regularity). We assume that the true instance ✓? and policy ⇡exp 2 ⇧�2 satisfy the
following regularity conditions:

• There exists some time Tse(⇡exp) such that for any T � Tse(⇡exp) the system is sufficiently excited. That is, if
T � Tse(⇡exp):

P✓?,⇡exp

h
�min(⌃T ) � �T,⌃T � T �̄T

i
� 1� �

for deterministic � > 0 and �̄T ⌫ 0.
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• There exists some time Tcon(⇡exp) such that, for any T � Tcon(⇡exp), the covariates have concentrated to their mean.
That is, if T � Tcon(⇡exp):

P✓?,⇡exp

h
k⌃T � E✓?,⇡exp [⌃T ]kop  Ccon

T↵ �min(E✓?,⇡exp [⌃T ])
i
� 1� �

for deterministic Ccon > 0 and ↵ > 0.

The following result precisely quantifies the loss of the certainty equivalence decision-making rule under this assumption on
the policy.
Theorem B.3 (Part 1 of Theorem 2.1). Assume we are in the MDM setting with some loss R satisfying Assumption 3 and
exploration policy ⇡exp 2 ⇧�2 which satisfies Assumption 7 with minimal times Tcon(⇡exp) and Tse(⇡exp) and covariance
lower bound � > 0. If

T > max

⇢
Tcon(⇡exp), Tse(⇡exp), (4Ccon)

1/↵
,
c1(log(1/�)+d✓+log det(�̄T /�+I))

�rquad(✓?)2

�
(B.6)

then for � 2 (0, 1/2), with probability 1� �, the certainty equivalence decision rule achieves the following rate,

R(aopt(b✓ls); ✓?)  5�2
w
log

24d✓
�

· �T (⇡exp; ✓?)

T
+

Cce,1

T 3/2
+

Cce,2

T 1+2↵

where we let c1, c2, c3 be universal numerical constants and set

Cce,1 := c2Lquad

�
3/2

⇣
log 1

�
+ d✓ + log det(�̄T /�+ I)

⌘3/2
, Cce,2 := c3�

2
wC

2
cond✓tr(H(✓?))

�
log

d✓

�
.

We note that this upper bound matches the lower bound given in Theorem B.1. This shows that the certainty equivalence
decision rule is instance optimal for any decision-making problem in the MDM setting.

The proof of this result is given in Appendix F.1. The burn-in time (B.6) and lower-order terms have transparent interpre-
tations. For the burn-in, the requirement that T be larger than Tcon(⇡exp) and Tse(⇡exp) is necessary to ensure that the
concentration and excitation events stated in Assumption 7 hold with high probability. The requirement that T be larger
that (4Ccon)1/↵ is necessary to ensure that the covariates have concentrated enough for our M -norm estimation bound,
Theorem D.2, to hold. Finally, the last term in the burn-in ensures that our estimate b✓ls is in a ball of radius rquad(✓?)

around ✓?, which allows us to approximate R(aopt(b✓ls); ✓?) by a quadratic. The lower order terms similarly yield intuitive
explanations. Cce,1/T

3/2 quantifies the additional loss due to the error in our quadratic approximation of R(aopt(b✓ls); ✓?),
while Cce,2/T

1+2↵ is due to the lower order term given in our M -norm estimation bound, Theorem D.2.

B.4.1. COROLLARY: CERTAINTY-EQUIVALENCE DECISION MAKING IN LDDM

While Theorem B.3 holds in a very general setting, our optimal decision-making algorithm, TOPLE, applies only to the
LDDM setting, and uses a highly structured set of policies. In order to facilitate the analysis of TOPLE, it is helpful to obtain
a corollary of Theorem B.3 in this more restricted setting. Towards making this precise, we introduce a set of policies in the
LDDM setting, sequential-open loop policies, which we show contains TOPLE. Before formally defining these policies, we
need the following piece of notation:
Definition B.3. Let

�̄ := c

⇣
(1 + kB?k2op)kA?k4H1

⌘⇣p
dx log

T

�
+ �

2kA?k2H1

⌘
.

By Lemma I.3, �̄T := T �̄ · I is a high probability upper bound on the covariates, assuming that ⇡exp 2 ⇧sol
�2 , where we

define ⇧sol
�2 below.

With this definition in place, we introduce the set of (sufficiently regular) sequential open loop policies satisfying the budged
contstraint, denoted ⇧sol

�2 .
Definition B.4 (Sequential Open-Loop Policies). We define a sequential open-loop policy to be an exploration policy
⇡exp 2 ⇧�2 satisfying the following conditions:
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• (Open-Loop Gaussian) There exist deterministic times {t̄0, t̄1, . . . , t̄n�1, t̄n} ✓ [T ] with t̄0 = 0, t̄n = T, t̄i+1 � t̄i,
such that, for t 2 {t̄i, . . . , t̄i+1 � 1}:

ut|Ft̄i
⇠ N (eut,⇤u,i)

for Ft̄i
measurable eut and ⇤u,i ⌫ 0 satisfying:

T�1X

t=0

eu>

t
eut  T�

2
, tr(⇤u,i)  �

2
, �min(⇤u,i) � �

2
u

almost surely, for deterministic �u.

• (Low-Switching) For any t, there exists some epoch i such that |{t, . . . , t + Tse(⇡exp)} \ {t̄i, . . . , t̄i+1 � 1}| �
1
2Tse(⇡exp) where

Tse(⇡exp) := c1dx

⇣
(dx + du) log(�̄/�

?

noise(�u) + 1) + log
n

�

⌘
.

In words, at least half of any length Tse(⇡exp) interval is contained in a single epoch.

We make several comments on this definition.

• Any policy ⇡exp 2 ⇧sol
�2 satisfies Assumption 7, which we prove in Appendix F.1.

• As we show in Appendix J, TOPLE, an optimal policy (up to constants), is in ⇧sol
�2 , with n = O(log T ).

• The assumption that ut | FTi be Gaussian is for simplicity of analysis, and in general is not necessary—the noise could
take different sub-Gaussian distributions if desired.

The following result instantiates Theorem B.3 with any policy ⇡exp 2 ⇧sol
�2 , and assuming we are in the LDDM setting.

Corollary 2. Assume we are in the LDDM setting and consider some loss R satisfying Assumption 3, stable system ✓?, and
exploration policy ⇡exp 2 ⇧sol

�2 . If

T �c1
⇣

Csysn
2(�4

w+�4)
�
?
noise(�u)2

+ dx
�
?
noise(�u)rquad(✓?)2

+
p
dx�

2
w

�2 + n+ dx

⌘⇣
log n

�
+ d log(�̄/�?noise(�u) + 3)

⌘
(B.7)

then for � 2 (0, 1/3), with probability 1� �:

R(aopt(b✓ls); ✓?)  5�2
w
log

24(d2
x
+ dxdu)

�
· �T (⇡exp; ✓?)

T
+

Cce,1

T 3/2
+

Cce,2

T 2

where Csys = poly(kB?kop, kA?kH1
), d := dx + du, universal numerical constants c1, c2, and

Cce,1 := c2Lquad

�
?
noise(�u)3/2

⇣
log 1

�
+ dxd log(�̄/�

?

noise(�u) + 3)
⌘3/2

, Cce,2 := Csys�
2
w(�4

w+�4)tr(H(✓?))d
3
n

�
?
noise(�u)3

log2 dn

�
.

We prove this result in Appendix I.

B.5. Efficient Experiment Design in Frequency Domain (LDDM)

Before presenting the formal definition of TOPLE, we establish the relevant experiment design preliminaries, which are best
stated in frequency domain. From this, we will specify TOPLE, and then show that it is indeed a sequential open loop policy,
in the sense of Definition B.4. Recall that, in the LDDM setting, we set

�T (⇡; ✓) :=
1

T
E✓,⇡

"
TX

t=1


xt

ut

� 
xt

ut

�>#
, �T (⇡; ✓) := Idx ⌦ �T (⇡; ✓)

Through the remainder of this section, we will use the convention that in the LDDM setting bold matrices denote Kronecker
products, � := Idx ⌦ �. Note that, by mapping our linear dynamical system (B.3) to our general regression setting (B.2)
through the reduction given in Appendix G.3, this definition is consistent with our definition of � in the MDM setting.
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B.5.1. FREQUENCY-DOMAIN REPRESENTATIONS

We let bold vectors u = (ui)ki=1 2 C
kdu denote sequences of inputs, and denote their discrete-time Fourier transform (DFT)

ǔ = (ǔs)
k

s=1 = F(u) 2 C
kdu , where ǔs =

kX

s=1

us exp(
2⇡◆s

k
) (B.8)

The mapping F is invertible, though in general F�1 : Ctdu ! C
tdu . However, if our frequency-domain representation is

symmetric, we have that the inverse DFT is purely real.

Definition B.5 (Symmetric Signal). We say that ǔ = (ǔs)ks=1 2 C
kdu is symmetric if ǔs = conj(ǔk�s) for s < k and ǔk

is purely real, where conj(·) denotes the complex conjugate.

Fact B.1. F�1(ǔ) is a vector with real coefficients if and only if ǔ is symmetric.

We now consider a convex relation of the outerproduct of this DFT. First, some preliminaries. For a complex vector z 2 C
d

(resp. matrix A 2 C
d1⇥d2), let zH (resp. AH) denote its Hermitian adjoint; i.e., the complex conjugate of its transpose.

We denote the set of Hermitian matrices as Hd := {A 2 C
d⇥d : AH = A}, and the set of positive-semidefinite Hermitian

matrices H
d

+ := {A 2 H
d : zHAz � 0, 8z 2 C

d}. Given ǔ = (ǔ`)k`=1 2 C
kdu , we define its outerproduct as the

sequence of complex-rank one Hermitian matrices, U = (U`)k`=1, defined by

ǔ⌦ ǔ := U = (U`)
k

`=1, where U` = ǔ`ǔ
H

`
2 H

d

+. (B.9)

We now define the following set, which relaxes outer products to matrix sequences of the above form, with a total power
constraint on their trace:

U�2,k :=

(
U = (U`)

k

`=1 : U` 2 H
d

+, U is symmetric,
kX

`=1

tr(U`)  k
2
�
2

)
(B.10)

Critically, U�2,k is convex. We generalize the definition of symmetric signals here to matrices, defining it identically as we
have defined symmetric vector signals. The following class of sequences U are of particular importance.

Definition B.6 (Rank One Relaxation). We say that U = {U` : 1  `  k} 2 U�2,k is rank one if there exists a vector
ǔ 2 C

kdu such that U = ǔ⌦ ǔ.

Lastly, we define a frequency-domain covariance operator defined on U 2 U�2,k:

�freq
k

(✓,U) :=
1

k

kX

`=1

(e◆
2⇡`
k I �A)�1

BU`B
H(e◆

2⇡`
k I �A)�H

, (B.11)

�freq
t,k

(✓,U) :=
t

k
�freq
k

(✓,U) (B.12)

We will overload notation, defining

�freq
k

(✓, ǔ) = �freq
k

(✓, ǔ⌦ ǔ), �freq
t,k

(✓, ǔ) = �freq
t,k

(✓, ǔ⌦ ǔ) (B.13)

�freq
k

(✓,u) = �freq
k

(✓, ǔ), �freq
t,k

(✓,u) = �freq
t,k

(✓, ǔ) (B.14)

for u = F�1(ǔ). The following result shows that �freq
k

(✓,u) corresponds to the steady-state covariates of our system when
an input u is played.

Proposition B.4. Let U 2 U�2,k be rank one, with U = ǔ ⌦ ǔ, ǔ 2 C
kdu . Let u = (ut)kt=1 = F�1(ǔ). Define the

extended inputs

uext
1:T = (uext

t
)t�1, where u

ext
t

= umod(t,k)

Finally, let xu denote the evolution of the dynamical system obtained by starting at initial state x0 and executing the input
u
ext
t

. Then
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1. 1
k
�freq
k

(✓,U) = limT!1
1
T

P
T�1
s=0 x

u
s
(xu

s
)> = limT!1

1
T
�in
T
(✓,uext

, x0).

2. Let k0 � k be divisible by k. Let u0 = (uext
s

)k
0

s=1, and define the frequency domain quantities

ǔ0 = (ǔ0

`
)k

0

`=1 = F(u0), U 0 = ǔ0 ⌦ ǔ0
. (B.15)

Then �freq
k0 (✓,U 0) = k

0

k
�freq
k

(✓,U).

Noise-Augmented Covariances. We shall also study the covariance matrix that arises from exciting the system with
white noise of covariance ⇤u, when the process noise has covariance ⇤w:

�noise
t

(✓,⇤u) :=
t�1X

s=0

A
s⇤w(A

s)> +
t�1X

s=0

A
s
B⇤uB

>(As)> (B.16)

We will overload notation and set

�noise
t

(✓,�u) := �
noise
t

(✓,�2
u
I)

Since the Fourier transform preserves Gaussianity, the relevant covariance matrices become:

�ss
T,k

(✓,U ,�u) :=
1

k
�freq
k

(✓,U) +
1

T

TX

t=1

�noise
t

(✓,�u) (B.17)

If U is rank one, then Proposition B.4 implies that �ss
T,k

(✓,U ,�u) corresponds to the expected steady-state covariates of the
noisy system when playing inputs U . If U is not rank one, then �ss

T,k
(✓,U ,�u) corresponds to the expected steady-state

covariates of the noisy system when playing a sequence of inputs formed by decomposing U into rank one inputs, as in
Algorithm 3.

B.5.2. THE STEADYSTATEDESIGN SUBROUTINE

Using the preliminaries laid out in Appendix B.5.1, we define two subroutines of TOPLE before stating the full algorithm.
We first state our experiment-design subroutine, which computes the certainty-equivalence task-optimal inputs.

Algorithm 2 SteadyStateDesign(b✓, t, k, �)

1: Input time horizon t, signal length k, budget � > 0, model estimate b✓
2: Let U�2/2,k be the lifted representation of inputs defined in (B.10)
3: Set U 2 U�2/2,k ⇢ (Hd

+)
k

U  min
U2U�2/2,k

tr
⇣
H(b✓) · �ss

t,t/du
(b✓,U , �/

p
2du)

�1
⌘

(B.18)

4: return U

Algorithm 2 chooses the input U to minimize a function of the steady-state covariates of the system b✓. In particular, observe
that the objective is the steady-state analogue of the lower bound given in Theorem B.2, and we can therefore interpret this
routine as choosing the inputs that minimize the lower bound for our estimated system.

Implementation via Projected Gradient Descent. Note that the set U�2,k is convex, and that the objective is also convex,
due to the convexity of tr(X�1) and since �ss

t,t/du
(b✓,U , �/

p
2du) is affine in U . It follows that (B.18) can be efficiently

solved with any SDP solver. The structure of U�2,k, however, allows for an even more efficient solution. Note that any U
can be projected onto U�2,k by computing the SVD of each U` 2 U , an operation which takes time O(kd3

u
). Therefore,

(B.18) can be efficiently solved by running the following projected gradient descent update:

Ui+1  Ui � ⌘rU�
ss
t,t/du

(b✓,Ui, �/

p
2du)

Ui+1  proj(Ui+1;U�2/2,k)

where proj(Ui+1;U�2/2,k) denotes the projection of Ui+1 onto U�2/2,k.
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B.5.3. THE CONSTRUCTTIMEINPUT SUBROUTINE

In order to efficiently solve our experiment design problem, we allow our input set to contain inputs that are not rank one.
While this relaxation ensures our input set is convex, for a given U 2 U�2/2,k that is not rank one, it is not clear if U can be
implemented in the time domain. Indeed, Proposition B.4 shows that, if U is rank one, there exists some time domain input
u = (ut)kt=1 such that

1

k
�freq
k

(✓,U) = lim
T!1

1

T

T�1X

t=0

x
u
s
(xu

s
)>

which implies that we can approximately realize the response covariates �ss
T,k

(✓,U , �/
p
2du) in the time domain, but this

relationship no longer holds if U is not rank one. To remedy this, we propose the following procedure, which decomposes
an arbitrary, not necessarily rank one, input U into a sequence of inputs that can be realized in the time domain.

Algorithm 3 ConstructTimeInput(U , T, k)

1: Denote eigendecompositions U` =
P

du

j=1 �`,jv`,jv
H

`,j
, ` = 1, . . . , k, U` 2 U

2: ut = 0 2 R
du for t = 1, . . . , duT

3: for j = 1, . . . , du do
4: ǔ`,j  

p
du�`,jv`,j for ` = 1, . . . , k

5: for n = 1, . . . , T/k do
6: u(j�1)T+(n�1)k+1, . . . , u(j�1)T+nk  F�1(ǔ1,j , . . . , ǔk,j)

7: return u1, . . . , uduT

As the following result shows, ConstructTimeInput produces a time domain input which realizes the response
covariates �freq

k
(✓,U) for arbitrary U .

Proposition B.5. Let U 2 U�2,k not necessarily rank one. Let um = (ut)
dumk

t=1 denote the time-domain input returned by
calling ConstructTimeInput(U ,mk, k) with m an integer. Then

1

k
�freq
k

(✓,U) = lim
m!1

1

dumk

dumkX

t=0

x
um
t

(xum
t

)>

and, furthermore, the input satisfies
P

dumk

t=1 u
>

t
ut  dumk�

2.

B.6. Optimal LDDM Decision-Making: Formal Statement and Guarantee for TOPLE

Finally, we provide a formal definition of TOPLE (Algorithm 4), and a formal guarantee for its performance. Note that
TOPLE applies in the LDDM setting.

Algorithm 4 Task OPtimaL Experiment Design (TOPLE)
1: Input: Input power �2, initial epoch length Cinitdu (Cinit 2 N)
2: T0  Cinitdu, k0  Cinit, T  T0

3: Run system for T0 steps with ut ⇠ N (0, �
2

du
I)

4: for i = 1, 2, 3, ... do
5: b✓i�1  argmin

✓

P
T

t=1 kxt+1 � ✓[xt;ut]k22
6: Ti  T02i, ki  k02bi/4c, T  T + Ti

7: Ui  SteadyStateDesign(b✓i�1, Ti, ki, �)
8: (eui

t
)Ti
t=1  ConstructTimeInput(Ui, Ti/du, ki)

9: Run system for Ti steps with ut = eui

t
+ u

w

t
, uw

t
⇠ N (0, �

2

2du
I)

TOPLE begins by injecting isotropic Guassian noise into the system to achieve a minimum degree of excitation. It then solves
a sequence of experiment design problems on the estimated system, b✓i�1, and then plays the inputs that would optimally
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excite b✓i�1. Due to the computational efficiency of SteadyStateDesign, TOPLE is computationally efficient. Note that
by construction we will always have that ki+1, Ti+1/du, and Ti+1/(duki+1) are integers, so all quantities in the algorithm
and subroutines are well-defined. The following assumption quantifies how large T must be to guarantee we achieve the
optimal rate.
Assumption 8 (Sufficiently Large T ). T is large enough that the burn-in time of Corollary 2, (B.7), is met with n = c1 log T
and �

?

noise(�u) = �
?

noise, and

T � max

(
C

init
TOPLE

p
dx(�2

w
+ 1)

�
?

noise

,
c2(log

1
�
+ d log(�̄/�?noise + 1))

min{rcov(✓?)2, d�1
x rquad(✓?)2, (�?noise)

2Lcov(✓?, �2)�2}�?noise

)
(B.19)

where
C

init
TOPLE = poly

✓
kA?kH1

, kB?kop, du, �2
, log

1

�
, Cinit

◆
,

rcov(✓?) = C
�1
sys is defined as in Lemma H.5 for some Csys = poly(kA?kH1

, kB?kop), d = dx + du, and c1, c2 are
universal numerical constants.

Then we have the following theorem, upper bounding the loss achieved by TOPLE.
Theorem B.6 (Part 1 of Theorem 2.2). Assume we are in the LDDM setting, that R satisfies Assumption 3, � 2 (0, 1/3),
and that T is large enough for Assumption 8 to hold. Then with probability at least 1 � �, the estimate b✓T produced by
Algorithm 4 satisfies:

R(aopt(b✓T ); ✓?)  480�2
w
log

72(d2
x
+ dxdu)

�
· �opt(�2; ✓?)

T
+

Cce,1 + CTOPLE,1

T 3/2
+

Cce,2 + CTOPLE,2

T 2

and, furthermore, E[
P

T

t=1u
>

t
ut]  T�

2. Here Cce,1 and Cce,2 are defined as in Corollary 2,

CTOPLE,1 := c1

⇣p
dxd

2
Lhess

(�?
noise)

3/2 + Lcov(✓?,�
2)tr(H(✓?))

(�?
noise)

5/2

⌘q
log(1/�) + d log(�̄/�?noise + 1),

CTOPLE,2 := c2
d
2
Lcov(✓?,�

2)Lhess

(�?
noise)

3

⇣
log(1/�) + d log(�̄/�?noise + 1)

⌘
,

Lcov(✓?, �2) = Csys(�2
w
+ �

2) is defined as in Lemma H.5, d := dx + du, and c1, c2 are universal numerical constants.

We note that this upper bound matches the lower bound on LDDM decision making given in Theorem B.2, up to constants.
We prove this result in Appendix J.1. The additional burn-in required and additional lower-order terms are required to
quantify how close to optimal the inputs being played are. In particular, when T satisfies (B.19), we are able to show that the
inputs being played achieve near-optimal performance. The additional lower order terms, CTOPLE,1/T

3/2 and CTOPLE,2/T
2,

both quantify the loss incurred by performing certainty equivalence experiment design with an estimate of ✓?.

C. Remarks and Extensions
C.1. Randomized Decisions

Our framework extends to possibly randomized decisions ba; that is, decisions ba = synth(⌧, ⇠), where again ⌧ is the observed
trajectory, and ⇠ is internal algorithmic randomness. Note that our upper bounds all hold for the deterministic certainty
equivalence decision rule. Our lower bounds, however, encompass these randomnized decision rules. This can be be seen by
examining the proof of our lower bound Theorem D.1, which proceeds by lower bounding the Bayes risk over a distribution
supported on a ball of a given radius. Hence, the performance of any randomized decision rule ba is no better than the
performance of the deterministic decision rule which considers the value of the random seed ⇠ attaining the least Bayes risk
over the distribution considered in the lower bound Theorem D.1.

C.2. Non-Identity Noise Covariance

A known non-identity noise covariance ⌃w can be adressed by a change of basis to whiten the noise. Unknown noise
covariances can be estimated. One can show that one need only estimate ⌃w up to a constance accuracy, i.e. |⌃̂w � ⌃w| 
c�min(⌃w) for a small constant c > 0, and use ⌃̂w either for a change of basis. One can show that this will still yield
optimal rates up to constant factors (determined by the magnitude of c).
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C.3. Unstable Systems and State Costs in Experiment Design

In many cases, one may wish to perform experiment design on systems that are either unstable, i.e. ⇢(A?) > 1, or are
systems which are marginally stable ⇢(A?) = 1, or which have a large mixing time, ⇢(A?) ⇡ 1. This poses two challenges:

• To show example optimality, our analysis requires concentration of the empirical covariance matrix around its
expectation. For either unstable or marginally stable systems, existing analysis suggests this may not be true (Simchowitz
et al., 2018; Sarkar & Rakhlin, 2019). Moreover, estimation with unstable systems requires additional nondegeneracy
conditions (Sarkar & Rakhlin, 2019).

• Because the magnitude of the state, and thus eigenvalues of the covariance matrix grow rapidly in marginally stable
and in unstable systems, they may constitute a somewhat unrealistic setting for experiment design: in practice, very
large states/covariances are highly undesirable, whereas for estimation, they can be quite beneficial.

To adress these concerns, we propose three settings which would yield meaningful extensions of experiment design to
unstable/marginally unstable settings.

Multiple Rollouts: One can instead consider experiment design with, say, n independent rollouts of finite horizon H .
By forcing the system to reset, this is sufficient to ensure concentration of the relevant covariance matrices, and obviate
consistency issues that may arise in the unstable setting.

Stabilizing Controller: Another approach is to assume the existence of a stabilizing controller K0, and select inputs
ut = K0xt + ⌫t, where ⌫t is an additional input chosen to optimize the experiment design. We can then impose the total
power constraint on the total square norm of the ⌫t inputs.

C.3.1. STATE COSTS

Imposing total power constraints on the additional inputs ⌫t in the above example may appear somewhat artificial. Instead,
one may wish to explicitly encode the tradeoff between ensuring state magnitudes are small, and the rate of estimation (as
determined by the eigenvalues of covariance matrix) is fast. To this end, we can consider control budgets of the form of
LQR-like penalties

TX

t=1

x
>

t
Qbudgxt + u

T

t
Rbudgut  T�

2
. (C.1)

We stress that the cost matrices Qbudg and Rbudg above pertain to the experiment design, and not to, say, an LQR synthesis
task for which the experiment design is being considered.

We further note that satisfying the constraint (C.1) may be infeasible: indeed, this occurs whenever both (a) the optimal
infinite LQR cost for with cost matrices (Qbudg, Rbudg) is strictly greater than �

2, and (b) the the horizon T is sufficiently
large (so that the finite horizon optimal costs approaches its limiting, infite-horizon value).

Finally, the design for budgets of the form Eq. (C.1) may be closed-loop: that is, they may necessarily require a inputs ut

which are functions of past states x1:t. In constrast, when budget only constraints total input power, we have shown that
open-loop inputs (i.e. those not dependending on past states) suffice for optimality, up to constant factors. This raises the
question of how to conduct efficient experiment design over such closed loop policies. In the interest of brevity, we sketch a
promising approach to this problem, and omit the details for future work:

• Observe that the cost (C.1) is itself a linear form in the joint covariance matrices of the states and inputs. Hence, the
experiment design roughly amoungs to optimizing a convex function of the form tr(H · ��1) over feasible state-input
covariance matrices �, subject to a linear constrain of the form tr(C · �). This is a convex program in �.

• To characterize the set of feasible covariance matrices, we can observe that any feasible covariance matrix can be
obtained by combining a linear feedback policy with an open loop policy (this can be verified using Gaussianity).
One promising computation approach to perform this optimization is to use system level synthesis (Anderson et al.,
2019), where the linear feedback term can be represented as a linear form in the noise variables wt. Thus, the desired
covariance matrices can be represnted as outer-products of open-loop inputs and linear forms.
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• The SLS representation then describes the set of feasible covariance matrices as outer-products of linear forms; this is
not yet a convex representation. However, just as this paper operators on the convex hull of covariance matrices arising
from open-loop inputs, a similar convex relaxation can yield a convex representation of covariance matrices with
closed-loop feedback. This relaxation is not loose: the space of feasible expected covariance matrices over all policies
is convex, since one can always interpolate between two covariance matrices via probabilistic interpolations between
the policies which generated them (i.e. selected some policy ⇡1 with probability p, and another with probability 1� p).
This means that, given a feasible expected covariance matrix recovered from this relaxation, we can produce a policy to
generate it.

C.4. Expectation v.s. High Probability

Observe that our upper bounds are stated with high probability, whereas lower bounds are stated in expectation. This is
because on lower bounds proceed (like most information theoretic lower bounds) via bounds on the Bayes-Risk, which
regard expected performance; on the other hand, our upper bounds may not hold in expectation because, on a highly
improbable failure event, the estimate may produce a decision which has infinite cost (e.g. a controller returned for an LQR
task which fails to stabilize the system).

To close the gap between the two, we can make the following modifications:

• Our lower bounds on expected risk can be restated as lower bounds on a constant probability of error. To see this,
we note that our lower bound holds over a localized set of instances, B = {✓ : k✓ � ✓0k2  r}. Hence, any decision
rule / experiment design procedure can be modified to only return decisions which satisfy some minimum worst-case
performance on B (and, under the smoothness assumptions considered in this work, this can be done without harming
the performance of the decision rule). Thus, the worst case suboptimality of the decision rule can be no more than
a constant, and thus, the lower bound in expectation can be tranformed into a lower bound holding with constant
probability.

• Similarly, if the learner is given side information (e.g. a convex set A of possible decisions known to contain an open
ball around the optimal decision aopt(✓?), and such that the cost supa2A

J✓?(a) <1), then the learner can achieve
upper bounds in expectation by projecting their decision ba onto the set A, namely

ba0 = Proj
A
(ba)

Then, whenever ba0 is sufficiently close to aopt(✓?), ba0 = ba and the cost will be unaffected; however, on low-probability
failure events, the projection step ensures the cost remains bounded.

C.5. Subspaces and Parameteric Uncertainty

In many applications, one considers linear dynamical systems (A,B) where some coordinates, or more generally, subspaces
of the dynamical matrices are known to the learner, and only some coordinates or subspaces must be learned. In this case,
learning the matrices (A,B) with unconstrained least squares may be suboptimal.

However, the subspace-constrained learning setting can be easily re-written as an unconstrained learning problem restricted
to an appropriate subspace, and this resulting structure obeys the general martingale least squares setting outlined in Part II.
Hence, the same arguments given in that section demonstrate can be used to demonstrate optimality of certainty equivalence.
The algorithm TOPLE can be similarly modified to optimize for the covariance matrix in the relevant restricted subspace.

A more general constrained setting is where (A,B) = (A(✓), B(✓)) are smooth, possibly nonlinear functions of a hidden
parameter ✓. In this case, we conjecture that one can achieve optimal rates by obtaining a course estimate b✓ of ✓, applying
constrained least squares in the subspace defined by the image of the Jacobian d

d✓A(✓), B(✓)) at b✓ = ✓. We leave the details
for future work.

C.6. Parametric Nonlinear Systems

Many of the results in this work can be extended to the parameteric non-linear systems considered in the recent literature
(Mania et al., 2020; Kakade et al., 2020):

xt = h✓?,�(xt, ut)i+ wt, wt

i.i.d.⇠ N (0,�2
w
) (C.2)
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where ✓? 2 R
d is a linear paramter describing the dynamics, and � : Rdx+du ! R

d is an embedding function known to the
learner. Despite the nonlinear, the dynamics (C.2) satisfy the martingale regression setting considered in Appendix D, and
thus the MDM upper and lower bounds in that section extend (Theorem D.1 and Theorem D.2); similarly, the guarantees of
Appendix E extend as well as long as the cost functional J✓(a) satisfies the requisite regularity conditions.

Unfortunately, attempts to extend these guarantees to optimal experiment design encounter a number of difficulties:

1. The experiment-design lower bounds established for linear dynamical systems require verifying that we can consider,
without loss of generality, exploration policies ⇡exp which produce sufficiently “regular” periodic inputs (see Ap-
pendix H); it is not clear how this argument would generalize to the nonlinear setting Eq. (C.2), where potentially
highly pathological exploration policies may be preferrable.

2. The certainty-equivalence upper bounds for linear systems require demonstrating concentration of the empirical
covariance matrix around its mean; for linear systems, this can be verified as long as the dynamical matrix A? is stable.
For nonlinear systems, further conditions need to be imposed.

3. The experiment design problem for nonlinear systems may be computationally intractable. In addition, the experiment
design objective may be very sensitivie to errors in the estimate of the parameter ✓?, so that solving the certainty
equivlanet experiment design objective (i.e. optimal design based on an estimate b✓) may be a poor proxy for the optimal
design.

4. For nonlinear systems, controlling how the error in parameter estimation error translates into suboptimality in the
decision ba for the given task may be quite challenging. Even for LQR synthesis in linear systems, verifying the
smoothness conditions in Appendix E relies on subtle technical tools developed specifically for LQR (Simchowitz &
Foster, 2020).

C.7. Suboptimality of Low Regret Algorithms

Here, we state a formal lower bound about the suboptimality of low regret algorithms. Consider a nominal instance (A?, B?).
For simplicity, we consider a normalization where Rx ⌫ I and Ru ⌫ I , which can be enforced by suitable renormalization.
Proposition C.1 (Formal statement of Proposition 4.3). Fix a nominal instance ✓? = (A?, B?) with optimal value function
P?, costs Rx, Ru ⌫ I , and select a regret lower bound bound

R � d
2
u
dxpoly(kP?kop, kB?kop) + kP?k2op

p
dxT/4.

Then, over the ball of instances B = B(R) := {✓ : k✓? � ✓k2F 
d
2
udx

16kP?kopR
}, the following lower bound for any low-regret

exploration policy ⇡lr and controller Klr synthesized from the trajectory it collects:

max
✓2B

E✓,⇡lr [RegT ] � R, or max
✓2B

E✓,⇡lr [RLQR,✓e(Klr)] �
d
2
u

320R
·
✓

max
1mdx

m · �m(A? +B?K?)
2

◆
. (C.3)

where �m(·) denotes the m-th largest singular value.

For many instances of interest,
�
max1mdx m�m(A? +B?K?)2

�
> 0 is a constant bounded away from 0, and even

scales with dimension dx. Hence, we find a strong tradeoff between low regret and optimal estimation. The key intuition
behind the proof is that low regret algorithms converge to inputs ut ⇡ K?xt approaching the optimal control policy; in
doing so, they under-explore directions perpendicular to the hyperplane {(x, u) : u = K?x}, which are necessary for
indentifying the optimal control policy. This idea, as well as the rigorous proof, draws heavily on the regret lower bound due
to (Simchowitz & Foster, 2020).

Proof of Proposition C.1. Throughout, fix a low regret policy ⇡lr. The proof follows from the arguments of (Simchowitz &
Foster, 2020). Fix a nominal instance ✓? = (A?, B?), with optimal controller K?. Let m 2 [dx], and adopt the shorthand
n = du. For binary vectors e 2 {�1,+1}nm consider a packing

✓e := (Ae, Be) = (A? ��eK?, B? +�e), �e = ✏

nX

i=1

mX

j=1

ei,jviw
>

j
,
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where ✏ is a parameter to be chosen small than ✏0 := 1
nm·poly(kP?kop)

for a larger enough polynomial poly, and (vi) and
(wj) are appropriately selected orthonormal basis vectors. These instance are constructed so that Ae +BeK? are identical
for all packing indices e; in other words, by selecting the optimal controller for the nominal instance ✓?, al the instances are
indistinguishable.

Let Ke := Kopt(✓e) denote the optimal controller for these instances. We let Ee denote expectation under the uniform
distribution over e ⇠ {�1, 1}nm from the hypercube. We consider the term K-err from (Simchowitz & Foster, 2020),
modified to include all T time steps (instead of T/2). For any controller K 2 R

dudx , define

K-err := E✓e,⇡lr [
TX

t=1

kut �Kxtk22].

The reason for considering T steps is because here we are concerned with the offline learning problem, where the learner is
allowed to use all data from the trajectory to synthesize a controller.

The first claim lower bounds the regret by average deviation from the optimal control policy under the nominal instance:

Claim C.1. Let �err = dx · poly(kP?kop, kB?kop), where O hides universal constants. Then,

E✓e,⇡lr [RegretT ] �
1

4
E
e
K-erre[K?]� nmTkP?k4op✏2 � �err (C.4)

Proof. A modification of (?)Lemma 4.3]simchowitz2020naive use all T steps (rather than T/2, and using a sum over the
terms ⌘t in that proof rather than a bound by the maximum) shows that

Reg
e
:= E✓e,⇡lr [RegretT ] �

1

2
K-erre[Ke]� �err, where �err = dx · poly(kP?kop, kB?kop), (C.5)

From Lemma 4.7 in (Simchowitz et al., 2017), we also have

E
e
K-erre[Ke]  2E

e
K-erre[K?] + 4nmTkP?k4op✏2.

Combining the two displays gives the claim.

Next, since the instances ✓? only differ along directions (x, u) 2 R
dx+du perpendicular to the hyperplane u = K?x, samples

collected perpendicular to this hyperplane essential for disambiguating between the instances ✓e. This leads to the following
lower bound.

Claim C.2. Set R = n

48✏2 . Then either

E
e
[K-erre[K?]] � 12R, or E

e
E✓e,⇡lr [RLQR,✓e(Klr)] �

�m(A? +B?K?)2n2
m

480R
(C.6)

Proof. Modifying Lemma 4.5 in (Simchowitz & Foster, 2020) shows that for any binary estimator ê, either K-erre is small
on e drawn from the hypercube, or else ê has large hamming error.

either E
e
[K-erre[K?]] �

n

4✏2
, or E

e
E✓e,⇡lr [dham(ê, e)] �

nm

4
.

Combining with Lemma 4.6 in (Simchowitz & Foster, 2020), it follows that

either E
e
[K-erre[K?]] �

n

4✏2
, or E

e
E✓e,⇡lr [kKlr �Kek2F] �

�m(A? +B?K?)2nm✏
2

10
.

From (?)Lemma 3]mania2019certainty, we can bound kKlr �Kek2F �
RLQR,✓e (Klr)
�min(Ru)

. Thus, using Ru ⌫ I ,

E
e
[K-erre[K?]] �

n

4✏2
, or E

e
E✓e,⇡lr [RLQR,✓e(Klr)] �

�m(A? +B?K?)2nm✏
2

10
.

Reparameterizing R = n

32✏2 gives either Ee⇠{�1,1}[K-erre[K?]] � 12R, or else Ee⇠{�1,1} E✓e,⇡lr [RLQR,✓e(Klr)] �
�m(A?+B?K?)

2
n
2
m

480R , as needed.
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Combining Claims C.1 and C.2 and taking R = n

32✏2 gives

E
e
E✓e,⇡lr [RegT ] � 3R� nmTkP?k4op✏2| {z }

=
mTkP?k4op

32R

��err, or E
e
E✓e,⇡lr [RLQR,✓e(Klr)] �

�m(A? +B?K?)2n2
m

320R
(C.7)

In particular, if we take ✏ so that R � max{�err,
mTkP?k

4
op

32R }, then either

E
e
E✓e,⇡lr [RegT ] � R, or E

e
E✓e,⇡lr [RLQR,✓e(Klr)] �

�m(A? +B?K?)2n2
m

320R
(C.8)

Let us conclude by verifying the requisite ranges for conditions on ✏ and regret bound R for the above to hold. We require that
R � �err = dpoly(kP?kop, kB?kop). We also require R

2 � mTkP?k
4
op

32 , so that R � kP?k2op
p
mT/4. Finally, we require

✏
2 = n

32R 
1

nm·poly(kP?kop)
, so R � n

2
m · poly(kP?kop) for a a possibily modified polynomial function. Concluding,

and using n = du and m  dx, it is enough to select

R � poly(kP?kop, kB?kop)d2udx + kP?k2op
p

dxT/4.

Finally, we note that all the instances ✓e have

k✓e � ✓?k2F = kK?�ek2F + k�ek2F  (1 + kK?k2op)nm✏
2 =

n
2
m(1 + kK?k2op)

32R
.

Concluding, we note that for Ru ⌫ I , one can bound kK?k2op  kP?kop (this follows since P? ⌫ Rx +K
>

?
RuK? by a

standard computation). Hence, taking n = du and m  dx all instances lie in the ball B = {✓ : k✓? � ✓k2F 
d
2
udx

16kP?kopR
}.

The bound follows.
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Part II

Martingale Decision Making
D. Optimal Rates for Martingale Regression in General Norms
In this section, we establish upper and lower bounds in sequential linear regression setting with martingale structure. We
consider a filtration (Ft)t�1, and a well-specified linear model with true parameter ✓? 2 R

d✓ , covariates zt 2 R
d✓ , scalar

observations yt, and noise wt. Specifically, for each ✓? 2 R
d✓ , we assume there is a distribution D✓? over (yt, zt, yt)

obeying

yt = h✓?, zti+ wt, wt | Ft�1 ⇠ N (0,�2
w
), zt is Ft�1-adapted.

As long as the above conditions hold, we allow the distribution of the covariates to be arbitrary: for example, that there is
some function f(. . . ) of appropriate shape such that zt = f(t, z1:t�1, y1:t�1, w1:t, ✓?). We let E✓ and P✓ denote probabilities
and expectations with respect to the above law when ✓? = ✓. Our aim is to produce an estimator b✓ 2 R

d✓ so as to minimize
the following weighted least-squares risk:

Rls(b✓; ✓) := kb✓ � ✓k2
M
, M ⌫ 0. (D.1)

D.1. Upper and Lower Bounds on M -norm Regression

In this section, we show that the least squares estimator

b✓ls :=
⇣P

T

t=1 ztz
>

t

⌘�1P
T

t=1 ztyt (D.2)

is the optimal estimator of ✓? for the risk in Eq. (D.1), in a very strong, instance dependent sense. Throughout, tcentral
object of our analysis is the random covariance matrix:

⌃T :=
P

T

t=1 ztz
>

t
.

Let us start with the lower bound. We will call an estimator b✓ measurable if b✓ is a measurable function of the covariates and
responses (yt, zt : 1  t  T ), and possibly some internal randomness. We consider the localized risk in a Euclidean ball
of radius r > 0 around a nominal instance ✓0

Theorem D.1 (Truncated van Trees). Let b✓ be an arbitrary measurable estimator. Moreover, fix a covariance parameter
� 2 S

d✓
++, nominal instance ✓0 2 R

d✓ , and radius r �
p
5tr(��1). Let B := {✓ : k✓ � ✓0k2  r} denote a Euclidean ball

around ✓0. Then, it holds that

inf
b✓
max
✓2B

E✓Rls(b✓; ✓) � �
2
w
min
✓2B

tr
⇣
M · (E✓[⌃T ] + �)

�1
⌘
� (r;�,M),

where  (r;�,M) := 32kMkop

�min(�)
exp(� r

2

5 �min(�)).

Proof Sketch of Theorem D.1. The proof is given shortly below in Appendix D.2; it is derived from a Bayes-risk lower
bound deriving from an explicit computation of the conditional variance (and thus minimal mean square error in estimation)
of a parameter ✓ drawn from a normal distribution centered at ✓0, with covariance ⇤ = ��1. This distribution is then
carefully truncated at radius r to ensure the local minimax bound holds when restricted to the ball B.

Remark D.1 (Comparison to Previous Lower Bounds). Lower bounds for experiment design are typically derived from the
Cramer-Rao bound (e.g, in (Chaudhuri et al., 2015)), which applies only to unbiased estimators, and does not rule out more
efficient estimation by allowing bias. In contrast, our work provides an unconditional information theoretic lower bound,
derived from a closed-form computation of an expected Bayes risk in linear regression with a Gaussian prior (Theorem D.1).
This technique is similar in spirit to the Van Trees inequality (Gill et al., 1995) which was used in concurrent work to
understand instance-optimal regret in LQR when A? is known but B? is not (Ziemann & Sandberg, 2020).
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Another common technique for adaptive estimation lower bounds is Assouad’s method (Arias-Castro et al., 2012; Simchowitz
& Foster, 2020), typically yielding worst-case (though not sharp, instance-dependent) lower bounds. The lower bounds for
adaptive experiment design in linear systems due to (Wagenmaker & Jamieson, 2020; Jedra & Proutiere, 2019) hold in the
asymptotic regime where the tolerated probability of failure � tends to 0, a regime pioneered by (Kaufmann et al., 2016) for
pure-exploration multi-arm bandits, and extended to reinforcement learning in (Ok et al., 2018). For continuous parameter
estimation (such as the linear control setting control), the � ! 0 asymptotic lower bounds differs from non-asymptotic
upper bounds by as much as a dimension factor, unless � is taken to be exponentially small in dimension (Simchowitz et al.,
2017). In particular, taking � ! 0 yields a qualitatively inaccurate picture of the expected error of the estimators in question.
In contrast, this work achieves matching bounds in the (arguably more natural) “moderate �” regime, where the tolerated
failure probability is no smaller than inverse polynomial in the time horizon.

In our applications, we shall choose r sufficiently large and � sufficiently small so that the lower bound reads

�
�2
w

inf
b✓
max
✓2B

E✓Rls(b✓; ✓) & min
✓2B

tr
�
ME✓[⌃T ]

�1
�
; (D.3)

in other words, that the M -weighted trace of the inverse covariance matrix lower bounds the risk. Even though the
right-hand side considers the minimum over ✓ 2 B, the radius r of B can be chosen small enough that this quantity
does not vary significantly. For a sense of scaling E✓[⌃T ] will typically scale like ⌦(T ), by choosing � � o(T ), and
r
2 / tr(��1) log2(T ), the term  (r,�,M) vanishes as T�!(1), and the approximation Eq. (D.3) holds. Moreover, since

this scaling of r vanishes at a rate of log2 T/
p
T , r is small enough so as to ensure E✓[⌃T ] does not vary significantly on B.

Theorem D.2. Fix any matricies � 2 S
d✓
++,M 2 S

d✓
+ , with M 6= 0. Given a parameter � 2 (0, 1/4), define the event

E := {k⌃T � �kop  ��min(�)}

Then, if E holds, the following holds with probability 1� �:

kb✓ls � ✓?k2M  5(1 + ↵) · �2
w
log

6d

�
· tr(M��1), w.p. 1� �, where

↵ := 26�2
�max(�)tr(�

�1).

Proof Sketch. Like many results of this flavor, the proof is based on the self-normalized martingale inequality (Abbasi-
Yadkori et al., 2011). Unlike related results, however, our proof must relate in the error in the M -norm kb✓ls � ✓?k2M to the
�-geometry so as to recover tr(M��1). It turns out that, due to the fact that matrix square does not preserve the Lowner
order (i.e., it is possible to have 0 � A � B, but A2 6� B

2 ), we require the empirical matrix ⌃T to concentrated around �
for this argument to go through. This forces us to require the above event E to hold, and to suffer the error term ↵. The
complete proof is given in Appendix D.3.

D.2. Proof of M -norm Regression Lower Bound (Theorem D.1)

Without loss of generality, set �2
w
= 1. The proof of the lower bound is a Gaussian-specialization of the Van Trees inequality

(see, e.g. (Gill et al., 1995)), a Bayes-risk lower bound which considers the risk of estimating a quantity under a certain prior.
For our prior, we use a normal distribution, which we truncate to a radius r. In what follows, we set

⇤ := ��1 2 S
d✓
++.

We let Ntr denote the following truncated normal distribution: the distribution of Z ⇠ N (✓0,⇤), conditioned on the event
kZ � ✓0k2  r. We further define the full data DT := (y1:T , z1:T ), and let

• Dfull(DT ) denote the posterior of ✓ given Dt, when ✓ is drawn from N (✓0,⇤);

• Let Dtrunc(DT ) denote the distribution of ✓ | DT .

Throughout, we assume that our posited estimator b✓ is a deterministic function of DT ; this is without loss of generality for a
Bayes-risk lower bound. Then, since the distribution Ntr is supported on the ball B := {✓ : k✓ � ✓0k2  r},

inf
b✓
max
✓2B

E✓Rls(b✓; ✓) � E
✓⇠Ntr

E✓Rls(b✓;✓) = E
✓⇠Ntr

EDT⇠✓kb✓(DT )� ✓k22.
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Lemma D.1 (Replica Lemma). Let X,Y be abstract random variables, with X ⇠ PX , Y ⇠ PY |X(· | X), and let f(x, y)
be an integrable function. Moreover, suppose that X | Y has density PX|Y (· | Y ). Then

EX⇠PXEY⇠PY |X(·|X)[f(X,Y )] = EX⇠PXEY⇠PY |X(·|X)EX0⇠PX|Y (·|Y )[f(X
0
, Y )].

Proof. By Fubini’s theorem and Bayes’ rule,

EX⇠PXEY⇠PY |X(·|X)[f(X,Y )] =

Z Z
f(x, y)PY |X(y | x)PX(x)dydx

=

Z Z Z
f(x, y)PX0|Y (x

0 | y)PY |X(y | x)PX(x)dx0
dydx

=

Z Z Z
f(x, y)

PY |X0(y | x0)PX0(x0)

PY (y)
PY |X(y | x)PX(x)dx0

dydx

=

Z Z Z
f(x, y)PX|Y (x|y)PY |X(y | x)PX0(x0)dx0

dydx

=

Z Z Z
f(x, y)PX|Y (x|y)PY |X(y | x)PX0(x0)dxdydx0

= EX0⇠PX0
EY⇠PY |X(·|X0)EX⇠PX|Y (·|Y )[f(X,Y )]

Relabeling gives the result.

By Lemma D.1, the above is equal to

E
✓⇠Ntr

E✓Rls(b✓;✓) = E
✓⇠Ntr

E
DT⇠✓

E✓0⇠Dtrunc(DT )kb✓(DT )� ✓0k2
M
. (D.4)

For a random vector Z and any fixed a, EkZ � ak2
M
� EkZ �EZk2

M
; that is, the Bayes estimator is optimal. Denoting the

event E := {k✓0 � ✓0k2  r} (over the randomness of ✓0), we lower bound Eq. (D.4) by

Eq. (D.4) � E
✓⇠Ntr

E
DT⇠✓

E✓0⇠Dtrunc(DT )k✓0 � E✓0⇠Dtrunc(DT )✓
0k2

M

= E
✓⇠Ntr

E
DT⇠✓

E✓0⇠Dfull(DT )

h��✓0 � E✓0⇠Dfull(DT )[✓
0 | E ]

��2
M

| E
i

(D.5)

To handle this expression, we use the following technical lemma
Lemma D.2. Consider a square-integrable random vector Z 2 R

d✓ , fixed µ 2 R
d✓ , r � 0. Defin the event E :=

{kZ � µk2  r}. Then,

E[kZ � E[Z | E ]k2
M

| E ] � E kZ � E[Z]k2
M
� 4kMkopE[I{Ec}kZ � µk22].

Proof.

E
⇥
kZ � E[Z | E ]k2

M
| E
⇤
� E

⇥
I{E} · kZ � E[Z | E ]k2

M

⇤

= E kZ � E[Z | E ]k2
M| {z }

(i)

�E
⇥
I{Ec} · kZ � E[Z | E ]k2

M

⇤
| {z }

(ii)

Next, we lower bound (i) = E kZ � E[Z | E ]k2
M
� EkZ � E[Z]k2

M
. Thus, it remains to upper bound (ii):

(ii) = E
⇥
I{Ec} · kZ � E[Z | E ]k2

M

⇤
 2E

⇥
I{Ec} ·

�
kZ � µk2

M
+ kµ� E[Z | E ]k2

M

�⇤

 2E
⇥
I{Ec} ·

�
kZ � µk2

M
+ r

2kMkop
�⇤

 2E
⇥
I{Ec} ·

�
kZ � µk22kMkop + r

2kMkop
�⇤

,

where in the second line, we use that, under E , kZ�µk2  r. Moreover, under Ec, kZ�µk22 � r, so that kZ�µk22+ r
2 

2kZ � µk22. Hence, (ii)  4kMkopE[I{Ec}kZ � µk22]. Thus,

E[kZ � E[Z | E ]k2
M

| E ] � E kZ � E[Z]k2
M
� 4kMkopE[I{Ec}kZ � µk22],

as needed.
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Instantiating Lemma D.2,

Eq. (D.4) � E
✓⇠Ntr

E
DT⇠✓

E✓0⇠Dfull(DT )

⇥
k✓0 � E✓00⇠Dfull(DT )[✓

00]k2
M

⇤

� 4kMk2op E
✓⇠Ntr

E
DT⇠✓

E✓0⇠Dfull(DT )E✓0⇠Dfull(DT )

⇥
k✓0 � ✓0k22 · I{k✓0 � ✓0k22 > r

2}
⇤
.

Hence, retracing our steps thus far,

inf
b✓
max
✓2B

E✓Rls(b✓; ✓) � E✓⇠NtrEDT⇠✓E✓0⇠Dfull(DT )

⇥
k✓0 � E✓0⇠Dfull(DT )[✓

0]k2
M

⇤
| {z }

(a)

� 4kMk2op ·
�
E✓⇠NtrEDT⇠✓E✓0⇠Dfull(DT )

⇥
k✓0 � ✓0k22 · I{k✓0 � ✓0k22 > r

2}
⇤�

| {z }
(b)

(D.6)

Let us control the two resulting terms.

Computing term (a): First, we bound the dominant term (a):

Lemma D.3. The following identity holds:

E✓0⇠Dfull(DT )

⇥
k✓0 � E✓00⇠Dfull(DT )[✓

00]k2
M

⇤
= �

2
w
tr(M1/2(⌃T + ⇤�1)�1

M
1/2).

Proof. Due to the fact that we have gaussian likelihoods, we we

dP(DT | ✓) / exp(� 1

2�2
w

TX

t=1

(yt � h✓, zti)2) / exp(� 1

2�2
w

✓
>⌃T ✓ +

1

�2
w

✓
>

TX

t=1

zty
>

t
)

On the other hand, for any given ✓, dP(✓) / exp(� 1
2✓

>⇤�1
✓). Hence,

dP(✓ | DT ) / exp(� 1

2�2
w

✓
>(⌃T + ⇤�1)✓ +

1

�2
w

✓
>

TX

t=1

zty
>

t
)

Thus, ✓ | DT is conditionally Gaussian with covariance �
2
w
(⌃T + ⇤�1)�1. It follows that:

E✓0⇠Dfull(DT )

⇥
k✓0 � E✓00⇠Dfull(DT )[✓

00]k2
M

⇤

= tr
⇣
M

1/2
E✓0⇠Dfull(DT )

⇥
(✓0 � E✓00⇠Dfull(DT )[✓

00])(✓0 � E✓00⇠Dfull(DT )[✓
00])>

⇤
M

1/2
⌘

= �
2
w
tr
⇣
M

1/2(⌃T + ⇤�1)�1
M

1/2
⌘

As a direct consequence of the above lemma, we find that

term (a) = E
✓⇠Ntr

E
DT⇠✓

E
✓0⇠Dfull(DT )

E✓0

h
�
2
w
tr(M1/2(⌃T + ⇤�1)�1

M
1/2)

i

= E
✓⇠Ntr

E
✓

h
�
2
w
tr(M1/2(⌃T + ⇤�1)�1

M
1/2)

i
, (D.7)

where in the last line, we have invoked Lemma D.1.

Upper bounding term (b) : Let pr := P✓⇠N (✓0,⇤)[k✓ � ✓0k > r] denote the probability that ✓ lies within the truncation
region. Then, for any nonnegative function f(✓) � 0,

E✓⇠Ntr [f(✓)] =
1

1� pr
E✓⇠N (✓0,⇤)[f(✓) · I{k✓ � ✓0k  r}]  1

1� pr
E✓⇠N (✓0,⇤)[f(✓)]
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Thus,

term (b) = E✓⇠NtrEDT⇠✓E✓0⇠D(DT )

⇥
k✓0 � ✓0k22 · I{k✓0 � ✓0k22 > r

2}
⇤

 1

1� pr
E✓⇠N (✓0,⇤)EDT⇠✓E✓0⇠D(DT )

⇥
k✓0 � ✓0k22 · I{k✓0 � ✓0k22 > r

2}
⇤

(D.8)

By the replica lemma (Lemma D.1), the second line is equal to

Eq. (D.8) =
1

1� pr
E✓⇠N (✓0,⇤)

⇥
k✓ � ✓0k22 · I{k✓ � ✓0k22 > r}

⇤
.

We now bound the above. Note that ✓ � ✓0 has the same distribution as ⇤1/2g, where g ⇠ N (0, Id). Hence, pr =
Pg⇠N (0,Id)[g

>⇤g > r
2]. For r2 � 2tr(⇤), Markov’s inequality therefore implies pr  1/2, so that 1

1�pr
 2. Moreover,

by the same change of variables,

E✓⇠N (✓0,⇤)

⇥
k✓ � ✓0k22 · I{k✓ � ✓0k22 > r

2}
⇤
= Eg⇠N (0,Id)

⇥
g>⇤g · I{g>⇤g > r

2}
⇤
,

Thus, for r2 � 2tr(⇤) = 2tr(��1) (which follows from the condition of the theorem, r �
p
5tr(��1), it holds that

term (b)  2Eg⇠N (0,Id)

⇥
g>⇤g · I{g>⇤g > r

2}
⇤
= 2

Z
1

r2

P[g>⇤g > r
2]d⌧.

We now require invoke a coarse consequence of the Hanson-Wright inequality:
Lemma D.4 (Consequence of Hanson-Wright). For any u � 4tr(⇤), we have

P[g>⇤g > tr(⇤) + u]  e
�

u
4k⇤kop .

Proof. From Proposition 1.1. in (Hsu et al., 2012), we have t > 0, it holds that P[g>⇤g > tr(⇤)+2
p
tk⇤kF+2k⇤kopt] 

e
�t. In particular, if

p
tk⇤kop � k⇤kF, then P[g>⇤g > tr(⇤) + 4tk⇤kop]  e

�t. Reparametrizing u = 4tk⇤kop, we
have that if

p
uk⇤kop/2 � k⇤kF, thenP[g>⇤g > tr(⇤) + u]  e

�u/4k⇤kop . Lastly, the condition
p

uk⇤kop/2  k⇤kF
is equivalent to u � 4k⇤k2F/k⇤kop. Since k⇤k2F  tr(⇤)k⇤kop, it suffices that u � 4tr(⇤). This concludes the proof.

Hence, under the assumption of the theorem, r2 � 5tr(��1) = 5tr(⇤), we may bound

term (b)  2

Z
1

r2

P[g>⇤g > ⌧ ]d⌧

= 2

Z
1

r2�tr(⇤)
P[g>⇤g > tr(⇤) + ⌧ ]d⌧

 2

Z
1

r2�tr(⇤)
e
�

u
4k⇤kop = 8k⇤kope

�
r2�tr(⇤)
4k⇤kop

 8k⇤kope
�

r2

5k⇤kop . (D.9)

Concluding the Proof: Combining Eqs. (D.6), (D.7) and (D.9), we have

inf
b✓
max
✓2B

E✓Rls(b✓; ✓) � E
✓⇠Ntr

E
✓

h
�
2
w
tr(M1/2(⌃T + ⇤�1)�1

M
1/2)

i

� 32k⇤kopkMkope
�

r2

5k⇤kop

Since ⇤ = ��1, the last line of the above display as  (r;�,M) := 32kMkop

�min(�)
exp(� r

2

5 �min(�)). Finally, we lower bound
the first line of the above display crudely via Jensen’s inequality: indeed, since X 7! tr(X�1) is a convex function (on the
domain of positive-definite matrices), and since convexity is preserved under affine transformation, we have

E
✓⇠Ntr

E
✓

h
�
2
w
tr(M1/2(⌃T + ⇤�1)�1

M
1/2)

i
� E

✓⇠Ntr


�
2
w
tr(M1/2(E

✓
[⌃T ] + ⇤

�1)�1
M

1/2)

�

Subsituting in � = ⇤�1, and noting that the distribution Ntr is supported on the ball B concludes the bound.
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D.3. Proof of M -norm Regression Upper Bound (Theorem D.2)

Proof. Let � be a parameter to be tuned, and set. Since M may not be full rank, we consider a perturbation

N := M + ⇣I, ⇣ = tr(M��1)/tr(��1),

where ⇣ > 0 is to be chosen. We further define

• Z 2 R
T⇥d denote the matrix whose rows are z

>

t

• w 2 R
T as the vector whose entries are wt.

• b✓ls the least squares estimate of ✓? defined in Eq. (D.2)

• We let v1, . . . , vd be the eigenvectors of N1/2��1
N

1/2 and �j := �j(N1/2��1
N

1/2), which we note are determinis-
tic.

The error of the least-squares estimate is then,

kb✓ls � ✓?k2M = k(Z>Z)�1Z>wk2
M

Since ✏ < �min(�)/4, we can apply Lemma J.4 to get

k(Z>Z)�1 � ��1kop 
✏

�min(�)(�min(�)� ✏)
<

2✏

�min(�)2

We now invoke the following lemma, controlling the relation of (weighted) squares of matrices in the PSD order:

Lemma D.5. Let A,B,M ⌫ 0 and C = A�B. Then,

AMA+ 7CMC ⌫ BMB/2

The lemma is proven at the end of this section. Instantiating Lemma D.5 with A = ��1 and B = (Z>Z)�1 and M = N ,
we have

��1
N��1 +

13kNkop✏2
�min(�)4

I ⌫ (Z>Z)�1
N(Z>Z)�1

Suppose that ✏ is chosen sufficiently small that, for a constant ↵ to be specified

↵��1
N��1 ⌫ 13kNkop✏2

�min(�)4
; (D.10)

we shall revisit this point at the end of the proof. Then,

k(Z>Z)�1Z>wk2
M
 k(Z>Z)�1Z>wk2

N
(D.11)

= w>Z(Z>Z)�1
N(Z>Z)�1Z>w

 (1 + ↵)w>Z��1
N��1Z>w

= (1 + ↵)kN1/2��1Z>wk22

= (1 + ↵)
d✓X

j=1

(v>
j
N

1/2��1
N

1/2
N

�1/2Z>w)2

= (1 + ↵)
d✓X

j=1

�
2
j
(v>

j
N

�1/2Z>w)2

= (1 + ↵)
d✓X

j=1

�
2
j
(v>

j
Z>

j
w)2, where Zj = ZN�1/2

vj 2 R
T
. (D.12)

We specialize the self-normalized martingale concentration inequality:
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Lemma D.6 (Theorem 1 of (Abbasi-Yadkori et al., 2011)). Let {et}t�1 2 R
N be a scalar, Ft-adapted sequence such that

et|Ft�1 is �2
w

sub-Gaussian. Let {xt}t�1 2 (Rd✓ )N be a sequence of Ft-adapted vectors. Fix a matrix V0 ⌫ 0. Then, with
probability 1� �,

�����

TX

t=1

xtet

�����
(V0+

PT
t=1 xtx>

t )�1

 2�2
w
log

 
1

�
det

 
V

�1/2
0

 
V0 +

TX

t=1

xtx
>

t

!
V

�1/2
0

!!
.

In particular, if d = 1, then selecting a scalar V0 = ⌧ ,
�����

TX

t=1

xtet

�����  2�2
w
(⌧ +

TX

t=1

kxtk2) log
 
⌧ +

P
T

t=1 kxtk2

�⌧

!
.

Applying Lemma D.6 with a union bound over indices j 2 [d], it holds with probability 1� � for all j 2 [d] simultaenously
for any fixed ⌧ > 0

(v>
j
Z>

j
w)2  2�2

w
(kZjk22 + ⌧�j) log

d(kZjk22 + ⌧�j)

⌧�j�
(D.13)

In addition, note that for any ⌧ � �,

kZjk22 = v
>

j
N

�1/2Z>ZN�1/2
vj  v

>

j
N

�1/2(�+ ✏I)N�1/2
vj

 (1 + �)v>
j
N

�1/2�N�1/2
vj = (1 + �)��1

j
 (1 + ⌧)��1

j

Hence, with probability 1� � the following holds for all j 2 [d] simultaenously

(v>
j
z>
j
w)2  2(1 + 2⌧)�2

w

�j

log
d(⌧�1 + 2)

�

Hence, combining with Eq. (D.12), we have that with probability

k(Z>Z)�1Z>wk2
M
 2(1 + ↵)(1 + ⌧)�2

w

d✓X

j=1

�j log
d(⌧�1 + 2)

�

 2(1 + ↵)(1 + ⌧)�2
w
log

d(⌧�1 + 2)

�
· tr(N1/2��1

N
1/2).

Finally, we can simplify tr(N1/2��1
N

1/2) = tr(N��1) = tr((M + ⇣I)��1)  2tr(M��1) for our choice of ⇣ =
tr(M��1)/tr(��1); thus, choosing ⌧ � 1/4 � � (recall the assumption,�  1/4), we have

k(Z>Z)�1Z>wk2
M
 5�2

w
(1 + ↵) log

6d

�
· tr(M��1), w.p. 1� �. (D.14)

To conclude, let us compute find a suitable constant ↵ satisfying Eq. (D.10). Recall that we wanat ↵��1
N��1 ⌫ 13kNkop✏

2

�min(�)4
.

Since N ⌫ ⇣, and ✏  ��min(�), we want

↵⇣ � 13�2kNkop = 13�2(kMkop + ⇣)

Recalling ⇣ = tr(M��1)/tr(��1)  kMkop, we can chose ↵ � 26�2
kMkoptr(�

�1)
tr(M��1) . In particular, since tr(M��1) �

kMkop�min(��1), we can take

↵ =
26�2kMkoptr(��1)

kMkop�min(�)�1
= 26�2

�max(�)tr(�
�1)
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Proof of Lemma D.5. Clearly, AMA = BMB + CMC +BMC + CMB. Since CMC,BMB ⌫ 0:

BMC + CMB ⌫ BMC + CMB � 4CMC �BMB/4

= �(B/2� 2C)M(B/2� 2C)

⌫ �2(BMB/4 + 4CMC)

= �BMB/2� 8CMC

Thus,
AMA ⌫ BMB + CMC �BMB/2� 8CMC = BMB/2� 7CMC.

E. Lower Bounds on Martingale Decision Making
In this section, we convert the information theoretic bounds for M -norm estimation considered in Appendix D to the smooth
decision making problem with decision a 2 R

da . In particular, in this section we work in the MDM setting.

Smoothness Assumptions and Consequences. We first recall the smoothness assumption on our loss R in the MDM
setting.
Assumption 3 (Smooth Decision-Making). There exist rquad(✓?) and constants µ > 0, Lai, LRi, i 2 {1, 2, 3}, and Lhess

such that for any ✓ and a satisfying

k✓ � ✓?k2  rquad(✓?), ka� aopt(✓?)k2  La1rquad(✓?), (B.1)

the following conditions hold

• The optimal action aopt(✓) is unique, and moreover, there is a parameter µ such that R(a0; ✓) � µ

2 ka
0 � aopt(✓)k22 for

all a0 2 R
da (not restricted to a0 satisfying Eq. (B.1)).

• kraR(a; ✓)kop  LR1, kr2
aR(a; ✓)kop  LR2, and kr3

aR(a; ✓)kop  LR3.

• kr✓aopt(✓)kop  La1, kr2
✓
aopt(✓)kop  La2, and kr3

✓
aopt(✓)[�, �, �]kop  La3 for all � 2 R

d✓ with k�k2 = 1.

• r2
aR(a; ✓) is Lipschitz in ✓ with Lipschitz constant Lhess.

The above assumption directly yields the following Lipschitz conditions.
Proposition E.1. Assume that R, aopt satisfy Assumption 3. Then for any model ✓ 2 R

d✓ and action a 2 R
da satisfying

(B.1), it holds that

• r(i)
a R(a; ✓) is Lipschitz in the operator norm with Lipschitz constant LR(i+1) for i = 0, 1, 2

• r(i)
✓
aopt(✓) is Lipschitz in the operator norm with Lipschitz constant La(i+1), for i = 0, 1.

In the above, we adopted the convention r(0)
x f(x) = f(x).

Relating Smooth Decision Making to M -norm Estimation. The next step is to relate smooth decision making to M -
norm estimation. We begin by introducing the revelant gradients and Hessians, and in particular, the task Hessian H(✓)
introduced in Section 2.
Definition E.1 (Key Gradients and Hessians). For some ✓? and function R, aopt, let:

• Ma(✓?) := r2
aR(a; ✓?) at a = aopt(✓?).

• Ga(✓?) := r✓aopt(✓) at ✓ = ✓?.

• H(✓?) = r2
✓
R(aopt(✓); ✓?) at ✓ = ✓?. In particular, H(✓?) = Ga(✓?)>Ma(✓?)Ga(✓?).



Task-Optimal Exploration in Linear Dynamical Systems

The following result utilizes Assumption 3 to guarantee that H(✓) is itself a smooth map, and that the norm induced by
H(✓?) can be used to approximate R(aopt(b✓); ✓?), both of which are critical pieces in our analysis.

Proposition E.2. Assume that R, aopt satisfy Assumption 3 and that b✓ satisfies kb✓ � ✓?k2  rquad(✓?). Then the following
hold:

���R(aopt(b✓); ✓?)� kb✓ � ✓?k2H(✓?)

���  Lquad · kb✓ � ✓?k32, kH(✓?)�H(b✓)kop  LH · kb✓ � ✓?k2.

where:

Lquad :=
1

6
(LR3L

3
a1 + 3LR2La2La1 + LR1La3), LH := 6Lquad + LR2La1 + LhessL

2
a1.

Lower Bound for Smooth Decision Making. We now state our key lemma, which allows us to reduce smooth decision
making to M -norm estimation and obtain a lower bound on the local minimax risk in terms of estimation in a particular
norm.

Lemma E.1. Assume that the excess risk R and optimal decision function aopt satisfy Assumption 3 with smoothness
parameters LRi and Lai and radius parameters rquad dictating the region in which the smoothness holds. Let r > 0 be a
radius parameter satisfying

r  rquad(✓?)/4

and define the associated balls BT (✓?) := {✓ : k✓ � ✓?k2  r}. Then,

min
ba

max
✓2BT (✓?)

E✓,⇡exp [R(ba; ✓)] � min

(
min
b✓

max
✓2BT (✓?)

1

2
E✓,⇡exp

h
kb✓ � ✓k2

H(✓?)

i
� C1r

3
, µL

2
a1r

2

)

where we define the constant, for a universal numerical constant c1,

C1 = c1

⇣
La1La2LR2 + L

3
a1LR3 + Lhess

⌘
.

By tuning the radius parameter r(T ) appropriately, we achieve the following general purpose lower bound on the excess
risk:

Theorem E.3. Suppose the smoothness assumption Assumption 3 holds with its stated smoothness parameters. In addition,
fix a regularization parameter � > 0, and suppose that T satisfies

�T � max

⇢⇣
80d✓

rquad(✓?)2

⌘6/5
,

⇣
�
2
wLR2

5µ

⌘6�

Finally, define the localizing ball BT := {✓ : k✓ � ✓?k22  5d✓/(�T )5/6}. Then, for any ✓0 2 BT (✓?),

min
ba

max
✓2BT

E✓,⇡exp [R(ba; ✓)] � �
2
w
min
✓2BT

tr
⇣
H(✓?)

�
E✓,⇡exp [⌃T ] + �T · I

��1
⌘
� C2

(�T )5/4
.

where we have defined the constant, for a universal numerical constant c2,

C2 = c2

⇣
(La1La2LR2 + L

3
a1LR3 + Lhess)d

3/2
✓

+ L
2
a1LR2

⌘
.

E.1. Proof of General Decision Making Lower Bounds

For the remainder of Section E, unless otherwise stated we assume the expectation is taken with respect to ✓ and some fixed
exploration policy ⇡exp. Hence, we write E[·] in place of E✓,⇡exp [·].
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E.1.1. PROOF OF THEOREM E.3

For simplicity, we shall write r
2 = 5d✓/(�T )5/6. The result follows by instantiating Theorem D.1 to lower bound:

min
b✓

max
✓:k✓�✓?k2r

E✓,⇡exp [kb✓ � ✓k2
M(✓?)

],

via the simplification provided by Lemma E.1. Apply Theorem D.1 with parameters � = �T · I , so that tr(��1) = d✓
�T

and
�min(�) = �T . Then, the remainder term  from that theorem is bounded by

 (r;�,H(✓?)) 
32kH(✓?)kop

�T
exp

✓
�1

5
r
2
�T

◆

Selecting r
2 = 5d✓/(�T )5/6 yields

 (r;�,H(✓?)) 
32kH(✓?)kop

�T
exp

⇣
�d✓(�T )1/6

⌘

Noting that r2 � 5tr(�), Theorem D.1 yields that

min
b✓

max
✓:k✓�✓?k2r

E✓,⇡exp [kb✓ � ✓k2
H(✓?)

]

� �
2
w

min
✓:k✓�✓?k2r

tr
⇣
H(✓?)

�
E✓,⇡exp [⌃T ] + �T · I

��1
⌘
� 32kH(✓?)kop

�T
exp

⇣
�d✓(�T )1/6

⌘

� �
2
w

min
✓:k✓�✓?k2r

tr
⇣
H(✓?)

�
E✓,⇡exp [⌃T ] + �T · I

��1
⌘
� 32L2

a1LR2

�T
exp

⇣
�d✓(�T )1/6

⌘
,

where in the last line, we invoked Assumption 3 to obtain

kH(✓?)kop = kGa(✓?)
>
Ma(✓?)Ga(✓?)kop  L

2
a1LR2

Now, observe that our condition on �T , namely �T �
�
80d✓/rquad(✓?)2

�6/5, implies that r = (5d✓/(�T )5/6)1/2 
1
4rquad(✓?). Hence, we can apply Lemma E.1 to obtain

min
ba

max
✓:k✓�✓?k2r

E[R(ba; ✓)] � min

(
5µL2

a1r
2
,�

2
w

min
✓k✓�✓?k2r

tr
⇣
H(✓?)

�
E✓,⇡exp [⌃T ] + �TI

��1
⌘

� C1r
3 � 32L2

a1LR2

�T
exp

⇣
�d✓(�T )1/6

⌘)

for C1 as in Lemma E.1 To conclude, we consolidate

C1r
3 +

32L2
a1LR2

�T
exp

⇣
�d✓(�T )1/6

⌘
=

C1(5d✓)3/2 + 32L2
a1LR2(�T )1/4 exp

�
�d✓(�T )1/6

�

(�T )5/4

Observing that (�T )1/4 exp
�
�d✓(�T )1/6

�
is bounded above by a universal constant (since d✓ � 1, and for all d � 1,

maxx�0 xe
�dx  maxx�0 xe

�x is bounded), the above is at most

O
 
C1d

3/2
✓

+ L
2
a1LR2

(�T )5/4

!
=

C2

(�T )5/4
,

for C2 as in the statement of the lemma. To conclude, it suffices to show that for our choice of r, we have

5µL2
a1r

2 � �
2
w

min
✓k✓�✓?k2r

tr
⇣
H(✓?)

�
E✓,⇡exp [⌃T ] + �TI

��1
⌘
.
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Lower bounding E✓,⇡exp [⌃T ] + �TI ⌫ �TI , and upper bounding tr(H(✓?))  d✓kH(✓?)kop  d✓L
2
a1LR2, and substitut-

ing in the choice of r2, it is enough that

µL
2
a1 · (5d✓/(�T )5/6) � �

2
w

d✓L
2
a1LR2

�T

Rearranging requires that

(�T )1/6 � �
2
w
LR2

5µ
,

which is satisfied for our choice of �.

E.1.2. PROOF OF LEMMA E.1

Our strategy is to show that an action a with low excess risk can be used to produce an estimate of a parameter ✓ with low
error in the task hessian norm k · k2

H(✓). Specifically, we define the perturbation term

�?(ba) = argmin
�

kMa(✓?)
1/2 ((ba� aopt(✓?))�Ga(✓?)�) k2

= (Ma(✓?)
1/2

Ga(✓?))
†
Ma(✓?)

1/2(ba� aopt(✓?))

and define the induced estimate

b✓(ba) = ✓? + �?(ba)

Ensuring ba close aopt(✓?): We first want to restrict the lower bound to being only over ba close aopt(✓?). To this end, note
that

min
ba

max
✓:k✓�✓?k2

2r(T )
E[R(ba; ✓)] = min

(
min

ba:kba�aopt(✓?)k2
2r2a

max
✓:k✓�✓?k2

2r2
E[R(ba; ✓)],

min
ba:kba�aopt(✓?)k2

2>r2a

max
✓:k✓�✓?k2

2r2
E[R(ba; ✓)]

)

where we are free to choose ra as we wish but our choice will satisfy ra � La1r. Now:

kba� aopt(✓?)k2  kba� aopt(✓)k2 + kaopt(✓)� aopt(✓?)k2
 kba� aopt(✓)k2 + La1k✓ � ✓?k2
 kba� aopt(✓)k2 + La1r

By the argument above, kba� aopt(✓?)k22 > ra(T ) then implies that:

R(ba; ✓) � µ

2
kba� aopt(✓)k22 �

µ

2
(kba� aopt(✓?)k2 � La1r)

2 � µ

2
(ra � La1r)

2

Choosing ra = (1 +
p
2)La1r,

min
ba:kba�aopt(✓?)k2

2>r2a

max
✓:k✓�✓?k2

2r2
E[R(ba; ✓)] � µL

2
a1r

2

Thus, definining the constant

Ca := (1 +
p
2)La1,

So ultimately we have:

min
ba

max
✓:k✓�✓?k2

2r(T )
E[R(ba; ✓)] � min

(
min

ba:kba�aopt(✓?)k2
2C2

ar
2

max
✓:k✓�✓?k2

2r2
E[R(ba; ✓)], µL2

a1r
2

)
(E.1)

We now proceed to lower bound the first term in the above expression. In particular, throughout we assume that

kba� aopt(✓?)k2  Car, Ca := (1 +
p
2)La1, (E.2)
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Taylor expansions: Fix a t 2 [0, 1], parameter ✓, estimated action ba, and define the interpolations

bat = tba+ (1� t)aopt(✓), ✓t := t✓ + (1� t)✓t

Throughout, we will let ba0 and ✓
0 denote certain values of bat and ✓t for some interpolation parameters t0, t00 2 [0, 1] chosen

so as to satisfy the application of Taylor’s theorem to follow.

First, by Taylor’s theorem,

R(ba; ✓) = R(aopt(✓); ✓) +
d

dt
R(bat; ✓)|t=0 +

1

2

d
2

dt2
R(bat; ✓)|t=0 +

1

6

d
3

dt3
R(bat; ✓)|t=t0

= R(aopt(✓); ✓) + (raR(a; ✓)|a=aopt(✓))
>(ba� aopt(✓))

+
1

2
(aopt(✓)� ba)>(r2

aR(a; ✓)|a=aopt(✓))(aopt(✓)� ba)

+
1

6
r3

aR(a; ✓)|a=a0 [ba� aopt(✓),ba� aopt(✓),ba� aopt(✓)]

where t
0 2 [0, 1], a0 = bat0 . The second equality follows by the chain rule and since d

dt
bat = ba � aopt(✓). Since aopt(✓)

minimizes the excess risk, we have

R(aopt(✓); ✓) = 0, raR(a; ✓)|a=aopt(✓) = 0

Thus, we may simplify

R(ba; ✓) = 1

2
(aopt(✓)� ba)>(r2

aR(a; ✓)|a=aopt(✓))(aopt(✓)� ba)

+
1

6
r3

aR(a; ✓)|a=a0 [ba� aopt(✓),ba� aopt(✓),ba� aopt(✓)]

We can similarly Taylor expand aopt to get:

aopt(✓) = aopt(✓?) +Ga(✓?)(✓ � ✓?) +r2
✓
aopt(✓)|✓=✓0 [✓ � ✓?, ✓ � ✓?],

where again we set ✓0 = t
00
✓ + (1� t

00)✓? for some t
00 2 [0, 1]. Recall the definitions

�? = argmin
�

kMa(✓?)
1/2 ((ba� aopt(✓?))�Ga(✓?)�) k2

= (Ma(✓?)
1/2

Ga(✓?))
†
Ma(✓?)

1/2(ba� aopt(✓?))

b✓(ba) = ✓? + �?

Writing ba = aopt(✓?) +Ga(✓?)�? + �ba for some �ba and denoting �✓ = ✓ � ✓?, we then have:

R(ba; ✓) = 1

2
(�✓ � �?)

>
Ga(✓?)

>
Ma(✓?)Ga(✓?)(�✓ � �?)

+
1

2
�>ba Ma(✓?)�ba
| {z }

(a1)

� �>ba Ma(✓?)(r2
✓
aopt(✓)|✓=✓0 [�✓, �✓])| {z }
(a2)

+
1

2
(r2

✓
aopt(✓)|✓=✓0 [�✓, �✓])>Ma(✓?)(r2

✓
aopt(✓)|✓=✓0 [�✓, �✓])

| {z }
(a3)

+ (�✓ � �?)
>
Ga(✓?)

>
Ma(✓?)(r2

✓
aopt(✓)|✓=✓0 [�✓, �✓])| {z }

(a4)

� (�✓ � �?)
>
Ga(✓?)

>
Ma(✓?)�ba| {z }

(a5)

+
1

2
(aopt(✓)� ba)>

�
r2

aR(a; ✓)|a=aopt(✓) �Ma(✓?)
�
(aopt(✓)� ba)

| {z }
(a6)

+
1

6
r3

aR(a; ✓)|a=a0 [ba� aopt(✓),ba� aopt(✓),ba� aopt(✓)]
| {z }

(a7)
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Controlling the Taylor Expansion through norm bounds: We verify thatwe are in the regime where Assumption 3
holds.

Claim E.1. For a satisfying Eq. (E.2), it holds that

k✓0 � ✓?k2  k✓ � ✓?k2  rquad(✓?) (E.3)
max{kba� aopt(✓?)k, ka0 � aopt(✓?)k2, kaopt(✓)� aopt(✓?)k}  La1rquad(✓?) (E.4)

Proof of Claim E.1. By assumption, we have,

r  1

4
rquad(✓?) (E.5)

Now recall that ✓0 = t
0
✓ + (1� t

0)✓?, for some t
0 2 [0, 1], so

k✓0 � ✓?k2  k✓ � ✓?k2  r

From this and trivial manipulations of k✓ � ✓?kop, k✓0 � ✓?kop, it follows that (E.5) implies (E.3).

To verify (E.4), recall that a0 = t
00ba+ (1� t

00)aopt(✓) for some t
00 2 [0, 1]. Hence,

max{kba� aopt(✓?)k, ka0 � aopt(✓?)k2, kaopt(✓)� aopt(✓?)k}
 kba� aopt(✓?)k+ kaopt(✓)� aopt(✓?)k

From Eq. (E.2), it holds that kba � aopt(✓?)k  (1 +
p
2)rLa1; moreover, since k✓ � ✓?k  rquad(✓?), the smoothness

condition, Assumption 3, implies that that kaopt(✓?)� aopt(✓)k  La1k✓? � ✓k  rLa1. Hence,

max{kba� aopt(✓?)k, ka0 � aopt(✓?)k2, kaopt(✓)� aopt(✓?)k}
 (2 +

p
2)La1r  4La1r

Thus, (E.5) implies (E.4) holds.

The following bounds will be useful.

• By assumption: kba� aopt(✓?)k22  Car,

k�✓k22 = k✓ � ✓?k22

• We have that

kMa(✓?)
1/2

Ga(✓?)�?k2  kMa(✓?)
1/2(ba� aopt(✓?))k2  kMa(✓?)

1/2kopCar

This follows since, recalling the definition of �? and letting U⌃V > = Ma(✓?)1/2Ga(✓?), we have
kMa(✓?)1/2Ga(✓?)�?k2 = k⌃⌃†

U
>
Ma(✓?)1/2(ba� aopt(✓?))k2 and since k⌃⌃†kop  1.

• kMa(✓?)1/2�bak2  kMa(✓?)1/2(ba� aopt(✓?))k2 + kMa(✓?)1/2Ga(✓?)�?k2  2kMa(✓?)1/2(ba� aopt(✓?))k2

• By Assumption 3, so long as (E.3) holds: kGa(✓?)kop  La1, kr2
✓
aopt(✓)|✓=✓0kop  La2.

• By Assumption 3, so long as (E.4) holds: kr3
aR(a; ✓)|a=a0kop  LR3.

• kMa(✓?)1/2kop =
p
kMa(✓?)kop =

q
kr2

aR(a; ✓?)|a=aopt(✓?)kop 
p
LR2. To see why the first equality holds,

note that for any PSD M = U⌃U>, kM1/2kop = k⌃1/2kop = maxi
p
�i =

p
maxi �i =

p
kMkop.
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Lower bounding the excess risk R(ba; ✓): Throughout the remainder of the proof, we let c denote a universal numerical
constant which may change from line to line. From the above observations

(a2) = cLa2LR2Car
3

By the bounds given above:

(a4) = cLa2(La1 + Ca)LR2r
3

To bound (a6), we can apply Proposition E.1 to get that, when (E.4) holds,

kr2
aR(a; ✓)|a=aopt(✓) �r2

aR(a; ✓)|a=aopt(✓?)kop  LR3kaopt(✓)� aopt(✓?)k2  LR3La1r

Using that kaopt(✓)� bak2  kaopt(✓)� aopt(✓?)k2 + kaopt(✓?)� bak2  (La1 + Car), we have:

(a6) = c(La1 + Ca)
2(LR3La1 + Lhess)r

3

This same bound on kaopt(✓)� bak2 gives:

(a7) = cLR3(La1 + Ca)
3
r
3/2

It remains to bound (a5). Recall that

�? = argmin
�

kMa(✓?)
1/2(ba� aopt(✓?)�Ga(✓?)�)k2

so �? is the projection of Ma(✓?)1/2(ba� aopt(✓?)) onto the image of Ma(✓?)1/2Ga(✓?). It follows that:

Ma(✓?)
1/2(ba� aopt(✓?)�Ga(✓?)�?) = Ma(✓?)

1/2�ba ? image(Ma(✓?)
1/2

Ga(✓?))

which implies

(a5) = �(�✓ � �?)
>
Ga(✓?)

>
Ma(✓?)�ba = 0

Combining everything, we’ve shown that:

R(ba; ✓) � 1

2
(�✓ � �?)

>
Ga(✓?)

>
Ma(✓?)Ga(✓?)(�✓ � �?) + (a1) + (a3)�O

⇣
C1r

3
⌘

for

C1 = 2La1La2LR2 + 8L3
a1LR3 + 4Lhess

However, Ma(✓?) is PSD so (a1), (a3) � 0, giving:

R(ba; ✓) � 1

2
(�✓ � �?)

>
Ga(✓?)

>
Ma(✓?)Ga(✓?)(�✓ � �?)� cC1r

3

Completing the proof: By definition, �✓ � �? = ✓ � b✓(ba) and Ga(✓?)>Ma(✓?)Ga(✓?) = H(✓?), so

(�✓ � �?)
>
Ga(✓?)

>
Ma(✓?)Ga(✓?)(�✓ � �?) = k✓ � b✓(ba)k2H(✓?)

Putting things together, we then have that

min
ba:kba�aopt(✓?)k2Car

max
✓:k✓�✓?k2r

E[R(ba; ✓)]

� min
ba:kba�aopt(✓?)k2Car

max
✓:k✓�✓?k2r

E


1

2
k✓ � b✓(ba)k2

H(✓?)

�
� cC1r

3

Given knowledge of ✓?, b✓(ba) is simply an estimator of ✓, so it follows that from Eq. (E.1) that

min
ba:kba�aopt(✓?)k2

2Car(T )
max

✓:k✓�✓?k2
2r(T )

E


1

2
k✓ � b✓(ba)k2

H(✓?)

�
� min

b✓
max

✓:k✓�✓?k2
2r(T )

E


1

2
k✓ � b✓k2

H(✓?)

�

This concludes the proof.
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E.2. Proof of Theorem B.1

We apply Theorem E.3 with � = �, which is greater than 0 by Assumption 4. Then,

tr
⇣
H(✓?)

�
E✓,⇡exp [⌃T ] + �TI

��1
⌘
� tr

⇣
H(✓?)

�
E✓,⇡exp [⌃T ] + E✓?,⇡exp [⌃T ]

��1
⌘

Under Assumption 5, for any ✓ satisfying k✓ � ✓?k22  5d✓/(�T )5/6 and as long as 5d✓/(�T )5/6  rcov(✓?)2, we have

E✓,⇡exp [⌃T ] � ccovE✓?,⇡exp [⌃T ] +

✓
Lcov(✓?, �2)

p
5d✓T 7/12

�
5/12

+ CcovT
1�↵

◆
· I

Therefore, since our alternate instances, ✓ 2 BT , do satisfy k✓ � ✓?k22  5d✓/(�T )5/6, if T is large enough that

Lcov(✓?, �2)
p
5d✓T 7/12

�
5/12

+ CcovT
1�↵  ccovT�

we will have, for all ✓ 2 BT ,

E✓,⇡exp [⌃T ] � ccovE✓?,⇡exp [⌃T ] +

✓
Lcov(✓?, �2)

p
5d✓T 7/12

�
5/12

+ CcovT
1�↵

◆
· I

� ccovE✓?,⇡exp [⌃T ] + ccovT� · I � 2ccovE✓?,⇡exp [⌃T ]

The result then follows from Theorem E.3 and simple manipulations.

E.3. Proof of Proposition E.1 and Proposition E.2

Proof of Proposition E.1. We prove this for a generic function f : Rn ! R
m. Fix some x, y 2 R

n and let xt = tx+(1�t)y.
Then, by Taylor’s Theorem,

f(x) = f(y) +
d

dt
f(xt)|t=t0

for some t
0 2 [0, 1]. By the chain rule, d

dt
f(xt) = rxf(x)|x=xt · d

dt
xt = rxf(x)|x=xt · (x� y). So:

kf(x)� f(y)kop  krxf(x)|x=xt0
kop · kx� ykop

The result follows in our setting using the norm bounds given in Assumption 3.

Proof of Proposition E.2. Let ✓t = tb✓ + (1� t)✓?. Note that for any t, by Proposition E.1,

kaopt(✓t)� aopt(✓?)k2  La1k✓t � ✓?k2  La1kb✓ � ✓?k2  La1rquad(✓?)

where the last inequality follows by Assumption 3. We are therefore in the regime where the norm bounds given in
Assumption 3 hold, which we will make use of throughout the proof. By Taylor’s Theorem:

R(aopt(b✓); ✓?) = R(aopt(✓1); ✓?) = R(aopt(✓0); ✓?) +
d

dt
R(aopt(✓t); ✓?)|t=0 +

1

2

d
2

dt2
R(aopt(✓t); ✓?)|t=0

+
1

6

d
3

dt3
R(aopt(✓t); ✓?)|t=t0

where t
0 2 [0, 1]. Assumption 3 gives that R(aopt(✓0); ✓?) = R(aopt(✓?); ✓?) = 0. Furthermore, d

dt
R(aopt(✓t); ✓?)|t=0 =

raR(a; ✓?)|a=aopt(✓0) ·r✓aopt(✓)|✓=✓0 · d

dt
✓t|t=0, but by Assumption 3,raR(a; ✓?)|a=aopt(✓0) = 0. Finally, by the chain

rule and since d

dt
✓t = b✓ � ✓?:

d
2

dt2
R(aopt(✓t); ✓?)|t=0 = (b✓ � ✓?)

>r2
✓
R(aopt(✓); ✓?)|✓=✓0(b✓ � ✓?) = (b✓ � ✓?)

>H(✓?)(b✓ � ✓?)

d
3

dt3
R(aopt(✓t); ✓?) = r3

✓
R(aopt(✓); ✓?)|✓=✓t0 [b✓ � ✓?,

b✓ � ✓?,
b✓ � ✓?]
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It then follows that,
����R(aopt(b✓); ✓?)�

1

2
kb✓ � ✓?k2H(✓?)

���� 
1

6
kr3

✓
R(aopt(✓); ✓?)|✓=✓t0 [b✓ � ✓?,

b✓ � ✓?,
b✓ � ✓?]kop

The chain rule gives,

r3
✓
R(aopt(✓); ✓?)[b✓ � ✓?,

b✓ � ✓?,
b✓ � ✓?]

= r3
aR(aopt(✓); ✓?)[r✓aopt(✓)[b✓ � ✓?],r✓aopt(✓)[b✓ � ✓?],r✓aopt(✓)[b✓ � ✓?]]

+ 3r2
aR(aopt(✓); ✓?)[r2

✓
aopt(✓)[b✓ � ✓?,

b✓ � ✓?],r✓aopt(✓)[b✓ � ✓?]]

+raR(aopt(✓); ✓?)[r3
✓
aopt(✓)[b✓ � ✓?,

b✓ � ✓?,
b✓ � ✓?]]

so,
kr3

✓
R(aopt(✓); ✓?)|✓=✓t0 [b✓ � ✓?,

b✓ � ✓?,
b✓ � ✓?]kop  (LR3L

3
a1 + 3LR2La2La1 + LR1La3)kb✓ � ✓?k3op

which proves the first inequality. For the second inequality, recall that by definition,

H(✓?) = r2
✓
R(aopt(✓); ✓?)|✓=✓?

so, by Taylor’s Theorem,

H(✓?) = r2
✓
R(aopt(✓); ✓?)|✓=b✓ +

d

dt
r2
✓
R(aopt(✓t); ✓?)|t=t0

for t0 2 [0, 1]. However,
d

dt
r2
✓
R(aopt(✓t); ✓?)|t=t0 = r3

✓
R(aopt(✓); ✓?)|✓=✓t0 · d

dt
✓t

Thus,
kH(✓?)�r2

✓
R(aopt(✓); ✓?)|✓=b✓kop  (LR3L

3
a1 + 3LR2La2La1 + LR1La3)kb✓ � ✓?k2

By the chain rule,

r2
✓
R(aopt(✓); ✓

0) = r2
aR(a; ✓0)|a=aopt(✓)[r✓aopt(✓),r✓aopt(✓)] +raR(a; ✓0)|a=aopt(✓) ·r2

✓
aopt(✓)

So, by Definition E.1, since raR(a; ✓0)|a=aopt(✓0) = 0, we have:

kr2
✓
R(aopt(✓); ✓?)|✓=b✓ �r

2
✓
R(aopt(✓); b✓)|✓=b✓kop

= kr2
aR(a; ✓?)|a=aopt(b✓)[r✓aopt(✓)|✓=b✓,r✓aopt(✓)|✓=b✓] +raR(a; ✓?)|a=aopt(b✓) ·r2

✓
aopt(✓)|✓=b✓

�r2
aR(a; b✓)|a=aopt(b✓)[r✓aopt(✓)|✓=b✓,r✓aopt(✓)|✓=b✓]kop

 Lhesskr✓aopt(✓)|✓=b✓k
2
opkb✓ � ✓?k2 + kraR(a; ✓?)|a=aopt(b✓) ·r2

✓
aopt(✓)|✓=b✓kop

 LhessL
2
a1kb✓ � ✓?k2 + La2kraR(a; ✓?)|a=aopt(b✓)kop

However, raR(a; ✓?)|a=aopt(b✓) is Lipschitz continuous so, sinceraR(a; ✓?)|a=aopt(✓?) = 0,

kraR(a; ✓?)|a=aopt(b✓)kop = kraR(a; ✓?)|a=aopt(b✓) �raR(a; ✓?)|a=aopt(✓?)kop

 LR2kaopt(b✓)� aopt(✓?)k2
 LR2La1kb✓ � ✓?k2

Since H(b✓) = r2
✓
R(aopt(✓); b✓)|✓=b✓, we’ve shown that:

kH(✓?)�H(b✓)kop  (LR3L
3
a1 + 3LR2La2La1 + LR2La1 + LR1La3 + LhessL

2
a1)k✓? � b✓k2

which proves the second inequality.
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F. Upper Bounds on Certainty Equivalence Decision Making
F.1. Certainty Equivalence Upper Bound

In this section we assume we are in the linear dynamical system setting of Section B and that we are playing an exploration
policy ⇡exp.

Proof of Theorem B.3. We define the following events.

A =

⇢
R(aopt(b✓ls); ✓?)  5�2

w
tr(H(✓?)E✓?,⇡exp [⌃T ]

�1) log
6d✓
�

+
C1

T 3/2
+

C2

T 1+2↵

�
(Good event)

E1 = {�min(⌃T ) � �T,⌃T � T �̄T } (Sufficient excitation)

E2 = {kb✓ls � ✓?k2  rquad(✓?)} (Quadratic approximation regime)

E3 = {k⌃T � E✓?,⇡exp [⌃T ]kop  Ccon
T↵ �min(E✓?,⇡exp [⌃T ])} (Concentration of covariates)

We would like to show that A holds with high probability. The following is trivial.

P[Ac]  P[Ac \ E1 \ E2 \ E3] + P[Ec

1 ] + P[E1 \ Ec

2 ] + P[Ec

3 ]

Events Ei hold with high probability: We now show that the events E1, E2, and E3 hold with high probability. Since
⇡exp satisfies Assumption 7, we will have P[Ec

1 ]  � and P[Ec

3 ]  � as long as

T � Tse(⇡exp), T � Tcon(⇡exp) (F.1)

By Lemma F.1, on the event E1, with probability at least 1� �,

kb✓ls � ✓?k2  C

s
log(1/�) + d✓ + log det(�̄T /�+ I)

�T

So as long as

T � C(log(1/�) + d✓ + log det(�̄T /�+ I))

�rquad(✓?)2
(F.2)

we will have

kb✓ls � ✓?k2  C

s
log(1/�) + dx + log det(�̄T /�+ I)

�T
 rquad(✓?)

Thus, P[E1 \ Ec

2 ]  �.

Events Ei imply good event holds: We now consider the event E1 \ E2 \ E3. By Proposition E.2, since R satisfies
Assumption 3, on this event we have

R(aopt(b✓ls); ✓?)  kb✓ls � ✓?k2H(✓?)
+ Lquadkb✓ls � ✓?k32  kb✓ls � ✓?k2H(✓?)

+ C1/T
3/2

where the last inequality follows by the bound on kb✓ls � ✓?k2 shown above for

C1 := CLquad
(log(1/�) + d✓ + log det(�̄T /�+ I))3/2

�
3/2

By Theorem D.2, on the event E3 and if T is large enough so that

Ccon/T
↵
< 1/4 (F.3)

and since k⌃T � E✓?,⇡exp [⌃T ]kop, with probability at least 1� �,

kb✓ls � ✓?k2H(✓?)
 5�2

w
tr(H(✓?)E✓?,⇡exp [⌃T ]

�1) log
6d✓
�
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+
130�2

w
C

2
con

T 2↵
�min(E✓?,⇡exp [⌃T ])tr(E✓?,⇡exp [⌃T ]

�1)tr(H(✓?)E✓?,⇡exp [⌃T ]
�1) log

6d✓
�

 5�2
w
tr(H(✓?)E✓?,⇡exp [⌃T ]

�1) log
6d✓
�

+
260�2

w
C

2
cond✓tr(H(✓?))

�T 1+2↵
log

6d✓
�

where the final inequality follows since

E✓?,⇡exp [⌃T ] ⌫ E✓?,⇡exp [I{E1}⌃T ] � P[E1]�T · I � 1

2
�T · I

Thus, P[Ec \ E1 \ E2 \ E3]  � with

C2 :=
260�2

w
C

2
cond✓tr(H(✓?))

�
log

6d✓
�

so it follows that P[Ac]  4�. The final result then follows by rescaling � and so long as T is large enough that (F.1), (F.2),
and (F.3) hold, which will be the case if (B.6) holds.

F.2. Euclidean Norm Estimation

Lemma F.1. Assume our data is generated according to Eq. (B.2) and let

b✓ls := min
✓

TX

t=1

kyt � ✓
>
ztk22

Then on the event

E :=
n
�min(⌃T ) � �T,⌃T � T �̄T

o

with probability at least 1� �:

kb✓ls � ✓?k2  C

s
log(1/�) + d✓ + log det(�̄T /�+ I)

�T
.

Proof. Define the following events:

A =

8
<

:k
b✓i � ✓?k2  C

s
log(1/�) + d✓ + log det(�̄T /�+ I)

�T

9
=

;

E1 =

8
<

:

������

 
TX

t=1

ztz
>

t

!�1/2
TX

t=1

ztw
>

t

������
op

 c2�w

r
log

1

�
+ d✓ + log det(�̄T /�+ I)

9
=

;

Our goal is to show that P[Ac \ E ]  �. The following is trivial.

P[Ac \ E ]  P[Ac \ E \ E1] + P[E \ Ec

1 ]

As b✓ls is the least squares estimate, we will have that b✓ls = (
P

T

t=1 ztz
>

t
)�1

P
T

t=1 ztyt = ✓? +

(
P

T

t=T�Ti
ztz

>

t
)�1

P
T

t=1 ztw
>

t
. Given this, the error can be decomposed as:

kb✓ls � ✓?k2 =

������

 
TX

t=1

ztz
>

t

!�1
TX

t=1

ztw
>

t

������
2



������

 
TX

t=1

ztz
>

t

!�1/2
������
op

������

 
TX

t=1

ztz
>

t

!�1/2
TX

t=1

ztw
>

t

������
2

=

������

 
TX

t=1

ztz
>

t

!�1/2
TX

t=1

ztw
>

t

������
2

/

vuut
�min

 
TX

t=1

ztz
>
t

!

It follows that, on the event E \ E1, the error bound given in A holds. Thus, P[Ac \ E \ E1] = 0. Lemma D.6 implies that
P[E \ Ec

1 ]  �, so P[Ac \ E ]  �.
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Part III

Linear Dynamical Decision Making
G. Notation for Linear Dynamical Systems
We next introduce notation used throughout Part III. Throughout, we consider linear dynamical systems of the form

xt+1 = A?xt +B?ut + wt (G.1)

where A? 2 R
dx⇥dx , B? 2 R

dx⇥du , and wt ⇠ N (0,�2
w
I). We denote ✓ = (A,B) and ✓? := (A?, B?). We will sometimes

break up the state into the portion driven by the input, xu
t

, and the portion driven by the noise, xw
t

. In particular, we have

x
u
t+1 = A?x

u
t
+B?ut, x

w
t+1 = A?x

w
t
+ wt

Due to linearity, xt = x
u
t
+ x

w
t

.

G.1. Covariance Notation

At the center of our analysis are the covariance matrices that arise from excitation of the linear system with a certain input.
For an input sequence u := (u1, . . . , ut) 2 R

tdu , we define the open loop input covariance

�in
t
(✓,u, x0) :=

t�1X

s=0

x
u
s
(xu

s
)> where x

u
s+1 = Ax

u
s
+Bus, x

u
0 = x0 (G.2)

We overload notation, so that the above is also defined when u = (us)t
0

s=1 for t0 � t, or even infinite sequences u = (us)s�1.
In addition, if u = (us)t

0

s=1 for t0 < t, we define �in
t
(✓,u, x0) to be the open loop covariance when playing u periodically:

that is, the input ut = umod(t,t0). Recall that:

�noise
t

(✓,⇤u) :=
t�1X

s=0

A
s⇤w(A

s)> +
t�1X

s=0

A
s
B⇤uB

>(As)>

and observe that we can equivalently define

�noise
t

(✓,⇤u) = E

h
xtx

>

t
| us

i.i.d.⇠ N (0,⇤u), ws

i.i.d.⇠ N (0,⇤w), s  t, x0 = 0
i

We also define the following, which corresponds to the total expected average covariates starting from some state x0 and
playing any input ut = eut + u

w

t
, where u = (eut)kt=1 and u

w

t

i.i.d.⇠ N (0,�2
u
I):

�T (✓,u,�u, x0) :=
1

T
�in
T
(✓,u, x0) +

1

T

TX

t=1

�noise
t

(✓,�u) (G.3)

We also set:

e�noise
t

:=

"
�
2
w

P
t�1
s=0 A

s

?
(As

?
)> + �

2

2du

P
t�1
s=0 A

s

?
B?B

>

?
(As

?
)> 0

0 �
2

2du
I

#

We briefly recall the following definitions stated in Section B. We will consider the set of inputs

U�2,k :=

(
U = (U`)

k

`=1 : U` 2 H
d

+, U is symmetric,
kX

`=1

tr(U`)  k
2
�
2

)

For some U 2 U�2,k we define

�freq
k

(✓,U) =
1

k

kX

`=1

(e◆
2⇡`
k I �A)�1

BU`B
H(e◆

2⇡`
k I �A)�H

, �freq
t,k

(✓,U) =
t

k
�freq
k

(✓,U)
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which, as we noted in Section B, correspond to the steady-state covariates when the input U is played periodically. Finally,
we set:

�ss
T,k

(✓,U ,�u) =
1

k
�freq
k

(✓,U) +
1

T

TX

t=1

�noise
t

(✓,�u)

which correspond to the expected steady-state covariates of the noisy system when playing inputs U .

G.2. Lifted Dynamical System

We will set
e✓ := ( eA, eB), eA :=


A B

0 0

�
, eB :=


0
I

�
(G.4)

and in particular e✓? := ( eA?, eB?). Then consider the dynamical system:

zt+1 = eA?zt + eB?ut+1 +


wt

0

�
(G.5)

We note that zt = [xt;ut], where xt is the state of (G.1). It follows that

⌃T :=
TX

t=1

ztz
>

t
=

TX

t=1


xt

ut

� 
xt

ut

�>

so a bound on the covariates of the system (G.5) can be directly applied to the state-input covariates from (G.1). For
subsequent results, we will use zt := [xt;ut].

G.3. Linear Dynamical Systems as Vector Regression

We can write the system (G.1) in the form
ys = h�?, vsi+ ⌘s (G.6)

To obtain this mapping, we reindex time: for a fixed t of (G.1), define s = (dx + du)t + i for some i 2 {1, . . . , dx}.
Furthermore, we set �? = [A?,1;B?,1; . . . ;A?,dx ;B?,dx ] 2 R

d
2
x+dxdu , where A?,j , B?,j denote the jth row of A? and B?,

respectively, ⌘s = [wt]i, and vs = [0, . . . ,0, xt, ut,0, . . . ,0], where xt starts at index (dx + du)(i � 1) + 1. With these
definitions we will have ys = [xt+1]i. It follows that if we run (G.6) from time s = 1 to s = (dx + du)T + dx the set
of observations obtained will be identical to those obtained from xt+1 = A?xt + B?ut + wt. Thus, (G.6) is simply a
vectorization of xt+1 = A?xt + B?ut + wt. It is easy to see that, if b� denotes the least squares estimate of �? obtained
from observations of (G.6) and bA, bB denote the least squares estimates of A?, B? obtained from observations of (G.1), we
will have b� = [ bA1; bB1; . . . ; bAdx ; bBdx ]. Furthermore,3

⌃T :=

(dx+du)T+dxX

s=1

zsz
>

s
= Idx ⌦

TX

t=1

xtx
>

t
= I ⌦ ⌃T

Thus, E⌃T = Idx ⌦ E
P

T

t=1 xtx
>

t
, k⌃T � E⌃T kop = k

P
T

t=1 xtx
>

t
� E

P
T

t=1 xtx
>

t
kop, and �min(E

P
T

t=1 xtx
>

t
) =

�min(E⌃T ). This equivalence allows us to apply results from Section D and Section E in the dynamical system setting.

G.4. Key Parameters in the Analysis

For any ✓ = (A,B), the H1 norm of ✓ is defined as:

k✓kH1
:= max

!2[0,2⇡]
k(e◆!I �A)�1

Bkop

3Note that we change notation slightly here. Previously ⌃T denoted the set of covariates in the general regression setting after T steps,
while here ⌃T is the set of covariates after (dx + du)T + dx steps in the general regression setting, but corresponds to running our linear
dynamical system for T steps. As subsequent results are concerned with the time scale of the linear dynamical system, this change in
notation will simply further analysis.



Task-Optimal Exploration in Linear Dynamical Systems

To control the transient behavior, let:

⌧(A, ⇢) := sup{kAkkop⇢�k : k � 0}

⌧(A, ⇢) is the smallest value such that kAkkop  ⌧(A, ⇢)⇢k for all k. We will define

⇢? := max

⇢
1

2
,

2kA?kH1
kA?kop

1 + 2kA?kH1
kA?kop

�

and ⌧? := ⌧( eA?, ⇢?). The following result relates ⌧?,
1

1�⇢?
, and ke✓?kH1

to kA?kH1
and kB?kop, which will aid in

simplifying our results.
Lemma G.1. The following upper bounds hold:

1

1� ⇢?
 2 + 2kA?k2H1

, ⌧?  2(1 + 2kB?kop)kA?kH1
, ke✓?kH1

 1 + (1 + kB?kop)kA?kH1
.

In addition, we can relate the value of ⌧ for a lifted system e✓ to the original system ✓.
Lemma G.2. Let eA be defined as in (G.4). Then ⌧( eA, ⇢)  (1 + ⇢

�1kBkop)⌧(A, ⇢).

We introduce the following constants to control the smoothness of the covariates:

rcov(✓?) := min

⇢
1� ⇢?

2⌧?
,

1

2kA?kH1

, 1

�

Lcov(✓?, �
2) :=

8(�2
w
+ �

2
u
kB?k2op)⌧3?

(1� ⇢2
?
)2

+
4�2

u
(kB?kop + 1)⌧?

1� ⇢2
?

+ 34�2kA?k3H1
(kB?kop + 1)2

Lemma H.5 implies that, if
k✓ � ✓?kop  rcov(✓?)

then for any u 2 U�2,k, if T2 is divisible by k,

k�ss
T1,T2

(✓, u,�u)� �ss
T1,T2

(✓?, u,�u)kop  Lcov(✓?, �
2) · k✓ � ✓?kop.

This holds regardless of the loss R.

Finally, in our analysis it will be convenient to work with a slightly different definition of the optimal risk, which we define
as:

�ss
opt(�

2; ✓?) := lim inf
T!1

min
u2U�2,T

tr
⇣
H(✓?)�

ss
T,T

(e✓?, u, 0)�1
⌘

As the following result shows, �opt and �ss
opt are equal up to absolute constants.

Lemma G.3. �opt(�2; ✓?) and �ss
opt(�

2; ✓?) are equal up to constants:

1

4
�opt(�

2; ✓?)  �ss
opt(�

2; ✓?)  16�opt(�
2; ✓?).

G.5. Linear Dynamical Systems Notation Proofs

Proof of Lemma G.4. We have that

ke✓?kH1
= max
!2[0,2⇡]

�����

✓
e
◆!
I �


A? B?

0 0

�◆�1 
0
I

������
op

 max
!2[0,2⇡]

�����

✓
e
◆!
I �


A? B?

0 0

�◆�1
�����
op
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For each !, set A(!) := (e◆!I �A?)�1. Then, using the block matrix inverse formula,

✓
e
◆!
I �


A? B?

0 0

�◆�1

=


A(!) �A(!)e�◆!B?
0 e

�◆!
I

�

Thus,

max
!2[0,2⇡]

�����

✓
e
◆!
I �


A? B?

0 0

�◆�1
�����
op

 max
!2[0,2⇡]

����


A(!) �A(!)e�◆!B?
0 e

�◆!
I

�����

 1 + (1 + kB?kop) max
!2[0,2⇡]

kA(!)kop

= 1 + (1 + kB?kop)kA?kH1
.

In the case of scalar A?, Lemma 4.1 (Tu et al., 2017) shows that kAk

?
kop  k 1⇢A?kH1

⇢
k. In the case when dx > 1, we can

apply their proof to the sequence u
>
A

k

?
v for some u, v with kuk2 = kvk2 = 1. Doing so, we obtain

u
>
A

k

?
v  k 1

⇢
A?kH1

⇢
k

As this holds for all u and v, we have kAk

?
kop  k 1⇢A?kH1

⇢
k. As ⌧(A?, ⇢) is the smallest value satisfying kAk

?
kop 

⌧(A?, ⇢)⇢k for all k, it follows that ⌧(A?, ⇢)  k 1⇢A?kH1
. We next wish to upper bound k 1

⇢
A?kH1

by kA?kH1
for some

choice of ⇢. Lemma F.9 of (Wagenmaker & Jamieson, 2020) gives that

kA? � 1
⇢
A?kop 

1

2kA?kH1

implies k 1
⇢
A?kop  2kA?kH1

A sufficient condition to meet this is

⇢ � 2kA?kH1
kA?kop

1 + 2kA?kH1
kA?kop

As ⇢? satisfies this, it follows that ⌧(A?, ⇢?)  k 1
⇢?
A?kH1

 2kA?kH1
. Combining this with Lemma G.2, we conclude

that

⌧?  (1 + ⇢
�1
?
kB?kop)⌧(A?, ⇢?)  2(1 + ⇢

�1
?
kB?kop)kA?kH1

 2(1 + 2kB?kop)kA?kH1

Finally, by definition of ⇢? it follows

1

1� ⇢?
 max{1 + 2kA?kH1

kA?kop, 2}  2 + 2kA?kH1
kA?kop

We then upper bound kA?kop  kA?kH1
to obtain the final result.

Proof of Lemma G.2. Note that:
eAk =


A

k
A

k�1
B

0 0

�

Thus,

k eAkkop = sup
v2Sd+p�1

����


A

k
A

k�1
B

0 0

�
v

����
op

= sup
v2Sd+p�1

��Ak
v1 +A

k�1
Bv2

��
op
 kAkkop + kAk�1

Bkop

so, for any ⇢ > 0,

k eAkkop⇢�k  kAkkop⇢�k + kBkopkAk�1kop⇢�k  ⌧(A, ⇢) + ⇢
�1kBkopkAk�1kop⇢�(k�1)  (1+ ⇢

�1kBkop)⌧(A, ⇢)



Task-Optimal Exploration in Linear Dynamical Systems

Proof of Proposition B.4. 1. Follows by Parseval’s Theorem and simple manipulations. For 2., take some ` such that
`

k0 =
n

k
for some integer n. Then,

ǔ
0

`
=

k
0X

s=1

use
�◆

2⇡`s
k0 =

k
0X

s=1

use
�◆

2⇡ns
k =

k
0X

s=1

eumod(s,k)e
�◆

2⇡nmod(s,k)
k =

k
0

k

kX

s=1

euse
�◆

2⇡ns
k =

k
0

k
ǔn

Furthermore, if `

k0 6= n

k
for all integers n, we will have

ǔ
0

`
=

k
0X

s=1

use
�◆

2⇡`s
k0 =

kX

r=1

eur

k
0
/k�1X

s=0

e
�◆

2⇡`(ks+r)
k0 =

kX

r=1

eure
�◆

2⇡`r
k0

k
0
/k�1X

s=0

e
�◆

2⇡`ks
k0 = 0

Plugging this into the expression for �freq
k0 (✓,u0), the conclusion follows.

Proof of Proposition B.5. Fix some m and j 2 [du] and consider the segment of um, uj

m
:= (ut)

jkm

t=(j�1)km+1. By
construction, this is a signal with period k. Assume we play this input starting from some state x0 not necessarily equal to 0.
Let xuj

m
t

denote the response generated on the noiseless system. By Parseval’s Theorem and Proposition B.4, it follows that

1

k
�freq
k

(✓,uj

1) = lim
m!1

1

km

kmX

t=0

x
uj

m
t

(x
uj

m
t

)>

Furthermore, by the construction of uj

1 given in ConstructTimeInput, we have

1

k
�freq
k

(✓,uj

1) =
du

k2

kX

`=1

�`,j(e
◆
2⇡`
k I �A)�1

Bv`,jv
H

`,j
B

H(e◆
2⇡`
k I �A)�H

Now note that, if we play the entire sequence of inputs um, we will have

dukmX

t=0

x
um
t

(xum
t

)> =
duX

j=1

jkmX

t=(j�1)km+1

x
uj

m
t

(x
uj

m
t

)>

where the starting state, xuj
m

(j�1)km+1, is equal to the final state produced when playing the previous input, xuj�1
m

(j�1)km. Note

that, as we assume the system is stable and the input has bounded energy and is of period k, the norm of xuj�1
m

(j�1)km will scale
sublinearly m (see Appendix I.3). It follows that,

lim
m!1

1

dumk

dumkX

t=0

x
um
t

(xum
t

)> = lim
m!1

1

dumk

duX

j=1

jkmX

t=(j�1)km+1

x
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m
t

(x
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m
t

)>

=
1

du

duX

j=1

lim
m!1

1

mk

jkmX

t=(j�1)km+1

x
uj

m
t

(x
uj

m
t

)>

=
1

du

duX

j=1

1

k
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k

(✓,uj

1)

=
1

k2

kX

`=1

duX

j=1

(e◆
2⇡`
k I �A)�1

B(�`,jv`,jv
H

`,j
)BH(e◆

2⇡`
k I �A)�H

=
1

k2

kX

`=1

(e◆
2⇡`
k I �A)�1

BU`B
H(e◆

2⇡`
k I �A)�H

=
1

k
�freq
k

(✓,U)
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where the second to last inequality follows by the definition of �`,j , v`,j given in ConstructTimeInput. To see that the
power constraint holds, note that, by Parseval’s Theorem and the construction of the input,

dumkX

t=1

u
>

t
ut =

duX

j=1

jkmX

t=(j�1)km+1

u
>

t
ut =

duX

j=1

m

k

kX

`=1

du�j,`v
>

j,`
vj,` =

duX

j=1

m

k

kX

`=1

dutr(�j,`vj,`v
>

j,`
) =

mdu

k

kX

`=1

tr(U`)  mduk�
2

where the final inequality holds since U 2 U�2,k.

Proof of Lemma G.3. Fix some T . In the proof of Theorem B.2 we showed that, for some ✓0 satisfying k✓? � ✓0k2F 
5(d2

x
+ dxdu)/(�?min,1T

5/6),

min
⇡2⇧�2

tr
⇣
H(✓0)

�
E✓?,⇡[⌃T ] + �

?

min,1T · I
��1
⌘
� 1

16T
�ss

opt(�
2; ✓?)�O

✓
1

T 17/12

◆

Following the proof of Theorem B.2, we can use Proposition E.2 to show that

min
⇡2⇧�2

tr
⇣
H(✓0)

�
E✓?,⇡[⌃T ] + �

?

min,1T · I
��1
⌘
 min
⇡2⇧�2

tr
⇣
H(✓?)

�
E✓?,⇡[⌃T ] + �

?

min,1T · I
��1
⌘
+ O

✓
1

T 17/12

◆

 min
⇡2⇧�2

tr
⇣
H(✓?) (E✓?,⇡[⌃T ])

�1
⌘
+ O

✓
1

T 17/12

◆

Renormalizing by T , it follows that for any T

inf
⇡2⇧�2

�T (✓?;⇡) = min
⇡2⇧�2

tr
⇣
H(✓?) (E✓?,⇡[⌃T /T ])

�1
⌘
� 1

16
�ss

opt(�
2; ✓?)�O

✓
1

T 5/12

◆

Taking lim infT!1 of both sides proves the first inequality.

For the second inequality, some trivial manipulations of (J.8) in the proof of Lemma J.7 shows that, for sufficiently large T ,

min
⇡2⇧�2

tr
⇣
H(✓0) (E✓?,⇡[⌃T ])

�1
⌘
 4

T
min

u2U�2,T

tr
⇣
H(✓?)�

ss
T,T

(e✓?, u, 0)�1
⌘

Renormalizing by T and taking lim infT!1 of both sides gives the result.

H. Lower Bounds in Linear Dynamical Systems
H.1. Regular Policies in Linear Dynamical Systems

The following result shows that Assumption 4 and 5 are met if we assume the dynamics are linear, and that ⇡exp satisfies a
certain regularity condition. This implies that Theorem B.1 holds for a fairly general set of policies in linear dynamical
systems.
Lemma H.1. Assume that ⇡exp 2 ⇧�2 plays input ut ⇠ N (eut,�

2
u
I) where eut and �u are chosen deterministically at time

0, and eut is periodic with period k. Then, if our dynamics are

xt+1 = A?xt +B?ut + wt

⇡exp and ✓? satisfy Assumption 4 and 5 with ↵ = 1, ccov = 1, and

� = min{�2
w
,�

2
u
}, Lcov(✓?; �

2) = Csys(�
2
w
+ �

2), rcov(✓?) = C
�1
sys , Ccov = Csys�

2(
p
Tk + k

2)

for some constant Csys = poly(kB?kop, kA?kH1
) and with d✓ = d

2
x
+ dxdu.

Proof. That this policy satisfies Assumption 4 with � = min{�2
w
,�

2
u
} is trivial.

To see that Assumption 5 is satisfied, fix some ✓ and denote eu = (eut)kt=1. Then, by definition,

1

T
E✓,⇡exp [⌃T ] =

1

T
�in
T
(e✓, eu, 0) + 1

T

TX

t=1

�noise
t

(e✓,�u)
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Note that since ⇡exp 2 ⇧�2 and eut is periodic we have
P

k�1
t=0 eu>

t
eut  k�

2. By Lemma H.4, it follows that

���
1

T
�in
T
(e✓, eu, 0)� 1

k
�freq
k

(e✓, eu)
���
op


⌧( eA, ⇢)ke✓k2
H1

p
T + 1k�2

(1� ⇢k)T
+

⌧( eA, ⇢)2ke✓k2
H1

k
2
�
2

(1� ⇢k)2T
=: �(✓)

which implies that
���
1

T
E✓,⇡exp [⌃T ]� �ssT,k

(e✓, eu,�u)
���
op
 �(✓)

Applying this same bound to ✓?, the triangle inequality gives
���
1

T
E✓,⇡exp [⌃T ]�

1

T
E✓?,⇡exp [⌃T ]

���
op
 k�ss

T,k
(e✓, eu,�u)� �ssT,k

(e✓?, eu,�u)kop +�(✓) +�(✓?)

Lemma H.5 gives that, as long as k✓ � ✓?kop  rcov(e✓?)/2,

k�ss
T,k

(e✓, eu,⇤u)� �ssT,k
(e✓?, eu,⇤u)kop  2Lcov(e✓?, �2)k✓ � ✓?kop

where rcov(e✓?) and Lcov(e✓?) are defined here as in Lemma H.5. Note here that we use that k✓ � ✓?kop and ke✓ � e✓?kop are
within a factor of 2 of each other since

max{kA�A?kop, kB �B?kop}  k✓ � ✓?kop, ke✓ � e✓?kop  kA�A?kop + kB �B?kop

It remains to simplify �(✓). By Lemma F.9 of (Wagenmaker & Jamieson, 2020), as long as ke✓ � e✓?kop  c/ke✓?kH1
, we

will have that ke✓kH1
and ke✓?kH1

are within a constant factor of each other. Next, note that Lemma H.1 implies that, so
long as ke✓ � e✓?kop  ✏, k eAkkop  ⌧( eA?, ⇢)(⇢+ ⌧( eA?, ⇢)✏)k. This implies that

⌧( eA, ⇢+ ⌧( eA?, ⇢)✏) = sup
k

k eAkkop(⇢+ ⌧( eA?, ⇢)✏)�k  ⌧( eA?, ⇢)

As long as ✏ < (1� ⇢?)/(2⌧( eA?, ⇢)) we can then choose ⇢ = ⇢? + ⌧( eA?, ⇢?)✏ which will allow us to upper bound

⌧( eA, ⇢)

(1� ⇢k)
 c⌧( eA?, ⇢?)

(1� ⇢k
?
)

It follows that �(✓)  c�(✓?). By Lemma G.4 and some algebra, the assumptions then hold with

� = min{�2
w
,�

2
u
}, Lcov(✓?; �

2) =
c1(�2

w
+ �

2
u
)⌧3
?

(1� ⇢?)2
+ c2�

2(1 + kB?kop)3kA?k3H1
,

rcov(✓?) = c3 min

⇢
1� ⇢?

⌧?
,

1/2

1 + (1 + kB?kop)kA?kH1

, 1

�
,

Ccov =
c4⌧?(1 + kB?kop)2kA?k2H1

p
Tk�

2

1� ⇢k
?

+
c5⌧

2
?
(1 + kB?kop)2kA?k2H1

k
2
�
2

(1� ⇢k
?
)2

, ↵ = 1, ccov = 1

For the final statement we simplify all expressions involving problem-dependent constants by simply upper bounding them
by constants that are poly(kA?kH1

, kB?kop), and noting that �2
u
 �

2.

H.2. Proof of Theorem B.2

Proof. The outline of the proof is as follows.

1. Apply Theorem E.3 to show that

min
ba

max
✓2BT

E✓,⇡exp [R(baT ; ✓)] � min
✓:k✓�✓0k2

F5(d2
x+dxdu)/(�T 5/6)

E

h
tr
⇣
H(✓?)

�
E✓,⇡exp [⌃T ] + �T · I

��1
⌘i

for a particular choice of �.
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2. Apply Lemma H.3 to show that, for any policy ⇡exp and any ✓, there exists a periodic policy ⇡
0

exp such that

E✓,⇡exp [⌃T ] � E✓,⇡0
exp

[⌃c1T ] + c2

3. Given that ⇡0

exp is periodic, apply Lemma H.4 to show that we can upper bound the expected covariates by the expected
steady-state covariates:

E✓,⇡0
exp

[⌃c1T ] � E✓,⇡0
exp

[�freq
c1T

(e✓,U)] + c3

4. Use the frequency-domain representation to show that there exists a non-random input U 0 that meets the power
constraint and achieves the same steady state covariates:

E✓,⇡0
exp

[�freq
c1T

(e✓,U)] = �freq
c1T

(e✓,U 0)

5. Apply the perturbation bound for the steady state covariates given in Lemma H.5 to show that, for any ✓ in our set, we
can upper bound the covariates on ✓ by the covariates on ✓?:

�freq
c1T

(e✓,U 0) � �freq
c1T

(e✓?,U 0) + c4

6. Finally, we conclude the proof by optimizing over ⇡0

exp to obtain a lower bound scaling as �opt(�2; ✓?).

Throughout the proof, we assume expectations are taken with respect to ✓ and ⇡exp, and therefore write E[·] in place of
E✓,⇡exp [·]. As stated in Section G.3, linear dynamical systems our simply an instance of vector regression and we can
therefore apply the results of Section E in this setting.

Applying Theorem E.3: Define

�
?

min,1 := lim sup
T 0!1

max
U2U�2,T 0

1

10T 0
�min(�

ss
T 0(e✓?,U , 0))

Under Assumption 6 and by Lemma H.2, we will have that �?min,1 > 0. Then the first conclusion of Theorem E.3 holds
with � = �

?

min,1. That is, if T is large enough that the burn-in of Theorem E.3 is met, we will have

min
ba

max
✓2BT

E✓,⇡exp [R(baT ; ✓)] � min
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F5(d2
x+dxdu)/(�?
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E

h
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⇣
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min,1T · I
��1
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Sufficiency of periodic policies: Our goal is to lower bound

min
✓:k✓�✓0k2

F5(d2
x+dxdu)/(�?

min,1T 5/6)
E

h
tr
⇣
H(✓?)
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E[⌃T ] + �
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min,1T · I
��1
⌘i

Fix some ✓ such that k✓0 � ✓k2
F
 5(d2

x
+ dxdu)/(�?min,1T

5/6), and consider the extended system e✓, as defined in (G.4).
Let zu

t
denote the component of the state of e✓ driven by both the random and deterministic components of the input and z

w
t

the component driven by the process noise. Then zt = z
u
t
+ z

w
t

, so
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=
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By the power constraint on ut and Lemma H.3,
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for some input eu with period keu := T✏ = 2H((d2
x
+ dx)/2 + 1) satisfying E[

P
k eu�1
t=0 eu>

t
eut]  keu�

2, and

H =

&
log

 
✏(1� ⇢

2)

8⌧( eA, ⇢)3�2T 2

!
/ log ⇢

'

The final inequality follows by upper bounding T✏  2T , which will hold by our definition of H and assumption on the size
of T . Choosing ✏ = �

?

min,1T/5, we can upper bound
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P
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P
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From time domain to frequency domain: The conditions of Lemma H.4 are met for this eu, so it follows that
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Sufficiency of deterministic inputs: Let eU�2,k eu denote the set of inputs with average expected power bounded by �
2 and

period keu. Then we have shown that
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T

t=1�
noise
t

(e✓, 0) + 3�?min,1T · I
⌘�1 ⌘

� 1

2
min

u2eU�2,k eu

tr
⇣
H(✓?)

⇣
E�in,ss

4T (e✓,u) +
P

T

t=1�
noise
t

(e✓, 0) + 3�?min,1T · I
⌘�1 ⌘

By definition of �freq and for any u 2 eU�2,k eu , using that ǔ = F(u),

E�freq4T (e✓,u) = E
4T

keu

1

keu

k euX

t=1

(e
◆
2⇡t
k eu I � eA)�1 eBǔtǔ

H

t
eBH(e

◆
2⇡t
k eu I � eA)�H

=
4T

keu

1

keu

k euX

t=1

(e
◆
2⇡t
k eu I � eA)�1 eBE[ǔtǔ

H

t
] eBH(e

◆
2⇡t
k eu I � eA)�H

Define Ut := E[ǔtǔ
H

t
]. By Parseval’s Theorem, and the power constraint on u, we have

P
k eu
t=1tr(Ut) = E[

P
k eu
t=1ǔtǔ

H

t
] = E[keu

P
k eu
t=0u

>

t
ut]  k

2
eu�

2

Thus, optimizing over over the (possibly random) input u, is equivalent to optimizing over PSD matrices Ut that satisfy this
trace constraint. Therefore,

1

2
min

u2eU�2,k eu

tr
⇣
H(✓?)

⇣
E�in,ss

4T (e✓,u) +
P

T

t=1�
noise
t

(e✓, 0) + 3�?min,1T · I
⌘�1 ⌘
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� 1

2
min

u2U�2,k eu

tr
⇣
H(✓?)

⇣
�in,ss
4T (e✓,u) +

P
T

t=1�
noise
t

(e✓, 0) + 3�?min,1T · I
⌘�1 ⌘

� 1

8T
min

u2U�2,k eu
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⇣
H(✓?)

⇣
�ss
4T (e✓,u, 0) + 3�?min,1 · I

⌘�1 ⌘

� 1

8T
min

U2U�2,4T

tr
⇣
H(✓?)

⇣
�ss
4T (e✓,U , 0) + 3�?min,1 · I

⌘�1 ⌘

where the constraint set in the second minimization is simply the set defined in (B.10), and we can thus drop the expectation.

From ✓ to ✓?: By assumption

k✓ � ✓?kop  k✓ � ✓?kF  k✓ � ✓0kF + k✓0 � ✓?kF  2
p

5(d2
x
+ dxdu)/(

q
�
?

min,1T
5/12)

so if
2
p
5(d2

x
+ dxdu)/(

q
�
?

min,1T
5/12)  rcov(✓?) (H.2)

we are in the domain of Lemma H.5 and

k�ss
4T (e✓,U , 0)� �ss

4T (e✓?,U , 0)kop  Lcov(✓?, �
2) · ke✓ � e✓?kop = Lcov(✓?, �

2) · k✓ � ✓?kop


Lcov(✓?, �2)2

p
5(d2

x
+ dxdu)q

�
?

min,1T 5/12

It follows that as long as
Lcov(✓?, �2)2

p
5(d2

x
+ dxdu)q

�
?

min,1T 5/12
 �

?

min,1 (H.3)

then
�ss
4T (e✓,U , 0) � �ss

4T (e✓?,U , 0) + �
?

min,1 · I

and thus,

1

8T
min

U2U�2,4T

tr
⇣
H(✓?)

⇣
�ss
4T (e✓,U , 0) + 3�?min,1 · I

⌘�1 ⌘
� 1

8T
min

U2U�2,4T

tr
⇣
H(✓?)

⇣
�ss
4T (e✓?,U , 0) + 4�?min,1 · I

⌘�1 ⌘

Concluding the lower bound: Next, by Lemma H.8, so long as

4T � max

(
8⇡ke✓?kH1

�
2

�
?

min,1

,
⇡

2ke✓?kH1

)✓
max

!2[0,2⇡]
k(e◆!I � eA?)�2 eB?kop

◆
(H.4)

then for any T
0 � 4T and U? 2 U�2,4T , there exists a U 0 2 U�2,T 0 such that

����
1

4T
�freq4T (e✓?,U 0)� 1

T 0
�freq
T 0 (e✓?,U?)

����
op

 1

2
�
?

min,1

Furthermore, by Lemma H.9, if

4T � max

(
16⌧( eA?, ⇢)2(�2

w
+ �

2
/du)

(1� ⇢2)2�?min,1

, log

 
(1� ⇢

2)2�?min,1

16⌧( eA?, ⇢)2(�2
w
+ �2/du)

!
1

2 log ⇢

)
(H.5)

then, for any T
0 � 4T ,

������
1

4T

4TX

t=1

�noise
t

(e✓?, �/
p
du)�

1

T 0

T
0X

t=1

�noise
t

(e✓?, �/
p
du)

������
op

 1

2
�
?

min,1
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By what we’ve just shown, for any T
0 � 4T

�ss
4T (e✓?,U 0

, 0) � �ss
T 0(e✓?,U?

, 0) + �
?

min,1 · I

Thus,

1

8T
min

U2U�2,4T

tr

✓
H(✓?)

⇣
�ss
4T (e✓?,U , 0) + 4�?min,1 · I

⌘�1
◆

� lim inf
T 0!1

1

8T
min

U2U�2,T 0

tr

✓
H(✓?)

⇣
�ss
T 0(e✓?,U , 0) + 5�?min,1 · I

⌘�1
◆

Let
�
?

min,T := inf
T 0�T

max
U2U�2,T 0

1

10T 0
�min(�

freq
T 0 (e✓?,U))

Note that by Lemma H.8, so long as

T � max

(
8⇡ke✓?kH1

�
2

�
?

min,1

,
⇡

2ke✓?kH1

)✓
max

!2[0,2⇡]
k(e◆!I � eA?)�2 eB?kop

◆
(H.6)

then for any T
0 � T and U? 2 U�2,T , there exists a U 0 2 U�2,T 0 such that

����
1

T
�freq
T

(e✓?,U 0)� 1

T 0
�freq
T 0 (e✓?,U?)

����
op

 1

2
�
?

min,1

This implies that so long as T satisfies (H.6), we will have �
?

min,T � 1
2�

?

min,1. By definition of �?min,T , for any T
0 � T

there exists some input U 00 2 U�2,T 0 such that �min(�ssT 0(e✓?,U 00
, 0)) � 10�?min,T . It follows that for any T

0 � T ,
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This implies that
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=
1

16T
�ss

opt(�
2; ✓?).

Putting everything together, Theorem E.3 and what we have shown imply that as long as T is large enough so that the
burn-in of Theorem E.3 is met, T � H((d2

x
+ dx)/2+1) and (H.1), (H.2), (H.3), (H.4), (H.5), and (H.6) hold, we will have

min
ba

max
✓:k✓�✓0k2

25(d2
x+dxdu)/(�?

min,1T 5/6)
E[R(ba; ✓)] � �

2
w

16T
�ss

opt(�
2; ✓?)�

C1

(�?min,1T )5/4

where C2 = O
⇣
(La1La2LR2 + L

3
a1LR3 + Lhess)(d2x + dxdu)3/2 + L

2
a1LR2

⌘
. Finally we can lower bound �ss

opt(�
2; ✓?)

with �opt(�2; ✓?)/4 by Lemma G.3.
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Simplifying the Burn-In Time: It remains to simplify the bound. First, note that by Lemma F.9 of (Wagenmaker &
Jamieson, 2020), as long as ke✓� e✓?kop  c/ke✓?kH1

, we will have that ke✓kH1
and ke✓?kH1

are within a constant factor of
each other. Next, note that Lemma H.1 implies that, so long as ke✓ � e✓?kop  ✏, k eAkkop  ⌧( eA?, ⇢)(⇢+ ⌧( eA?, ⇢)✏)k. This
implies that

⌧( eA, ⇢+ ⌧( eA?, ⇢)✏) = sup
k

k eAkkop(⇢+ ⌧( eA?, ⇢)✏)�k  ⌧( eA?, ⇢)

As long as ✏ < (1� ⇢?)/(2⌧( eA?, ⇢)) we can then choose ⇢ = ⇢? + ⌧( eA?, ⇢?)✏ which will allow us to upper bound

⌧( eA, ⇢)n

(1� ⇢m)p
 c⌧( eA?, ⇢?)n

(1� ⇢m
?
)p

As we have assumed k✓ � ✓0kF , k✓? � ✓0kF 
p
5(d2

x
+ dxdu)/(

q
�
?

min,1T
5/12), we can upper bound ke✓ � e✓?kop 

k✓ � ✓?kF  2
p
5(d2

x
+ dxdu)/(

q
�
?

min,1T
5/12). Some algebra, Lemma G.2, and the definition of Lcov(✓?, �2) and

rcov(✓?) then gives that as long as

T � poly

 
1

1� ⇢?
, ⌧?, kB?kop, dx, du, ke✓?kH1

, �
2
,�

2
w
,

1

�
?

min,1

, log T

!

these bounds on ke✓kH1
and ⌧( eA, ⇢) will hold, T � H((d2

x
+ dx)/2 + 1) and (H.1), (H.2), (H.3), (H.4), (H.5), and (H.6)

hold. Finally, we use Lemma H.2 to replace �
?

min,1 with �
?

noise, and Lemma G.4 to upper bound ⌧?,
1

1�⇢?
and ke✓?kH1

by
poly(kB?kop, kA?kH1

).

Lemma H.2.
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(
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Proof. Fix T and consider playing the input ut ⇠ N (0,�2
u

· I). By definition,
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"
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x
u
t
(xu

t
)>
#

By Lemma H.3, it follows that there exists some input eu = (eut)
k�1
t=0 with average expected power bounded by �

2 such that

E

"
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x
u
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t
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#
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"
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x
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t
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where k := T1 = 2H((d2
x
+ dx)/2 + 1) and

H =

&
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2
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!
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By definition of �freq and for any U 2 eU�2,k,
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=
4T

k

1

k

kX

t=1

(e◆
2⇡t
k I � eA)�1 eBE[ǔtǔ

H

t
] eBH(e◆

2⇡t
k I � eA)�H

Define Ut := E[ǔtǔ
H

t
]. By Parseval’s Theorem, and the power constraint on eu, we have

P
k

t=1tr(Ut) = E[
P

k

t=1ǔ
H

t
ǔt] = E[k

P
k�1
t=0 u

>

t
ut]  k

2
�
2

It follows that there exists some eU 2 U�2,k such that E�freq2T+k
(e✓?, eu) = �freq2T+k

(e✓?, eU). Putting this together, we have that
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p
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!
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Dividing through by T and taking the lim sup
T!1

, we have
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Finally, we see that by definition and some algebra that
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Noting that
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completes the proof.

H.3. Periodicity of Optimal Inputs

In what follows, consider an arbitrary system (A,B), with A stable. Let ⇢ � ⇢(A) be less than 1, and recall ⌧(A, ⇢) :=
sup

n�0 ⇢
�nkAnkop, finally for any error parameter ✏ > 0,

H✏ :=

⇠
log

✓
✏(1� ⇢

2)

8kBk2op⌧(A, ⇢)3�2T 2

◆
/ log ⇢

⇡
. (H.7)

and define the effective time horizon

T✏ := 2H✏((d
2
x
+ dx)/2 + 1). (H.8)

Lemma H.3. Consider some input {ut}T�1
t=0 satisfying E[

P
T�1
t=0 u

>

t
ut]  T�

2. Then there exists an input {eut}T✏�1
t=0 such

that

E

"
T✏�1X

t=0

eu>

t
eut

#
 T✏�

2

and extending to times t � T✏ � 1 via a periodic signal eut = eumod(t,T✏), where equality here holds almost surely, satisfies

E

 TX

t=1

x
u
t
(xu

t
)>
�
� E

 2T+3T✏/2X

t=1

x
eu
t
(xeu

t
)>
�
+ 5✏I,

where above, xu are the states under the initial inputs (ut), and x
eu are the iterates under (ũt), and where we take x

u
0 = 0

in both.
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Proof. In what follows, we regard ✏ > 0 as fixed, and write H  H✏.

We consider the response on the system with no process noise starting from x
u
0 = 0. Given some input {ut}T�1

t=0 2 U�2 , the
state evolves as

x
u
t
=

t�1X

s=0

A
t�s�1

Bus

We will use Gt to denote the Markov parameters for this system:

Gt := [B,AB, . . . , A
t�2

B,A
t�1

B]

and will define the extended input, ut, and truncated extended input, ut;H as:

ut := [ut;ut�1; . . . ;u1;u0], ut;H := [ut;ut�1; . . . ;ut�H+2;ut�H+1]

If t < H � 1, we define u�s = 0 for all s > 0. Then the state can be written as xu
t
= Gtut�1. We can approximate the

state using the last H inputs as xu
t;H = GHut�1;H . The following result bounds the error in such an approximation.
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P
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t=0 u

>

t
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u
0 = 0. Then, under our choice of
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)/ log ⇢, we will have
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Proof of Claim H.1. We first bound the state difference:
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By Jensen’s inequality, we can bound Ekxu
t
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p
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⇢
H . Thus, by the triangle inequality and what we have just shown,
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where the last inequality follows by noting that our above argument also applies to bounding Ekxu
t;Hk2. The conclusion

follows by some algebra.

Fix H = dlog( ✏(1�⇢2)
8kBk2

op⌧(A,⇢)3�2T 2 )/ log ⇢e, then, by Claim H.1,

E

TX

t=1

x
u
t
(xu

t
)> � E

dT/HeX

j=1

HjX

t=H(j�1)+1

x
u
t
(xu

t
)> � E

dT/HeX

j=1

HjX

t=H(j�1)+1

x
u
t;H(xu

t;H)> + ✏I



Task-Optimal Exploration in Linear Dynamical Systems

Now consider a realization of (ut) in our probability space.

Defining

Uj;H :=
HjX

t=H(j�1)+1

ut�1;Hu>
t�1;H (H.9)

we can rewrite the covariates in terms of the Markov parameters as
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j=1

HjX
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x
u
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t;H)> =
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1
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>

H
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GHUj;HG
>

H

We will define the set of normalized covariance matrices as

MH :=

(
GHUG

>

H
: U of form (H.9) for input {ūt}2Ht=1,

2HX

t=1

ū
>

t
ūt = 1

)

The following result will allow us to express this in a more convenient form.
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j;H}n
j=1, U0

j;H 2MH . Let pj 2 [0, 1],
P

n

j=1 pj = 1. Then there exists some set

of matrix inputs {U00

j;H}(d
2
x+dx)/2+1

j=1 , U00

j;H 2MH , and some set of weights qj 2 [0, 1],
P(d2

x+dx)/2+1
j=1 qj = 1 such that

nX

j=1

pjGHU0

j;HG
>

H
=

du(du+1)/2+1X

j=1

qjGHU00

j;HG
>

H
.

Proof. This is a direct consequence of Caratheodory’s Theorem. By definition, M ✓ Sdx
+ . The dimension of Sdx

+ is
(d2

x
+ dx)/2 so the points in M can be thought of as living in a (d2

x
+ dx)/2-dimensional space. Caratheodory’s Theorem

then gives that, for any point, x, that is a convex combination of elements of M, x can also be written as a convex combination
of at most dim(M) + 1 points in M. Taking x =

P
n

j=1 pjGHU0

j;HG
>

H
, it follows that there exists (d2

x
+ dx)/2+ 1 points

U00

j;H 2M and set of weights qj 2 [0, 1],
P

m

j=1 qj = 1 such that x =
P(d2

x+dx)/2+1
j=1 qjGHU00

j;HG
>

H
.

We shall use the following definition going forward:

Definition H.1. For a given Uj;H , let �2[Uj;H ] denote the power of the input corresponding to Uj;H . That is, if Uj;H is
formed according to (H.9),

�
2[Uj;H ] :=

Hj�1X

t=H(j�2)+1

u
>

t
ut (H.10)

Note then that Uj;H = �
2[Uj;H ] · U0

j;H for some U0

j;H 2MH .

Instantiating Claim H.2 with

U0

j;H  Uj;H/�
2[Uj;H ], and pj = �

2[Uj;H ]/(

dT/HeX

i=1

�
2[Ui;H ]),

we have that there exists some set of matrices {Ũj;H}(d
2
x+dx)/2+1

j=1 ✓MH and some set of weights qj such that

dT/HeX

j=1

GHUj;HG
>

H
=

0

@
dT/HeX

i=1

�
2[Ui;H ]

1

A
(d2

x+dx)/2+1X

j=1

qjGHŨj;HG
>

H
(H.11)
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For future reference, we denote

e�2 :=

dT/HeX

i=1

�
2[Ui;H ]

Note that while Ũj;H 2MH , the associate covariates may not be realizable in only H((d2
x
+ dx)/2 + 1) steps, because ūt

for a given t will be present in both blocks Uj;H and Uj+1;H—these blocks cannot be chosen independently. However, this
response can be realized in 2H((d2

x
+ dx)/2 + 1) steps, which we recall is precisely our definition of T✏.

For a given j 2 {1, . . . , (d2
x
+ dx)/2 + 1}, let {eut;j}2H�1

t=0 be the set of inputs for which (H.9) is satisfied for Ũj;H , and

such that
P2H�1

t=0 eu>

t;jeut;j = 1. Let {eut}T✏
t=0 denote the sequence of inputs formed by concatenating {

q
1
T
e�2qjT✏eut;j}2H�1

t=0

for all j. That is, set

eut =
q

1
T
e�2qjT✏eut0,j0 where j

0 = bt/jc+ 1, t0 = t� (j0 � 1)2H

Finally, extend eut to all t via eut = eumod(t,T✏), where the equality holds almost surely. Then,

1

T

e�2
qjT✏

2
GHŨj;HG

>

H
=

2HjX

t=2Hj�H+1

x
eu
t;H(xeu

t;H)> (H.12)

so
P(d2

x+dx)/2+1
j=1

T✏
2T e�

2
qjGHŨj;HG

>

H
corresponds to half of the input response, and thus

e�2

(d2
x+dx)/2+1X

j=1

qjGHŨj;HG
>

H
=

T

T✏/2

(d2
x+dx)/2+1X

j=1

2HjX

t=2Hj�H+1

x
eu
t;H(xeu

t;H)>

�
⇠

T

T✏/2

⇡ (d2
x+dx)/2+1X

j=1

2HjX

t=2Hj�H+1

x
eu
t;H(xeu

t;H)>

(a)
=

d T
T✏/2
e((d2

x+dx)/2+1)X

j=1

2HjX

t=2Hj�H+1

x
eu
t;H(xeu

t;H)>

(b)
�

2Hd T
T✏/2
e((d2

x+dx)/2+1)X

t=1

x
eu
t;H(xeu

t;H)>

�
2T+T✏X

t=1

x
eu
t;H(xeu

t;H)>

where (a) holds because, by construction, we will have x
eu
t;H = x

eu
t+j2H((d2

x+dx)/2+1);H for any j, since the input is T✏-
periodic, and (b) follows as we are simply including more PSD terms in the sum. As this holds pointwise in our probability
space, it follows that

E

dT/HeX

j=1

HjX

t=H(j�1)+1

x
u
t;H(xu

t;H)> = Ee�2

(d2
x+dx)/2+1X

j=1

qjGHŨj;HG
>

H
� E

2T+T✏X

t=1

x
eu
t;H(xeu

t;H)>

The input sequence {eut}T✏
t=0 satisfies

E

T✏�1X

t=0

eu>

t
eut = E

T✏/2

T
· e�2 ·

(d2
x+dx)/2+1X

j=1

qj

2H�1X

t=0

eu>

t;jeut;j

(a)
= E

T✏/2

T
· e�2 ·

(d2
x+dx)/2+1X

j=1

qj
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=
T✏/2

T
Ee�2

(b)
 T✏�

2

where (a) follows since
P2H�1

t=0 eu>

t;jeut;j = 1 almost surely, and (b) follows since

Ee�2 = E

dT/HeX

i=1

�
2(Ui;H) = E

dT/HeX

i=1

Hi�1X

t=H(i�2)+1

u
>

t
ut  2T�2

Thus, eut satisfies the power constraint E
P

T✏�1
t=0 eu>

t
eut  T✏�

2, which implies it also satisfies the constraint E
P

T

t=1 eu>

t
eut 

T�
2. By Lemma H.1, given our choice of H and this power constraint,

E

2T+T✏X

t=1

x
eu
t;H(xeu

t;H)> � E

2T+T✏X

t=1

x
eu
t
(xeu

t
)> + 4✏I

Finally, note that for any s, we can bound

E

T✏+s�1X

t=s

eu>

t
eut  2T✏�

2

since the sum can be contained by at most two periods of the input. The conclusion follows.

H.4. Frequency Domain Approximation

Lemma H.4. Let {ut}k�1
t=0 be a signal with E[

P
k�1
t=0 u

>

t
ut]  k�

2. Consider playing ut periodically for T steps on system
✓ = (A,B) with no process noise, where we assume x0 = 0 and set ut = umod(t,k) almost surely. Then,

���E
TX

t=0

xtx
>

t
� E

1

T

TX

t=1

(e◆
2⇡t
T I �A)�1

Bǔtǔ
H

t
B

H(e◆
2⇡t
T I �A)�H

���
op


⌧(A, ⇢)k✓k2

H1
kBkop

p
T + 1k�2

1� ⇢k
+

⌧(A, ⇢)2k✓k2
H1
kBk2opk2�2

(1� ⇢k)2
.

where (ǔt)Tt=1 = F�1((ut)Tt=1).

Proof. Define G(e◆!) := (e◆!I � A)�1
B and let (x̌t)Tt=1 = F�1((xt)Tt=1) denote the T point DFT of xt. Then, by

Parseval’s Theorem,
�����

TX

t=0

xtx
>

t
� 1

T

TX

t=1

G(e◆
2⇡t
T )ǔtǔ

H

t
G(e◆

2⇡t
T )H

�����
op

=

�����
1

T

TX

t=1

x̌tx̌
H

t
� 1

T

TX

t=1

G(e◆
2⇡t
T )ǔtǔ

H

t
G(e◆

2⇡t
T )H

�����
op

 1

T

TX

t=1

kG(e◆
2⇡t
T )ǔt � x̌tk2(kx̌tk2 + kG(e◆

2⇡t
T )ǔtk2)

By Taylor expanding,

G(e◆!) =
1X

s=0

e
�◆!(s+1)

A
s
B

By definition of a DFT, and since x0 = 0,

x̌` =
T�1X

t=0

e
�◆

2⇡`
T t

xt =
T�1X

t=1

t�1X

s=0

e
�◆

2⇡`
T t

A
t�s�1

Bus =
T�1X

s=0

 
T�s�2X

t=0

e
�◆

2⇡`
T (t+1)

A
t

!
e
�◆

2⇡`
T s

Bus
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ǔs =
T�1X

t=0

e
�◆

2⇡`
T t

ut

Therefore,

G(e◆
2⇡`
T )ǔ` � x̌` =

T�1X

s=0

 
1X

t=0

e
�◆

2⇡`
T (t+1)

A
t

!
e
�◆

2⇡`
T s

Bus �
T�1X

s=0

 
T�s�2X

t=0

e
�◆

2⇡`
T (t+1)

A
t

!
e
�◆

2⇡`
T s

Bus

=
T�1X

s=0

 
1X

t=T�s�1

e
�◆

2⇡`
T (t+1)

A
t

!
e
�◆

2⇡`
T s

Bus

=
T�1X

s=0

e
�◆

2⇡`
T (T�s�1)

A
T�s�1

 
1X

t=0

e
�◆

2⇡`
T (t+1)

A
t

!
e
�◆

2⇡`
T s

Bus

= e
�◆

2⇡`
T (T�1)

T�1X

s=0

A
T�s�1

G(e◆
2⇡`
T )Bus

Thus, since us = us+k by assumption,

kG(e◆
2⇡`
T )ǔ` � x̌`k2  ⌧(A, ⇢)k✓kH1

kBkop
T�1X

s=0

⇢
T�s�1kusk2

 ⌧(A, ⇢)k✓kH1
kBkop

dT/keX

j=0

⇢
kj

k�1X

s=0

kusk2

 ⌧(A, ⇢)k✓kH1
kBkop

p
k

vuut
k�1X

s=0

kusk22
dT/keX

j=0

⇢
kj

 ⌧(A, ⇢)k✓kH1
kBkop

p
k

1� ⇢k

vuut
k�1X

s=0

kusk22

By Parseval’s Theorem, and again since us = us+k,

TX

t=1

kǔtk22 = T

T�1X

t=0

kutk22  T dT/ke
k�1X

t=0

kutk22

So,

1

T

TX

t=1

kG(e◆
2⇡t
T )ǔt � x̌tk2kG(e◆

2⇡t
T )ǔtk2 

k✓kH1

T

vuut
TX

t=1

kG(e◆
2⇡t
T )ǔt � x̌tk22

vuut
TX

t=1

kǔtk22

 k✓kH1

T

vuut
T
⌧(A, ⇢)2k✓k2

H1
kBk2opk

(1� ⇢k)2

k�1X

s=0

kusk22

vuut
T dT/ke

k�1X

t=0

kutk22

=
⌧(A, ⇢)k✓k2

H1
kBkop

p
kdT/ke

1� ⇢k

k�1X

t=0

kutk22

Again by Parseval’s theorem, and by the same calculation as was performed above,

TX

t=1

kx̌tk22 = T

T�1X

t=1

kxtk22 = T

T�1X

t=1

�����

t�1X

s=0

A
t�s�1

Bus

�����

2

2

 T

T�1X

t=1

⌧(A, ⇢)2kBk2op

 
t�1X

s=0

⇢
t�s�1kusk2

!2


T ⌧(A, ⇢)2kBk2opk

(1� ⇢k)2

k�1X

s=0

kusk22
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So,

1

T

TX

t=1

kG(e◆
2⇡t
T )ǔt � x̌tk2kX(e◆

2⇡t
T )k2 

1

T

vuut
TX

t=1

kG(e◆
2⇡t
T )ǔt � x̌tk22

vuut
TX

t=1

kx̌tk22

 k✓kH1

T

vuut
T
⌧(A, ⇢)2k✓k2

H1
kBk2opk

(1� ⇢k)2

k�1X

s=0

kusk22

vuutT ⌧(A, ⇢)2kBk2opk
(1� ⇢k)2

k�1X

s=0

kusk22

=
⌧(A, ⇢)2k✓k2

H1
kBk2opk

(1� ⇢k)2

k�1X

t=0

kutk22

It follows that

E

�����

TX

t=0

xtx
>

t
� 1

T

TX

t=1

G(e◆
2⇡t
T )ǔtǔ

H

t
G(e◆

2⇡t
T )H

�����
op


⌧(A, ⇢)k✓k2

H1
kBkop

p
kdT/ke

1� ⇢k
E

k�1X

t=0

kutk22 +
⌧(A, ⇢)2k✓k2

H1
kBk2opk

(1� ⇢k)2
E

k�1X

t=0

kutk22


⌧(A, ⇢)k✓k2

H1
kBkop

p
T + 1k�2

1� ⇢k
+

⌧(A, ⇢)2k✓k2
H1
kBk2opk2�2

(1� ⇢k)2

and the conclusion follows.

H.5. Smoothness of Covariates

Lemma H.5. For all U 2 U�2,k and all ✓ with

k✓ � ✓?kop  min

⇢
1� ⇢

2⌧(A?, ⇢)
,

1

2kA?kH1

, 1

�
=: rcov(✓?) (H.13)

if T2 is divisible by k,

k�ss
T1,T2

(✓,U ,�u)��ss
T1,T2

(✓?,U ,�u)kop 
 
8(�2

w
+ �

2
u
kB?k2op)⌧(A?, ⇢)3

(1� ⇢2)2
+

4�2
u
(kB?kop + 1)⌧(A?, ⇢)2

1� ⇢2

+ 34�2kA?k3H1
(kB?kop + 1)2

!
k✓ � ✓?kop

=: Lcov(✓?, �
2) · k✓ � ✓?kop.

(H.14)

Proof. For convenience denote ✏ = k✓ � ✓?kop. As �ss
T1,T2

(✓,U ,�u) = Idx ⌦ �ssT1,T2
(✓,U ,�u),

k�ss
T1,T2

(✓,U ,�u)� �ss
T1,T2

(✓?,U ,�u)kop = k�ss
T1,T2

(✓,U ,�u)� �ssT1,T2
(✓?,U ,�u)kop

By definition, when T2 is divisible by k,

�ss
T1,T2

(✓,U ,�u) =
1

T2
�freq
T2

(✓,U) +
1

T1

T1X

t=1

�noise
t

(✓,�u)

�freq
T2

(✓,U) =
T2

k

1

k

kX

`=1

(e◆
2⇡`
k I �A)�1

BU`B
H(e◆

2⇡`
k I �A)�H

�noise
t

(✓,�u) = �
2
w

t�1X

s=0

A
s(As)> + �

2
u

t�1X

s=0

A
s
BB

>(As)>
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Thus,

k�ss
T1,T2

(✓,U ,�u)� �ssT1,T2
(✓?,U ,�u)kop

 1

T2
k�freq

T2
(✓,U)� �freq

T2
(✓?,U)kop

| {z }
(a)

+
1

T1

T1X

t=1

k�noise
t

(✓,�u)� �noiset
(✓?,�u)kop

| {z }
(b)

Lemma H.7 gives that, when (H.13) holds,

(a) 
⇣

max
!2[0,2⇡]

�
2k(e◆!I �A?)

�1k2opkB?kop
�
16k(e◆!I �A?)

�1kopkB?kop + 2
� ⌘

✏

+
⇣

max
!2[0,2⇡]

�
2k(e◆!I �A?)

�1k2op(32k(e◆!I �A?)
�1kopkB?kop + 2)

⌘
✏
2

+
⇣

max
!2[0,2⇡]

16�2k(e◆!I �A?)
�1k3op

⌘
✏
3


⇣

max
!2[0,2⇡]

34�2k(e◆!I �A?)
�1k3op(kB?kop + 1)2

⌘
✏

while Lemma H.6 gives that, when (H.13) holds,

(b) 
 
8(�2

w
+ �

2
u
kB?k2op)⌧(A?, ⇢)3

(1� ⇢2)2
+

4�2
u
kB?kop⌧(A?, ⇢)2

1� ⇢2

!
✏+

2�2
u
⌧(A?, ⇢)2

1� ⇢2
✏
2


 
8(�2

w
+ �

2
u
kB?k2op)⌧(A?, ⇢)3

(1� ⇢2)2
+

4�2
u
(kB?kop + 1)⌧(A?, ⇢)2

1� ⇢2

!
✏

The result follows.

Lemma H.6. Assume that k[A,B]� [ bA, bB]kop  ✏ and that ✏  1�⇢
2⌧(A,⇢) , then

�����

tX

k=0

�
�
2
w
A

k(Ak)> + �
2
u
A

k
BB

>(Ak)>
�
�

tX

k=0

⇣
�
2
w
bAk( bAk)> + �

2
u
bAk bB bB>( bAk)>

⌘�����
op


 
8(�2

w
+ �

2
u
kBk2op)⌧(A, ⇢)3

(1� ⇢2)2
+

4�2
u
kBkop⌧(A, ⇢)2

1� ⇢2

!
✏+

2�2
u
⌧(A, ⇢)2

1� ⇢2
✏
2
.

Proof. First note that k[A,B] � [ bA, bB]kop  ✏ implies kA � bAkop  ✏, kB � bBkop  ✏. We will denote bA = A +�A,
where k�Akop  ✏. We can upper bound
�����

tX

k=0

�
�
2
w
A

k(Ak)> + �
2
u
A

k
BB

>(Ak)>
�
�

tX

k=0

⇣
�
2
w
bAk( bAk)> + �

2
u
bAk bB bB>( bAk)>

⌘�����
op

 �
2
w

tX

k=0

kAk(Ak)> � (A+�A)
k((A+�A)

k)>kop + �
2
u

tX

k=0

kAk
BB

>(Ak)> � (A+�A)
k bB bB>((A+�A)

k)>kop

By the triangle inequality,

kAk(Ak)>�(A+�A)
k((A+�A)

k)>kop
 kAk(Ak)> �A

k((A+�A)
k)> +A

k((A+�A)
k)> � (A+�A)

k((A+�A)
k)>kop

 (kAkkop + k(A+�A)
kkop)kAk � (A+�A)

kkop

By Proposition H.1,

k(A+�A)
kkop  ⌧(A, ⇢)(⇢+ ⌧(A, ⇢)✏)k



Task-Optimal Exploration in Linear Dynamical Systems

and

k(A+�A)
k �A

kkop  k⌧(A, ⇢)2(⇢+ ⌧(A, ⇢)✏)k�1
✏

Combining all of this we have

kAk(Ak)> � (A+�A)
k((A+�A)

k)>kop  k⌧(A, ⇢)3(⇢k + (⇢+ ⌧(A, ⇢)✏)k)(⇢+ ⌧(A, ⇢)✏)k�1
✏

Denote ⇢2 := ⇢+ ⌧(A, ⇢)✏. Since we have assumed that ✏  1�⇢
2⌧(A,⇢) , ⇢2  1

2 + 1
2⇢. Then it follows:

�
2
w

tX

k=0

kAk(Ak)> � (A+�A)
k((A+�A)

k)>kop 
�
2
w
⌧(A, ⇢)3✏

⇢2

tX

k=0
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k + ⇢

2k
2 )

 �
2
w
⌧(A, ⇢)3✏

✓
⇢

(1� ⇢⇢2)2
+

⇢2

(1� ⇢
2
2)

2

◆

 2�2
w
⌧(A, ⇢)3✏

(1� ⇢
2
2)

2

 8�2
w
⌧(A, ⇢)3✏

(1� ⇢2)2

where the last inequality follows since 1 � ⇢
2
2 � 1

2 (1 � ⇢
2). Denoting bB = B + �B , and using what we have already

shown, we have

kAk
BB

>(Ak)> � (A+�A)
k bB bB>((A+�A)

k)>kop
= kAk

BB
>(Ak)> � (A+�A)

k
BB

>((A+�A)
k)> � (A+�A)

k�BB
>((A+�A)

k)>

� (A+�A)
k
B�>

B
((A+�A)

k)> � (A+�A)
k�B�

>

B
((A+�A)

k)>kop
 kAk

BB
>(Ak)> �A

k
BB

>((A+�A)
k)> +A

k
BB

>((A+�A)
k)> � (A+�A)

k
BB

>((A+�A)
k)>kop

2kBkop⌧(A, ⇢)2(⇢+ ⌧(A, ⇢)✏)2k✏+ ⌧(A, ⇢)2(⇢+ ⌧(A, ⇢)✏)2k✏2

 kBk2op(kAkkop + k(A+�A)
kkop)kAk � (A+�A)

kkop + 2kBkop⌧(A, ⇢)2(⇢+ ⌧(A, ⇢)✏)2k✏

+ ⌧(A, ⇢)2(⇢+ ⌧(A, ⇢)✏)2k✏2

 kBk2opk⌧(A, ⇢)3(⇢k + ⇢
k

2)⇢
k�1
2 ✏+ 2kBkop⌧(A, ⇢)2⇢2k2 ✏+ ⌧(A, ⇢)2⇢2k2 ✏

2

Thus,

�
2
u

tX

k=0

kAk
BB

>(Ak)> � (A+�A)
k bB bB>((A+�A)

k)>kop

 �
2
u
kBk2op⌧(A, ⇢)3✏

tX

k=0

k(⇢k + ⇢
k

2)⇢
k�1
2 + 2�2

u
kBkop⌧(A, ⇢)2✏

tX

k=0

⇢
2k
2 + �

2
u
⌧(A, ⇢)2✏2

tX

k=0

⇢
2k
2


8�2

u
kBk2op⌧(A, ⇢)3✏

(1� ⇢2)2
+

4�2
u
kBkop⌧(A, ⇢)2✏

1� ⇢2
+

2�2
u
⌧(A, ⇢)2✏2

1� ⇢2

The conclusion follows.

Lemma H.7. Assume that k[ bA, bB]�[A,B]kop  ✏, ✏  (max!2[0,2⇡] 2k(e◆!I�A)�1kop)�1, and U` ⌫ 0,
P

k

`=1 tr(U`) 
k
2
�
2, then:

1

k

�����

kX

`=1

(e◆!`I � bA)�1 bBU`
bBH(e◆!`I � bA)�H �

kX

`=1

(e◆!`I �A)�1
BU`B

H(e◆!`I �A)�H

�����
op


⇣

max
!2[0,2⇡]

k�
2k(e◆!I �A)�1k2opkBkop

�
16k(e◆!I �A)�1kopkBkop + 2

� ⌘
✏



Task-Optimal Exploration in Linear Dynamical Systems

+
⇣

max
!2[0,2⇡]

k�
2k(e◆!I �A)�1k2op(32k(e◆!I �A)�1kopkBkop + 2)

⌘
✏
2

+
⇣

max
!2[0,2⇡]

16k�2k(e◆!I �A)�1k3op
⌘
✏
3

Proof. Note first that k[ bA, bB]� [A,B]kop  ✏ implies k bA�Akop  ✏, k bB �Bkop  ✏ since:

k[ bA, bB]� [A,B]kop = max
u2S2d,v2Sd+p

u
>([ bA, bB]� [A,B])v � max

u2S
2d

,ud+1:2d=0

v2S
d+p

,vd+1:d+p=0

u
>([ bA, bB]� [A,B])v = k bA�Akop

If we denote bA = A+�A,
bB = B +�B , then:

�����

kX

`=1

(e◆!`I � bA)�1 bBU`
bBH(e◆!`I � bA)�H �

kX

`=1

(e◆!`I �A)�1
BU`B

H(e◆!`I �A)�H

�����
op



�����

kX

`=1

(e◆!`I � bA)�1 bBU`
bBH(e◆!`I � bA)�H �

kX

`=1

(e◆!`I �A)�1 bBU`
bBH(e◆!`I �A)�H

�����
op| {z }

(i)

+

�����

kX

`=1

(e◆!`I �A)�1 bBU`
bBH(e◆!`I �A)�H �

kX

`=1

(e◆!`I �A)�1
BU`B

H(e◆!`I �A)�H

�����
op| {z }

(ii)

By Lemma F.4 and F.7 of (Wagenmaker & Jamieson, 2020):

(i)  max
!2[0,2⇡]

16k2�2k(e◆!I �A)�1kopk(e◆!I �A)�1 bBk2op✏

 max
!2[0,2⇡]

16k2�2k(e◆!I �A)�1k3op(kBkop + ✏)2✏

Note that these lemmas assume that U` are rank 1, but a trivial modification extends the results to arbitrary U` ⌫ 0 satisfyingP
k

`=1 tr(U`)  k
2
�
2. Further:

(ii)  2

�����

kX

`=1

(e◆!`I �A)�1�BU`B
H(e◆!`I �A)�H

�����
op

+

�����

kX

`=1

(e◆!`I �A)�1�BU`�
H

B
(e◆!`I �A)�H

�����
op

 (2k�BkopkBkop + k�Bk2op)
✓

max
!2[0,2⇡]

k(e◆!I �A)�1k2op
◆ kX

`=1

kU`kop

 k
2
�
2(2✏kBkop + ✏

2)

✓
max

!2[0,2⇡]
k(e◆!I �A)�1k2op

◆

The result is then immediate.

Proposition H.1. Assume that kAkkop  ⌧⇢
k for all k � 0 and that k�kop  ✏. Then, for k � 1,

k(A+�)kkop  ⌧(⇢+ ⌧✏)k, k(A+�)k �A
kk  ⌧(⇢+ ⌧✏)k � ⌧⇢

k  k⌧
2(⇢+ ⌧✏)k�1

✏

Proof. If A and � were scalars, the Binomial Theorem would give:

(A+�)k =
kX

s=0

✓
k

s

◆
A

k�s�s

As matrix multiplication does not commute, we cannot simply apply the Binomial Theorem. However, we note that, for a
fixed s, we will have

�
k

s

�
terms of the form

A
n1�m1A

n2�m2 . . . A
ns�msA

ns+1
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where
P

s+1
i=1 ni = k � s,

P
s

i=1 mi = s. Critically, there will be at most s � terms in this product. Then, using our
assumption on kAkkop, we have

kAn1�m1A
n2�m2 . . . A

ns�msA
ns+1kop 

 
s+1Y

i=1

kAnikop

! 
sY

i=1

k�mikop

!

 ⌧
s+1

 
s+1Y

i=1

⇢
ni

! 
sY

i=1

✏
mi

!

= ⌧
s+1

⇢
k�s

✏
s

As this bound does not depend on the specific values of ni,mi, we will have

k(A+�)kkop 
kX

s=0

✓
k

s

◆
⌧
s+1

⇢
k�s

✏
s = ⌧(⇢+ ⌧✏)k

where the final equality holds by the Binomial Theorem. Similarly, note that k(A+�)k �A
kkop will behave identically,

except that the A
k term will be removed from the expansion of (A+�)k. Thus,

k(A+�)k �A
kkop 

kX

s=1

✓
k

s

◆
⌧
s+1

⇢
k�s

✏
s = ⌧(⇢+ ⌧✏)k � ⌧⇢

k

To show the final conclusion, note that, for k � 1, the derivative of (a+ x)k is d

dx
(a+ x)k = k(a+ x)k�1. By the Mean

Value Theorem,

|(a+ x)k � (a+ y)k| 
✓

max
z2[x,y]

k|(a+ z)k�1|
◆

|x� y|

Applying this observation in our setting gives that

⌧(⇢+ ⌧✏)k � ⌧⇢
k  ⌧

✓
max

z2[0,⌧✏]
k(⇢+ z)k�1

◆
⌧✏  k⌧

2(⇢+ ⌧✏)k�1
✏

H.6. Infinite-Horizon Approximation

Lemma H.8. Fix any k̄ and input U? 2 U
�2,k̄. Then for any:

k � max

⇢
4⇡k✓kH1

�
2

✏
,

⇡

2k✓kH1

�✓
max

!2[0,2⇡]
k(e◆!I �A)�2
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◆

there exists an input U 2 U�2,k such that:
����
1

k
�freq
k

(✓,U)� 1

k̄
�freq
k̄

(✓,U?)

����
op

 ✏.

Proof. For simplicity denote Gk,` = (e◆2⇡`/kI �A)�1
B. Consider some k and, given ` 2 [1, k̄], let `k(`) 2 [1, k] be the

index such that |`k(`)/k � `/k̄| is minimized. Let `�1
k

(`) : {1, . . . , k}! 2{1,...,k̄} return the set of indices that map to `.
Then:

1

k̄
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k̄
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1

k̄2

k̄X
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G
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U
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✓
1
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k (`)

U
?
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◆
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H
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+

1
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?
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`
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?
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G

H
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?
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�H

`

⌘
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Set Uk,` =
1
k̄2

P
`02`

�1
k (`) U

?

k̄,`0
, denote � := max

`2[1,...,k̄] k�`k2, and note that k✓kH1
� kGk,` for all k, `. Then:
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2
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)

 (2�k✓kH1
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where the final equality holds since eU?

k̄,`
is a feasible input and so must meet the power constraint. By Lemma H.1 of

(Wagenmaker & Jamieson, 2020):

kGk,` �Gk0,`0k2  2⇡|`/k � `
0
/k

0|
✓
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◆

Using this we can bound:
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✓
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◆

since any x 2 [0, 1] is at most 1/(2k) from the nearest fraction i/k. This implies
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✓
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◆

so:
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k
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◆

+
⇡
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where the last inequality holds so long as k � ⇡

2k✓kH1

�
max!2[0,2⇡] k(e◆!I �A)�2

Bkop
�
. To make this less than ✏, we

must choose:

k � 4⇡k✓kH1
�
2

✏

✓
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◆

Finally, note that the input eUk,` is feasible since:
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1
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X
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)  �

2

The conclusion follows immediately.

Lemma H.9. If

T � max

(
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w
+ �

2
u
kBk2op)

(1� ⇢2)2
1

✏
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+ �2

u
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)
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1

T
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t
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1

T 0

T
0X
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t
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������
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Proof. By definition of �noise
t

,

������
1

T
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�noise
t

(✓,�u)�
1

T 0
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w
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2
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2
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2
u
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If we set T large enough such that

4⌧(A, ⇢)2(�2
w
+ �

2
u
kBk2op)

(1� ⇢2)2
T

�1  ✏/2,
4⌧(A, ⇢)2(�2

w
+ �

2
u
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the desired bound will hold. Rearranging these gives the result.

I. Certainty Equivalence Decision Making with Sequential Open-Loop Policies
In this section we assume we are in the linear dynamical system setting of Section B and that we are playing an exploration
policy ⇡exp.

Proof of Corollary 2. This is a direct consequence of Theorem B.3 and Lemma I.1. The stated results follows from some
algebra to simplify terms and using Lemma G.4, to upper bound poly(⌧?,

1
1�⇢?

) terms by poly(kB?kop, kA?kH1
), and

setting d✓ = d
2
x
+ dxdu, the dimensionality of (A,B).
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I.1. Sequential Open-Loop Policies Satisfy Assumption 7

Lemma I.1. Any policy ⇡exp 2 ⇧sol
�2 meets Assumption 7 on some system ✓? with

Tse(⇡exp) = c1dx

⇣
(dx + du) log(�̄/�min(�

noise
dx

(e✓?,�u)) + 1) + log
n

�

⌘

� = c2�min(�
noise
dx

(e✓?,�u))

�̄T = �̄ · I

Tcon(⇡exp) = max

⇢
Tse(⇡exp), (n+

p
dx�

2
w
/�

2) log
2(n+ 1)2

�

�

Ccon = n
c3⌧

3
?
(�2

w
+ �

2)

(1� ⇢?)5/2�min(�noisedx
(e✓?,�u))

r
log

n

�
+ dx + du

↵ = 1/2

for universal constants c1, c2, c3.

Proof of Theorem B.3. Let:

⌃i :=
t̄i�1X

t=t̄i�1

ztz
>

t
, i = 1, . . . , n, ⌃t:t0 :=

t
0X

s=t

zsz
>

s

Sufficient Excitation: We first show that the sufficient excitation condition is met by ⇡exp. First, note that by Lemma
I.3 and some algebra, for any time t, ⌃t � T �̄I with probability at least 1 � �/n. Fix a time t � Tse(⇡exp) where
Tse(⇡exp) is defined as above. Since ⇡exp 2 ⇧sol

�2 , the low-switching condition implies that there exists some set of epochs
{i1, . . . , im} ✓ [n], such that for j 2 [m], t̄ij+1 � t̄ij � 1

2Tse(⇡exp), t̄ij+1  t, and

mX

j=1

(t̄ij+1 � t̄ij ) �
1

2
t

This follows directly from the fact that, for any t0, there exists some epoch i 2 [n] such that |{t0, t0 + Tse(⇡exp)� 1} \
{t̄i, . . . , t̄i+1 � 1}| � 1

2Tse(⇡exp). Now consider some j 2 [m]. By Lemma I.2, if

t̄ij+1 � t̄ij � c1dx

⇣
(dx + du) log(�̄/�min(�

noise
dx

(e✓?,⇤u,ij ) + 1) + log
n

�

⌘
(I.1)

we will have that, with probability at least 1� �/n, for some c2,

⌃t̄ij :t̄ij+1
⌫ c2(t̄ij+1 � t̄ij )�min(�

noise
dx

(e✓?,⇤u,ij )))

However, by definition of �noise and since by assumption �min(⇤u,ij ) � �
2
u

, we will have �min(�noisedx
(e✓?,⇤u,ij ) �

�
?

noise(�u), which implies that log(�̄/�?noise(�u)+1) � log(�̄/�min(�noisedx
(e✓?,⇤u,ij ))+1). As we know that tij+1�tij �

1
2Tse(⇡exp), it follows that (I.1) is met, so we conclude that with probability at least 1� �/n,

⌃t̄ij :t̄ij+1
⌫ c2(t̄ij+1 � t̄ij )�

?

noise(�u)

Union bounding over this event holding for each j 2 [m], it follows that with probability at least 1� �,

⌃t ⌫
mX

j=1

⌃t̄ij :t̄ij+1
⌫

mX

j=1

c2(t̄ij+1 � t̄ij )�
?

noise(�u) �
c2

2
t�
?

noise(�u)

By proper choice of constants, we will then have that the sufficient excitation condition of Assumption 7 is met with

Tse(⇡exp) = c1dx

⇣
(dx + du) log(�̄/�min(�

noise
dx

(e✓?,�u)) + 1) + log
n

�

⌘

� = c2�min(�
noise
dx

(e✓?,�u)).
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Concentration of Covariates: We define the following events for some ✏i to be specified.

E = {k⌃T � E✓?,⇡exp [⌃T ]kop  Ccon
T↵ �min(E✓?,⇡exp [⌃T ])} (Good event)

E1 = {�min(⌃T ) � c2�min(�
noise
dx

(e✓?,�u))T} (Sufficient excitation)
E2,i = {k⌃i � E✓?,⇡exp [⌃i]kop  ✏i} (Concentration of covariates)

E3,i =

(
kzt̄i�1

k2 
r

c⌧
2
?�

2
T

1�⇢2?

)
(Bounded states)

We would like to show that E holds with high probability. The following is trivial.

P[Ec]  P[Ec \ E1 \ (\n
i=1E2,i) \ (\n

i=1E3,i)] + P[Ec

1 ] +
nX

i=1

P[E3,i \ Ec

2,i] +
nX

i=1

P[Ec

3,i]

We first show that E1, E2,i, E3,i hold with high probability.

Note first that, by what we have just shown, P[Ec

1 ]  � as long as T � Tse(⇡exp). By Lemma I.8, since ⇡exp 2 ⇧sol
�2 B.4, we

will have that P[Ec

3,i]  � as long as

T � (n+
p

dx�
2
w
/�

2) log
2(n+ 1)

�
(I.2)

Next, we show that P[E3,i \ Ec

2,i]  �. Setting

✏i =

 
c3⌧?k�noiseT

(e✓?,⇤u,i)kop
1� ⇢?

p
t̄i � t̄i�1 +

c4⌧
2
?
(
p
T� +

p
(c⌧2

?
�2T )(1� ⇢2))

(1� ⇢?)2
max{�w,

q
k⇤ukop}

!

·
r
log

1

�
+ dx + du +

c5 max{�2
w
, k⇤ukop}⌧2?

(1� ⇢?)2
(log

1

�
+ dx + du)

Lemma I.4 with ⇢ = ⇢? implies directly that P[E3,i \ Ec

2,i]  �. For future convenience, we can upper bound ✏i by

c3⌧
3
?
(�2

w
+ �

2)
p
T

(1� ⇢?)5/2

r
log

1

�
+ dx + du

as long as

T � log
1

�
+ dx + du (I.3)

On the event E1 \ (\n
i=1E2,i) \ (\n

i=1E3,i), we have

k⌃T � E✓?,⇡exp [⌃T ]kop =
���

nX

i=1

⌃i �
nX

i=1

E✓?,⇡exp [⌃i]
���
op


nX

i=1

k⌃i � E✓?,⇡exp [⌃i]kop 
nX

i=1

✏i

 n
c3⌧

3
?
(�2

w
+ �

2)
p
T

(1� ⇢?)5/2

r
log

1

�
+ dx + du

and
E✓?,⇡exp [⌃T ] ⌫ E✓?,⇡exp [I{E1}⌃T ] � P[E1]c2�min(�

noise
dx

(e✓?,�u))T · I � 1

2
�min(�

noise
dx

(e✓?,�u))T · I

Thus, P[Ec \ E1 \ (\n
i=1E2,i) \ (\n

i=1E3,i)] = 0 with ↵ = 1/2 and

Ccon := n
c3⌧

3
?
(�2

w
+ �

2)

(1� ⇢?)5/2�min(�noisedx
(e✓?,�u))

r
log

1

�
+ dx + du

Thus, P[Ec]  2n+ 1. Rescaling � and setting Tcon(⇡exp) to guarantee (I.2) and (I.3) hold gives the result.
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I.2. Concentration of Covariates

Lemma I.2 (Lemma E.3 of (Wagenmaker & Jamieson, 2020)). Assume that our system ✓ is driven by some input
ut = eut + u

w

t
where eut is deterministic and u

w

t
⇠ N (0,⇤u). Then on the event that

P
T

t=1 ztz
>

t
� T �̄T , for some �̄T ,

choosing k so that:

T � 25600

27
k

✓
2(dx + du) log

200

3
+ log det(�̄T (�

noise
k

)�1) + log
1

�

◆
(I.4)

we will have with probability less than �:

TX

t=1

ztz
>

t
6⌫ 27

25600
T�noise

k
(✓,⇤u).

Lemma I.3. Assume that we are playing a policy ⇡exp 2 ⇧sol
�2 and that � 2 (0, 1/3). Then with probability at least 1� �,

and assuming we start from some state x0 = 0,

TX

t=1

ztz
>

t
� T

c⌧( eA?, ⇢)2

1� ⇢

⇣p
dx log

T

�
+

�
2

1� ⇢

⌘
· I

� cT

⇣
(1 + kB?k2op)kA?k4H1

⌘⇣p
dx log

T

�
+ �

2kA?k2H1

⌘
· I.

Proof. Note that we can break the state into the portion driven by the conditionally non-random input, eut, and the process
noise and random input. We denote these components as zu

t
and z

w
t

. Then

���
TX

t=1

ztz
>

t

���
op


TX

t=1

kztk22  2
TX

t=1

(kzu
t
k22 + kzwt k22)

Note that the input eut will almost surely satisfy
P

T�1
t=0 eu>

t
eut  T�

2. We can then apply Lemma I.7 to get that

TX

t=1

kzu
t
k22 

4⌧( eA?, ⇢)2�2
T

(1� ⇢)2

To bound the component
P

T

t=1 kzwt k22, we apply Lemma I.8 with �
2 = 0, union bounding over all T steps. We simplify

the bound by upper bounding n by T and using that � 2 (0, 1/3) implies log T/� � 1. The second bound follows by
Appendix G.4.

Lemma I.4. Consider the system
xt+1 = Axt +But + ⇤

1/2
w

wt

where A 2 R
d⇥d

, wt ⇠ N (0, I) and ut is deterministic and satisfies
P

T

t=1 u
>

t
ut  T�

2. Assume that we start from some
state x0. Then we will have that, with probability at least 1� �

���
TX

t=0

xtx
>

t
� E

TX

t=0

xtx
>

t

���
op
 c3k⇤wkop⌧(A, ⇢)2

(1� ⇢)2
(log

1

�
+ d)

+

 
c1⌧(A, ⇢)k�noise

T
(✓, 0)kop

1� ⇢

p
T +

c2⌧(A, ⇢)2(
p
T�kBkop + kx0k2)
(1� ⇢)2

q
k⇤wkop

!r
log

1

�
+ d

for universal constants c1, c2, c3.

Proof. Consider the systems
x
u
t+1 = Ax

u
t
+But, x

w
t+1 = Ax

w
t
+ ⇤1/2

w
wt

and note that xt = x
u
t
+ x

w
t

. Therefore,

TX

t=0

xtx
>

t
=

TX

t=0

x
u
t
x
u
t

> +
TX

t=0

⇣
x
u
t
x
w
t

> + x
w
t
x
u
t

>

⌘
+

TX

t=0

x
w
t
x
w
t

>
, E

TX

t=0

xtx
>

t
=

TX

t=0

x
u
t
x
u
t

> + E

TX

t=0

x
w
t
x
w
t

>
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The second equality is true as xu
t

is deterministic and x
w
t

is mean 0. Fix some v 2 Sd�1. By Lemma I.5 and Lemma I.6,
we’ll have, simultaneously with probability 1� �:

�����

TX

t=1

(v>xw
t
)2 � E

TX

t=1

(v>xw
t
)2

����� 
2⌧(A, ⇢)k�noise

T
(✓, 0)kop

1� ⇢2

r
T log

4

�
+

8k⇤wkop⌧(A, ⇢)2

(1� ⇢)2
log

4

�

�����

TX

t=1

v
>
x
u
t
x
w
t

>
v

����� 
⌧(A, ⇢)2(4

p
T�kBkop + kxu

0 k2)
(1� ⇢)2

r
2k⇤wkop log

4

�

Which implies that
�����

TX

t=0

(v>xt)
2 � E

TX

t=0

(v>xt)
2

����� 

�����

TX

t=1

(v>xw
t
)2 � E

TX

t=1

(v>xw
t
)2

�����+ 2

�����

TX

t=1

v
>
x
u
t
x
w
t

>
v

�����

 2⌧(A, ⇢)k�noise
T

(✓, 0)kop
1� ⇢2

r
T log

4

�
+

8k⇤wkop⌧(A, ⇢)2

(1� ⇢)2
log

4

�

+
2⌧(A, ⇢)2(4

p
T�kBkop + kx0k2)

(1� ⇢)2

r
2k⇤wkop log

4

�

Note that if M is symmetric kMkop = sup
v2Sd�1 |v>Mv|. Fix v to be a vector for which this equality is attained. Let T

be an ✏-net of Sd�1. Then we can then find some v0 2 T such that kv � v0k2  ✏, and thus,

|v>Mv � v
>

0 Mv0|  |v>Mv � v
>

0 Mv| + |v>0 Mv � v
>

0 Mv0|  2kMkopkv0 � vk2  2✏kMkop

Therefore,
|v>0 Mv0| � |v>Mv|� |v>Mv � v

>

0 Mv0|  (1� 2✏)kMkop

so kMkop  1
1�2✏ maxv2T |v>Mv|. Applying this in our setting and choosing ✏ = 1/2, gives

�����

TX

t=0

x
w
t
x
w
t

> � E

TX

t=0

x
w
t
x
w
t

>

�����
op

 2max
v2T

�����

TX

t=1

(v>xw
t
)2 � E

TX

t=1

(v>xw
t
)2

�����

By Corollary 4.2.13 of (Vershynin, 2018), we will have |T |  5d. Using our high probability bound on
���
P

T

t=1(v
>
x
w

t
)2 � E

P
T

t=1(v
>
x
w

t
)2
��� given above, and union bounding over T , we conclude that, with probability at least

1� �

�����

TX

t=0

xtx
>

t
� E

TX

t=0

xtx
>

t

�����
op

 2⌧(A, ⇢)k�noise
T

(✓, 0)kop
1� ⇢2

r
T (log

4

�
+ d log 5) +

8k⇤wkop⌧(A, ⇢)2

(1� ⇢)2
(log

4

�
+ d log 5)

+
2⌧(A, ⇢)2(4

p
T�kBkop + kx0k2)

(1� ⇢)2

r
2k⇤wkop(log

4

�
+ d log 5)

Lemma I.5. Consider the system
xt+1 = Axt + ⇤

1/2
w

wt

where A 2 R
d⇥d

, wt ⇠ N (0, I), and assume x0 = 0. Then, for any v 2 Sd�1, we’ll have that, with probability at least
1� � �����

TX

t=1

(v>xt)
2 � E

TX

t=1

(v>xt)
2

����� 
2⌧(A, ⇢)k�noise

T
(✓, 0)kop

1� ⇢2

r
T log

2

�
+

8k⇤wkop⌧(A, ⇢)2

(1� ⇢)2
log

2

�
.
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Proof. This is a direct consequence of the Hanson-Wright Inequality. Note that,

xt =
t�1X

s=0

A
t�s�1⇤1/2

w
ws = Gtwt

where we have defined Gt := [At�1⇤1/2
w , A

t�2⇤1/2
w , . . . , A⇤1/2

w ,⇤1/2
w , 0, . . . , 0] 2 R

d⇥dT , wT :=
[w>

0 , w
>

1 , . . . , w
>

T�2, w
>

T�1]
>. So,

(v>xt)
2 = w>

T
G

>

t
vv

>
GtwT

and,
TX

t=1

(v>xt)
2 =

TX

t=1

w>

T
G

>

t
vv

>
GtwT = w>

T
GTwT

where GT :=
P

T

t=1 G
>

t
vv

>
Gt. The Hanson-Wright inequality then immediately gives that,

P

"�����

TX

t=1

(v>xt)
2 � E

TX

t=1

(v>xt)
2

����� � ✏

#
 2 exp

✓
�cmin

⇢
✏
2

kGT k2F
,

✏

kGT kop

�◆

For a fixed �, rearranging gives

P

"�����

TX

t=1

(v>xt)
2 � E

TX

t=1

(v>xt)
2

����� � 2
q
kGT k2F log(2/�) + 2kGT kop log(2/�)

#
 �

We proceed to bound kGT kop and kGT k2F . Consider some u 2 SdT�1 and note that, if we write u =
[u>

0 , u
>

1 , . . . , u
>

T�2, u
>

T�1]
>, where ui 2 R

d, using the definition of Gt given above, we have:

Gtu =
t�1X

s=0

A
t�s�1⇤1/2

w
us = x

u
t

where x
u

t
is the state of the system with matrix A when the input u is played and there is no noise. Thus,

u
>GTu =

TX

t=1

(v>Gtu)
2 =

TX

t=1

(v>xu
t
)2  �max

 
TX

t=1

x
u
t
x
u
t

>

!

Then, invoking Lemma I.7 with �
2 = k⇤wkop and B = I , we can bound,

�max

 
TX

t=1

x
u
t
x
u
t

>

!


TX

t=1

kxu
t
k22 

4⌧(A, ⇢)2k⇤wkop
(1� ⇢)2

As this does not depend on u, it is a valid bound on kGT kop:

kGT kop 
4⌧(A, ⇢)2k⇤wkop

(1� ⇢)2
(I.5)

To bound kGT k2F , we can write,

kGT k2F = tr(G>

T
GT ) =

TX

t=1

TX

s=1

tr(G>

t
vv

>
GtG

>

s
vv

>
Gs) =

TX

t=1

TX

s=1

(v>GtG
>

s
v)2 

TX

t=1

TX

s=1

kGtG
>

s
k2op

From the definition of G, we have,

GtG
>

s
= A

max{t�s,0}

0

@
min{t,s}X

k=0

A
k⇤wA

k
>

1

AA
max{s�t,0}> = A

max{t�s,0}�noisemin{t,s}(✓, 0)A
max{s�t,0}>
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so,
kGtG

>

s
kop  kAmax{t�s,0}kopkAmax{s�t,0}kopk�noisemin{t,s}(✓, 0)kop  ⌧(A, ⇢)⇢|t�s|k�noisemin{t,s}(✓, 0)kop

which implies

TX

t=1

TX

s=1

kGtG
>

s
k2op  ⌧(A, ⇢)2k�noise

T
(✓, 0)k2op

TX

t=1

TX

s=1

⇢
2|t�s|

= ⌧(A, ⇢)2k�noise
T

(✓, 0)k2op
(1� ⇢

4)T + 2⇢2(T+1) � 2⇢2

(1� ⇢2)2


⌧(A, ⇢)2k�noise
T

(✓, 0)k2opT
(1� ⇢2)2

Combining everything, we have shown that, for any v 2 Sd�1,

P

"�����

TX

t=1

(v>xt)
2 � E

TX

t=1

(v>xt)
2

����� �
2⌧(A, ⇢)k�noise

T
(✓, 0)kop

1� ⇢2

r
T log

2

�
+

8k⇤wkop⌧(A, ⇢)2

(1� ⇢)2
log

2

�

#
 �

Lemma I.6. Consider the systems

x
u
t+1 = Ax

u
t
+But, x

w
t+1 = Ax

w
t
+ ⇤1/2

w
wt

where A 2 R
d⇥d

, wt ⇠ N (0, I) and ut a deterministic signal with
P

T

t=1 u
>

t
ut  T�

2. Assume that xw
0 = 0. Then, for

any v 2 Sd�1, we will have that, with probability at least 1� �

�����

TX

t=1

v
>
x
u
t
x
w
t

>
v

����� 
⌧(A, ⇢)2(4

p
T�kBkop + kxu

0 k2)
(1� ⇢)2

r
2k⇤wkop log

2

�
.

Proof. We adopt the same notation as in the proof of Lemma I.5. Defining

G
u

t
:= [At�1

B,A
t�2

B, . . . , AB,B, 0, . . . , 0] 2 R
d⇥duT , uT := [u>

0 , u
>

1 , . . . , u
>

T�2, u
>

T�1]
> 2 R

duT

we have
x
u
t
= G

u

t
uT +A

t
x
u
0 , x

w
t

= GtwT

which implies

TX

t=1

v
>
x
u
t
x
w
t

>
v =

 
u>
T

TX

t=1

(Gu

t
)>vv>Gt + x

u

0
>

TX

t=1

A
t>

vv
>
Gt

!
wT =: g>wT ⇠ N (0,g>g)

By standard Gaussian concentration results, we then have that

P

"�����

TX

t=1

v
>
x
u
t
x
w
t

>
v

����� �
r

2g>g log
2

�

#
 �

It remains to bound g>g. To this end, note that

g>g 
 �����u

>

T

TX

t=1

(Gu

t
)>vv>Gt

�����
2

+

�����x
u
0
>

TX

t=1

A
t>

vv
>
Gt

�����
2

!2

We can bound kAtkop  ⌧(A, ⇢)⇢t and,

kGtkop  k⇤1/2
w
kop

t�1X

s=0

kAskop  k⇤1/2
w
kop⌧(A, ⇢)

t�1X

s=0

⇢
s  k⇤

1/2
w kop⌧(A, ⇢)

1� ⇢
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so, �����x
u
0
>

TX

t=1

A
t>

vv
>
Gt

�����
2

 kx
u
0 k2k⇤

1/2
w kop⌧(A, ⇢)2

1� ⇢

TX

t=1

⇢
t  kx

u
0 k2k⇤

1/2
w kop⌧(A, ⇢)2

(1� ⇢)2

Furthermore, letting G
0

t
= [At�1

, A
t�2

, . . . , A, I, 0, . . . , 0], we have
�����u

>

T

TX

t=1

(Gu

t
)>vv>Gt

�����
2

 kuT k2kBkopk⇤1/2
w
kop

�����

TX
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(G0
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)>vv>G0

t

�����
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 kuT k2kBkopk⇤1/2
w
kopkG0

T
kop

where G0

T
=
P

T

t=1(G
0

t
)>vv>G0

t
. By (I.5), kG0

T
kop  4⌧(A, ⇢)2/(1� ⇢)2. Since we have assumed that

P
T

t=1 u
>

t
ut 

T�
2, we also have kuT k2 

p
T�. Combining everything, we have shown that

g>g  k⇤wkop

 
4
p
T�kBkop⌧(A, ⇢)2

(1� ⇢)2
+
kxu

0 k2⌧(A, ⇢)2
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Thus,
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"�����
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v
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x
u
t
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w
t

>
v

����� �
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I.3. State Norm Bounds

Lemma I.7. Consider the system
xt+1 = Axt +But

and assume that we start at state x0 = 0. Then if
P

T�1
t=0 u

>

t
ut  T�

2, we will have

TX

t=1

kxtk22 
4⌧(A, ⇢)2kBk2op�2

T

(1� ⇢)2
.

Proof. By definition xT =
P

T�1
s=0 A

T�s�1
Bus, so

TX
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⇢
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!2

Letting ⇢t = ⇢
t, vt = kutk2, we define yt =

P
t�1
s=0 ⇢

t�s�1kusk2 = (⇢ ⇤ v)[t], where ⇤ denotes convolution. By Parseval’s
Theorem,

TX

t=1

 
t�1X

s=0

⇢
t�s�1kusk2

!2

=
TX

t=1

y
2
t
=

1

T

TX

k=1

|Yk|2

where Yk denotes the DFT of yt. As convolution in the time domain is multiplication in the frequency domain, we will have
Yk = PkVk where Pk is the DFT of ⇢t and Vk is the DFT of vt. We can explicitly calculate Pk as:

Pk =
T�1X
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⇢
t
e
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2⇡kt
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1� e
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⇢
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⇢
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1� e
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����
2

|Vk|2
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Note that, also by Parseval’s Theorem, the constraint
P

T

t=1 kutk22  �
2 translates to 1

T

P
T

k=1 |Vk|2  �
2. So,
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The conclusion follows.

Lemma I.8. Assume that we are playing a policy ⇡exp 2 ⇧sol
�2 . Then with probability at least 1� �, assuming z0 = 0,

kztk22 
c⌧( eA?, ⇢)2
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⇣
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and if

T � (n+
p
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2
w
/�

2) log
2(n+ 1)

�

this bound can be simplified to
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T

1� ⇢2
.

Proof. By Assumption B.4, for s in epoch j, we can always write the input us as us = eus+u
w

s
, where eus is Ft̄j

measurable
and u

w

s
⇠ N (0,⇤u,j). Given this, we break the state up into the component driven by eus, which we denote as zu

t
, and the

component driven by the process noise and u
w

s
, which we denote as zw

t
. By linearity, we will have that zt = z

u
t
+ z

w
t

, so
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t
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t
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We can easily bound kzu
t
k22 as:
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where the final inequality follows since, by assumption,
P

t�1
s=0 kusk22  T�

2 almost surely. We now bound kzw
t
k22. Note

that due to the possible correlations between ⇤u,j and previous epochs, we cannot naively apply Gaussian concentration.
We first upper bound kzw

t
k22 as
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We note that k
P

t�1
s=0

eAt�s�1
?

wsk22 is simply the norm of the the state of a dynamical system driven by noise ws. We can
therefore apply Lemma I.9 to get that with probability at least 1� �,
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We can upper bound

k�noise
t

(e✓?, 0)kop = �
2
w
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To bound
P

t�1
s=0 kuw

s
k22 we can apply Hanson-Wright to some epoch j to get that
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Assume that t occurs in epoch i. Then if this bound holds for all epoch j  i, we can bound
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Union bounding over all n epochs and the bound on the process noise, we then have that with probability at least 1� �,
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The result the follows by combining this with our bound on kzu
t
k22, and upper bounding t by T and i by n. The simplified

bound holds by noting that for large enough T , we can upper bound the two lower order terms in the bound on kzw
t
k22 by

(dx�2
w
+ �)T .

Lemma I.9. Consider the system
xt+1 = Axt + ⇤

1/2
w

wt

where wt ⇠ N (0, I) and assume that we start at state x0 = 0. Then, with probability at least 1� �
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T
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Proof. Using the same notation as in the proof of Lemma I.5 and I.6, we will have that xT = GTwT . Applying Hanson-
Wright then gives that, with probability at least 1� �,
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By definition of GT we have that
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This concludes the proof.
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Theorem I.1 (Hanson-Wright Inequality, (Vershynin, 2018)). Let X 2 R
d be a random vector with independent, mean-zero,

sub-Gaussian coordinates. Let A 2 R
d⇥d. Then, for every ✏ � 0, we have

P
⇥
|X>

AX � EX
>
AX| � ✏

⇤
 2 exp

✓
�cmin

⇢
✏
2

K4kAk2
F

,
✏

K2kAkop

�◆

where K = maxi kXik 2 .

Recall that, if Xi is gaussian with variance �
2
w

, kXik 2  C�w.

J. Experiment Design in Linear Dynamical Systems
J.1. Proof of Theorem B.6

Proof. Fix an epoch i and let T =
P

i

j=0 Tj . Note that, by the definition of Ti, we will have Ti =
1
2 (T + T0). Similarly,

Ti�1 = 1
4 (T + T0). Define the following events.

E1 =

(
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T
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for C1, C2 as defined in Corollary 2.

Events Ei hold: By Lemma J.1, we know that TOPLE 2 ⇧sol
�2 . By Lemma I.1, this implies that TOPLE satisfies Assumption

7 with

Tse(TOPLE) = c1dx

⇣
(dx + du) log(�̄/�

?

noise + 1) + log
n

�

⌘
, � = c2�

?

noise, �̄T = �̄ · I

Thus, as long as

T � Tse(TOPLE) (J.1)

we will have that with probability at least 1� �, �min(⌃T ) � c2�
?

noiseT and ⌃T � T �̄I . We can therefore apply Lemma
J.5, our operator norm estimation bound4, to get that P[Ec

1 ]  �. Furthermore, by Corollary 2, we will have, as long as T
is large enough for the burn-in, (B.7) to be met, that P[Ec

2 ]  �. To show that E3 occurs with high probability, we break
up the state into two components: zu

t
, the portion of the state driven by eut, and z

w
t

, the portion of the state driven by the
input noise and process noise. As the structure of TOPLE is identical to that of the algorithm considered in (Wagenmaker &
Jamieson, 2020), Lemma D.7 of (Wagenmaker & Jamieson, 2020) gives that

kzu
T�Ti

k22 
4⌧( eA?, ⇢)2k2i �2

(1� ⇢ki)2

and we choose ⇢ = ⇢?. Note that while this result is stated as a high-probability bound, since we are only considering the
non-random portion of the input, it will hold deterministically. Crucially for subsequent steps, this scales as k2

i
instead

of T , which is the scaling we would obtain applying Lemma I.8 would scale. Next, applying Lemma I.9 gives that, with
probability 1� �,
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r
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T
k2
F
log
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�
+ 4ke�noise

T
kop log
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�

Note that we can apply Lemma I.9 since the input noise variance is deterministically fixed for all epochs, and by upper
bounding the state bound for epochs i � 1 by the state bound that would hold if we always set the input noise to have
variance �

2
/du. This implies P[Ec

3 ]  �. Altogether then, we have that P[E1 \ E2 \ E3] � 1� 3�.

4Note that we could have instead employed Lemma F.1 to upper bound kb✓i�1 � ✓?kF . By exploiting the matrix structure of ✓? and
using an operator norm bound instead, we are able to save a factor of dimensionality in the burn-in time.
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Events Ei imply optimal inputs: We now assume that E1 \ E2 \ E3 holds. Assume that Ti is large enough that

✏op,i�1  min{rcov(✓?), rquad(✓?)/
p
dx,�

?

noise/(4Lcov(✓?, �
2))} (J.2)

Then, as long as,
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we can apply Lemma J.7, which gives that the performance achieved by Ui is nearly optimal. That is, for any T
0 � Ti,
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and we have chosen ✏ such that 1/(1� ✏)3 = 3/2. Recall that Algorithm 4 uses Ti = Cinitdu2i and ki = Cinit2bi/4c. We
then have that,
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On event E3, which upper bounds kzT�Tik22, it follows that (J.3) and (J.4) hold as long as
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We have then shown that, on the event E1 \ E2 \ E3 and assuming T is large enough to meet the burn-ins stated above, we
have, for any T

0,

R(aopt(b✓i); ✓?)  5�2
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As this bounds hold for any T
0 � Ti, we take lim infT 0!1, to obtain
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We can also upper bound �ss
opt(�

2; ✓?) by 16�opt(�2; ✓?) via Lemma G.3. On E1 \ E2 \ E4, it is easy to see Cexp =

C4/T
3/2 + C5/T

2 for some C4, C5. The conclusion then follows by rescaling � by a factor of 3, and since Ti � T/2. The
fact that the average expected power of the inputs is bounded by �

2 follows by Lemma J.2. Finally, some algebra shows that
the burn-in times stated above are all met as long as Assumption 8 holds.
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Lemma J.1. TOPLE 2 ⇧sol
�2 with �u = �

p
2du

and n = O(log T ).

Proof. This follows directly by the formal definition of TOPLE, Algorithm 4. In particular, we see that at each epoch i,
TOPLE plays open-loop inputs eut that are Ft̄i

measurable. Furthermore, t̄i and ⇤u,i are deterministically specified at the
start of the algorithm, tr(⇤u,i)  �

2, �min(⇤u,i) � �
2
/(2du), and Lemma J.2 gives

P
T�1
t=0 eu>

t
eut  �

2 deterministically.
The fact that n = O(log T ) follows since we increase the epoch length exponentially. Finally, the low-switching condition
follows since the length of the epochs increase exponentially—once T is large enough that T � Tse(⇡exp), we will have that
at least half the initial interval is contained in the final epoch. Then for subsequent epochs, any interval of length Tse(⇡exp)
will contain at most one epoch boundary.

Lemma J.2. Running Algorithm 4, we will have 1
T

P
T

t=1 E[u
>

t
ut]  �

2.

Proof. By Proposition B.5, we have that
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Thus, the average expected input power for a given epoch is bounded by �
2. It follows then that, after running for i epochs,
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where the last equality follows since, by definition, T =
P

i

j=1 Tj .

J.2. Certainty Equivalence Experiment Design

Lemma J.3. Fix a nominal instance ✓? and let b✓ be some instance such that k✓? � b✓k�  ✏�, for � 2 {op, 2}. Let
�(✓,U) 2 Sd✓

+ be a map that satisfies, for all U 2 U�2 and all ✓ with k✓ � ✓?k�  rcov(✓?),
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Proof. By Proposition E.2, under Assumption 3 and since k✓? � b✓k2  rquad(✓?), we have
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Furthermore, by Lemma J.4, (J.7), and since ✏� < �/(2Lcov(✓?, �2)),

k�(b✓,U)�1 � �(✓?,U)�1kop 
k�(b✓,U)� �(✓?,U)kop
�(�� Lcov(✓?, �2)✏�)

 2Lcov(✓?, �2)✏�
�
2

Thus, denoting�H = H(b✓)�H(✓?) and �⌃�1 = �(✓?,U)�1 � �(b✓,U)�1, the above bounds and Von Neumann’s trace
inequality imply:

���tr
⇣
H(b✓)�(b✓,U)�1

⌘
� tr

�
H(✓?)�(✓?,U)�1

����  |tr
�
�H�(✓?, u)

�1
�
| + |tr(H(✓?)�⌃�1)| + |tr(�H�⌃�1)|
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 Lhesstr
�
�(✓?,U)�1

�
✏2 +

2Lcov(✓?, �2)tr(H(✓?))

�
2 ✏� +

2d✓Lcov(✓?, �2)Lhess

�
2 ✏�✏2

 d✓Lhess

�
✏2 +

2Lcov(✓?, �2)tr(H(✓?))

�
2 ✏� +

2d✓Lcov(✓?, �2)Lhess

�
2 ✏�✏2

=: f(✏)

Assume that tr
⇣
H(b✓)�(b✓, bU)�1

⌘
> tr

�
H(✓?)�(✓?,U?)�1

�
, then:

���tr
�
H(✓?)�(✓?,U

?)�1
�
� tr

⇣
H(✓?)�(✓?, bU)�1

⌘��� 
���tr
�
H(✓?)�(✓?,U

?)�1
�
� tr

⇣
H(b✓)�(b✓, bU)�1

⌘���

+
���tr
⇣
H(b✓)�(b✓, bU)�1

⌘
� tr

⇣
H(✓?)�(✓?, bU)�1

⌘���


���tr
�
H(✓?)�(✓?,U

?)�1
�
� tr

⇣
H(b✓)�(b✓,U?)�1

⌘���

+
���tr
⇣
H(b✓)�(b✓, bU)�1

⌘
� tr

⇣
H(✓?)�(✓?, bU)�1

⌘���

 2f(✏)

where the second inequality holds because bU is the minimizer of tr
⇣
H(b✓)�(b✓,U)�1

⌘
. If instead tr

⇣
H(b✓)�(b✓, bU)�1

⌘


tr
�
H(✓?)�(✓?,U?)�1

�
, we can replace tr

�
H(✓?)�(✓?,U?)�1

�
with tr

⇣
H(✓?)�(✓?, bU)�1

⌘
in the above calculation to

get the same result. The conclusion follows.

Lemma J.4 (Matrix Perturbation Bound). Assume A,B 2 S
d

++, kA�Bkop  ✏, and ✏ < �min(B). Then

kA�1 �B
�1kop 

✏

�min(B)(�min(B)� ✏)

Proof. Denote � = A�B. By the matrix inversion lemma:

A
�1 = (B +�)�1 = B

�1 �B
�1(B�1 +��1)�1

B
�1

so:

kA�1 �B
�1kop = kB�1(B�1 +��1)�1

B
�1kop

 kB�1k2opk(B�1 +��1)�1kop

=
1

�min(B)2�d(B�1 +��1)

However:
�d(B

�1 +��1) � �d(�
�1)� �1(B

�1) =
1

k�kop
� 1

�min(B)
=

�min(B)� k�kop
�min(B)k�kop

Since we have assumed ✏ < �min(B) and since k�kop  ✏, this lower bound on �d(B�1 +��1) will be positive, so:

1

�min(B)2�d(B�1 +��1)
 �min(B)k�kop

�min(B)2(�min(B)� k�kop)
 k�kop

�min(B)(�min(B)� k�kop)

The result follows since k�kop  ✏.

J.3. Operator Norm Estimation

Lemma J.5. Let

b✓ls = min
A,B

TX

t=1

kxt+1 �Axt �Butk22
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Then on the event

E :=
n
�min(⌃T ) � �T,⌃T � T �̄T

o

with probability at least 1� �:

kb✓ls � ✓?kop  C

s
log(1/�) + dx + log det(�̄T /�+ I)

�T
.

Proof. Define the following events:

A =

8
<

:k
b✓i � ✓?kop  C

s
log(1/�) + dx + log det(�̄T /�+ I)

�T

9
=

;

E1 =

8
<

:

������

 
TX

t=1

ztz
>

t

!�1/2
TX

t=1

ztw
>

t

������
op

 c2�w

r
log

1

�
+ dx + log det(�̄T /�+ I)

9
=

;

Our goal is to show that P[Ac \ E ]  �. The following is trivial.

P[Ac \ E ]  P[Ac \ E \ E1] + P[E \ Ec

1 ]

As b✓ls is the least squares estimate, we will have that b✓>ls = (
P

T

t=1 ztz
>

t
)�1

P
T

t=1 ztx
>

t+1 = ✓
>

?
+

(
P

T

t=T�Ti
ztz

>

t
)�1

P
T

t=1 ztw
>

t
. Given this, the error can be decomposed as:

kb✓ls � ✓?kop =

������

 
TX

t=1

ztz
>

t

!�1
TX

t=1

ztw
>

t

������
op



������

 
TX

t=1

ztz
>

t

!�1/2
������
op

������

 
TX

t=1

ztz
>

t

!�1/2
TX

t=1

ztw
>

t

������
op

=

������

 
TX

t=1

ztz
>

t

!�1/2
TX

t=1

ztw
>

t

������
op

/

vuut
�min

 
TX

t=1

ztz
>
t

!

It follows that, on the event E \ E1, the error bound given in A holds. Thus, P[Ac \ E \ E1] = 0. Lemma J.6 implies that
P[E \ Ec

1 ]  �, so P[Ac \ E ]  �.

Lemma J.6 (Lemma E.6 of (Wagenmaker & Jamieson, 2020), see also (Abbasi-Yadkori et al., 2011)). Assume that zt is
generated by (G.5) with wt ⇠ N (0,�2

w
I) and input ut = eut + u

w

t
, where eut is Ft�1 measurable and u

w

t
⇠ N (0,⇤u). On

the event that V+ ⌫
P

T

t=1 ztz
>

t
⌫ V�, we will have that, with probability less than �:

������

 
TX

t=1

ztz
>

t

!�1/2
TX

t=1

ztw
>

t

������
op

> �w

r
16 log

1

�
+ 8 log det(V+V

�1
�

+ I) + 16(dx + du) log 5.

J.4. Optimality of Inputs

Lemma J.7. Fix an epoch i of Algorithm 4 and let ki denote the discretization level of the input set at that epoch, U�2/2,ki
,

and assume that Ti/(duki) is an integer. Let k be any value satisfying dx  k  Ti/2 and take ✏ 2 (0, 1). Then, as long as

Ti � max

(
2du⌧3? (2ki� + kzT�Tik2)((4 + 2⌧?)ki� + ⌧?kzT�Tik2))

(1� ⇢
ki
? )2(1� ⇢?)�?noise✏

,
16⌧2

?
(�2

w
+ �

2
/(2du))

(1� ⇢2
?
)2�?noise✏

✓
⌧
2
?
k
2
i
du�

2

(1� ⇢
ki
? )2

+
⌧?ki

p
du�

2
p
Ti

1� ⇢
ki
?

◆
16duke✓?k2H1

�
?

noise✏
, log

✓
(1� ⇢

2
?
)2�?noise✏

16⌧2
?
(�2

w
+ �2/(2du))

◆
1

2 log ⇢?

)
,
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ki � max

(
8⇡ke✓?kH1

�
2

�
?

noise✏
,

⇡

2ke✓?kH1

)✓
max

!2[0,2⇡]
k(e◆!I � eA?)�2 eBkop

◆
,

kb✓i�1 � ✓?kop  ✏op,i�1  min

⇢
rcov(✓?),

rquad(✓?)p
dx

,
�
?

noise

4Lcov(✓?, �2)

�

we have, for any T
0 � Ti,

tr
⇣
H(✓?)(E✓?,Ui,Ti [Idx ⌦

P
T

t=T�Ti
ztz

>

t
])�1

⌘
 min

U2U�2,T 0

2tr
⇣
H(✓?)�ss

T 0,T 0(e✓?,U , 0)�1
⌘

(1� ✏)3Ti

+
Cexp

(1� ✏)2

where

Cexp =

✓
4
p
dx(d2x + dxdu)Lhess

�
?

noise

+
8Lcov(✓?, �2)tr(H(✓?))

(�?noise)
2

◆
✏op,i�1

Ti

+
8(d2

x
+ dxdu)Lcov(✓?, �2)Lhess

(�?noise)
2

✏
2
op,i�1

Ti

.

Proof. We will show that the following set of inequalities hold for large enough T and arbitrary T
0 � T :

tr
⇣
H(✓?)(E✓?,Ui,Ti [Idx ⌦

P
T

t=T�Ti
ztz

>

t
])�1

⌘
(J.8)

(a)
 1

(1� ✏)2Ti

tr
⇣
H(✓?)�

ss
Ti,Ti/du

(e✓?,Ui, �/

p
2du)

�1
⌘

(Steady-state)

(b)
 min

U2U�2/2,ki

1

(1� ✏)2Ti

tr
⇣
H(✓?)�

ss
Ti,Ti/du

(e✓?,U , �/

p
2du)

�1
⌘
+

Cexp

(1� ✏)2
(Optimal inputs)

(c)
 min

U2U�2/2,T 0

1

(1� ✏)3Ti

tr
⇣
H(✓?)�

ss
T 0,T 0(e✓?,U , �/

p
2du)

�1
⌘
+

Cexp

(1� ✏)2
(Infinite horizon)

(d)
 min

U2U�2,T 0

2

(1� ✏)3Ti

tr
⇣
H(✓?)�

ss
T 0,T 0(e✓?,U , 0)�1

⌘
+

Cexp

(1� ✏)2
(Noiseless inputs)

Steady-state: By definition,

E✓?,Ui,Ti [Idx ⌦
P

T

t=T�Ti
ztz

>

t
] = Ti�Ti(e✓?,Ui, �/

p
2du, zT�Ti)

Note that the inputs played by Algorithm 4 are constructed as in Lemma J.8. It follows then that, by Lemma J.8, as long as,

Ti � max

(
2du⌧( eA?, ⇢)3(2ki� + kzT�Tik2)((4 + 2⌧( eA?, ⇢))ki� + ⌧( eA?, ⇢)kzT�Tik2))

(1� ⇢ki)2(1� ⇢)�min(�noiseTi/2
(e✓?, �/

p
2du))✏

,

 
⌧( eA?, ⇢)2k2i du�2

(1� ⇢ki)2
+

⌧( eA?, ⇢)kidu�2
p
Ti/du

1� ⇢ki

!
16duke✓?k2H1

�min(�noiseTi/2
(✓?, �/

p
2du))✏

)

we will have
�Ti(e✓?,Ui, �/

p
2du, zT�Ti) ⌫ (1� ✏)2�ss

Ti,Ti/du
(e✓?,Ui, �/

p
2du)

This implies that
�Ti(e✓?,Ui, �/

p
2du, zT�Ti) ⌫ (1� ✏)2�ss

Ti,Ti/du
(e✓?,Ui, �/

p
2du)

from which (a) follows.

Optimal inputs: We next apply Lemma J.3, which bounds the suboptimality of certainty equivalent experiment design, to
show (b). We instantiate Lemma J.3 with

� = �min(�
noise
k

(e✓?, �/
p
2du))/2, �(✓,U) = �ss

Ti,Ti/du
(✓,U , �/

p
2du)
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Note that Lemma H.5 gives that the smoothness condition (J.7) holds for Lcov(✓?, �2) as defined in (H.14). Furthermore, it
is clear that, as long as Ti � 2k, we will have �min(�(e✓?,U)) � � for all U . To apply Lemma J.3, we need

kb✓i�1 � ✓?kop  min{rcov(✓?),�min(�
noise
k

(e✓?, �/
p
2du))/(4Lcov(✓?, �

2))}, kb✓i�1 � ✓?kF  rquad(✓?)

where we choose to instantiate Lemma J.3 in the operator norm, and since the matrix Frobenius norm coincides with the
vector 2-norm. The condition on kb✓i�1 � ✓?kop will hold as long as our assumption on ✏op,i�1 holds. Since b✓i � ✓? is at
most rank dx, we have

kb✓i�1 � ✓?kF 
p

dxkb✓i�1 � ✓?kop  rquad(✓?)

where the last inequality again holds so long as our assumption on ✏op,i�1 holds. Then, since we design the input Ui on the
estimate b✓i�1, the conditions of Lemma J.3 are met for Ui, so

1

Ti

�����tr
⇣
H(✓?)�

ss
Ti,Ti/du

(e✓?,Ui, �/

p
2du)

�1
⌘
� min

U2U�2/2,ki

tr
⇣
H(✓?)�

ss
Ti,Ti/du

(e✓?,U , �/

p
2du)

�1
⌘�����


 
4
p
dx(d2x + dxdu)Lhess�min(�noisek

(e✓?, �/
p
2du) + 8Lcov(✓?, �2)tr(H(✓?))

�min(�noisek
(e✓?, �/

p
2du)2

!
✏op,i�1

Ti

+
8(d2

x
+ dxdu)Lcov(✓?, �2)Lhess

�min(�noisek
(e✓?, �/

p
2du)2

✏
2
op,i�1

Ti

=: Cexp

and thus (b) holds.

Infinite horizon: Now,

�ss
Ti,Ti/du

(e✓?,U , �/

p
2du) =

du

Ti

�freq
Ti/du

(e✓?,U) +
1

Ti

TiX

t=1

�noise
t

(e✓?, �/
p
2du)

If U 2 U�2/2,ki
, since Ti/(duki) is an integer,

�freq
Ti/du

(e✓?,U) =
Ti

duk
2
i

kiX

`=1

(e◆
2⇡`
ki I � eA?)�1 eB?U` eB>

?
(e◆

2⇡`
ki I � eA?)�H

Then, by Lemma H.8, as long as

ki � max

(
8⇡ke✓?kH1

�
2

�min(�noisek
(e✓?, �/

p
2du))✏

,
⇡

2ke✓?kH1

)✓
max

!2[0,2⇡]
k(e◆!I � eA?)�2 eBkop

◆

then for any T
0 � ki and U? 2 U�2/2,T 0 , there exists a feasible U 0 2 U�2/2,ki

such that
����
du

Ti

�freq
Ti/du

(e✓?,U 0)� 1

T 0
�freq
T 0 (e✓?,U?)

����
op

 ✏

2
�min(�

noise
k

(e✓?, �/
p
2du))

Furthermore, by Lemma H.9, if

Ti � max

(
16⌧( eA?, ⇢)2(�2

w
+ �

2
/(2du))

(1� ⇢2)2�min(�noisek
(e✓?, �/

p
2du))✏

, log

 
(1� ⇢

2)2�min(�noisek
(e✓?, �/

p
2du))✏

16⌧( eA?, ⇢)2(�2
w
+ �2/(2du))

!
1

2 log ⇢

)

then, for any T
0 � Ti,

������
1

Ti

TiX

t=1

�noise
t

(e✓?, �/
p
2du)�

1

T 0

T
0X

t=1

�noise
t

(e✓?, �/
p

2du)

������
op

 ✏

2
�min(�

noise
k

(e✓?, �/
p
2du))
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Now note that, by definition,

min
U2U�2/2,ki

tr
⇣
H(✓?)�

ss
Ti,Ti/du

(e✓?,U , �/

p
2du)

�1
⌘
 tr

⇣
H(✓?)�

ss
Ti,Ti/du

(e✓?,U 0
, �/

p
2du)

�1
⌘

By what we’ve just shown, for any T
0 � Ti

�ss
Ti,Ti/du

(e✓?,U 0
, �/

p
2du)

⌫ �ss
T 0,T 0(e✓?,U?

, �/

p
2du)�

✏

2
�min(�

noise
k

(e✓?, �/
p
2du)) · I

⌫ (1� ✏)�ss
T 0,T 0(e✓?,U?

, �/

p
2du) + ✏

1

2T 0

T
0X

t=1

�noise
t

(e✓?, �/
p
2du)�

✏

2
�min(�

noise
k

(e✓?, �/
p
2du)) · I

⌫ (1� ✏)�ss
T 0,T 0(e✓?,U?

, �/

p
2du) +

✏

2
�min(�

noise
T 0/2 (

e✓?, �/
p
2du)) · I � ✏

2
�min(�

noise
k

(e✓?, �/
p
2du)) · I

⌫ (1� ✏)�ss
T 0,T 0(e✓?,U?

, �/

p
2du)

From this (c) follows directly.

Noiseless inputs: Finally, since

�ss
T 0,T 0(e✓?,U?

, �/

p
2du) ⌫ �ss

T 0,T 0(e✓?,U?
, 0)

we can bound

min
U2U�2/2,T 0

tr
⇣
H(✓?)�

ss
T 0,T 0(e✓?,U , �/

p
2du)

�1
⌘
 min

U2U�2/2,T 0

tr
⇣
H(✓?)�

ss
T 0,T 0(e✓?,U , 0)�1

⌘

 2 min
U2U�2,T 0

tr
⇣
H(✓?)�

ss
T 0,T 0(e✓?,U , 0)�1

⌘

which proves (d). Finally, to simplify the bound, we note that �min(�noisek
(e✓?, �/

p
2du)) � �

?

noise, and we choose
⇢ = ⇢?.

Lemma J.8. Fix an input U 2 U�2,k and consider a system ✓ = (A,B). If we start from some state x0 and play the time
domain input ut = ConstructTimeInput(U , T/du, k) where ConstructTimeInput is defined in Algorithm 3
then, so long as T/du is divisible by k, and

T � max

(
2du⌧(A, ⇢)3(2kBkopk� + kx0k2)((4 + 2⌧(A, ⇢))kBkopk� + ⌧(A, ⇢)kx0k2))

(1� ⇢k)2(1� ⇢)�min(�noiseT/2 (✓, �/
p
2du))✏

,

 
⌧(A, ⇢)2k2du�2

(1� ⇢k)2
+

⌧(A, ⇢)kdu�2
p
T/du

1� ⇢k

!
16duk✓k2H1

�min(�noiseT/2 (✓, �/
p
2du))✏

)

we will have
�T (✓,U , �/

p
2du, x0) ⌫ (1� ✏)2�ss

T,T/du
(✓,U , �/

p
2du).

Proof. Let ǔ`,j be defined as in Algorithm 3 for this U , and denote Uj = (ǔ`,j ǔH

`,j
)k
`=1. Let euj,t denote the time domain

version of {ǔ`,j}k`=1, as is specified in Algorithm 3. Since U 2 U�2,k, some algebra shows that

1

k

kX

t=1

eu>

j,t+s
euj,t+s  2du�

2

for any s � 0. We break up the sum of the response based on which input is being played:

TX

t=1

x
u
t
(xu

t
)> =

duX

j=1

jT/duX

t=(j�1)T/du+1

x
u
t
(xu

t
)>
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which gives:

�T (✓,U , �/

p
2du, 0) =

1

T

duX

j=1

jT/duX

t=(j�1)T/du+1

x
u
t
(xu

t
)> +

1

T

TX

t=1

�noise
t

(✓, �/
p
2du)

=
1

T

duX

j=1

 
�in
T/du

(✓,Uj , x
u
(j�1)T/du

) +
1

du

TX

t=1

�noise
t

(✓, �/
p
2du)

!

If we start from some initial state x
0,

x
u
t
= A

t
x
0 +

t�1X

s=0

A
t�s�1

Bus =: xu,0
t

+ exu
t

then,

�in
T/du

(✓,Uj , x
u
(j�1)T/du

) =
TX

t=0

x
u

t
(xu

t
)> =

TX

t=0

h
exu
t
(exu

t
)> + exu

t
(xu,0

t
)> + x

u,0
t

(exu
t
)> + x

u,0
t

(xu,0
t

)>
i

Now,
�����

TX

t=0

x
u,0
t

(exu
t
)>

�����
op

 kxu
(j�1)T/du

k2
TX

t=0

kAtkopkexu
t
k2  kxu

(j�1)T/du
k2⌧(A, ⇢)

TX

t=0

⇢
tkexu

t
k2


2⌧(A, ⇢)2kxu

(j�1)T/du
k2kBkopk�

(1� ⇢k)(1� ⇢)

where the last inequality follows by Lemma D.7 of (Wagenmaker & Jamieson, 2020), which gives:

kexu
t
k2 

2⌧(A, ⇢)kBkopk�
1� ⇢k

Furthermore,
�����

TX

t=0

x
u,0
t

(xu,0
t

)>

�����
op

 kxu
(j�1)T/du

k22
TX

t=0

kAtk2op 
kxu

(j�1)T/du
k22⌧(A, ⇢)2

1� ⇢

Therefore,

�in
T/du

(✓,Uj , x
u
(j�1)T/du

) +
1

du

TX

t=1

�noise
t

(✓, �/
p
2du)

⌫ �in
T/du

(✓,Uj , 0) +
1

du

TX

t=1

�noise
t

(✓, �/
p
2du)�

⌧(A, ⇢)2kxu
(j�1)T/du

k2(4kBkopk� + (1� ⇢
k)kxu

(j�1)T/du
k2)

(1� ⇢k)(1� ⇢)

⌫ (1� ✏)�in
T/du

(✓,Uj , 0) +
1� ✏

du

TX

t=1

�noise
t

(✓, �/
p

2du) +
✏T

2du
�min(�

noise
T/2 (✓, �/

p
2du)) · I

�
⌧(A, ⇢)2kxu

(j�1)T/du
k2(4kBkopk� + (1� ⇢

k)kxu
(j�1)T/du

k2)
(1� ⇢k)(1� ⇢)

⌫ (1� ✏)�in
T/du

(✓,Uj , 0) +
1� ✏

du

TX

t=1

�noise
t

(✓, �/
p

2du)

where the last inequality holds as long as

T �
2du⌧(A, ⇢)2kxu

(j�1)T/du
k2(4kBkopk� + (1� ⇢

k)kxu
(j�1)T/du

k2)
(1� ⇢k)(1� ⇢)�min(�noiseT/2 (✓, �/

p
2du))✏

(J.9)
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By Proposition B.4, since T/du is divisible by k, we will have that

�freq
T/du

(✓,Uj) =
du

T

TX

`=1

(e◆
2⇡`
T I �A)�1

BUj,`U
H

j,`
B

H(e◆
2⇡`
T I �A)�H

where {Uj,`}T`=1 = F(euj,0, . . . , euj,T/du
). Then, by Lemma H.4, we will have,

k�in
T/du

(✓,Uj , 0)� �freqT/du
(✓,Uj)kop 

 
8⌧(A, ⇢)2k2du�2

(1� ⇢k)2
+

8⌧(A, ⇢)kdu�2
p

T/du

1� ⇢k

!✓
max

!2[0,2⇡]
k(e�◆!I �A)�1

Bk2op
◆

 ✏T

2du
�min(�

noise
T/2 (✓, �/

p
2du))

where the last inequality is true so long as

T �
 
8⌧(A, ⇢)2k2du�2

(1� ⇢k)2
+

8⌧(A, ⇢)kdu�2
p
T/du

1� ⇢k

!✓
max

!2[0,2⇡]
k(e◆!I �A)�1

Bk2op
◆

2du
�min(�noiseT/2 (✓, �/

p
2du))✏

Thus,

�in
T/du

(✓,Uj , 0) +
1

du

TX

t=1

�noise
t

(✓, �/
p
2du)

⌫ �freq
T/du

(✓,Uj) +
1

du

TX

t=1

�noise
t

(✓, �/
p

2du)�
✏T

2du
�min(�

noise
T/2 (✓, �/

p
2du)) · I

⌫ (1� ✏)�freq
T/du

(✓,Uj) +
1� ✏

du

TX

t=1

�noise
t

(✓, �/
p

2du)

It follows that if (J.9) holds for each j,

�T (✓,U , �/

p
2du, 0) ⌫

(1� ✏)2

T

duX

j=1

�freq
T/du

(✓,Uj) +
(1� ✏)2

T

TX

t=1

�noise
t

(✓, �/
p
2du)

=
du(1� ✏)2

T
�freq
T/du

(✓,U) +
(1� ✏)2

T

TX

t=1

�noise
t

(✓, �/
p

2du)

= (1� ✏)2�ss
T,T/du

(✓,U , �/

p
2du)

It remains to ensure that (J.9) holds by bounding kxu
(j�1)T/du

k2. Again by Lemma D.7 of (Wagenmaker & Jamieson, 2020),
we have

kxu
(j�1)T/du

k2 
2⌧(A, ⇢)kBkopk�

1� ⇢k
I{j > 1} + ⌧(A, ⇢)⇢(j�1)T/dukx0k2 

⌧(A, ⇢)(2kBkopk� + kx0k2)
1� ⇢k

Some algebra gives the result.
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Part IV

LQR and Further Examples
K. LQR as Linear Dynamical Decision Making
K.1. LQR is an Instance of LDDM

Throughout this section we will assume that Rx, Ru ⌫ I and that ✓? is stabilizable. Note that, by Lemma 3.1 of (Simchowitz
& Foster, 2020), the assumption that ✓? is stabilizable implies that in a neighborhood of ✓?, P1(✓) and Kopt(✓) are infinitely
differentiable. We will make use of this fact throughout this section, freely taking derivatives of both quantities. Define:

 P? := kP?kop,  B? := kB?kop,  Ru := kRukop.

Theorem K.1. If ✓? is stabilizable and Ru, Rx ⌫ I , Assumption 3 is satisfied for RLQR with:

1. µ = 2.

2. rquad(✓?) = min
n

1
150 5

P?

,
1

240 B? 
5
P?

,
 B?
2

o
.

3. LR1 = c1dx B?

p
 P? + c2dx Ru (1+1/ B? )p

 P?

, LR2 = c3dx

⇣
 2

B?
 2

P?
+  Ru(1 +  B?) P?

⌘
, LR3 =

c4dx

⇣
 3

B?
 7/2

P?
+ Ru B?(1 + B?) 

5/2
P?

⌘
.

4. La1 = 8 7/2
P?

, La2 = poly( P?), La3 = poly( P? , B?).

5. Lhess = dxpoly( P? , Ru , B? , 1/ B?) + d
2
x

⇣
 2

B?
 4

P?
+ (1 + B?) Ru 

3
P?

+  Ru P?
 B?

⌘
.

for universal constants c1, c2, c3, c4.

Proof. From Lemma B.9 of (Simchowitz & Foster, 2020), we have that:

RLQR(K; ✓?) = tr
�
dlyap

�
A? +B?K, (K �K?)

>(Ru +B
>

?
P?B?)(K �K?)

��

From this and the definition of dlyap it follows that RLQR(K?; ✓?) = 0. Furthermore, if we define K(t) = K? + t�K for
some �K , by the chain rule we have that

d

dt
RLQR(K(t); ✓?) = rKRLQR(K; ✓?)|K=K(t)[�K ]

Using the expression for d

dt
RLQR(K(t); ✓?) given in the proof of Lemma K.2, we see that d

dt
RLQR(K(t); ✓?)|t=0 = 0 for

�K , from which it follows thatrKRLQR(K; ✓?)|K=K? = 0. Under the assumption that A? +B?K stable, Lemma B.5 of
(Simchowitz & Foster, 2020) gives that:

dlyap
�
A? +B?K, (K �K?)

>(Ru +B
>

?
P?B?)(K �K?)

�
⌫ (K �K?)

>(Ru +B
>

?
P?B?)(K �K?)

If Ru ⌫ I , then (K �K?)>(Ru + B
>

?
P?B?)(K �K?) ⌫ (K �K?)>(K �K?), and thus, under these conditions, we

have
RLQR(K;⇥?) � tr

�
(K �K?)

>(K �K?)
�
= kK �K?k2F

If A? +B?K is not stable but (A?, B?) is a stabilizable system, then the LQR cost is infinite but the optimal LQR cost is
finite so R(K;⇥?) = 1 � kK �K?k2F . Thus, we can choose µ = 2. The gradient norm bounds follow directly from
Lemmas K.1, K.2, K.3, and K.4. Note that these bounds hold in the domain

k✓ � ✓?kop  min{1/(150 5
P?
), B?/2}, kK �K?kop  1/(30 B? 

3/2
P?

) (K.1)
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and that La1 = 8 7/2
P?

. Since

k✓ � ✓?kop  k✓ � ✓?kF , kK �K?kop  kK �K?kF

choosing

rquad(✓?) = min

⇢
1

150 5
P?

,
1

240 B? 
5
P?

,
 B?

2

�
.

we will have that any ✓ satisfying k✓ � ✓?kF  rquad(✓?) also satisfies (K.1) and that any K satisfying kK �K?kF 
La1rquad(✓?) also satisfies (K.1).

K.2. Norm Bounds on Gradients

Lemma K.1. Assume that ✓? is stabilizable and Rx, Ru ⌫ I . Consider some alternate instance ✓0 = (A0, B0) with
k✓0 � ✓?kop  min{1/(150 5

P?
), B?/2}. Then, for any � with k�kop = 1,

kr✓Kopt(✓)|✓=✓0kop  8 7/2
P?

kr2
✓
Kopt(✓)|✓=✓0kop  poly( P?)

kr3
✓
Kopt(✓)|✓=✓0 [�, �, �]kop  poly( P? , B?)

where c is a universal constant.

Proof. Fix some �✓ with k�✓kop = 1 and let e✓(s) = ✓0 + s�✓. By the chain rule,

d

ds
Kopt(e✓(s)) = r✓Kopt(✓)|✓=e✓(s)[�✓]

so to bound kr✓Kopt(✓)|✓=✓0kop, it suffices to bound k d

ds
Kopt(e✓(s))|s=0kop for all unit norm �✓. Lemma 3.2 of

(Simchowitz & Foster, 2020) gives that, for s where e✓(s) is stabilizable, and any unit norm�✓,

k d
ds

Kopt(e✓(s))kop  7kP (s)k7/2op

By Lemma K.6, e✓(0) = ✓0 will be stabilizable, and kP (0)kop  5
q

3
71 P? . Immediately, then, we have

kr✓Kopt(✓)|✓=✓0kop  8 7/2
P?

For the second bound, we note that

d
2

ds2
Kopt(e✓(s)) = r2

✓
Kopt(✓)|✓=e✓(s)[�✓,�✓]

and, since the Hessian is symmetric, to obtain a bound on kr2
✓
Kopt(✓)|✓=✓0kop we can simply bound

k d
2

ds2
Kopt(e✓(s))|s=0kop for all unit norm �✓. However, Lemma B.3 of (Simchowitz & Foster, 2020), and the argument

made above give that

k d
2

ds2
Kopt(e✓(s))|s=0kop  poly( P?)

from which the second conclusion follows. Finally, for the third result, note that

d
3

ds3
Kopt(e✓(s)) = r3

✓
Kopt(✓)|✓=e✓(s)[�✓,�✓,�✓]

As before, it is sufficient to simply bound k d
3

ds3
Kopt(e✓(s))|s=0kop. Since e✓(0) is stabilizable by Lemma K.6, Lemma K.8

gives

k d
3

ds3
Kopt(e✓(s))|s=0kop  poly(kP (0)kop, kB(0)kop, kAcl(0)kop)

By Lemma K.6, and Lemma B.8 of (Simchowitz & Foster, 2020), we can upper bound this by poly( P? , B?), which
gives the final conclusion.
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Lemma K.2. Assume that ✓? is stabilizable and Rx, Ru ⌫ I . For any ✓ satisfying k✓�✓?kop  min{1/(150 5
P?
), B?/2}

and K0 satisfying kK0 �K?kop  1/(30 B? 
3/2
P?

):

krKR(K; ✓)|K=K0kop  c1dx B?

p
 P? +

c2dx Ru(1 + 1/ B?)p
 P?

for universal constant c1, c2.

Proof. Throughout this proof we will assume that P? ⌫ I, P✓ ⌫ I , which holds by Lemma 4.2 of (Simchowitz & Foster,
2020) so long as Rx ⌫ I . Fix ✓ and let eK(t) = K0 + t�K for �K satisfying k�Kkop = 1. By the chain rule

d

dt
R( eK(t); ✓)|t=0 = rKR(K; ✓)|K=K0 [�K ]

so to bound krKR(K; ✓)|K=K0kop, it is sufficient to bound d

dt
R( eK(t); ✓)|t=0 over all unit norm �K .

For a given ✓, we’ll denote K✓ := Kopt(✓), P✓ := P1(✓), and use A,B to refer to the system matrices associated with ✓.
Then by Lemma B.9 of (Simchowitz & Foster, 2020), we have

R(K; ✓) = tr
�
dlyap

�
A+BK, (K �K✓)

>(Ru +B
>
P✓B)(K �K✓)

��

Define Q(t) := dlyap
⇣
A+B eK(t), ( eK(t)�K✓)>(Ru +B

>
P✓B)( eK(t)�K✓)

⌘
. It follows that d

dt
R( eK(t); ✓) =

tr( d

dt
Q(t)). By definition of dlyap,

Q(t) = (A+B eK(t))>Q(t)(A+B eK(t)) + ( eK(t)�K✓)
>(Ru +B

>
P✓B)( eK(t)�K✓)

Differentiating Q(t) (and hiding t dependence for simplicity), and since eK 0 = �K , we have

Q
0 = (A+B eK)>Q0(A+B eK) + (B�K)>Q(A+B eK) + (A+B eK)>Q(B�K)

�>

K
(Ru +B

>
P✓B)( eK �K✓) + ( eK �K✓)

>(Ru +B
>
P✓B)�K

= dlyap
⇣
A+B eK, (B�K)>Q(A+B eK) + (A+B eK)>Q(B�K)

�>

K
(Ru +B

>
P✓B)( eK �K✓) + ( eK �K✓)

>(Ru +B
>
P✓B)�K

⌘

By Lemma B.5 of (Simchowitz & Foster, 2020), we can upper bound this dlyap expression as,

kQ0(0)kop  2kdlyap(A+B eK(0), I)kop
⇣
k(A+B eK(0))>Q(0)B�Kkop

+ k( eK(0)�K✓)
>(Ru +B

>
P✓B)�Kkop

⌘

Since k✓ � ✓?kop  minmin{1/(150 5
P?
), B?/2} and k eK(0) � K?kop  1/(30 B? 

3/2
P?

), we can apply the norm
bounds in Lemma K.6 to upper bound this as

kQ0(0)kop  c B?

p
 P? +

c Ru(1 + 1/ B?)p
 P?

As this holds independent of �K and since | d

dt
R(K(t); ✓)|t=0|  dxkQ0(0)k, it follows that

krKR(K; ✓)|K=K0kop  cdx B?

p
 P? +

cdx Ru(1 + 1/ B?)p
 P?

.
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Lemma K.3. Assume that ✓? is stabilizable and Rx, Ru ⌫ I . For any ✓ satisfying k✓�✓?kop  min{1/(150 5
P?
), B?/2}

and K0 satisfying kK0 �K?kop  1/(30 B? 
3/2
P?

):

kr2
K

R(K; ✓)|K=K0kop  c1dx

⇣
 2

B?
 2

P?
+ Ru(1 + B?) P?

⌘

kr3
K

R(K; ✓)|K=K0kop  c2dx

⇣
 3

B?
 7/2

P?
+ Ru B?(1 + B?) 

5/2
P?

⌘

for some universal constants c1, c2.

Proof. Throughout, unless otherwise specified, we adopt the same notation as is used in the proof of Lemma K.2. Let
eK(t1, t2) = K0 + t1�K1 + t2�K2. By the chain rule, and since d

dt1

eK(t1, t2) = �K1,
d

dt2

eK(t1, t2) = �K2,

d

dt2

d

dt1
R( eK(t1, t2); ✓)|t1=t2=0 = r2

K
R(K; ✓)|K=K0 [�K1,�K2]

To bound kr2
K

R(K; ✓)|K=K0kop, it then suffices to bound k d

dt2

d

dt1
R( eK(t1, t2); ✓)|t1=t2=0kop over all unit norm

�K1,�K2. From the proof of Lemma K.2, we have that

d

dt2

d

dt1
R( eK(t1, t2); ✓) = tr

✓
d

dt2

d

dt1
Q(t1, t2)

◆

where

Q(t1, t2) = (A+B eK(t1, t2))
>
Q(t1, t2)(A+B eK(t1, t2)) + ( eK(t1, t2)�K✓)

>(Ru +B
>
P✓B)( eK(t1, t2)�K✓)

Using our expression for the first derivate of Q from the proof of Lemma K.2, dropping the explicit t1, t2 dependence, and
adopting the notation Qti =

d

dti
Q,

Qt1 = (A+B eK)>(Qt1)(A+B eK) + (B�K1)
>
Q(A+B eK) + (A+B eK)>Q(B�K1)

�>

K1(Ru +B
>
P✓B)( eK �K✓) + ( eK �K✓)

>(Ru +B
>
P✓B)�K1

= dlyap
⇣
A+B eK, (B�K1)

>
Q(A+B eK) + (A+B eK)>Q(B�K1)

�>

K1(Ru +B
>
P✓B)( eK �K✓) + ( eK �K✓)

>(Ru +B
>
P✓B)�K

⌘

then taking the derivative of this with respect to t2 gives

Qt1,t2 = (A+B eK)>(Qt1,t2)(A+B eK) + (B�K2)
>(Qt1)(A+B eK) + (A+B eK)>(Qt1)(B�K2)

+ (B�K1)
>(Qt2)(A+B eK) + (A+B eK)>(Qt2)(B�K1) + (B�K1)

>
Q(B�K2)

+ (B�K2)
>
Q(B�K1) +�

>

K1(Ru +B
>
P✓B)�K2 +�

>

K2(Ru +B
>
P✓B)�K1

= dlyap
⇣
A+B eK, (B�K2)

>(Qt1)(A+B eK) + (A+B eK)>(Qt1)(B�K2) + (B�K1)
>(Qt2)(A+B eK)

+ (A+B eK)>(Qt2)(B�K1) + (B�K1)
>
Q(B�K2) + (B�K2)

>
Q(B�K1)

+�>

K1(Ru +B
>
P✓B)�K2 +�

>

K2(Ru +B
>
P✓B)�K1

⌘

We would like to bound the operator norm of Qt1,t2(0). Note that the bound on kQ0(0)kop given in Lemma K.2 still applies
in this setting due to our restriction that k eK(0, 0)�K?kop  1/(30 B? 

3/2
P?

), so

kQ(0)kop 
c

 P?

+
c Ru

 2
B?
 2

P?

kQt1(0)kop, kQt2(0)kop  c2 B?

p
 P? +

c3 Ru(1 + 1/ B?)p
 P?
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Furthermore, we are in the domain where Lemma K.6 holds so,

kQt1,t2(0)kop  kdlyap(A+B eK(0), I)kop
⇣
2kBkopkA+B eK(0)kop(kQt1(0)kop + kQt2(0)kop)

+ 2kBk2opkQ(0)kop + 2kRu +B
>
P✓Bkop

⌘

 c 2
B?
 2

P?
+ c Ru(1 + B?) P?

Since | d

dt1

d

dt2
R( eK(t1, t2); ✓)|  dxkQt1,t2kop, the first bound follows.

To bound kr3
K

R(K; ✓)kop, we define eK(t1, t2, t3) = K0 + t1�K1 + t2�K2 + t3�K3, for

k�K1kop, k�K2kop, k�K3kop = 1

and note that by the chain rule

d

dt3

d

dt2

d

dt1
R( eK(t1, t2, t3); ✓)|t1=t2=t3=0 = r3

K
R(K; ✓)|K=K0 [�K1,�K2,�K3]

so, as before, it suffices to bound k d

dt3

d

dt2

d

dt1
R( eK(t1, t2, t3); ✓)|t1=t2=t3=0kop over all unit norm �K1,�K2,�K3. Again

we have that
d

dt3

d

dt2

d

dt1
R( eK(t1, t2, t3); ✓) = tr

✓
d

dt3

d

dt2

d

dt1
Q(t1, t2, t3)

◆

To bound this, we can differentiate the expression for Qt1,t2 given above with respect to t3:

Qt1,t2,t3 = (A+B eK)>(Qt1,t2,t3)(A+B eK) + (B�K3)
>(Qt1,t2)(A+B eK) + (A+B eK)>(Qt1,t2)(B�K3)

+ (B�K2)
>(Qt1,t3)(A+B eK) + (B�K2)

>(Qt1)(B�K3) + (A+B eK)>(Qt1,t3)(B�K2)

+ (B�K3)
>(Qt1)(B�K2) + (B�K1)

>(Qt2,t3)(A+B eK) + (B�K1)
>(Qt2)(B�K3)

+ (A+B eK)>(Qt2,3)(B�K1) + (B�K3)
>(Qt2)(B�K1) + (B�K1)

>
Qt3(B�K2)

+ (B�K2)
>
Qt3(B�K1)

= dlyap
⇣
A+B eK, (B�K3)

>(Qt1,t2)(A+B eK) + (A+B eK)>(Qt1,t2)(B�K3)

+ (B�K2)
>(Qt1,t3)(A+B eK) + (B�K2)

>(Qt1)(B�K3) + (A+B eK)>(Qt1,t3)(B�K2)

+ (B�K3)
>(Qt1)(B�K2) + (B�K1)

>(Qt2,t3)(A+B eK) + (B�K1)
>(Qt2)(B�K3)

+ (A+B eK)>(Qt2,3)(B�K1) + (B�K3)
>(Qt2)(B�K1) + (B�K1)

>
Qt3(B�K2)

+ (B�K2)
>
Qt3(B�K1)

⌘

Thus,

kQt1,t2,t3(0)kop  kdlyap(A+B eK(0), I)kop
⇣
2kBkopkA+B eK(0)kop(kQt1,t2(0)kop + kQt1,t3(0)kop

+ kQt2,t3(0)kop) + 2kBk2op(kQt1(0)kop + kQt2(0)kop + kQt3(0)kop)
⌘

Note that the norm bounds proved on kQ0(0)kop given in Lemma K.2 still applies in this setting due to our restriction that
kK0 �K?kop  1/(30 B? 

3/2
P?

), and similarly our bound proved above on kQt1,t2(0)kop can be used to bound each of
the second derivatives. Combining these results, and using that  P? � 1, gives

kQt1,t2,t3(0)kop  c 3
B?
 7/2

P?
+ c Ru B?(1 + B?) 

5/2
P?

The second bound then follows directly.
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Lemma K.4. Assume that ✓? is stabilizable and Rx, Ru ⌫ I . For ✓0, ✓1 satisfying k✓0 � ✓?kop, k✓1 � ✓?kop 
min{1/(150 5

P?
), B?/2} and K0 satisfying kK0 �K?kop  1/(30 B? 

3/2
P?

), we have

kr2
K

R(K; ✓)|K=K0 �r2
K

R(K; ✓0)|K=K0kop 
✓
dxpoly( P? , Ru , B? , 1/ B?)

+ d
2
x

⇣
 2

B?
 4

P?
+ (1 + B?) Ru 

3
P?

+
 Ru P?

 B?

⌘◆
· k✓0 � ✓1kop.

Proof. Note that, since the Hessian is symmetric,

kr2
K

R(K; ✓0)|K=K0 �r2
K

R(K; ✓1)|K=K0kop
= max
�K :k�Kkop=1

|r2
K

R(K; ✓0)|K=K0 [�K ,�K ]�r2
K

R(K; ✓1)|K=K0 [�K ,�K ]|

so it suffices to bound |r2
K

R(K; ✓0)|K=K0 [�K ,�K ] � r2
K

R(K; ✓1)|K=K0 [�K ,�K ]| over all unit norm �K . Let
�✓ = (�A,�B) satisfy k�✓kop = 1 and denote A(s) = A? + s�A, B(s) = B? + s�B , and e✓(s) = (A(s), B(s)).
Assume that ✓1 = ✓0 + s1�✓ for some s1. Fix �K with k�Kkop = 1. By the chain rule,

d

ds
r2

K
R(K; e✓(s))|K=K0 [�K ,�K ] = r✓(r2

K
R(K; ✓)|K=K0 [�K ,�K ])|

✓=e✓(s)[�✓]

So by Taylor’s Theorem,

r2
K

R(K; ✓0)|K=K0 [�K ,�K ] = r2
K

R(K; ✓1)|K=K0 [�K ,�K ]�r✓(r2
K

R(K; e✓(s))|K=K0 [�K ,�K ])|s=s2 [�✓]s1

for some s2 2 [0, s1]. Thus, since k✓0 � ✓1kop = ks1�✓kop = s1, denoting ✓2 := e✓(s2),

|r2
K

R(K; ✓0)|K=K0 [�K ,�K ]�r2
K

R(K; ✓1)|K=K0 [�K ,�K ]|
 |r✓(r2

K
R(K; ✓)|K=K0 [�K ,�K ])|✓=✓2 [�✓]| · k✓0 � ✓1kop

So we can simply bound |r✓(r2
K

R(K; ✓)|K=K0 [�K ,�K ])|✓=✓2 [�✓]| over all unit norm �✓, and all ✓2 = ✓ + s2�✓,
s2 2 [0, s1]. Note that �✓ = 1

s1
(✓1 � ✓0), so

k✓2 � ✓?kop = k✓0 + s2�✓ � ✓?kop = k(1� s2/s1)✓0 + (s2/s1)✓1 � ✓?kop
 (1� s2/s1)k✓0 � ✓?kop + s2/s1k✓1 � ✓?kop  min{1/(150 5

P?
), B?/2}

so we are in the domain where the bounds given in Lemmas K.2, K.3, and K.6 hold. By Lemma K.3, we know that (where
we drop the dependence on s for brevity)

r2
K

R(K; e✓(s))|K=K0 [�K ,�K ] = tr
⇣
dlyap

⇣
A+BK0, 2(B�K)>(Q1)(A+BK0) + 2(A+BK0)

>(Q1)(B�K)

+ 2(B�K)>Q(B�K) + 2�>

K
(Ru +B

>
Pe✓B)�K

⌘

=: tr(M(s))

where Q and Q1 satisfy

Q = (A+BK0)
>
Q(A+BK0) + (K0 �Ke✓)

>(Ru +B
>
Pe✓B)(K0 �Ke✓)

Q1 = (A+BK0)
>(Q1)(A+BK0) + (B�K)>Q(A+BK0) + (A+BK0)

>
Q(B�K)

+�>

K
(Ru +B

>
Pe✓B)(K0 �Ke✓) + (K0 �Ke✓)

>(Ru +B
>
Pe✓B)�K

and Pe✓ = P1(e✓). It follows, by the definition of dlyap, that M satisfies,

M = (A+BK0)
>
M(A+BK0) + 2(B�K)>(Q1)(A+BK0) + 2(A+BK0)

>(Q1)(B�K)
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+ 2(B�K)>Q(B�K) + 2�>

K
(Ru +B

>
Pe✓B)�K

and that
d

ds
r2

K
R(K; e✓)|K=K0 [�K ,�K ] = tr

⇣
d

ds
M

⌘

Differentiating this expression for M with respect to s gives (where here we let (.)0 denote the derivative with respect to s)

tr(M 0) = tr
⇣
(A+BK0)

>
M

0(A+BK0) + (�A +�BK0)
>
M(A+BK0) + (A+BK0)

>
M(�A +�BK0)

+ 2(�B�K)>(Q1)(A+BK0) + 2(B�K)>(Q0

1)(A+BK0) + 2(B�K)>(Q1)(�A +�BK0)

+ 2(�A +�BK0)
>(Q1)(B�K) + 2(A+BK0)

>(Q0

1)(B�K) + 2(A+BK0)
>(Q1)(�B�K)

+ 2(�B�K)>Q(B�K) + 2(B�K)>Q0(B�K) + 2(B�K)>Q(�B�K)

+ 2�>

K
(�>

B
Pe✓B +B

>
P

0

e✓B +B
>
Pe✓�B)�K

⌘

= tr
⇣
dlyap

⇣
A+BK0, (�A +�BK0)

>
M(A+BK0) + (A+BK0)

>
M(�A +�BK0)

+ 2(�B�K)>(Q1)(A+BK0) + 2(B�K)>(Q0

1)(A+BK0) + 2(B�K)>(Q1)(�A +�BK0)

+ 2(�A +�BK0)
>(Q1)(B�K) + 2(A+BK0)

>(Q0

1)(B�K) + 2(A+BK0)
>(Q1)(�B�K)

+ 2(�B�K)>Q(B�K) + 2(B�K)>Q0(B�K) + 2(B�K)>Q(�B�K)

+ 2�>

K
(�>

B
Pe✓B +B

>
P

0

e✓B +B
>
Pe✓�B)�K

⌘⌘

 dxkdlyap(A+BK0, I)kop
⇣
2(1 + kK0kop)kA+BK0kopkMkop + 4kA+BK0kopkQ1kop

+ 4kBkop(1 + kK0kop)kQ1kop + 4kA+BK0kopkBkopkQ0

1kop + 4kBkopkQkop + 2kBk2opkQ0kop

+ 4kBkopkPe✓kop + 2kBk2opkP 0

e✓kop
⌘

Then, using bounds proved in Lemmas K.2 and K.3 to upper bound this at s = s2,

tr(M 0(s2))  cdx P?

⇣
(1 + kK0kop)

p
 P?kM(s2)kop +

p
 P?kQ1(s2)kop

+ B?(1 + kK0kop)kQ1(s2)kop + B?

p
 P?kQ0

1(s2)kop + B?kQ(s2)kop

+ 2
B?
kQ0(s2)kop + B? P? + 2

B?
kP 0

e✓(s2)
kop
⌘

By Lemma K.2 we can bound

kQ(s2)kop 
c

 P?

+
c Ru

 2
B?
 2

P?

, kQ1(s2)kop  c B?

p
 P? +

c Ru(1 + 1/ B?)p
 P?

and by Lemma K.3 we can bound

kM(s2)kop  kr2
K

R(K; ✓2)|K=K0kop  cdx

⇣
 2

B?
 2

P?
+ Ru(1 + B?) P?

⌘

Furthermore, by our assumption on K0 and Lemma B.8 of (Simchowitz & Foster, 2020),

kK0kop  kK?kop + 1/(30 B? 
3/2
P?

) 
p
 P? + 1/(30 B? 

3/2
P?

)

and by Lemma 3.2 of (Simchowitz & Foster, 2020) and Lemma K.6

kP 0

e✓(s2)
kop  4kPe✓(s2)k

3
op  c 3

P?

It remains to bound kQ0(s2)kop and kQ0

1(s2)kop. Given the expression for Q, we can differentiate it to get

Q
0 = dlyap

⇣
A+BK0, (�A +�BK0)

>
Q(A+BK0) + (A+BK0)

>
Q(�A +�BK0)



Task-Optimal Exploration in Linear Dynamical Systems

� (K 0

e✓)
>(Ru +B

>
Pe✓B)(K0 �Ke✓)� (K0 �Ke✓)

>(Ru +B
>
Pe✓B)(Ke✓)

+ (K0 �Ke✓)
>(�>

B
Pe✓B +B

>
P

0

e✓B +B
>
Pe✓�B)(K0 �Ke✓)

⌘

so,

kQ0kop  kdlyap(A+BK0, I)kop
⇣
2(1 + kK0kop)kA+BK0kopkQkop + 2k(Ru +B

>
Pe✓B)(K0 �Ke✓)kopkK

0

e✓kop

+ 2kK0 �Ke✓kopkB(K0 �Ke✓)kopkPe✓kop + kB(K0 �Ke✓)k
2
opkP 0

e✓kop
⌘

Lemma 3.2 of (Simchowitz & Foster, 2020) gives kK 0

e✓(s2)
kop  7kPe✓(s2)k

7/2
op  c 7/2

P?
. Then by the Mean Value Theorem,

kK0 �Ke✓(s2)kop  kK0 �K?kop + kK? �Ke✓(s2)kop

 1/(30 B? 
3/2
P?

) + max
s:ke✓(s)�✓?kopmin{1/(150 5

P?
), B?/2}

kK 0

e✓(s2)
kopk✓ � ✓?kop

 c(1 + 1/ B?)/ 
3/2
P?

Using this, Lemma K.6, and what we have shown above, we can then bound

kQ0(s2)kop  c

⇣
 B? 

4
P?

+ ( 1/2
Ru

+ Ru/ B?) 
3
P?

+ P? + Ru/ 
2
B?

+ 1/( B? P?) + Ru/( 
3
B?
 2

P?
)
⌘

We now bound kQ0

1(s2)kop. Differentiating the expression for Q1 given above yields:

Q
0

1 = dlyap
⇣
A+BK0, (�A +�BK0)

>
Q1(A+BK0) + (A+BK0)

>
Q1(�A +�BK0)

+ (�B�K)>Q(A+BK0) + (B�K)>Q0(A+BK0) + (B�K)>Q(�A +�BK0)

+ (�A +�BK0)
>
Q(B�K) + (A+BK0)

>
Q

0(B�K) + (A+BK0)
>
Q(�B�K)

+�>

K
(�>

B
Pe✓B +B

>
P

0

e✓B +B
>
Pe✓�B)(K0 �Ke✓)��

>

K
(Ru +B

>
Pe✓B)(K 0

e✓)

� (K 0

e✓)
>(Ru +B

>
Pe✓B)�K + (K0 �Ke✓)

>(�>

B
Pe✓B +B

>
P

0

e✓B +B
>
Pe✓�B)�K

⌘

Since we have already shown that the operator norms of all terms in this expression are polynomial in problem parameters,
we can bound

kQ0

1(s2)kop  poly( P? , Ru , B? , 1/ B?)

Plugging these quantities into our bound on tr(M 0(s2)), it follows that

tr(M 0(s2))  d
2
x

✓
 2

B?
 4

P?
+ (1 + B?) Ru 

3
P?

+
 Ru P?

 B?

◆

+ dxpoly( P? , Ru , B? , 1/ B?)

As this holds regardless of �K ,�✓, and for all ✓2 with k✓2 � ✓?kop  min{1/(150 5
P?
), B?/2}, we have shown that

|r2
K

R(K; ✓0)|K=K0 [�K ,�K ]�r2
K

R(K; ✓1)|K=K0 [�K ,�K ]|
 |r✓(r2

K
R(K; ✓)|K=K0 [�K ,�K ])|✓=✓2 [�✓]| · k✓0 � ✓1kop

 d
2
x

✓
 2

B?
 4

P?
+ (1 + B?) Ru 

3
P?

+
 Ru P?

 B?

◆
· k✓0 � ✓1kop

+ dxpoly( P? , Ru , B? , 1/ B?) · k✓0 � ✓1kop

from which the desired result follows.
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K.3. Norm Bounds on Control Theoretic Quantities

Lemma K.5 (Lemmas 3.2, B.3, B.8, and C.5 of (Simchowitz & Foster, 2020)). Let ✓(t) = (A? + t�A, B? + t�B) and
P (t) := P1(✓(t)),K(t) := Kopt(✓(t)). If max{k�Akop, k�Bkop}  ✏ and Rx, Ru ⌫ I , then, for t where (A(t), B(t))
is stabilizable,

1. kP 0(t)kop  4kP (t)k3op✏.

2. kP 00(t)kop  poly(kP (t)kop)✏2.

3. kK(t)kop 
p
kP (t)kop.

4. kK 0(t)kop  7kP (t)k7/2op ✏.

5. kK 00(t)kop  poly(kP (t)kop)✏2.

Lemma K.6. Assume that ✓? is stabilizable and Rx, Ru ⌫ I . Consider some alternate ✓ = (A,B) with k✓ � ✓?kop 
min{1/(150 5

P?
), B?/2} and a controller K0 with kK0�Kopt(✓?)kop  1/(30 B? 

3/2
P?

). Denote P✓ := P1(✓),K✓ :=
Kopt(✓). Then the following are true.

1.  P? , kP✓kop � 1.

2. ✓ is stabilizable.

3.  P?
⇠= kP✓kop and kP✓kop  5

q
3
71 P? .

4. kBkop  3
2 B? .

5. k(Ru +B
>
P✓B)(K? �K✓)kop  c1( 

1/2
Ru

+ 1/2
P?
 B?)/( 

3/2
P?

).

6. k(Ru +B
>
P✓B)(K0 �K?)kop  c2( Ru + 2

B?
 P?)/( B? 

3/2
P?

).

7. kdlyap(A+BK✓, I)kop, kdlyap(A+BK0, I)kop  c3 P? .

8. kA+BK0kop  c4

p
 P? .

for absolute constants c1, c2, c3, c4 and where ⇠= denotes equality up to absolute constants.

Proof. First, note that Rx ⌫ I implies  P? , kP✓kop � 1 by Lemma 4.2 of (Simchowitz & Foster, 2020), and that
kA? � Akop, kB? � Bkop  k✓ � ✓?kop. Given our assumption on k✓ � ✓?kop, it follows that 8 2

P?
k✓ � ✓?kop 

8/(150 3
P?
)  4

75 < 1. Proposition 6 of (Simchowitz & Foster, 2020) then implies that ✓ is stabilizable and that

kP✓kop  (1� 4/75)�1/2 P?  5

r
3

71
 P?

Applying the same bound in the opposite direction, we have that 8kP✓k2opk✓ � ✓?kop  8 75
71 

2
P?
k✓ � ✓?kop  8 75

71
1

150 =
4
71 < 1, so

 P?  (1� 4/71)�1/2kP✓kop 
r

71

67
kP✓kop

From which 3. follows.

If kB(K0 � K✓)kop  1/(5kP✓kop)3/2, A + BK0 is stable, by Proposition 7 of (Simchowitz & Foster, 2020). By
Proposition 6 of (Simchowitz & Foster, 2020), kB(K0�K✓)kop  kB(K0�K?)kop+kB(K?�K✓)kop  kBkopkK0�
K?kop + ckP✓k7/2op k✓ � ✓?kop  1/(5kP✓k3/2op ), where the last inequality holds by our bounds on kK0 � K?kop and
k✓ � ✓?kop, and plugging in the appropriate constants. Thus, A+BK0 is stable. Then the following hold.

• kBkop   B? + k✓ � ✓?kop  3
2 B? , where the last inequality holds since k✓ � ✓?kop   B?/2.
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• Let ⇣ = 8kP✓k2opk✓ � ✓?kop. Since ⇣ < 1/2 and k✓ � ✓?kop  1/(32kP✓k3op), then

k(K? �K✓)
>(Ru +B

>
P✓B)kop  kR1/2

u kopkR1/2
u (K? �K✓)kop + kP 1/2

✓
BkopkP 1/2

✓
B(K? �K✓)kop

(a)
 4(7kR1/2

u kop + 9kP 1/2
✓

Bkop)kP✓k7/2op k✓ � ✓?kop


c( 1/2

Ru
+ kP✓k1/2op kBkop)
kP✓k3/2op


c( 1/2

Ru
+ 1/2

P?
 B?)

 3/2
P?

(a) holds by Proposition 6 of (Simchowitz & Foster, 2020).

• Since kK0 �K?kop  1/(ckBkopkP✓k3/2op )

k(K0 �K?)
>(Ru +B

>
P✓B)kop = kK0 �K?kopkRu +B

>
P✓Bkop

 kRu +B
>
P✓Bkop

ckBkopkP✓k3/2op


c( Ru + 2

B?
 P?)

 B? 
3/2
P?

• By Lemma B.5, kdlyap(A+BK✓, I)kop  kP✓kop  c P? , so long as Rx ⌫ I .

• By Lemma B.12 of (Simchowitz & Foster, 2020), if kB(K0 � K✓)kop  1/(5kdlyap(A + BK✓, I)k3/2op ), then
kdlyap(A+BK0, I)kop  2kdlyap(A+BK✓, I)kop. Note that kB(K0 �K✓)kop  1/(5kdlyap(A+BK✓, I)k3/2op )

holds since kB(K0 �K✓)kop  1/(5kP✓k3/2op )  1/(5kdlyap(A+BK✓, I)k3/2op ).

• Note that kA+BK✓k2op  kdlyap(A+BK✓, I)kop, so, as long as ⇣  1/2,

kA+BK0kop  kA+BK✓kop + kB(K0 �K✓)kop 
q
kP✓kop + tkBkop + 32kP✓k7/2op k✓ � ✓?kop

 c

p
 P? +

c

 3/2
P?

 c

p
 P? .

Lemma K.7. Let ✓(t) = (A?+t�A, B?+t�B) and P (t) := P1(✓(t)),K(t) := Kopt(✓(t)), Acl(t) := A(t)+B(t)K(t).
If max{kA? � bAkop, kB? � bBkop}  ✏ and Rx, Ru ⌫ I , then for t such that (A(t), B(t)) is stabilizable:

kP 000(t)kop  (1 + kAcl(t)kop)(1 + kB(t)kop)poly(kP (t)kop)✏3.

Proof. For simplicity, we drop the t throughout the remainder of the proof. By Lemma C.2 of (Simchowitz & Foster,
2020), P 00 = dlyap(Acl, Q2) where Q2 = A

0>

cl P
0
Acl + A

>

clP
0
A

0

cl +Q
0

1, Q0

1 = A
0>

cl P�Acl + A
>

clP
0�Acl + A

>

clPB
0
K

0 +
(B0

K
0)>PAcl +�>

Acl
P

0
Acl +�>

Acl
PA

0

cl, and�Acl(t) = A
0(t) +B

0(t)Kopt(A(t), B(t)) = �A +�BKopt(A(t), B(t)).
By the definition of dlyap:

P
00 = A

>

clP
00
Acl +Q2

so:
P

000 = A
0

cl
>
P

00
Acl +A

>

clP
00
A

0

cl +A
>

clP
000
Acl +Q

0

2 = dlyap(Acl, A
0

cl
>
P

00
Acl +A

>

clP
00
A

0

cl +Q
0

2)

By Lemma B.5 of (Simchowitz & Foster, 2020), kP 000kop  kPkopkA0

cl
>
P

00
Acl + A

>

clP
00
A

0

cl + Q
0

2kop 
kPkop(2kA0

cl
>
P

00
Aclkop + kQ0

2kop). A
0

cl = �A + �BK + BK
0 so kA0

clkop  (
p
kPkop + 7kBkopkPk7/2op )✏. By

Lemma K.5, kA0

cl
>
P

00
Aclkop  kAclkop(1 + kBkop)poly(kPkop)✏3.

It remains to upper bound the operator norm of Q0

2. By definition of Q2, we see, for small absolute constant c:

kQ0

2kop  c

⇣
kA>

clP
0
A

00

clkop + kA0

cl
>
P

0
A

0

clkop + kAclP
00
A

0

clkop + kA00

cl
>
P�Aclkop + kA0

cl
>
P

0�Aclkop
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+ kA0

cl
>
P�0

Acl
kop + kA0

cl
>
P

00�Aclkop + kA0

cl
>
P

0�0

Acl
kop + kA0

cl
>
PB

0
K

0kop

+ kA>

clP
0
B

0
K

0kop + kA>

clPB
0
K

00kop
⌘

By Lemma K.5, kA00

clkop = k�BK
0 + BK

00kop  7kPk7/2op ✏
2 + kBkoppoly(kPkop)✏2. By definition, k�Aclkop 

✏, kB0kop  ✏. Finally, �0

Acl
= �BK

0 so k�0

Acl
kop  7kPk7/2op ✏

2. We see then that, by Lemma K.5, every term in the
above sum is order ✏3 so, combining everything, we have:

kP 000kop  (1 + kAclkop)(1 + kBkop)poly(kPkop)✏3

Lemma K.8. Let ✓(t) = (A? + t�A, B? + t�B) and K(t) := Kopt(✓(t)), Acl(t) := A(t) + B(t)K(t). If max{kA? �
bAkop, kB? � bBkop}  ✏, Rx, Ru ⌫ I , then for t such that (A(t), B(t)) is stabilizable:

kK 000(t)kop  poly(kP (t)kop, kB(t)kop, kAcl(t)kop)✏3.

Proof. As before, we drop the t throughout the remainder of the proof. By Lemma B.3 of (Simchowitz & Foster, 2020):

K
00 = R

�1
0 Q

0

3(t) +R
�1
0 (Ru +B

>
PB)0K 0

where Q3 = �>

B
PAcl +B

>
P�Acl +B

>
P

0
Acl and R0 = Ru +B

>
PB. So, using the identity (X�1)0 = �X�1

X
0
X

�1:

K
000 = R

�1
0 Q

00

3 +R
�1
0 (Ru +B

>
PB)0R�1

0 Q
0

3 +R
�1
0 (Ru +B

>
PB)0R�1

0 (Ru +B
>
PB)0K 0

+R
�1
0 (Ru +B

>
PB)00K 0 +R

�1
0 (Ru +B

>
PB)0K 00

By Lemma C.3 of (Simchowitz & Foster, 2020), kR�1
0 kop  1. (Ru + B

>
PB)0 = �>

B
PB + B

>
P

0
B + B

>
P

0�B

so by Lemma K.5, k(Ru + B
>
PB)0kop  poly(kBkop, kPkop)✏. Similarly, we see that k(Ru + B

>
PB)00kop 

poly(kBkop, kPkop)✏2. Using Lemma K.5 to bound kK 0kop and kK 00kop, we have:

kK 000kop  kQ00

3kop + kQ0

3koppoly(kBkop, kPkop)✏+ poly(kBkop, kPkop)✏3

It remains to bound kQ00

3kop and kQ0

3kop. By definition:

Q
0

3 = 2�>

B
P

0
Acl +�

>

B
PA

0

cl +�
>

B
P�Acl +B

>
P

0�Acl +B
>
P�0

Acl
+B

>
P

00
Acl +B

>
P

0
A

0

cl

Using previously computed norm bounds, we have kQ0

3kop  poly(kBkop, kPkop)✏2. To bound Q
00

3 , we can differentiate
the above, obtaining that, for a small absolute constant c:

kQ00

3kop  c

⇣
k�>

B
P

00
Aclkop + k�>

B
P

0
A

0

clkop + k�>

B
PA

00

clkop + k�>

B
P

0�Aclkop + k�>

B
P�0

Acl
kop

+ kB>
P

00�Aclkop + kB>
P

0�0

Acl
kop + kB>

P�00

Acl
kop + kB>

P
000
Aclkop

+ kB>
P

00
A

0

clkop + kB>
P

0
A

00

clkop
⌘

k�00

Acl
kop  k�BK

00kop  poly(kPkop)✏3. Then, using Lemma K.7 and previously computed norm bounds, we have:

kQ00

3kop  poly(kPkop, kBkop, kAclkop)✏3

Combining everything gives the stated result.

L. Provable Gains for Task-Optimal Design
L.1. Preliminaries for Comparison of Designs

Asymptotic Notation. We assume that ⇢ is close to 1, and are primarily concerned with the scaling in dx and 1
1�⇢ . As such,

we let ⇥⇢(·) hide numerical constants and terms lower order in 1
1�⇢ . That is, we write x = ⇥⇢(

1
(1�⇢)n ) if x = cn

(1�⇢)n +
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P
n�1
j=1

cj

(1�⇢)j , for numerical constants c1, . . . , cn. Similarly, we write x = ⇥⇢(
�1

(1�⇢)n ) if x = �cn
(1�⇢)n +

P
n�1
j=1

cj

(1�⇢)j for
cn > 0. In addition, we let ⇡⇢ denote that two quantities have the same scaling in 1� ⇢, up to absolute constants.

⇥⇢(·) does not suppress dimension dependence, but in some cases it will be convenient to hide dimension dependence
that is lower order in 1

1�⇢ . In such cases, to make clear that we are doing this, we will use ⇥⇢,dx(·). Formally, x =

⇥⇢,dx(
1

(1�⇢)n + d
m
x

(1�⇢)p ) if x = cn
(1�⇢)n +

P
n�1
j=1

cj

(1�⇢)j + d
m
x

(1�⇢)p +
P

p�1
j=1

bjd
mj
x

(1�⇢)j . In general we will only apply this
notation to the final sample complexities when we are concerned with identifying the leading terms. We will also use O(·)
in its standard form, suppressing lower order dependence on dx and 1

1�⇢ .

Convex Representation of Inputs. Recall that Theorem 2.1 show the task complexity achieves by any policy scales as
tr(H(✓?)�T (⇡; ✓?)�1) (where, throughout this section, we let �T (⇡; ✓?) denote the expected covariates under policy ⇡).
In particular, if we are playing periodic policies, as Lemma H.4 shows we can approximate �T (⇡; ✓?) with �ss

T
(⇡; ✓?) so

the complexity scales instead as tr(H(✓?)�ss
T
(⇡; ✓?)�1). Similarly, if we are playing only noise, the complexity scales as

tr(H(✓?)�noise
T

(⇡; ✓?)�1)/T .

Throughout, we will assume that �2 � �
2 so we ignore the contribution of process noise to �ss

T
(⇡; ✓?). If our policy plays a

periodic input U = (U`)k`=1 2 U�2,k, recall that

�ss
T
(⇡; ✓?) =

kX

`=1

(e◆
2⇡`
k I � eA?)�1 eB?U` eBH

?
(e◆

2⇡`
k I � eA?)�H

Some algebra shows that

(e◆
2⇡`
k I � eA?)�1 eB? =


(e◆

2⇡`
k I �A?)�1

B?

I

�

As we have already shown, a general matrix signal U can be realized in the time domain via a certain decomposition (see
Appendix B.5.3) so in the following we will consider optimizing over U` so that �ss

T
(⇡; ✓?) satisfies our objective.

We will consider the performance of TOPLE, optimal operator-norm identification, optimal Frobenius norm identification,
and optimal noise excitation. By construction, TOPLE plays periodic inputs. Similarly, note that the optimal Frobenius norm
identification algorithm is itself an instance of TOPLE—with Hfro(✓?) = I—so we can assume that the optimal Frobenius
norm identification algorithm also plays periodic inputs. As (Wagenmaker & Jamieson, 2020) show, the optimal operator-
norm identification also plays periodic inputs. In all cases, then, we will consider the complexity tr(H(✓?)�ss

T
(⇡; ✓?)�1).

For optimal noise excitation, we consider instead the complexity tr(H(✓?)�noise
T

(⇡; ✓?)�1)/T .

Simplifications. Note that due to the structure of �T , we have

tr(H(✓?)�T (⇡; ✓?)
�1) =

dX

i=1

tr(Hi�T (⇡; ✓?)
�1)

where we let Hi := [H(✓?)](i�1)(d+p)+1:i(d+p),(i�1)(d+p)+1:i(d+p), the ith (d + p) ⇥ (d + p) block diagonal element of
H(✓?). We will denote elements of H(✓?) with [H(✓?)]Aij ,Anm , where

[H(✓?)]Aij ,Anm = vec(✓ij)
>H(✓?)vec(✓nm)

and ✓ij = (eie>j , 0) (and similarly for B). See Appendix G.3 for a more in-depth discussion of the vectorization of linear
dynamical systems. By our construction of H(✓?), the elements [H(✓?)]Anm,Anm and [H(✓?)]Bnm,Bnm will lie on the
diagonal of H(✓?), while other elements will not. Furthermore, elements of the form [H(✓?)]Anm,Amn (and replacing A

with B) with m 6= n will not be contained in any Hi, as these will lie off the block-diagonal. It follows that the expressions
given above include all entries of H(✓?) that will appear in our calculations.

Computation of Inputs. For each exploration strategy, our goal will be to compute the inputs ⇡ optimal for a given
exploration criteria, and then compute the value of �T (⇡; ✓?) = tr

�
H(✓?)�T (⇡; ✓?)�1

�
for this input. As Theorem 2.1

shows, the task complexity of any given exploration strategy ⇡ scales as �T (⇡; ✓?) = tr
�
H(✓?)�T (⇡; ✓?)�1

�
.
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Note that the optimal Frobenius norm identification algorithm is simply TOPLE, but with H(✓?) = I . Thus, for the optimal
task-specific strategy and the Frobenius norm identification strategy, we can compute the optimal inputs by choosing those
inputs which minimize �T (⇡; ✓?) = tr

�
H(✓?)�T (⇡; ✓?)�1

�
, for each H(✓?). By Lemma G.3 we have that �opt(�2; ✓?)

and �ss
opt(�

2; ✓?) are equivalent up to constants, where

�ss
opt(�

2; ✓?) := lim inf
T!1

min
u2U�2,T

tr
⇣
H(✓?)�

ss
T,T

(e✓?, u, 0)�1
⌘

Note that this corresponds to the covariates obtained when playing an input that is only sinusoidal and has no noise
component. Furthermore, as TOPLE is optimal and itself plays periodic inputs, it suffices to consider only periodic
inputs. Putting this together, for large enough T , for the task-optimal and Frobenius norm strategies, we simply analyze
tr
�
H(✓?)�ss

T
(⇡; ✓?)�1

�
and only consider periodic, non-noise inputs.

The case of operator norm identification is similar. As is shown in (Wagenmaker & Jamieson, 2020), the optimal inputs here
are also periodic, so it follows that tr

�
H(✓?)�T (⇡; ✓?)�1

�
⇡⇢ tr

�
H(✓?)�ss

T
(⇡; ✓?)�1

�
, for ⇡ the optimal operator norm

inputs. Furthermore, an argument similar to that used in the proof of Theorem B.2 can be used to show that the optimal
inputs are sinusoidal with no noise component. It follows that we can, in this case, also simply analyze the steady-state
covariates with no noise component.

Note that TOPLE itself does mix the sinusoidal input with a noise component to ensure sufficient excitation. While the above
argument shows that this does not improve the complexity of Frobenius or operator norm identification evaluated in the
Frobenius or operator norm, one might hope that the inclusion of noise would help these exploration strategies more easily
transfer to the actual task of interest. We make two remarks on this. First, as we are concerned with the inputs optimal on
Frobenius and operator norm identification, and as these inputs do not require this noise component, the result we obtain
would still hold even if this was the case. Second, our analysis shows that if we play the noise that optimally excites the
system for completing the task of interest, the complexity obtained is still suboptimal. Thus, even if we were to mix the
operator or Frobenius norm identification inputs with the optimal noise, the resulting strategy would still be suboptimal, so
our conclusion holds regardless of whether noise is played or not.

Finally, to simplify the analysis further we ignore the contribution from the excitation due to the process noise when
computing the covariates. This is reasonable for small values of �2

w
, which will make this contribution lower order.

L.2. Computation of Task Hessian

Lemma L.1 (Computation of Task Hessian). Consider the following instance of the LQR problem:

A? = ⇢1e1e
>

1 + ⇢2(I � e1e
>

1 ), B? = bI, Rx = 1e1e
>

1 + 2(I � e1e
>

1 ), Ru = µI

Then, if n 6= m,

[H(✓?)]Anm,Anm =
1

(µ+ b2pn)(1� a2
m
)
(

bpn

1� anam
)2 +

1

(µ+ b2pm)(1� a2
n
)
(

bpna
2
n

1� anam
)2

and if n = m,

[H(✓?)]Ann,Ann =
1

(µ+ b2pn)(1� a2
n
)

⇣
bpn(1 + a

2
n
)

1� a2
n

⌘2

If n 6= m,

[H(✓?)]Bnm,Bnm =
1

(µ+ b2pn)(1� a2
m
)
(

bpnkm

1� anam
)2 +

1

(µ+ b2pm)(1� a2
n
)

⇣
pnan �

bpna
2
n
km

1� anam

⌘2

and if n = m,

[H(✓?)]Bnn,Bnn =
1

(µ+ b2pn)(1� a2
n
)

⇣
pnan �

bpnkn(1 + a
2
n
)

1� a2
n

⌘2

Finally, if n 6= m,

[H(✓?)]Anm,Bnm =
�km

(µ+ b2pn)(1� a2
m
)
(

bpn

1� anam
)2 +

1

(µ+ b2pm)(1� a2
n
)

⇣
pnan �

bpna
2
n
km

1� anam

⌘
bpna

2
n

1� anam
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and if n = m,

[H(✓?)]Ann,Bnn =
1

(µ+ b2pn)(1� a2
n
)

⇣
bpn(1 + a

2
n
)

1� a2
n

⌘⇣
pnan �

bpnkn(1 + a
2
n
)

1� a2
n

⌘
.

Furthermore, all other elements of H(✓?) which appear in
P

d

i=1 tr(Hi�T (⇡; ✓?)�1) are 0.

Proof. Note that here P? is diagonal with diagonal elements pi = [P?]ii satisfying

pi = ⇢
2
i
pi �

⇢
2
i
b
2
p
2
i

µ+ b2pi
+ i =) pi =

1

2b2

✓
b
2
i � µ+ µ⇢

2
i
+
q

4b2µi + (µ� b2i � µ⇢
2
i
)2
◆

where we set ⇢i = ⇢2,i = 2, i � 2. It follows that K? is diagonal and that ki := [K?]ii =
⇢ibpi

µ+b2pi
, so Acl,? is also

diagonal. Let ai := [Acl,?]ii.

By definition, H(✓?) = (r✓Kopt(✓)|✓=✓?)>(r2
K

R(K; ✓?)|K=Kopt(✓?))(r✓Kopt(✓)|✓=✓?). Our goal is to calculate how
H(✓?) scales with the problem parameters, and from this determine the error rate of different exploration approaches. To
this end, let A(t1, t2) = A? + t1�1

A
+ t2�2

A
, B(t1, t2) = B? + t1�1

B
+ t2�2

B
, �1

✓
= (�1

A
,�2

B
),�2

✓
= (�2

A
,�2

B
), and

K(t1, t2) = Kopt(A(t1, t2), B(t1, t2)). Then by the chain rule,

d

dt2

d

dt1
R(K(t1, t2); ✓?)|t1=t2=0 = (r✓Kopt(✓)|✓=✓? [�1

✓
])>(r2

K
R(K; ✓?)|K=K?)(r✓Kopt(✓)|✓=✓? [�2

✓
])

= vec(�1
✓
)>H(✓?)vec(�

2
✓
)

Thus, to determine the value of H(✓?), we can simply evaluate d

dt2

d

dt1
R(K(t1, t2); ✓?)|t1=t2=0 for different values of

�1
✓
,�2

✓
. Now recall that,

R(K; ✓?) = tr
�
dlyap(A? +B?K, (K �K?)

>(Ru +B
>

?
P?B?)(K �K?))

�

= tr

 
1X

s=0

(A? +B?K)s(K �K?)
>(Ru +B

>

?
P?B?)(K �K?)((A? +B?K)>)s

!

Setting K = K(t1, t2) and differentiating this with respect to t1, t2, we find that

vec(�1
✓
)>H(✓?)vec(�

2
✓
) =

d

dt2

d

dt1
R(K(t1, t2); ✓?)|t1=t2=0

= tr
�P

1

s=0A
s

cl,?(K
t1(0, 0))>(µI + b

2
P?)(K

t2(0, 0))As

cl,?

�

=
P

1

s=0tr
�
A

2s
cl,?(K

t1(0, 0))>(µI + b
2
P?)(K

t2(0, 0))
�

=
P

1

s=0

P
dx

i=1a
2s
i
[Kt1(0, 0)>(µI + b

2
P?)K

t2(0, 0)]ii

=
dxX

i=1

[Kt1(0, 0)>(µI + b
2
P?)Kt2(0, 0)]ii

1� a
2
i

Recall that
K

ti(0, 0) = �(µI + b
2
P?)

�1
�
(�i

B
)>P?Acl,? + bP?�

i

Acl
+ bP

ti(0, 0)Acl,?

�

where �i

Acl
= �i

A
��i

B
K?, and

P
ti(0, 0) = dlyap(Acl,?, Qi) =

1X

s=0

A
s

cl,?QiA
s

cl,?, Qi = A
>

cl,?P?�
i

Acl
+ (�i

Acl
)>P?Acl,?

Thus,

[Kt1(0, 0)>(µI + b
2
P?)K

t2(0, 0)]ii =
h �

(�1
B
)>P?Acl,? + bP?�

1
Acl

+ bP
t1(0, 0)Acl,?

�> · (µI + b
2
P?)

�1

·
�
(�2

B
)>P?Acl,? + bP?�

2
Acl

+ bP
t2(0, 0)Acl,?

� i

ii
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= [(�1
B
)>P?Acl,? + bP?�

1
Acl

+ bP
t1(0, 0)Acl,?]

>

:,i · (µI + b
2
P?)

�1

· [(�2
B
)>P?Acl,? + bP?�

2
Acl

+ bP
t2(0, 0)Acl,?]:,i

=
�
piai[�

1
B
]i,: + bP?[�

1
Acl

]:,i + bai[P
t1(0, 0)]:,i

�> · (µI + b
2
P?)

�1

·
�
piai[�

2
B
]i,: + bP?[�

2
Acl

]:,i + bai[P
t2(0, 0)]:,i

�

and

[P t1(0, 0)]:,i =
1X

s=0

[As

cl,?Q1A
s

cl,?]:,i =
1X

s=0

a
s

i
A

s

cl,?[Q1]:,i = (I � aiAcl,?)
�1[Q1]:,i

= (I � aiAcl,?)
�1(Acl,?P?[�

1
Acl

]:,i + piai[�
1
Acl

]i,:)

Putting this together, we have that

vec(�1
✓
)>H(✓?)vec(�

2
✓
)

=
dxX

i=1

1

(1� a
2
i
)

⇣
piai[�

1
B
]i,: + b(I + ai(I � aiAcl,?)

�1
Acl,?)P?[�

1
Acl

]:,i + bpia
2
i
(I � aiAcl,?)

�1[�1
Acl

]i,:
⌘>

· (µI + b
2
P?)

�1
⇣
piai[�

2
B
]i,: + b(I + ai(I � aiAcl,?)

�1
Acl,?)P?[�

2
Acl

]:,i + bpia
2
i
(I � aiAcl,?)

�1[�2
Acl

]i,:
⌘

=
dxX

i=1

dxX

j=1

1

(µ+ b2pj)(1� a
2
i
)

⇣
piai[�

1
B
]i,j +

bpj

1� aiaj
([�1

A
]j,i � ki[�

1
B
]j,i) +

bpia
2
i

1� aiaj
([�1

A
]i,j � kj [�

1
B
]i,j)

⌘

·
⇣
piai[�

2
B
]i,j +

bpj

1� aiaj
([�2

A
]j,i � ki[�

2
B
]j,i) +

bpia
2
i

1� aiaj
([�2

A
]i,j � kj [�

2
B
]i,j)

⌘
(L.1)

We now evaluate the above when �1
B
= �2

B
= 0 and �1

A
= e`e

>

o
,�2

A
= ene

>

m
. For this to be non-zero, we must have that

either ` = n, o = m or ` = m, o = n and, as noted previously, we can ignore the case when ` = m, o = n. Therefore, if
n 6= m,

[H(✓?)]Anm,Anm =
1

(µ+ b2pn)(1� a2
m
)
(

bpn

1� anam
)2 +

1

(µ+ b2pm)(1� a2
n
)
(

bpna
2
n

1� anam
)2

and if n = m,

[H(✓?)]Ann,Ann =
1

(µ+ b2pn)(1� a2
n
)

⇣
bpn(1 + a

2
n
)

1� a2
n

⌘2

Now consider�1
A
= �2

A
= 0 and�1

B
= e`e

>

o
,�2

B
= ene

>

m
. As before, for [H(✓?)]B`o,Bnm to be non-zero, we need either

` = n, o = m or ` = m, o = n. Therefore, if n 6= m,

[H(✓?)]Bnm,Bnm =
1

(µ+ b2pn)(1� a2
m
)
(

bpnkm

1� anam
)2 +

1

(µ+ b2pm)(1� a2
n
)

⇣
pnan �

bpna
2
n
km

1� anam

⌘2

and if n = m,

[H(✓?)]Bnn,Bnn =
1

(µ+ b2pn)(1� a2
n
)

⇣
pnan �

bpnkn(1 + a
2
n
)

1� a2
n

⌘2

Finally, we consider the case where �1
A
= e`e

>

o
,�2

A
= 0 and �1

B
= 0,�2

B
= ene

>

m
. Again, we must have that either

` = n, o = m or ` = m, o = n for [H(✓?)]A`o,Bnm to be non-zero. Therefore, if n 6= m,

[H(✓?)]Anm,Bnm =
�km

(µ+ b2pn)(1� a2
m
)
(

bpn

1� anam
)2 +

1

(µ+ b2pm)(1� a2
n
)

⇣
pnan �

bpna
2
n
km

1� anam

⌘
bpna

2
n

1� anam

and if n = m,

[H(✓?)]Ann,Bnn =
1

(µ+ b2pn)(1� a2
n
)

⇣
bpn(1 + a

2
n
)

1� a2
n

⌘⇣
pnan �

bpnkn(1 + a
2
n
)

1� a2
n

⌘
.
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L.3. Proof of Proposition 4.1

Here we choose ⇢1 = ⇢, ⇢2 = 0, b =
p
1� ⇢,1 = 2 = 1

p
1�⇢

, and µ = 1
(1�⇢)2 . With these constants, some algebra

shows that

a1 = O(⇢), 1
1�a1

= ⇥⇢(
1

1�⇢ ), ai = 0, i � 2

k1 = O(1� ⇢), ki = 0, i � 2

p1 = ⇥⇢(
1

(1�⇢)3/2
), pi = ⇥⇢(

1
p
1�⇢

), i � 2

Plugging these values into the expression given for H(✓?) in Lemma L.1, we have

[H(✓?)]A11,A11 = ⇥⇢

✓
1

(1� ⇢)3

◆
, [H(✓?)]A1m,A1m = ⇥⇢

✓
1

1� ⇢

◆
,m � 2

[H(✓?)]B11,B11 = ⇥⇢

✓
1

(1� ⇢)2

◆
, [H(✓?)]B1m,B1m = ⇥⇢

✓
1

(1� ⇢)2

◆
,m � 2

[H(✓?)]A11,B11 = ⇥⇢

✓
1

(1� ⇢)5/2

◆
, [H(✓?)]A1m,B1m = ⇥⇢

✓
1

(1� ⇢)3/2

◆
,m � 2

All other terms are 0 or do not scale with 1
1�⇢ and can therefore be ignored. It follows that the sample complexity will scale

as

tr(H(✓?)�T (⇡; ✓?)
�1) ⇡⇢ tr(H1�T (⇡; ✓?)

�1)

where here

H1 ⇡⇢
1

(1� ⇢)3
e1e

>

1 +
1

1� ⇢

dxX

j=2

eje
>

j
+

1

(1� ⇢)2

dxX

j=1

edx+je
>

dx+j
+

1

(1� ⇢)5/2
(e1e

>

dx+1 + edx+1e
>

1 )

+
1

(1� ⇢)3/2

dxX

j=2

(eje
>

dx+j
+ edx+je

>

j
)

Sample Complexity of TOPLE. Our results show that the sample complexity of TOPLE scale with steady state covariates,
and we can therefore analyze tr(H1�ssT (⇡; ✓?)

�1). As TOPLE plays the optimal inputs and we are concerned with obtaining
an upper bound on its performance, we will simply construct a feasible input, which will then upper bound the actual
performance.

In particular, we will set U` = 0 for all but two ` (and their conjugate partners), and for those ` will set U` = U
0 :=

u1 0
0 u2Idx�1

�
. In that case, we will have

�ss
T
(⇡; ✓?) / 2real

✓
(e◆!1I �A?)�1

B?

I

�
U

0


(e◆!1I �A?)�1

B?

I

�H
+


(e◆!2I �A?)�1

B?

I

�
U

0


(e◆!2I �A?)�1

B?

I

�H◆

= 2

2

664

|e◆!1 � ⇢|�2(1� ⇢)u1 0 real((e◆!1 � ⇢)�1)
p
1� ⇢u1 0

0 2(1� ⇢)u2I 0 real((e◆!1)�1)
p
1� ⇢u2I

real((e◆!1 � ⇢)�1)
p
1� ⇢u1 0 2u1 0

0 real((e◆!1)�1)
p
1� ⇢u2I 0 2u2I

3

775

+ 2

2

664

|e◆!2 � ⇢|�2(1� ⇢)u1 0 real((e◆!2 � ⇢)�1)
p
1� ⇢u1 0

0 0 0 real((e◆!2)�1)
p
1� ⇢u2I

real((e◆!2 � ⇢)�1)
p
1� ⇢u1 0 0 0

0 real((e◆!2)�1)
p
1� ⇢u2I 0 0

3

775

where we simplify using the values of A?, B?, !1 and !2 are the input frequencies we choose, and the real comes from the
conjugate symmetry. We write “/” instead of “=” as additional normalization by factors of T and k are necessary to yield
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equality, and for simplicity we currently ignore. We will handle these factors later. For large enough T , !1 and !2 can be
chosen essentially as desired, so we set !1 = 1� ⇢ and !2 = ⇡ + 1� ⇢. As we take ⇢ close to 1, we have

e
◆!1 = cos(!1) + ◆ sin(!1) = 1 + ◆(1� ⇢) + o(1� ⇢), e

◆!2 = �1� ◆(1� ⇢) + o(1� ⇢)

It follows that

real((e◆!1)�1) = �real((e◆!2)�1)

real((e◆!1 � ⇢)�1) =
1� ⇢

2(1� ⇢)2
+ o((1� ⇢)2), |e◆!1 � ⇢|�2 =

1

2(1� ⇢)2
+ o((1� ⇢)2)

real((e◆!2 � ⇢)�1) =
�1� ⇢

(1 + ⇢)2
+ o(1� ⇢), |e◆!2 � ⇢|�2 = O(1)

Plugging these in, we get that the above is equal to:
2

664

u1
1�⇢ + O((1� ⇢)u1) 0 u1p

1�⇢
�O((1� ⇢)3/2u1) 0

0 4(1� ⇢)u2I 0 0
u1p
1�⇢
�O((1� ⇢)3/2u1) 0 4u1 0

0 0 0 4u2I

3

775

This has the form given in Lemma L.2 so, applying this result and approximating u1
1�⇢ + O((1 � ⇢)u1) as u1

1�⇢ and
u1p
1�⇢
�O((1� ⇢)3/2u1) as u1p

1�⇢
, (we note that this approximation will not affect the leading terms in the inverse due to

the form of the inverse given in Lemma L.2) we have that the inverse of this matrix will be
2

6664

4(1�⇢)
3u1

0 �
p
1�⇢

3u1
0

0 1
4(1�⇢)u2

I 0 0
�
p
1�⇢

3u1
0 1

3u1
0

0 0 0 1
4u2

I

3

7775
(L.2)

Plugging this into our expression for tr(H(✓?)�T (⇡; ✓?)�1) gives

T tr(H(✓?)�T (⇡; ✓?)
�1) ⇡⇢

1

(1� ⇢)2u0

1

+
dx

(1� ⇢)2u0

2

+
1

(1� ⇢)2u0

1

+
dx

(1� ⇢)2u0

2

� 1

(1� ⇢)2u0

1

where u
0

i
denotes ui/k

2. As we are interested in obtaining an upper bound on the sample complexity of TOPLE, we upper
bound this by

O
✓

1

(1� ⇢)2u0

1

+
dx

(1� ⇢)2u0

2

◆

It remains to choose u
0

1, u
0

2 that satisfy u
0

1 + (dx � 1)u0

2  �
2
/2. Choosing the values that minimize the above gives the

final complexity:

O
✓

d
2
x

(1� ⇢)2�2

◆
.

Sample Complexity of Operator Norm Identification. As was shown in (Wagenmaker & Jamieson, 2020), the optimal
operator norm identification algorithm will choose the inputs that maximize �min(�ssT (⇡; ✓?)). We will first construct an
input with diagonal U` and, as in the previous section, with u2 = . . . = udx , and will then show that this input is in fact
optimal.

Intuitively, the optimal operator norm identification algorithm seeks to input energy at frequencies which best excite
the system (maximize �min(�ssT (⇡; ✓?))), and that balance the gain in each direction. Note that, regardless of the input
frequencies, the computation in the previous section shows that, other than the first element, the diagonal components
of �ss

T
(⇡; ✓?) will scale as (1� ⇢)u2, u1, and u2, respectively. Ignoring for a minute the contribution of the off-diagonal
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terms, the value of the first coordinate will be maximized if energy is input at the frequency !1 which maximizes
|e◆!1I � ⇢|�2(1� ⇢)u1. It is easy to see that this is maximized at !1 = 0, which gives the value to the first coordinate of
u1
1�⇢ , and, ignoring off diagonal entries, a minimum eigenvalue of

�min(�
ss
T
(⇡; ✓?)) = 2T min{ u1

1�⇢ , (1� ⇢)u2, u1, u2} = 2T min{(1� ⇢)u2, u1}

To maximize this while respecting the power constraint, operator norm-identification will choose u2 ⇡⇢ �
2
/dx and

u1 ⇡⇢ (1� ⇢)�2
/dx, which will yield the minimum eigenvalue of

�min(�
ss
T
(⇡; ✓?)) ⇡⇢ T (1� ⇢)�2

/dx

Now taking into account the off-diagonal terms and applying Lemma L.3, using the expression for �ss
T
(⇡; ✓?) given in the

analysis of TOPLE, we see that the contribution of the off-diagonal entries causes the minimum eigenvalue to instead be 0.
However, if we instead set the inputs to those chosen in the previous section, as we saw there we have

�ss
T
(⇡; ✓?) = 2T

2

664

u1
1�⇢ + O((1� ⇢)u1) 0 u1p

1�⇢
�O((1� ⇢)3/2u1) 0

0 4(1� ⇢)u2I 0 0
u1p
1�⇢
�O((1� ⇢)3/2u1) 0 4u1 0

0 0 0 4u2I

3

775 (L.3)

Applying Lemma L.3 to this, after some algebra we see that

�min(�
ss
T
(⇡; ✓?)) ⇡⇢ T min{ u1

1�⇢ , u1, u2, (1� ⇢)u2} = T min{u1, (1� ⇢)u2}

Choosing u2 ⇡⇢ �2
/dx and u1 ⇡⇢ (1� ⇢)�2

/dx to balance this as before, we have that this input yields

�min(�
ss
T
(⇡; ✓?)) ⇡⇢ T (1� ⇢)�2

/dx

Observe that this achieves the same minimum eigenvalue as that achieved ignoring off-diagonal terms (up to constants) and
that, furthermore, the form of the minimum eigenvalue given in Lemma L.3 implies that the off-diagonal terms will only
decrease the minimum eigenvalue. It follows that T (1� ⇢)�2

/dx is an upper bound on the minimum achievable eigenvalue
when the inputs are diagonal so, since this input achieves this value, this is the near-optimal diagonal input for operator
norm identification. It follows that the optimal covariance with diagonal inputs will take the form given in (L.3).

We now show that the globally optimal inputs are diagonal. We have just shown that the optimal covariance, when playing a
diagonal input, will take the form

�ss
T
(⇡?; ✓?) ⇡⇢ 2T

2

66664

�
2

dx
0

p
1�⇢�2

dx
0

0 4(1�⇢)�2

dx
I 0 0

p
1�⇢�2

dx
0 4(1�⇢)�2

dx
0

0 0 0 4�2

dx
I

3

77775
(L.4)

Now consider some� 2 C
du⇥du , and consider perturbing our optimal diagonal input at some frequency ! by� to form

the new input U! +�. For our new input to be in our feasible set, we must have that tr(�)  0 and that� is symmetric.
We want to show that, for every such perturbation, �min(�ssT (⇡

0; ✓?))  �min(�ssT (⇡
?; ✓?)) (where ⇡

0 denotes the perturbed
input). By first-order optimality conditions, this will imply that the diagonal input is optimal.

The resulting perturbation to the input will perturb �ss
T
(⇡?; ✓?) as

�ss
T
(⇡0; ✓?) = �

ss
T
(⇡?; ✓?) + 2T real

✓
G�G

H
G�

�G
H �

�◆
, G :=

p
1� ⇢(ej! � ⇢)�1 0

0
p
1� ⇢e

�j!
I

�

where here G is equal to (ej!I � A?)�1
B?. Note that the eigenvectors corresponding to the minimum eigenvalues of

�ss
T
(⇡?; ✓?) are v2, . . . , vdx = e2, . . . , edx and, some algebra shows,

v1 =

"
1� 4(1� ⇢)�

p
1� 4(1� ⇢) + 16(1� ⇢)2

2
p
1� ⇢

, 0, . . . , 0, 1, 0, . . . , 0

#
=
h
�
p

1� ⇢+ o(1� ⇢), 0, . . . , 0, 1, 0, . . . , 0
i
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where the 1 as at the index dx + 1. Some algebra shows that

v
>

i
real

✓
G�G

H
G�

�G
H �

�◆
vi = (1� ⇢)�ii, i � 2

where, since vi = ei the inner products select only the diagonal elements, and

v
>

1 real

✓
G�G

H
G�

�G
H �

�◆
v1 ⇡⇢

⇣
(1� ⇢)2|ej! � ⇢|�2 � 2(1� ⇢)real((ej! � ⇢)�1) + 1

⌘
�11

=

✓
(1� ⇢)2

(cos! � ⇢)2 + sin2 !
+ 1� 2(1� ⇢)(cos! � ⇢)

(cos! � ⇢)2 + sin2 !

◆
�11

�
✓
1� (1� ⇢)(cos! � ⇢)

(cos! � ⇢)2 + sin2 !

◆
�11

=

✓
1� (1� ⇢)(cos! � ⇢)

1 + ⇢2 � 2⇢ cos!

◆
�11

and note that
⇣
1� (1�⇢)(cos!�⇢)

1+⇢2�2⇢ cos!

⌘
� 0 for all !. We must have that

P
dx

i=1�ii  0 to meet our constraint. This implies
that either all �ii = 0, or there exists i0 such that �i0i0 < 0. By the above expressions, it follows that, if i0 � 2, the latter
case will cause the minimum eigenvalue to decrease, and if i0 = 1, the minimum eigenvalue cannot increase. It follows that
our perturbation � cannot increase �min(�ssT (⇡

?; ✓?)), which implies that the optimal input is in fact diagonal.

Returning to the optimal covariates obtained with diagonal inputs, using the inverse expression for �ss
T
(⇡?; ✓?) given in the

analysis of TOPLE (L.2), we then have that

T tr(H(✓?)�T (⇡
?; ✓?)

�1) = [H(✓?)]A11,A11

4(1� ⇢)

3u1
+ 2[H(✓?)]A11,B11

�
p
1� ⇢

3u1
+ [H(✓?)]B11,B11

1

3u1
+⇥⇢,dx

✓
dx

(1� ⇢)2u2

◆

From the expression for H(✓?) given in (L.1), we see that we can express

[H(✓?)]A11,A11 = c
2
1, [H(✓?)]B11,B11 = c

2
2, [H(✓?)]A11,B11 = c1c2

for some values c1, c2. It follows that,

[H(✓?)]A11,A11

4(1� ⇢)

3u1
+ 2[H(✓?)]A11,B11

�
p
1� ⇢

3u1
+ [H(✓?)]B11,B11

3

u1
=

1

3u1

⇣p
1� ⇢c1 � c2

⌘2
+

1

u1
(1� ⇢)c21

Now plugging in values of c1, c2, we have

1

3u1

⇣p
1� ⇢c1 � c2

⌘2
+

1

u1
(1� ⇢)c21 = ⇥⇢

✓
1

(1� ⇢)2u1

◆

Which gives

T tr(H(✓?)�T (⇡
?; ✓?)

�1) = ⇥⇢,dx

✓
1

(1� ⇢)2u1
+

dx

(1� ⇢)2u2

◆
(L.5)

Plugging in our values for u1, u2 gives the complexity:

⇥⇢,dx

✓
dx

(1� ⇢)3�2
+

d
2
x

(1� ⇢)2�2

◆
.

Note that our analysis is somewhat sensitive to the constants present in the entries of tr(H(✓?)�T (⇡; ✓?)�1) that correspond
to u1. It is difficult to determine the precise constants that will appear in actual operator norm identification allocation.
However, we note that any increase to the value of the constant in the off-diagonal term, u1p

1�⇢
, will cause the minimum

eigenvalue to decrease, by Lemma L.3, and we can therefore expect the constants to be no larger than their stated values.
If we use constants smaller than what is stated here, this will only cause the magnitude of the off-diagonal terms in the
inverse, �

p
1�⇢

3u1
, to decrease, which will further reduce the contribution of the term 2[H(✓?)]A11,B11

�
p
1�⇢

3u1
, causing the

final complexity to be larger. However, this will not change the fact that

[H(✓?)]A11,A11

4(1� ⇢)

3u1
+ 2[H(✓?)]A11,B11

�
p
1� ⇢

3u1
+ [H(✓?)]B11,B11

3

u1
= ⇥⇢

✓
1

(1� ⇢)2u1

◆

So it follows the true complexity is as stated.
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Sample Complexity of Frobenius Norm Identification. Note that TOPLE is the optimal Frobenius norm identification
algorithm. In this case, Hfro(✓?) = I , so the optimal Frobenius norm identification algorithm minimizes tr(�ss

T
(⇡; ✓?)�1).

A similar argument to that used in determining the optimal operator norm identification inputs can be used to show that here
the optimal covariance is again of the form (L.3). Then using our inverse expression from the previous sections (L.2), we
have that

T tr(�ss
T
(⇡; ✓?)

�1) ⇡⇢
1� ⇢

u1
+

dx

(1� ⇢)u2
+

1

u1
+

dx

u2
⇡⇢

dx

(1� ⇢)u2
+

1

u1

u1, u2 will be chosen to minimize this while respecting the constraint u1 + (dx � 1)u2  �
2. Some algebra shows that this

is minimized for values

u2 ⇡⇢
dx�

2 � �
2p1� ⇢

d2
x

, u1 ⇡⇢
�
2p1� ⇢

dx

Plugging these into the complexity expression for operator norm identification, (L.5), gives the complexity

⇥⇢,dx

✓
dx

(1� ⇢)5/2�2
+

d
2
x

(1� ⇢)2�2

◆
.

Sample Complexity of Optimal Noise Identification. Finally, we turn to the policy which plays the inputs ut ⇠
N (0,⇤?) for optimal ⇤? satisfying tr(⇤?)  �

2. In this case, our results show that the sample complexity will scale as
tr(H(✓?)�noise

T
(✓?,⇤?)�1)/T . Our goal is then to determine the optimal choice of ⇤?. A simple application of the KKT

conditions shows that the optimal ⇤? is diagonal (see the proof of Proposition 4.2 for this stated explicitly in a similar
setting), and will take the form ⇤? = diag([u1, u2, . . . , u2]). In this case, some algebra shows that

�noise
T

(✓?,⇤?) ⇡⇢

2

664

u1 0 0 0
0 (1� ⇢)u2I 0 0
0 0 u1 0
0 0 0 u2I

3

775

so

tr(H(✓?)�
noise
T

(✓?,⇤?)
�1) = ⇥⇢

✓
1

(1� ⇢)3u1
+

dx

(1� ⇢)2u2

◆

Choosing u1, u2 that minimizes this gives the complexity

⇥⇢,dx

✓
1

(1� ⇢)3�2
+

d
4
x

(1� ⇢)�2

◆
.

Lemma L.2. Consider diagonal matrices D1, D2, D3 2 R
d⇥d. Then,

D =


D1 D2

D2 D3

��1

=


C1 C2

C2 C3

�

where C1, C2, and C3 are diagonal and

[C1]ii =
[D3]ii

[D1]ii[D3]ii � [D2]2ii
, [C3]ii =

[D1]ii
[D1]ii[D3]ii � [D2]2ii

, [C2]ii =
�[D2]ii

[D1]ii[D3]ii � [D2]2ii

provided these quantities are well-defined.

Proof. Note that we can permute the columns and rows of D with some permutation P such to create a block diagonal
matrix D

0:

PDP
> = D

0 =

2

64
D

0

1 . . . 0
...

. . .
...

0 . . . D
0

d

3

75 , D
0

i
=


[D1]ii [D2]ii
[D2]ii [D3]ii

�
, i = 1, . . . , d
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From the block diagonal structure and the inverse of 2⇥ 2 matrices, we have

(D0)�1 =

2

64
(D0

1)
�1

. . . 0
...

. . .
...

0 . . . (D0

d
)�1

3

75 , (D0

i
)�1 =

1

[D1]ii[D3]ii � [D2]2ii


[D3]ii �[D2]ii
�[D2]ii [D1]ii

�

The orthogonality of a permutation gives that D = P
>
D

0
P , so D

�1 = P
>(D0)�1

P . Permuting the form of (D0)�1 gives
the expression in the statement of the result.

Lemma L.3. Consider diagonal matrices D1, D2, D3 2 R
d⇥d. Then,

�min

✓
D1 D2

D2 D3

�◆
= min

i2{1,...,d}

1

2

✓
[D1]ii + [D3]ii �

q
([D1]ii + [D3]ii)2 � 4([D1]ii[D3]ii � [D2]2ii)

◆
.

Proof. Let P be the permutation described in the proof of Lemma L.2. Note that the eigenvalues of PDP
> are the same as

those of D since, if we write the eigendecomposition of D as V ⇤V >, we see that PDP
> = (PV )⇤(PV )>, and that PV

is orthogonal, so this is the eigendecomposition of PDP
>. Given this, we have that �min(D) = mini2{1,...,d} �min(D0

i
).

The eigenvalues, �, of D0

i
satisfy

([D1]ii � �)([D3]ii � �)� [D2]
2
ii
= 0

Solving this for � and taking the minimum solution gives the result.

L.4. Proof of Proposition 4.2

We now choose ⇢1 = ⇢2 = 1, b = 1, 1 = 1
(1�⇢)4 , 2 = 1, µ = 1

(1�⇢)2 . With this choice, some algebra shows that

a1 = O((1� ⇢)2), ai = O(1/(2� ⇢)), i � 2
1

1�a1
= O(1), 1

1�ai
= ⇥⇢(

1
1�⇢ ), i � 2

k1 = O(1), ki = O(1� ⇢), i � 2

p1 = ⇥⇢(
1

(1�⇢)4 ), pi = ⇥⇢(
1

1�⇢ ), i � 2

(L.6)

Plugging these values into the expression given for H(✓?) in Lemma L.1 gives:

[H(✓?)]A11,A11 = ⇥⇢

✓
1

(1� ⇢)4

◆
, [H(✓?)]A1m,A1m = ⇥⇢

✓
1

(1� ⇢)5

◆
,m > 1

[H(✓?)]An1,An1 = ⇥⇢ (1) , n > 1, [H(✓?)]Anm,Anm = ⇥⇢

✓
1

(1� ⇢)3

◆
, n > 1,m > 1

[H(✓?)]B11,B11 = ⇥⇢

✓
1

(1� ⇢)4

◆
, [H(✓?)]Bn1,Bn1 = ⇥⇢(1), n > 1

[H(✓?)]B1m,B1m = ⇥⇢

✓
1

(1� ⇢)3

◆
,m > 1, [H(✓?)]Bnm,Bnm = ⇥⇢

✓
1

1� ⇢

◆
, n > 1,m > 1

[H(✓?)]A11,B11 = ⇥⇢

✓
�1

(1� ⇢)4

◆
, [H(✓?)]A1m,B1m = ⇥⇢

✓
�1

(1� ⇢)4

◆
,m > 1

[H(✓?)]An1,Bn1 = ⇥⇢ (1) , n > 1, [H(✓?)]Anm,Bnm = ⇥⇢

✓
1

(1� ⇢)2

◆
, n > 1,m > 1

Sample Complexity of TOPLE. As we will consider ⇢ close to 1, elements scaling as ⇥⇢( 1
(1�⇢)n ) for n  2 will be

dominated by elements scaling as ⇥⇢( 1
(1�⇢)n ) for n > 2. For simplicity, we henceforth ignore these elements. Given these

approximations, we see that Hi for i > 1 is approximately diagonal and therefore:

tr(Hi�T (⇡; ✓?)
�1) ⇡⇢

dx+duX

j=1

[Hi]jj [�
ss
T
(⇡; ✓?)

�1]jj
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Hi, however, contains non-negligible off-diagonal elements, [H(✓?)]A1m,B1m , and will take the form:

H1 ⇡⇢
1

(1� ⇢)4
e1e

>

1 +
1

(1� ⇢)5

dxX

j=2

eje
>

j
+

1

(1� ⇢)4
edx+1e

>

dx+1 +
1

(1� ⇢)3

dxX

j=2

edx+je
>

dx+j

� 1

(1� ⇢)4

dxX

j=1

(eje
>

dx+j
+ edx+je

>

j
)

=
1

(1� ⇢)4
(e1 � edx+1)(e1 � edx+1)

> +
dxX

j=2

1

(1� ⇢)5
(ej � (1� ⇢)edx+j)(ej � (1� ⇢)edx+j)

>

As we are concerned with showing an upper bound on the performance of TOPLE, we can simply choose a feasible set
of inputs and compute the sample complexity obtained by them. Since TOPLE obtains the optimal sample complexity, it
follows that this will be a valid upper bound on performance. Given this, let U` = 0 for all but a single ` to be chosen
(and it’s conjugate partner), and assume that the nonzero U` = diag([u1, . . . , udx ]) is real and diagonal. We will choose
u2 = . . . = udx . In that case, we will have

�ss
T
(⇡; ✓?) / 2real

✓
(e◆!`I �A?)�1

B?

I

�
U`


(e◆!`I �A?)�1

B?

I

�H◆

= 2


|e◆!` � ⇢|�2U` real((e◆!` � ⇢)�1)U`

real((e◆!` � ⇢)�1)U` U`

�

where we simplify using the values of A?, B?, !` = ◆2⇡`/k, and the real comes from the conjugate symmetry. Since U` is
diagonal, we can apply Lemma L.2 to invert this:


|e◆!` � ⇢|�2U` real((e◆!` � ⇢)�1)U`

real((e◆!` � ⇢)�1)U` U`

��1

=


C1 C2

C2 C3

�

where

[C1]ii =
u
�1
i

|e◆!` � ⇢|�2 � real((e◆!` � ⇢)�1)2
, [C2]ii =

�real((e◆!` � ⇢)�1)u�1
i

|e◆!` � ⇢|�2 � real((e◆!` � ⇢)�1)2

[C3]ii =
|e◆!` � ⇢|�2

u
�1
i

|e◆!` � ⇢|�2 � real((e◆!` � ⇢)�1)2

We choose !` = 1� ⇢. Then,

e
◆!` � ⇢ = cos(!`)� ⇢+ ◆ sin(!`) = 1� ⇢+ ◆(1� ⇢) + o(1� ⇢)

and

real((e◆!` � ⇢)�1) =
1

2(1� ⇢)
+ o((1� ⇢)2), |e◆!` � ⇢|�2 =

1

2(1� ⇢)2
+ o((1� ⇢)2)

So it follows that

[C1]ii ⇡⇢
4(1� ⇢)2

ui

, [C2]ii ⇡⇢
�2(1� ⇢)

ui

, [C3]ii ⇡⇢
2

ui

Using our expressions for Hi given above and this expression, we have that

T tr(H1�
ss
T
(⇡; ✓?)

�1) = ⇥⇢,dx

✓
1

(1� ⇢)2u0

1

+
dx

(1� ⇢)3u0

2

+
1

(1� ⇢)4u0

1

+
dx

(1� ⇢)3u0

2

+
1

(1� ⇢)3u0

1

+
dx

(1� ⇢)3u0

2

◆

T tr(Hi�
ss
T
(⇡; ✓?)

�1) = ⇥⇢,dx

✓
dx

(1� ⇢)u0

2

+
dx

(1� ⇢)u0

2

◆
, i > 1
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where u
0

i
denotes ui/k

2. Thus,

T tr(H(✓?)�
ss
T
(⇡; ✓?)

�1) = ⇥⇢,dx

✓
1

(1� ⇢)4u0

1

+
dx

(1� ⇢)3u0

2

◆

We can choose u1 and u2 as we wish as long as they meet the power constraint u0

1 + (dx � 1)u0

2  �
2. Choosing the values

that minimize the complexity yields:

T tr(H(✓?)�
ss
T
(⇡; ✓?)

�1) = ⇥⇢,dx

✓
1

(1� ⇢)4�2
+

d
2
x

(1� ⇢)3�2

◆

By our construction, this is an upper bound on the performance of TOPLE.

Sample Complexity of Operator Norm and Frobenius Norm Identification. We can follow a similar argument as that
used in the proof of Proposition 4.1 to show that the optimal inputs will be diagonal for both operator norm and Frobenius
norm identification. Furthermore, as both A? and B? are scalings of the identity, the optimal operator norm and Frobenius
norm identification algorithms will allocate the same energy to each coordinate. Note that the input constructed in the
previous section will yield the maximum gain, so it follows that both operator and Frobenius norm identification will play
inputs at similar frequencies, and the analysis in the preceding section can be applied here. However, given that the inputs
are isotropic, we will have u1 = u2 = �

2
/dx, which will yield a sample complexity of

T tr(H(✓?)�
ss
T
(⇡; ✓?)

�1) = ⇥⇢,dx

✓
dx

(1� ⇢)4�2
+

d
2
x

(1� ⇢)3�2

◆
.

Sample Complexity of Optimal Noise Identification. When playing noise, the complexity will scale as
tr(H(✓?)�noise

T
(✓?,⇤u)�1)/T . To analyze the sample complexity of this approach, we must first determine the ⇤u ⌫ 0

that minimizes this and satisfies tr(⇤u)  �
2. In our setting, we will have

�noise
T

(✓?,⇤u) =

P
T

s=0 ⇢
2s⇤u 0

0 ⇤u

�
⇡⇢
 1
1�⇢⇤u 0

0 ⇤u

�

So it follows that

tr(H(✓?)�
noise
T

(✓?,⇤u)
�1) ⇡⇢

dxX

i=1

[(1� ⇢)tr(Hi,1⇤
�1
u

) + tr(Hi,2⇤
�1
u

)]

where Hi,1,Hi,2 denote the first and second dx ⇥ dx block diagonals of Hi, respectively. Computing the gradient of this
expression and the constraint tr(⇤u)  �

2 and applying the KKT conditions gives that the optimal ⇤? must satisfy:

�
dxX

i=1

[(1� ⇢)(⇤?)
�1Hi,1(⇤?)

�1 + (⇤?)
�1Hi,2(⇤?)

�1] + µI = 0

As Hi,1,Hi,2 are diagonal, up to lower order terms, it follows that a diagonal ⇤? will satisfy this expression. Furthermore,
given the symmetry of A?, B?, it is clear that ⇤? will then take the form diag([u1, u2, . . . , u2]) for u1 + (dx � 1)u2  �

2.
Plugging this into the expressions given above, we have that the complexity scales as

tr(H(✓?)�
noise
T

(✓?,⇤?)
�1) = ⇥⇢,dx

✓
dx

(1� ⇢)4u2
+

1

(1� ⇢)4u1

◆

Choosing u1, u2 that minimize this yields the complexity

tr(H(✓?)�
noise
T

(✓?,⇤?)
�1) = ⇥⇢,dx

✓
d
2
x

(1� ⇢)4�2

◆
.
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Figure 4. LQR loss versus time on A? a Jordan
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M. Details on Numerical Results
In Figures 4, 5, and 6, we plot Figures 1, 2, and 3 with error bars. In all cases the error bars indicate a standard error. We
make several additional remarks on the experiments. For Figure 4, we chose dx = du = 5 and chose ⇢ = 0.8, which gave us

A? =

2

66664

0.8 1 0 0 0
0 0.8 1 0 0
0 0 0.8 1 0
0 0 0 0.8 1
0 0 0 0 0.8

3

77775

As was stated in the main text, we generated B?, Rx, and Ru randomly. For each realization, we ran 15 trials, so Figure 4 is,
in total, the average over 225 trials. As different Rx and Ru would cause kH(✓?)kop to vary widely, we divided the loss
of each realization by kH(✓?)kop to ensure they were on the same scale. The reader may wonder why the error decays
in a stepwise fashion. This is due to the convex relaxation of the inputs. In this example, the majority of the energy is
concentrated in the first eigenvalue of the input, and thus, when the matrix input is decomposed, the majority of the energy is
played in only a fraction of 1/du of the time. We therefore see a much steeper decrease in this time. As we show, however,
our convex relaxation is tight and nothing is lost by playing inputs in this way.

For Figure 5, we chose the values of Rx and Ru as given in the proof of Proposition 4.1 and set dx = du = 5. For Figure 6,
we chose Rx and Ru as given in the proof of Proposition 4.2 and set ⇢ = 0.99.

Our implementation of TOPLE uses the convex relaxation and projected gradient descent solution given in Appendix B.5.
While (Wagenmaker & Jamieson, 2020) does not provide a computationally efficient solution to their proposed operator
norm identification algorithm, we note that the convex relaxation given in Appendix B.5 can be applied to this problem as
well, yielding a computationally efficient version of the algorithm given in (Wagenmaker & Jamieson, 2020). We rely on
this computationally efficient relaxation for our implementation of the operator norm identification algorithm.
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