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A. Organization and Notation
A.1. Organization

We break the appendix up into four parts. In Part I, we provide a formal overview of our work. In particular, Appendix B
formally defines our decision-making settings—martingale decision making (MDM) and linear dynamical decision making
(LDDM)—formally states our results and defines TOPLE, and provides a more detailed explanation of our frequency-domain
construction. This section also formally introduces the notion of a sequential open-loop policy, which figures prominently in
the analysis of TOPLE. Appendix C sketches out various extensions to our results, provides additional remarks, and states
and proves the formal version of the lower bound on low-regret algorithms.

Part II covers martingale decision making. Appendix D states and proves our upper and lower bounds for martingale
regression in general norms. Next, Appendix E formally introduces our martingale decision-making setting, and, through a
reduction to regression, proves a locally minimax lower bound on martingale decision making with smooth losses. Finally,
Appendix F proves a general upper bound on certainty equivalence decision making under a certain regularity assumption.
Of note, Part I does not assume we are operating in the setting of a linear dynamical system—the results here apply to the
more general martingale decision making setting.

Part III covers our results in the setting of linear dynamical decision making setting. We begin in Appendix G by introducing
additional notation specific to linear dynamical systems we will use throughout. In Appendix H, we apply the results of
Part II to prove our lower bound on optimal decision-making in linear dynamical systems. This section also shows that our
restricted policy class, Z/{ff’z, the set of periodic signals, contains a near-optimal policy. Appendix I shows that sequential
open-loop policies meet our regularity assumption and we therefore obtain a corollary on efficient certainty equivalence
decision making in linear dynamical systems. In addition, Appendix I provides rates at which the covariates of linear
dynamical systems concentrate, an important piece in our analysis. Finally, Appendix J proves the upper bound on the
performance of TOPLE. Our proof relies on showing that certainty equivalence experiment design plays near-optimal inputs,
and that TOPLE is itself a sequential open-loop policy, allowing us to apply our certainty equivalence bound proved in
Appendix I.

Lastly, Part IV covers applications of our results. Appendix K shows that the LQR problem is an instance of our general
smooth decision making setting, and that we can therefore apply all our results to this problem. Appendix L works out
explicitly the rates obtained by TOPLE and other exploration approaches in several LQR examples. Finally, Appendix M
provides additional details on our numerical experiments.

A.2. Notation

Below we present notation used throughout this work. We define our signal notation in more detail in Appendix B.5.1
and additional details on our notation for linear dynamical systems is presented in Appendix G. We will overload notation
somewhat throughout, using 6 to refer to a vector as well as the concatenation of matrices, # = (A, B). In the latter case,
[|0]|op denotes the operator norm of the matrix (A, B) but we let [|0]|3, = vec(0) " Mvec(6).

Mathematical Notation Definition
Il llop Matrix operator norm
Il 1le Matrix Frobenius norm
Il 12 Vector 2-norm
Il 1lar Vector Mahalanobis norm, ||z||3, = 2" Mz
Il 17 System H-infinity norm
L Imaginary number, v/—1
Policy Notation
T/ Texp Exploration policy
IL,- Policies with average expected power bounded by ~2
Hi%l Sequential open-loop policies with average expected power bounded by 72
H52 Periodic policies with average expected power bounded by ~2
T Input-state trajectory, T = (x1.741, u1.7)
dec(T) Decision rule
ce(T) Certainty-equivalence decision rule
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Complexity Notation

Definition

Or (7T§ 9*)
CDOPt(’Yz; 0y)
‘I)Z%t (723 0)

Idealized risk, ®7(m; 0,) := tr(H(0,)Tr(m;0,) 1)
Optimal risk, Popt (775 6,) := liminfr_, infr, e, D (Texp; Ox)
Steady-state analogue of @t (725 04 )

M., (R; B) Local minimax risk
M2 (R; B) Exploration local minimax risk, lower bound on optimal policy risk
MDM Notation
6 € R% Nominal instance
a € Rde Decision variable
Jo, (a) Loss function
Ro(a)/R(a; ) Excess risk
topt (0) Optimal decision for instance 6
H(0,) Hessian of certainty equivalence excess risk, H(0x) = VZR (aopt(0); 0x)|o=0,
Lgiyi=1,2,3 Upper bound on ||V R (a; 6)]|op
Lyii=1,2,3 Upper bound on va)aopt (]lop
Liess Lipschitz constant of V2R (a;6) in 6
I Parameter for quadratic lower bound on R (a; 6,)
Lguad 3(LrsL3) + 3Lr2LasLa1 + Lr1Las)
LH 6Lquad + LraLla + LhessLﬁl
Tquad (0) Radius in which gradient bounds hold
LDS Notation
0 =(A,B) System parameters
dy State dimension
dy Input dimension
d dy + d,,
o2 Process noise variance
xy Portion of state driven by input
zy Portion of state drive by noise (z; = x}* + x}")
p(A) Spectral radius of A
~ . . ~ A B| 5 1|0
0 =(A,B) Lifted dynamical system, A = {O 0 ,B = I
(4, p) Scaling of upper bound on || A¥||op, || A¥|lop < T(A4, p)p*
120 A latee 1A llop
Px _ max{zv 1+2\|A*|\HmnA*uop} B
T 7(A,, p+), scaling of upper bound on || A¥ ||,
Signal Notation
5() Discrete-time Fourier transform (DFT)

<
SQsee L

uv2,k

Inverse discrete-time Fourier transform
Vector signal, (u)F_;, uy € Cdu
Discrete-time Fourier transform of u
Element of 12, DFT of (u,)*_,
Matrix signal, (Uy)f_,, U; € C4*%u U, Hermitian
Matrix signal element
Set of length k matrix signals with power bounded by ~>
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Covariance Notation

Xr

r
Ty (6, 3,)
reese(g a,)
(0, u, xp)

I'r(0,u, 0., x0)

Ty *1(6,U)
(0, U)
in(0,U, 0u)

!
> =21y

noise (Ou)
noise \Tu
*

noise

Lcov (6*, 72)
Tcov (9*)

Random covariates
Kronecker of covariates, I;, @ I
Expected ¢-step noise covariance when u; ~ N (0, X,,)
F?oise (97 UZI)
Covariance obtained on noiseless system playing w starting from x
Expected covariance on noisy system when playing u, input noise A'(0, 021, starting from
Frequency-domain steady-state covariance for length-k matrix input U
Lpied(g U)
Expected steady state covariance when playing length-k input U and input noise N'(0, 02 1)
High probability upper bound on covariates
High probability upper bound on covariates for sequential open-loop policies
Lower bound on minimum eigenvalue of covariates
Minimum eigenvalue of noise Grammian, minimum excitation due to noise
A;oisc (7/ \/E)
Smoothness of covariates with respect to 6
Radius in which smoothness of covariates holds
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Part 1
Results and Extensions

B. Formal Results and Algorithm

In this section, we formally state the results given in Section 2 and present the full definition of TOPLE. This section is
organized as follows. We first formally define our decision-making settings, MDM and LDDM, in Appendix B.1. Next, we
present a lower bound on decision-making in the MDM setting in Appendix B.2. In Appendix B.3, we assume we are in the
stronger LDDM setting and present a lower bound on optimal decision-making. Appendix B.4 provides a sufficient condition
on exploration policies and shows that, under this condition, certainty equivalence decision-making is optimal in the MDM
setting. Appendix B.4.1 then introduces a restricted set of policies in the LDDM setting, sequential-open loop policies,
which we show contains TOPLE and is sufficiently regular. Appendix B.5 provides an overview of frequency-domain
representations of signals, an essential piece in our construction of TOPLE, and formally defines several sub-routines of
TOPLE. Finally, in Appendix B.6 we formally state TOPLE and provide an upper bound on its performance.

B.1. Martingale and Linear Dynamical Decision Making (MDM and LDDM)

Our decision making setting considers smooth loss functions parameterized by models # € R%, Jy(a) : R% — R. The
loss function induces the excess risk function

R(@:0,) := o, (a) — inf Ty, (a),
We denote the plug-in optimal decision

opt () := argmin R(a; 6),

a

that is, the optimal decision when  is the nominal parameter. We are, in particular, interested in the case when R and aop¢
are smooth functions. Formally, we will stipulate that the excess risk function R(+; -), and the plug-in optimal decision
aopt (0) satisfy the following conditions:

Assumption 3 (Smooth Decision-Making). There exist rquad(0x) and constants o > 0, Lq;, Lri, © € {1,2, 3}, and Lyess
such that for any 6 and a satisfying

He - 9*”2 < rquad(‘g*)a HCl - aopt(e*)H? < Laquuad(e*)a (B.1)

the following conditions hold

* The optimal action Qo () is unique, and moreover, there is a parameter  such that R(a';0) > £||a’ — aope(6)]]3 for
all @' € R (not restricted to o' satisfying Eq. (B.1)).

* [ VaR(a:0)op < Lret, [V2R(a:0)llop < Lra, and [ V3R(a:6) op < Ly
o [ Voa0pt ) llop < Lat, [|V20pt (0)]lop < Laz, and || V3aop (0)[5,8,8)llop < Las for all & € R with ||5]|, = 1.

» V2R(a;0) is Lipschitz in 0 with Lipschitz constant Lyess.
We also define:

1 .
Lquad = E(LR3Li1 +3LroLa2La1 + LRlLuB)a Ly = 6Lquad + LroLa + LhessLﬁl-

In the most general case, which we will refer to as martingale decision making, we assume that we have observations of the
form

Yt — <9*, Zt> + Wt, Wt | ]:tfl ~ N(O,O'?D), Zt iS ]—"t,l-adapted. (BZ)

for a filtration (F;):>1 and scalar observations y;. We allow the distribution of the covariates z; to be arbitrary: for example,
there may be some function f(...) of appropriate shape such that z; = f(¢, 21.t—1, Y1.4—1, W1.t, U1:t, 04 ), for inputs of our
choosing u1.;. We are now ready to define our decision-making setting.
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Definition B.1 (Martingale Decision Making (MDM)). Assume our excess risk R(a; 0,.) satisfies Assumption 3 and our
observations are generated by (B.2). Then we call the problem of choosing a decision @ to minimize R(a; 0,) martingale
decision making (MDM).

Our goal in MDM is to estimate 6, from our observations well enough to find a decision rule @ that minimizes R (a; 6 ). We
will be interested in particular in the special case when (B.2) is a linear dynamical system:

i1 = Ay + Boug + wy (B.3)

for wy ~ N(0,021). As we show in Appendix G.3, linear dynamical systems are a special case of (B.2). This special case
defines the following restriction of MDM.

Definition B.2 (Linear Dynamical Decision Making (LDDM)). Assume our excess risk R (@; 6, ) satisfies Assumption 3 and
that our observations are generated by a linear dynamical system, (B.3). Then we call the problem of choosing a decision a
to minimize R(4; 6, ) linear dynamical decision making (LDDM).

Given these formalizations of our problem setting, we recall our interaction protocol:

Task-Specific Pure Exploration Problem. The learner’s behavior is specified by an exploration policy mexp
(1.4, u1.4—1) — u and decision rule dec executed in the dynamics Eq. (B.2).

1. Forstepst =1,...,T, the learner executes mex, and collects a trajectory T = (y1.1, 21.7, U1.T).
2. For a budget v* > 0, the inputs 1.7 must satisfy the constraint E___ [Zthl lluel|?] < TH2.
3. Finally, the learner proposes a decision @ = dec(T) as a function of T.
We emphasize the generality of this set of decision-making problems. While we will show that the LQR problem satisfies

this assumption, many other decision-making problems can be cast as an instance of MDM or LDDM, as we discuss in
Section 1.3.

Before stating our results, we remind the reader of our definition of power constrained policies:
Definition 2.4 (Power-Constrained Policies). Let I1,= denote the set of causal polices that have expected average power
bounded as 7. That is, for any 7 € L2, we will have Eg [/, [lus|3] < T? for all 6.

Finally, recall that the H,-norm of A, is defined as:

A :: LwliA 710 B.4
Al 2= mae (11 = 4 oy (B.4)

where ¢ denotes the imaginary number, /—1.

B.2. Lower Bound for Decision Making in MDM

We first present a lower bound in the general MDM setting. We will assume we are playing a particular exploration policy,
Texp € IL,2, and our goal is to derive lower bounds on decision-making given that our trajectory is generated by meyp.
Recall the definition of the local minimax risk:

Mr. (R; B) := min Igleaé{ Ertnt,merp, [R(dec(T); 0)],

and the idealized risk:
Or(m;0,) := tr(H(0)Tr(m;6,) 7).

Our argument will show that the local minimax risk is lower bounded by the estimation error of 6 in a relevant Mahalanobis
norm, which yields the familiar “inverse-trace of the covariance” sample complexity. In the MDM setting, we denote our
covariance as

T
1
ET = E ZtZ;r, I‘T(’/T;e) = ngvﬂ- [ET]
t=1

For our lower bound to hold, the covariance matrices in question must satisfy two rather mild regularity conditions.
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Assumption 4 (Sufficient Excitation). For some A\ > 0 independent of T', and under our exploration policy meyp, € 112

)\min(FT(ﬂ-exp; 9*)) Z A

In the special case of linear dynamical systems, Assumption 4 can be enforced by adding a small amount of white noise to
any exploration policy, and the budget constraint can still be met by scaling down inputs by a constant factor.

Assumption 5 (Smooth Response). There exist parameters Teoy(05) > 0, Leoy(05,72) > 0, Ceoy > 0, ooy > 0, and
a > 0 such that, under our exploration policy Teyp € IL,2, for all 0 satisfying ||0 — 0, ||2 < reov(0y), we have:

Ceov
]-‘T(Trexp;e) = Ccov]:‘T(ﬂ'e)c});o*) + <Lcov( ) ||9 0, HQ + Ta > I

Intuitively, Assumption 5 says that the covariance matrices do not vary too wildly in the ground truth instances. This will be
true for any “reasonable” policy, and in fact, we can show that, without loss of generality, a comparable condition holds for
the policies which perform near optimal experiment design in LDDM. Under these assumptions, we obtain the following
lower bound.

Theorem B.1 (Part 2 of Theorem 2.1). Assume we are in the MDM setting, that R satisfies Assumption 3, our exploration
policy mexp € 1,2 satisfies Assumption 4 and Assumption 5, and suppose that the time horizon T' satisfies

N> max ] (80 " (2Lr2\® (Lew(0.nVEE )P (20 VY (_sde \O°
- - X Tquad (0+)2 ’ S5p ’ CeovA P\ Ceov AT P\ Teov (04)?

Then, defining the localizing ball Br := {0 : ||0 — 0,2 < 5dp/(AT)>/®}, and letting T denote a trajectory generated by
Texp 0N 0, we have

o2 P (Toxp; Ox) Chp
- . N w . exXpyr Ux)
Mirovy (R; Br) = 10t ok By .y, [R(dec(T); 0)] > 35— T (\T)5/4

where,
Cp=0c1 <(La1La2LR2 + L3 Lrs + Lhess)dS/ + L21LR2)
for a universal constant c;.

This result is itself a corollary of a more general result, Theorem E.3, which provides a lower bound without Assumption 4
or Assumption 5. We prove this result in Appendix E. We emphasize again that Theorem B.1 does not require that the data
be generated from a linear dynamical system—it holds for any loss satisfying Assumption 3 so long as our observations
follow Eq. (B.2). However, as we show in Appendix H.1, Assumption 4 and Assumption 5 are met for a fairly general set of
policies in linear dynamical systems, and a clean corollary of this result may be stated in the LDDM setting.

B.3. Lower Bound for Optimal Decision Making in LDDM

We turn now to the LDDM setting, and prove a lower bound that holds for all exploration policies mexp € I1,2. We first
define the following:

Npoise (@) 1= min { din (0220251 AL(AD T + 02502 ALBLB ()T ) 02 )

and in particular set:
A*

noise = A;mse '}// V 2du)

T
)‘rlome( ) :)\min (E [|:de:| |:de:| | Us NN(07021)7507"'3t] )
Uq, | |Ud,

so it follows that A% ... (o) is the minimum eigenvalues of the covariates when we play isotropic noise, and can be thought

of as a measure of how easily the system can be excited. We make the following assumption.

Note that
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Assumption 6. 0, and o, are such that \*;

roise > 0. In particular, it suffices that 0., > 0, or the system is controllable.

Before stating our result, we recall the definition of the exploration local minimax risk:

M,2(R;B) := min minmaxEr g r,,, [R(dec(T);0)].

ﬂ'expeH,Y2 dec 6eB
and the optimal risk:

<I)0pt(72;9*) :=liminf inf  ®p(Texp;by),

T—00 Texp EH,YQ

We then have the following.

Theorem B.2 (Part 2 of Theorem 2.2). Assume we are in the LDDM setting and consider a loss function Jp(a) : R% — R
with induced excess risk R(a;0,) := Jp, (a) — infy Jp, (a'). Fix a model 0, and time horizon T. Suppose that

* R satisfies the smoothness condition, Assumption 3.

e The model 0, satisfies the excitation assumption Assumption 6 with parameter X* ... > 0.

noise

noise

6/5 2 6
. . . init 80(d2 +dgdu) ouwlr2
e The time horizon satisfies T > max {C’lb , ((A* )5/ quna (0,)2 3 e .

Finally, define the localized ball of instances
Br = {16 — 0ulI% < 5(d3 + dodu)/NioiseT™%)}
Then, any decision rule dec(T) suffers the following lower bound

ﬁ . Popi (723 6,) Cip

T ()\* T)5/4

noise

M2 (R; Br) = min  min max Ecvg x,, [R(dec(T); 0)] >

Trexpen_yz dec 6eBr 6

g

where above,
Cit'* = poly (du, dus | Bllops | Aullpe 7%, 0%, 35— Tog T)
and C\y, is defined as in Theorem B.1 with dg = di + ddy.

We emphasize that this result holds for any exploration policy with bounded power, 7eyx, € I1,2. As such, it provides a
lower bound on optimal decision-making. We prove Theorem B.2 in Appendix H.2.

B.4. Upper Bound for Certainty Equivalence Decision Making in MDM

We next consider upper bounds on decision making in the MDM setting when we are playing a fixed exploration policy
Texp- Given some data {(y;, 2, ut)}f:1 generated by playing m.xp, on Eq. (B.2), we define our estimator of 6, as

T
0 = mi — 07 2|2 B.5
1 m@lD; ||3/t Zt||2 (B.5)

The following is a sufficient assumption on 7.y, to guarantee the efficiency of certainty equivalence decision making. Recall
that 37 denotes the random covariates.

Assumption 7 (Exploration Policy Regularity). We assume that the true instance 0 and policy Texp € 1,2 satisfy the
Sfollowing regularity conditions:

* There exists some time Tyo(Texp) such that for any T > Ty(Texp) the system is sufficiently excited. That is, if
T 2 Tse (Wexp)-’

Amin (1) > AT, Xr X TT7| >1-6

*1TTexp —

Py

for deterministic A > 0 and Tr > 0.
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o There exists some time Tcon(ﬂ'exp) such that, for any T' > Tcon(wexp), the covariates have concentrated to their mean.
That is, if T' > Toon (Texp):

Po. e | IZ7 = B, roy [Drlllop < G Aumin (B, oy [B]) | 21— 6

for deterministic Cion, > 0 and o > 0.

The following result precisely quantifies the loss of the certainty equivalence decision-making rule under this assumption on
the policy.
Theorem B.3 (Part 1 of Theorem 2.1). Assume we are in the MDM setting with some loss R satisfying Assumption 3 and

exploration policy Texy, € 11,2 which satisfies Assumption 7 with minimal times Teon (Texp) and Tse(Texp) and covariance
lower bound \ > 0. If

ATquad (0x)

T > max {Tcon(ﬂ'exp)a Tse(ﬂ'exp); (4Ccon)1/a, 61(log(1/6)+d9+10gde2t(fT/A+I)) } (B.6)

then for § € (0,1/2), with probability 1 — §, the certainty equivalence decision rule achieves the following rate,

2 IOg 24d0 . q>T(7Texp; 9*) Cce,l C’ce,2

R(aopt(als); 0*) S 5Jw 5 T T3/2 T1+2a

where we let c1, ca, c3 be universal numerical constants and set

c = 3/2 czo? C? r d
Coor = %(bg% + dp + log det(Tr /A + I)) ¢ Coog 1= STCnQul0)) 1 2.

We note that this upper bound matches the lower bound given in Theorem B.1. This shows that the certainty equivalence
decision rule is instance optimal for any decision-making problem in the MDM setting.

The proof of this result is given in Appendix F.1. The burn-in time (B.6) and lower-order terms have transparent interpre-
tations. For the burn-in, the requirement that T" be larger than Ton (Texp) and Tye(Texp) i necessary to ensure that the
concentration and excitation events stated in Assumption 7 hold with high probability. The requirement that 7" be larger
that (4Ccon)1/ @ is necessary to ensure that the covariates have concentrated enough for our M -norm estimation bound,
Theorem D.2, to hold. Finally, the last term in the burn-in ensures that our estimate 515 is in a ball of radius rquad(ﬂ*)
around 6,, which allows us to approximate R(aopt (515); 0,) by a quadratic. The lower order terms similarly yield intuitive
explanations. Cee 1/ T3/2 quantifies the additional loss due to the error in our quadratic approximation of R(aopt (6715); 0,),
while Cee 2/ T11+22 ig due to the lower order term given in our M -norm estimation bound, Theorem D.2.

B.4.1. COROLLARY: CERTAINTY-EQUIVALENCE DECISION MAKING IN LDDM

While Theorem B.3 holds in a very general setting, our optimal decision-making algorithm, TOPLE, applies only to the
LDDM setting, and uses a highly structured set of policies. In order to facilitate the analysis of TOPLE, it is helpful to obtain
a corollary of Theorem B.3 in this more restricted setting. Towards making this precise, we introduce a set of policies in the
LDDM setting, sequential-open loop policies, which we show contains TOPLE. Before formally defining these policies, we
need the following piece of notation:

Definition B.3. Let
_ T
7 i= oL+ B4, ) (Ve log 5 + 221 A, ).

By Lemma 1.3, T'r := T'5 - [ is a high probability upper bound on the covariates, assuming that ey, € H;%l, where we
define HSV%I below.

With this definition in place, we introduce the set of (sufficiently regular) sequential open loop policies satisfying the budged
contstraint, denoted Hi%‘.

Definition B.4 (Sequential Open-Loop Policies). We define a sequential open-loop policy to be an exploration policy
Texp € 11,2 satisfying the following conditions:
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* (Open-Loop Gaussian) There exist deterministic times {Zo,?1,...,tn_1,tn} C [T] withtg = 0,t, = T,t;41 > t;,
such that, for ¢t € {t;,...,t;11 — 1}

Ut|-7:£i ~ N(ahAu,i)
for 7, measurable u; and A, ; > O satisfying:

T-1

Z ai—frat S T’72> tr<Au,i) S 727 )\min(Au,i) Z Ug
t=0

almost surely, for deterministic o,.

* (Low-Switching) For any ¢, there exists some epoch ¢ such that [{t,...,t + Tue(Texp)} N {tiy. .. i1 — 1} >

2 Tye(Texp) Where

Tie(exp) = 1y ((da + ) 087/ Xpgiae(0) +1) + log 5 ).
In words, at least half of any length T (7cxp) interval is contained in a single epoch.

We make several comments on this definition.

* Any policy Texp € ny%l satisfies Assumption 7, which we prove in Appendix F.1.
* As we show in Appendix J, TOPLE, an optimal policy (up to constants), is in ny%l, with n = O(log T).

¢ The assumption that w; | Fr, be Gaussian is for simplicity of analysis, and in general is not necessary—the noise could
take different sub-Gaussian distributions if desired.

The following result instantiates Theorem B.3 with any policy Texp € ny%l, and assuming we are in the LDDM setting.

Corollary 2. Assume we are in the LDDM setting and consider some loss R satisfying Assumption 3, stable system 0,, and
exploration policy ey, € H:%l. If

Caysn® (o7 . 20 n 5/
T 201 ( )\;Oisi(a:gz ) + )\;Disc(au()irquad(e*)Q + \/i +n+ dﬁf) (10g r3 + dlog(’}//)\noise(au) + 3)) (B7)

then for § € (0,1/3), with probability 1 — §:

24(d§ + dmdu) . (I)T(’]rexp§ 9*) Cce,l + C'ce.,2
) T T3/2 T2

where Cyys = POly (|| Bsllops | Axllo. ), d := dy + dy, universal numerical constants c1, co, and

R(aopt(é\ls); 0*) < 50'3) log

. 3/2 2, 4 4 3
Coor = %(bg% + dydlog(F /N e (00) + 3)) , Coo = Csysaw(U/{U::e();i(;t(e*))d " Jog? dn

noise

We prove this result in Appendix I.

B.5. Efficient Experiment Design in Frequency Domain (LDDM)

Before presenting the formal definition of TOPLE, we establish the relevant experiment design preliminaries, which are best

stated in frequency domain. From this, we will specify TOPLE, and then show that it is indeed a sequential open loop policy,

in the sense of Definition B.4. Recall that, in the LDDM setting, we set

1 T 9T

— Z [ft] [th] ] 7 Tr(m; ) =14, @ Tp(m;0)
Ut | Ut

Tp(m;0) := T

EO,W
t=1

Through the remainder of this section, we will use the convention that in the LDDM setting bold matrices denote Kronecker
products, I' := I;, ® I'. Note that, by mapping our linear dynamical system (B.3) to our general regression setting (B.2)
through the reduction given in Appendix G.3, this definition is consistent with our definition of I' in the MDM setting.
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B.5.1. FREQUENCY-DOMAIN REPRESENTATIONS
We let bold vectors w = (u;)¥_; € C*?« denote sequences of inputs, and denote their discrete-time Fourier transform (DFT)

k
@ = ()" , = F(u) € CF¥  where u, = Zus exp(

s=1

2mLs

k

) (B.8)

The mapping § is invertible, though in general §~! : C*®« — C'¥«. However, if our frequency-domain representation is
symmetric, we have that the inverse DFT is purely real.

Definition B.5 (Symmetric Signal). We say that @ = (us)%_; € C*?« is symmetric if s = conj(ug_) for s < k and i,
is purely real, where conj(-) denotes the complex conjugate.

Fact B.1. §1(u) is a vector with real coefficients if and only if i is symmetric.

We now consider a convex relation of the outerproduct of this DFT. First, some preliminaries. For a complex vector z € C¢
(resp. matrix A € C%*%) et 2" (resp. AM) denote its Hermitian adjoint; i.e., the complex conjugate of its transpose.
We denote the set of Hermitian matrices as H? := {A € C?*? : A" = A}, and the set of positive-semidefinite Hermitian
matrices HY := {4 € H? : 2HAz > 0, Vz € C?}. Given & = (i)};_, € C*¥, we define its outerproduct as the
sequence of complex-rank one Hermitian matrices, U = (Uy)%_,, defined by

w®u:=U=(U)f_,, where U, = € H.. (B.9)

We now define the following set, which relaxes outer products to matrix sequences of the above form, with a total power
constraint on their trace:

k
Uy j = {U = (Ug)i?:1 Uy e H‘i, U is symmetric, Ztl’(Ug) < kQ’yz} (B.10)
=1

Critically, U2 ;. is convex. We generalize the definition of symmetric signals here to matrices, defining it identically as we
have defined symmetric vector signals. The following class of sequences U are of particular importance.

Definition B.6 (Rank One Relaxation). We say that U = {U, : 1 < £ < k} € U2, is rank one if there exists a vector
@ € C* such that U = @ ® 1.

Lastly, we define a frequency-domain covariance operator defined on U € U,z j:

k

)40, U) %Z A) T BUBM (e 1 — A), (B.11)
/=1

590, U) = El“ffeq(@,U) (B.12)

We will overload notation, defining

aew), Tyea) =T340 a) (B.13)
0, w) (B.14)
for uw = § (). The following result shows that I‘Zreq(é, u) corresponds to the steady-state covariates of our system when

an input v is played.

Proposition B4. Let U € U2, be rank one, withU = 4 @ @, & € C*u. Let uw = (w)f_; = §'(w). Define the
extended inputs

ext __ ext ext __
Uy = (ut )tzla where u;™" = Umod(t,k)

Finally, let x® denote the evolution of the dynamical system obtained by starting at initial state xo and executing the input
u$*t. Then
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LD, U) = limp oo 2 02 2% ()T = limp_y e R0, u™, 2).

2. Let k' > k be divisible by k. Let u’ = (u e’“)’; 1» and define the frequency domain quantities

W = (i), =§u), U =uod. (B.15)
Then I—\Zr/eq(e U,) K Ffreq(e U)

Noise-Augmented Covariances. We shall also study the covariance matrix that arises from exciting the system with
white noise of covariance A, when the process noise has covariance A,,:

reoise(g A,,) Z AN, (AT + ti A*BA,BT(A%)7T (B.16)
5=0
We will overload notation and set
reeise(g g,) == TPse(9, 621)
Since the Fourier transform preserves Gaussianity, the relevant covariance matrices become:
1 e 1 oo
Ta(0.U,00) = 2T°0,U0) + t_zlrgm(e,au) (B.17)

If U is rank one, then Proposition B.4 implies that I'7: (0,U, 0,) corresponds to the expected steady-state covariates of the
noisy system when playing inputs U. If U is not rank one, then I :(0,U, 0,,) corresponds to the expected steady-state
covariates of the noisy system when playing a sequence of inputs formed by decomposing U into rank one inputs, as in
Algorithm 3.

B.5.2. THE STEADYSTATEDESIGN SUBROUTINE

Using the preliminaries laid out in Appendix B.5.1, we define two subroutines of TOPLE before stating the full algorithm.
We first state our experiment-design subroutine, which computes the certainty-equivalence task-optimal inputs.

Algorithm 2 SteadySt ateDesiqn(é\7 t,k,7y)

1: Input time horizon ¢, signal length k, budget v > 0, model estimate 0
2: LetU, 25,1, be the lifted representation of inputs defined in (B.10)
3. SetU € Z/[ry?/QJC C (Hi)k

U+ min tr(?—l(A)~ ift/du(@Um/\/wu)‘l) (B.18)

Ueu72/2’k

4: return U

Algorithm 2 chooses the input U to minimize a function of the steady-state covariates of the system 0. n particular, observe
that the objective is the steady-state analogue of the lower bound given in Theorem B.2, and we can therefore interpret this
routine as choosing the inputs that minimize the lower bound for our estimated system.

Implementation via Projected Gradient Descent. Note that the set I4,2 j is convex, and that the objective is also convex,

due to the convexity of tr(X ~!) and since Iy, Jda (5, U,~/v/2d,) is affine in U. It follows that (B.18) can be efficiently
solved with any SDP solver. The structure of 4,2 j,, however, allows for an even more efficient solution. Note that any U
can be projected onto U4.,> ,, by computing the SVD of each U, € U, an operation which takes time O(kd3). Therefore,
(B.18) can be efficiently solved by running the following projected gradient descent update:

Uit1 « Ui = VT3, (0,Ui,7/v/2dy)
Ui+1 — proj(U¢+1;L{72/27k)

where proj(U;1;U,2 /2 1,) denotes the projection of U; 1 onto Uz /5 .
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B.5.3. THE CoNSTRUCTTIMEINPUT SUBROUTINE

In order to efficiently solve our experiment design problem, we allow our input set to contain inputs that are not rank one.
While this relaxation ensures our input set is convex, for a given U € U.,2 /2,k that is not rank one, it is not clear if U can be
implemented in the time domain. Indeed, Proposition B.4 shows that, if U is rank one, there exists some time domain input
u = (uz)¥_, such that

E freq(@ U)= lim —Zx

T—)oo

which implies that we can approximately realize the response covariates I'S%, (6, U, v/+/2d,,) in the time domain, but this
relationship no longer holds if U is not rank one. To remedy this, we propose the following procedure, which decomposes
an arbitrary, not necessarily rank one, input U into a sequence of inputs that can be realized in the time domain.

Algorithm 3 ConstructTimeInput(U,T, k)

1: Denote eigendecompositions U, = Z]d.ll )\g,jw’jvzj, (=1,.... kU eU
2 uy=0€R% fort=1,...,d,T

3: forj=1,...,d, do

4: Ug; + /duAgjvejforl=1,...k

5 forn=1,...,T/kdo

6 UG )T+ (n—1)k41> - - > UG— )Tk < & (U1 g, .-+, Tkj)

7: return uq, ..., Uq, T

As the following result shows, ConstructTimeInput produces a time domain input which realizes the response
covariates T'{*Y(6, U) for arbitrary U

Proposition B.5. Let U € U2 j, not necessarily rank one. Let u,, = (ut)d "% denote the time-domain input returned by
calling Construct TlmeInput(U mk, k) with m an integer. Then

1

freq unL um
ZTE0,U) = lim_ d Z
t=0

wmk

and, furthermore, the input satisfies ;1:1 uf up < dymkry?.

B.6. Optimal LDDM Decision-Making: Formal Statement and Guarantee for TOPLE

Finally, we provide a formal definition of TOPLE (Algorithm 4), and a formal guarantee for its performance. Note that
TOPLE applies in the LDDM setting.

Algorithm 4 Task OPtimal. Experiment Design (TOPLE)

1: Input: Input power 72, initial epoch length Ci,itd,, (Cinit € N)

2: TO — Cinitdu, ko — Cinit, T + TO

3: Run system for Ty steps with u; ~ A(0, %I )

4: fori=1,2,3,...do

0i 1+ arg ming Zt [ze+1 = Olze; el |13

T, Tp2t, k; < k02U}4J T+ T+T,

U, + SteadystateDeSLgD(tS‘Z 1, i, ki, )

(ﬂ%)tT;l < ConstructTimeInput(U;,T;/dy,k;)

Run system for T} steps with u; = a1} + uj’, uj’ ~ N(0, 3 o)

AR A

TOPLE begins by injecting isotropic Guassian noise into the system to achieve a minimum degree of excitation. It then solves
a sequence of experiment design problems on the estimated system, #;_1, and then plays the inputs that would optimally
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excite 51'_1. Due to the computational efficiency of SteadyStateDesign, TOPLE is computationally efficient. Note that
by construction we will always have that k; 11, T;11/d., and T;41/(d,k;+1) are integers, so all quantities in the algorithm
and subroutines are well-defined. The following assumption quantifies how large 7" must be to guarantee we achieve the
optimal rate.

Assumption 8 (Sufficiently Large T'). T is large enough that the burn-in time of Corollary 2, (B.7), is met withn = c; logT
and )‘;mise(o—u) = )‘Eoise’ and

T s  Clobev/da(og, +1) ca(log § + dlog(7/Nsgiee + 1)) (B.19)
- Ahoise 7 min{reoy (04)?2, d;1Tq1lad(9*)2a (/\;oise)QLcovw*a 72)72}/\;01&9

where
- 1
Ot = poly (4. 1B o 2™, 108 5. i ).

Teov(0i) = Cg4 is defined as in Lemma H.5 for some Csys = poly (|| A3, || Bsllop), d = do + du, and ¢y, ¢y are

universal numerical constants.
Then we have the following theorem, upper bounding the loss achieved by TOPLE.

Theorem B.6 (Part 1 of Theorem 2.2). Assume we are in the LDDM setting, that R satisfies Assumption 3, 6 € (0,1/3),

and that T is large enough for Assumption 8 to hold. Then with probability at least 1 — 0§, the estimate O produced by
Algorithm 4 satisfies:

72(di + dmdu) . q>0pt(72§ 9*) + Cce,l + CTOPLE,l + C'Ce,2 + C1TOPLE,2

R(aopt (é\T); 9*) < 4800’120 log 5 T T3/2 T2

and, furthermore, E[ZthlutTut] < T~2 Here Ceo 1 and Cye 5 are defined as in Corollary 2,

2
Crome = 1 (Ll 4 LeoCea WalHOD ) | 10g(1/6) + d1og(7/ Niee + 1);

noise noise

2 2
CTOPLE,Q = 02%(1(%(1/6) + leg(ﬁ//)‘zoise + 1))v

noise

Leoy(04,72) = C’Sys(oi + 72 is defined as in Lemma H.5, d := d, + d,, and cy, co are universal numerical constants.

We note that this upper bound matches the lower bound on LDDM decision making given in Theorem B.2, up to constants.
We prove this result in Appendix J.1. The additional burn-in required and additional lower-order terms are required to
quantify how close to optimal the inputs being played are. In particular, when 7 satisfies (B.19), we are able to show that the
inputs being played achieve near-optimal performance. The additional lower order terms, Cropie,1/ T3/2 and Cropie,2/ T2,
both quantify the loss incurred by performing certainty equivalence experiment design with an estimate of 6,.

C. Remarks and Extensions
C.1. Randomized Decisions

Our framework extends to possibly randomized decisions @; that is, decisions @ = synth (T, &), where again T is the observed
trajectory, and £ is internal algorithmic randomness. Note that our upper bounds all hold for the deterministic certainty
equivalence decision rule. Our lower bounds, however, encompass these randomnized decision rules. This can be be seen by
examining the proof of our lower bound Theorem D.1, which proceeds by lower bounding the Bayes risk over a distribution
supported on a ball of a given radius. Hence, the performance of any randomized decision rule @ is no better than the
performance of the deterministic decision rule which considers the value of the random seed & attaining the least Bayes risk
over the distribution considered in the lower bound Theorem D.1.

C.2. Non-Identity Noise Covariance

A known non-identity noise covariance X, can be adressed by a change of basis to whiten the noise. Unknown noise
covariances can be estimated. One can show that one need only estimate ¥, up to a constance accuracy, i.e. |ﬁ)w - X, <
€Amin(2y) for a small constant ¢ > 0, and use flw either for a change of basis. One can show that this will still yield
optimal rates up to constant factors (determined by the magnitude of c).
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C.3. Unstable Systems and State Costs in Experiment Design

In many cases, one may wish to perform experiment design on systems that are either unstable, i.e. p(A,) > 1, or are
systems which are marginally stable p(A,) = 1, or which have a large mixing time, p(A,) & 1. This poses two challenges:

* To show example optimality, our analysis requires concentration of the empirical covariance matrix around its
expectation. For either unstable or marginally stable systems, existing analysis suggests this may not be true (Simchowitz
et al., 2018; Sarkar & Rakhlin, 2019). Moreover, estimation with unstable systems requires additional nondegeneracy
conditions (Sarkar & Rakhlin, 2019).

* Because the magnitude of the state, and thus eigenvalues of the covariance matrix grow rapidly in marginally stable
and in unstable systems, they may constitute a somewhat unrealistic setting for experiment design: in practice, very
large states/covariances are highly undesirable, whereas for estimation, they can be quite beneficial.

To adress these concerns, we propose three settings which would yield meaningful extensions of experiment design to
unstable/marginally unstable settings.

Multiple Rollouts: One can instead consider experiment design with, say, n independent rollouts of finite horizon H.
By forcing the system to reset, this is sufficient to ensure concentration of the relevant covariance matrices, and obviate
consistency issues that may arise in the unstable setting.

Stabilizing Controller: Another approach is to assume the existence of a stabilizing controller K, and select inputs
uy = Koxy + 14, where vy is an additional input chosen to optimize the experiment design. We can then impose the total
power constraint on the total square norm of the v, inputs.

C.3.1. STATE COSTS

Imposing total power constraints on the additional inputs v; in the above example may appear somewhat artificial. Instead,
one may wish to explicitly encode the tradeoff between ensuring state magnitudes are small, and the rate of estimation (as
determined by the eigenvalues of covariance matrix) is fast. To this end, we can consider control budgets of the form of
LQR-like penalties

T

> 2] Quuagmi + uf Rpuagus < TP (.1
t=1

We stress that the cost matrices QQpude and Ry,udg above pertain to the experiment design, and not to, say, an LQR synthesis
task for which the experiment design is being considered.

We further note that satisfying the constraint (C.1) may be infeasible: indeed, this occurs whenever both (a) the optimal
infinite LQR cost for with cost matrices (Quudg, Rbudg) 18 strictly greater than ~2, and (b) the the horizon T is sufficiently
large (so that the finite horizon optimal costs approaches its limiting, infite-horizon value).

Finally, the design for budgets of the form Eq. (C.1) may be closed-loop: that is, they may necessarily require a inputs u;
which are functions of past states x1.;. In constrast, when budget only constraints total input power, we have shown that
open-loop inputs (i.e. those not dependending on past states) suffice for optimality, up to constant factors. This raises the
question of how to conduct efficient experiment design over such closed loop policies. In the interest of brevity, we sketch a
promising approach to this problem, and omit the details for future work:

* Observe that the cost (C.1) is itself a linear form in the joint covariance matrices of the states and inputs. Hence, the
experiment design roughly amoungs to optimizing a convex function of the form tr(# - T ~!) over feasible state-input
covariance matrices I, subject to a linear constrain of the form tr(C - I"). This is a convex program in I".

» To characterize the set of feasible covariance matrices, we can observe that any feasible covariance matrix can be
obtained by combining a linear feedback policy with an open loop policy (this can be verified using Gaussianity).
One promising computation approach to perform this optimization is to use system level synthesis (Anderson et al.,
2019), where the linear feedback term can be represented as a linear form in the noise variables w;. Thus, the desired
covariance matrices can be represnted as outer-products of open-loop inputs and linear forms.
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» The SLS representation then describes the set of feasible covariance matrices as outer-products of linear forms; this is
not yet a convex representation. However, just as this paper operators on the convex hull of covariance matrices arising
from open-loop inputs, a similar convex relaxation can yield a convex representation of covariance matrices with
closed-loop feedback. This relaxation is not loose: the space of feasible expected covariance matrices over all policies
is convex, since one can always interpolate between two covariance matrices via probabilistic interpolations between
the policies which generated them (i.e. selected some policy 71 with probability p, and another with probability 1 — p).
This means that, given a feasible expected covariance matrix recovered from this relaxation, we can produce a policy to
generate it.

C.4. Expectation v.s. High Probability

Observe that our upper bounds are stated with high probability, whereas lower bounds are stated in expectation. This is
because on lower bounds proceed (like most information theoretic lower bounds) via bounds on the Bayes-Risk, which
regard expected performance; on the other hand, our upper bounds may not hold in expectation because, on a highly
improbable failure event, the estimate may produce a decision which has infinite cost (e.g. a controller returned for an LQR
task which fails to stabilize the system).

To close the gap between the two, we can make the following modifications:

* Our lower bounds on expected risk can be restated as lower bounds on a constant probability of error. To see this,
we note that our lower bound holds over a localized set of instances, B = {6 : |6 — 0|2 < r}. Hence, any decision
rule / experiment design procedure can be modified to only return decisions which satisfy some minimum worst-case
performance on B (and, under the smoothness assumptions considered in this work, this can be done without harming
the performance of the decision rule). Thus, the worst case suboptimality of the decision rule can be no more than
a constant, and thus, the lower bound in expectation can be tranformed into a lower bound holding with constant
probability.

« Similarly, if the learner is given side information (e.g. a convex set A of possible decisions known to contain an open
ball around the optimal decision aqp (6 ), and such that the cost sup ¢ 4 Js, (@) < 00), then the learner can achieve
upper bounds in expectation by projecting their decision @ onto the set A, namely

@ = Proj 4(d)

Then, whenever @ is sufficiently close to Aopt (6,), @ = a and the cost will be unaffected; however, on low-probability
failure events, the projection step ensures the cost remains bounded.

C.5. Subspaces and Parameteric Uncertainty

In many applications, one considers linear dynamical systems (A, B) where some coordinates, or more generally, subspaces
of the dynamical matrices are known to the learner, and only some coordinates or subspaces must be learned. In this case,
learning the matrices (A, B) with unconstrained least squares may be suboptimal.

However, the subspace-constrained learning setting can be easily re-written as an unconstrained learning problem restricted
to an appropriate subspace, and this resulting structure obeys the general martingale least squares setting outlined in Part II.
Hence, the same arguments given in that section demonstrate can be used to demonstrate optimality of certainty equivalence.
The algorithm TOPLE can be similarly modified to optimize for the covariance matrix in the relevant restricted subspace.

A more general constrained setting is where (A, B) = (A(6), B(0)) are smooth, possibly nonlinear functions of a hidden
parameter 6. In this case, we conjecture that one can achieve optimal rates by obtaining a course estimate g of 0, applying
constrained least squares in the subspace defined by the image of the Jacobian - A(6), B(6)) at 6 = 0. We leave the details
for future work.

C.6. Parametric Nonlinear Systems

Many of the results in this work can be extended to the parameteric non-linear systems considered in the recent literature
(Mania et al., 2020; Kakade et al., 2020):

oy = (Ox, P4, ut)) +wi,  wy R N(0,02) (C2)
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where 6, € R? is a linear paramter describing the dynamics, and ¢ : R%+4« — R? is an embedding function known to the
learner. Despite the nonlinear, the dynamics (C.2) satisfy the martingale regression setting considered in Appendix D, and
thus the MDM upper and lower bounds in that section extend (Theorem D.1 and Theorem D.2); similarly, the guarantees of
Appendix E extend as well as long as the cost functional 75 (a) satisfies the requisite regularity conditions.

Unfortunately, attempts to extend these guarantees to optimal experiment design encounter a number of difficulties:

1. The experiment-design lower bounds established for linear dynamical systems require verifying that we can consider,
without loss of generality, exploration policies mex, Which produce sufficiently “regular” periodic inputs (see Ap-
pendix H); it is not clear how this argument would generalize to the nonlinear setting Eq. (C.2), where potentially
highly pathological exploration policies may be preferrable.

2. The certainty-equivalence upper bounds for linear systems require demonstrating concentration of the empirical
covariance matrix around its mean; for linear systems, this can be verified as long as the dynamical matrix A, is stable.
For nonlinear systems, further conditions need to be imposed.

3. The experiment design problem for nonlinear systems may be computationally intractable. In addition, the experiment
design objective may be very sensitivie to errors in the estimate of the parameter 6., so that solving the certainty
equivlanet experiment design objective (i.e. optimal design based on an estimate §) may be a poor proxy for the optimal
design.

4. For nonlinear systems, controlling how the error in parameter estimation error translates into suboptimality in the
decision a for the given task may be quite challenging. Even for LQR synthesis in linear systems, verifying the
smoothness conditions in Appendix E relies on subtle technical tools developed specifically for LQR (Simchowitz &
Foster, 2020).

C.7. Suboptimality of Low Regret Algorithms

Here, we state a formal lower bound about the suboptimality of low regret algorithms. Consider a nominal instance (A, B,).
For simplicity, we consider a normalization where Ry >~ I and R,, > I, which can be enforced by suitable renormalization.

Proposition C.1 (Formal statement of Proposition 4.3). Fix a nominal instance 0, = (A, B,) with optimal value function
P,, costs Ry, Ry = I, and select a regret lower bound bound

R > dydypoly (|| Pullop, || Bullop) + [1P]I2, v/ da T /4.

Then, over the ball of instances B = B(R) := {0 : ||0, — 0||2 < mﬁ%}, the following lower bound for any low-regret

exploration policy T, and controller K\, synthesized from the trajectory it collects:

d2
Igleaé(Eg,mr [Regp] > R, or Iopeang e [RLor 0 (K1 )] > 3208 (1%2%}(@ m- o, (A + B*K*)Q) . (C.3)

where o, (+) denotes the m-th largest singular value.

For many instances of interest, (maxlgmgdz mom (Ay + B*K*)Q) > 0 is a constant bounded away from 0, and even
scales with dimension d,.. Hence, we find a strong tradeoff between low regret and optimal estimation. The key intuition
behind the proof is that low regret algorithms converge to inputs u; ~ K,x; approaching the optimal control policy; in
doing so, they under-explore directions perpendicular to the hyperplane {(z,u) : u = K,x}, which are necessary for
indentifying the optimal control policy. This idea, as well as the rigorous proof, draws heavily on the regret lower bound due
to (Simchowitz & Foster, 2020).

Proof of Proposition C.1. Throughout, fix a low regret policy .. The proof follows from the arguments of (Simchowitz &
Foster, 2020). Fix a nominal instance 0, = (A, By ), with optimal controller K. Let m € [d,], and adopt the shorthand
n = d,. For binary vectors e € {—1, +1}"" consider a packing

0 := (Ae7B> (A _AK*’B +A Ae _Ezze”vl wj >

i=1 j=1
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where € is a parameter to be chosen small than ¢y := for a larger enough polynomial poly, and (v;) and

I E—
nm-poly (|| P« [lop)
(w,) are appropriately selected orthonormal basis vectors. These instance are constructed so that A, + B. K, are identical
for all packing indices e; in other words, by selecting the optimal controller for the nominal instance 6,, al the instances are
indistinguishable.

Let K, := K,pt(0.) denote the optimal controller for these instances. We let Eo denote expectation under the uniform
distribution over e ~ {—1, 1} from the hypercube. We consider the term K-err from (Simchowitz & Foster, 2020),
modified to include all 7" time steps (instead of 7"/2). For any controller K € R%:% define

T
K-err i=Eg, o, [Y e — Ka3].
t=1

The reason for considering 7" steps is because here we are concerned with the offline learning problem, where the learner is
allowed to use all data from the trajectory to synthesize a controller.

The first claim lower bounds the regret by average deviation from the optimal control policy under the nominal instance:

Claim C.1. Let Yery = dy - POLy (|| Prllops || Bxllop ), where O hides universal constants. Then,

1
Eg, x, [Regrety] > 1 E K-erre[K,] — anHP*Hﬁpe2 — Yorr (C4)
e

Proof. A modification of (?)Lemma 4.3]simchowitz2020naive use all T" steps (rather than 7'/2, and using a sum over the
terms 7, in that proof rather than a bound by the maximum) shows that

1
Reg, := Eg_ r, [Regrety] > iK-erre [Ke] = Yerr,  Where Yerr = dy - pOly (|| Pellop, || Bxllop)s (C.5)

From Lemma 4.7 in (Simchowitz et al., 2017), we also have

E K-erre[K.] < 2E K-erre[K,] + 4nmT|| P, H§p€2.
e e
Combining the two displays gives the claim. O

Next, since the instances 6, only differ along directions (2, u) € R% *%: perpendicular to the hyperplane u = Kz, samples
collected perpendicular to this hyperplane essential for disambiguating between the instances 6.. This leads to the following
lower bound.

Claim C.2. Set R = Then either

B
S om(A, + B, K,)?n*m

- 480R ()

E[K-erre[K,]] > 12R, or EEg,_ . [RLor 6. (EK1)]
e

e

Proof. Modifying Lemma 4.5 in (Simchowitz & Foster, 2020) shows that for any binary estimator é, either K -err. is small
on e drawn from the hypercube, or else € has large hamming error.

nm

either E[K-erro[K,]] > or EEg, 1, [dham(é, €)] > E
e e

n
4€2’
Combining with Lemma 4.6 in (Simchowitz & Foster, 2020), it follows that

om(Ax + By K, )*nme?

Klr_Ke”%‘] Z 10

either E[K-erro[K,]] > 4”

p 2’ or IEE]E%,mr[

From (?)Lemma 3]mania2019certainty, we can bound || K}, — K|/ > %(g(;‘) Thus, using Ry = 1,
n om(As + B K, )?nme?
BIK-erro[)) > 1, or  EBy, i, [Riges, (i) 2 oA E DL 0me

Reparameterizing R = 555 gives either Eq g1 1}[K-erre[K,]] > 12R, or else Ee;_1,1} Eo, m, [RLor,0. (K1r)] >

A, +B,K,)*n?
Im *+486R*) ™ a5 needed. O
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Combining Claims C.1 and C.2 and taking R = 375 gives

< om(A, + B, K,)?n*m

EEeeyﬂ'lr [RegT] > 3R — an”P*H?)pez —Verr; or EEé’eﬂnr [RLQRﬁe (Klr)] = (C.7)
e N , e 320R

_mTPld,

- 32R

i . mT||P.lay .
In particular, if we take € so that R > max{~err, —555 = }» then either
om (A + B, K, )?n?m
EEs,n,Regr) 2 B o EEq, r, [Rigus, (Kir)) 2 72 Delte) 8

Let us conclude by verifying the requisite ranges for conditions on € and regret bound R for the above to hold. We require that
m '« 4 . .

R > Yere = dpoly (|| Psllops || Bxllop)- We also require R? > %, so that R > || P,||2 v/mT /4. Finally, we require

e = 5= < W(HP*HOP)’ so R > n?m - poly(|| Ps||op) for a a possibily modified polynomial function. Concluding,

and using n = d,, and m < d, it is enough to select

R > poly([| Pllop, | Bullop)dda: + HP*||C2)p VdT /4
Finally, we note that all the instances 6, have

n?m(1 + || K][3,)

16 = 0. l1F = I AclE + Al < (1 + [1KL[S, )nme? = 2R

Concluding, we note that for R,, = I, one can bound || K, ng < ||Px]|op (this follows since P, = Ry + K TR.K, bya

standard computation). Hence, taking n = d,, and m < d,, all instances lie in the ball B = {0 : |0, — 0|2 < 16”@*%}.
The bound follows.

O
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Part 11
Martingale Decision Making

D. Optimal Rates for Martingale Regression in General Norms

In this section, we establish upper and lower bounds in sequential linear regression setting with martingale structure. We
consider a filtration (]-"t)tzl, and a well-specified linear model with true parameter 6, € R covariates z; € R% scalar
observations ¥, and noise w;. Specifically, for each 0, € R9%, we assume there is a distribution Dy, over (Y, zt,Yt)
obeying

yr = (O, 2t) +wi,  wy | Froq ~N(0,02), 2 is F;_1-adapted.

As long as the above conditions hold, we allow the distribution of the covariates to be arbitrary: for example, that there is
some function f(...) of appropriate shape such that z; = f(¢, 21.4—1, Y1:t—1, W1.t, 0% ). We let Eg and Py denote probabilities
and expectations with respect to the above law when 6, = 6. Our aim is to produce an estimator f € R% 5o as to minimize
the following weighted least-squares risk:

Ris(0;0) == |6 — 0]3,, M >=o0. (D.1)

D.1. Upper and Lower Bounds on )M -norm Regression

In this section, we show that the least squares estimator

—~ —1
b= (S 22l) Sz (D.2)

is the optimal estimator of 6, for the risk in Eq. (D.1), in a very strong, instance dependent sense. Throughout, tcentral
object of our analysis is the random covariance matrix:

. T T
Sri=) %% -

Let us start with the lower bound. We will call an estimator § measurable if @ is a measurable function of the covariates and
responses (Y, z¢ : 1 <t < T), and possibly some internal randomness. We consider the localized risk in a Euclidean ball
of radius » > 0 around a nominal instance 6

Theorem D.1 (Truncated van Trees). Let 9 be an arbitrary measurable estimator. Moreover, fix a covariance parameter
e Siﬁ, nominal instance 0y € R, and radius r > \/5tr(L~1). Let B := {0 : ||0 — 0|2 < r} denote a Euclidean ball
around 0. Then, it holds that

, B> o2 _ -1\ _win
1%fr51€aé(]E9R15(0,9)7Uwrgnel§tr<M (Eg[27] +T) ) U(r;T, M),

32|| M ||o 2
where U(r;T', M) := /\Hi(‘lp)p exp(—" Amin(I)).
Proof Sketch of Theorem D.I. The proof is given shortly below in Appendix D.2; it is derived from a Bayes-risk lower
bound deriving from an explicit computation of the conditional variance (and thus minimal mean square error in estimation)
of a parameter € drawn from a normal distribution centered at 6y, with covariance A = I'~1. This distribution is then
carefully truncated at radius 7 to ensure the local minimax bound holds when restricted to the ball B. O

Remark D.1 (Comparison to Previous Lower Bounds). Lower bounds for experiment design are typically derived from the
Cramer-Rao bound (e.g, in (Chaudhuri et al., 2015)), which applies only to unbiased estimators, and does not rule out more
efficient estimation by allowing bias. In contrast, our work provides an unconditional information theoretic lower bound,
derived from a closed-form computation of an expected Bayes risk in linear regression with a Gaussian prior (Theorem D.1).
This technique is similar in spirit to the Van Trees inequality (Gill et al., 1995) which was used in concurrent work to
understand instance-optimal regret in LQR when A, is known but B, is not (Ziemann & Sandberg, 2020).
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Another common technique for adaptive estimation lower bounds is Assouad’s method (Arias-Castro et al., 2012; Simchowitz
& Foster, 2020), typically yielding worst-case (though not sharp, instance-dependent) lower bounds. The lower bounds for
adaptive experiment design in linear systems due to (Wagenmaker & Jamieson, 2020; Jedra & Proutiere, 2019) hold in the
asymptotic regime where the tolerated probability of failure ¢ tends to 0, a regime pioneered by (Kaufmann et al., 2016) for
pure-exploration multi-arm bandits, and extended to reinforcement learning in (Ok et al., 2018). For continuous parameter
estimation (such as the linear control setting control), the § — 0 asymptotic lower bounds differs from non-asymptotic
upper bounds by as much as a dimension factor, unless ¢ is taken to be exponentially small in dimension (Simchowitz et al.,
2017). In particular, taking § — 0 yields a qualitatively inaccurate picture of the expected error of the estimators in question.
In contrast, this work achieves matching bounds in the (arguably more natural) “moderate §” regime, where the tolerated
failure probability is no smaller than inverse polynomial in the time horizon.

In our applications, we shall choose r sufficiently large and I" sufficiently small so that the lower bound reads

“2inf max EgRus(8;0) > mintr (ME¢[S7] 1) ; D.
oo 1% Igleaéi 9R15(0,9)N19211131tr( 0[27] ), (D.3)

in other words, that the M-weighted trace of the inverse covariance matrix lower bounds the risk. Even though the
right-hand side considers the minimum over § € B, the radius r of B can be chosen small enough that this quantity
does not vary significantly. For a sense of scaling Eg[37] will typically scale like Q(T), by choosing ' < o(T'), and
r2 o tr(I1) log?(T'), the term W (r, T', M) vanishes as T~“(1), and the approximation Eq. (D.3) holds. Moreover, since
this scaling of r vanishes at a rate of log? T /v/T, r is small enough so as to ensure Ey[X 7] does not vary significantly on 5.

Theorem D.2. Fix any matricies T € Si‘ﬁr, M e Si", with M # 0. Given a parameter 3 € (0,1/4), define the event
E={lIZ1 = Lllop < BAmin(I')}
Then, if £ holds, the following holds with probability 1 — §:

~ 6d
[61s — O0xll3s < 5(1+ ) - o2 logg Ar(MT™Y), wp. 1 -6,  where
@ 1= 263% Amax (T)tr(I 7).

Proof Sketch. Like many results of this flavor, the proof is based on the self-normalized martingale inequality (Abbasi-
Yadkori et al., 2011). Unlike related results, however, our proof must relate in the error in the M-norm ||6;s — 6, |2, to the
I'-geometry so as to recover tr(MT 1), It turns out that, due to the fact that matrix square does not preserve the Lowner
order (i.e., it is possible to have 0 < A < B, but A?> £ B?), we require the empirical matrix 7 to concentrated around I’
for this argument to go through. This forces us to require the above event £ to hold, and to suffer the error term «.. The
complete proof is given in Appendix D.3. O

D.2. Proof of M -norm Regression Lower Bound (Theorem D.1)
Without loss of generality, set o2 = 1. The proof of the lower bound is a Gaussian-specialization of the Van Trees inequality
(see, e.g. (Gill et al., 1995)), a Bayes-risk lower bound which considers the risk of estimating a quantity under a certain prior.

For our prior, we use a normal distribution, which we truncate to a radius r. In what follows, we set
_ -1 dg
A:=T""€e8Y,.

We let V;, denote the following fruncated normal distribution: the distribution of Z ~ N (6, A), conditioned on the event
|Z — 00> < r. We further define the full data D1 := (y1.7, z1.7), and let

* Dran (D7) denote the posterior of 8 given D, when 8 is drawn from A (6g, A);
* Let Dipunc (D7) denote the distribution of 6 | D .

Throughout, we assume that our posited estimator § is a deterministic function of ©r; this is without loss of generality for a
Bayes-risk lower bound. Then, since the distribution NV, is supported on the ball B := {6 : ||0 — 6y]]> < r},

inf maxEgRys(0;0) > E EgRi(6;0) = E Eo,0]l0(Dr) — 0|2
infmaxBoRis(0;0) 2 | B EoRis(0;0) = | B For~ell0(D7) - 02
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Lemma D.1 (Replica Lemma). Let X,Y be abstract random variables, with X ~ Px, Y ~ Py x (- | X), and let f(x,y)
be an integrable function. Moreover, suppose that X | Y has density Px |y (- | Y'). Then

Ex~pxEy~py «(1X)f (X, Y)] = Exnrx By apy o (1) Exine gy () [F(X Y]
Proof. By Fubini’s theorem and Bayes’ rule,
BxerByory (i [F 6V = [ [ Han)Byix(y | o) (@)dyds
— [ [ [ b @ [9Pyix(y] Px (o)ds'dys

///f PY\X’ Y Yﬂgy)PX'( )PY|X(y | 2)Px (z)da’ dyda

- / / / £, y)P v (@ly)Py x (3 | )P (2/)da'dyde
- / / / £ 1) Py (@ly)Pyix (v | )P (2" )dadyda’

=Exnbye Evary « (1x) Exapyy () [f (X, Y)]

Relabeling gives the result. O

By Lemma D.1, the above is equal to

1112
oK trEeRls(ﬂ 0) = ewﬂhr@ﬁ Eg/ Do (00 10(D7) — 0'3;. (D.4)

For a random vector Z and any fixed a, E||Z — a||%; > E||Z — EZ||3,; that is, the Bayes estimator is optimal. Denoting the
event £ := {||@’ — y||2 < r} (over the randomness of 8’), we lower bound Eq. (D.4) by
Bq. D> B E Eopy @)l — Eornpi 000 lls
—y

Ntr

2
=B E Eo-pyu@n [0~ Eonuuonl® | €]} | €] (D.5)

To handle this expression, we use the following technical lemma

Lemma D.2. Consider a square-integrable random vector Z € R%, fixed n € R%, r > 0. Defin the event £ :=
{17 = pllz < r}. Then,

E(|Z ~E[Z | €I} | €) 2 E|1Z ~ E[Z]|I3 — 4IM|opEI{E}Z — pll3).

Proof.
E(lZ -E[Z| £l | €] 2 E[H{E}- |2 —E[Z | E]I3]
=E|Z-E[Z | €]|}, ~E[I{e} - |Z - E[Z | €]|I3,]
(4) (i)

Next, we lower bound (i) = E || Z — E[Z | £] H?M > E||Z — E[Z]||3,. Thus, it remains to upper bound (ii):
(i) =E [{e} - 12 —E[Z | €]l%] < 2B [{e°}- (12 — pllys + e — E(Z | €]]13)]
<2E[{&%} - (12 = ully +r* 1M o) ]
< 2 [I{£°} - (112 = w31 M lop + 7)1 M lop) ]

where in the second line, we use that, under &, || Z — || < 7. Moreover, under £, || Z — |3 > r, so that || Z — p||3 + 72 <
2||Z — pll3- Hence, (ii) < 4| M||opEI{E°}H|Z — p]|3]. Thus,

E[|Z - E[Z | €]} | €] > E||Z — E[Z]|3; — 4| M|opE[I{EH Z — pl3],
as needed. O
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Instantiating Lemma D.2,

Eq. (D.4) > NN“ QiE GEG'NDfuu(’DT) [”0 7E0”N’Dfull(©T [Oll]HM}
- 4HM||op 0N ”DE 9EO/N'Dfull(@T)EQ'NDfun(@T) [”0/ - 90”% . H{HH/ — 90”3 > TQ}] :
~Nigr D~

Hence, retracing our steps thus far,

i%f max BoRis(6;6) 2 Eoni, Eor~6Eo vpru(01) (116" = Egr Dy (0 (61]134]
@)

—4M2, - (Eooni EornoBopin@r) [16° = b0l - I{[10" — 60|13 > r*}])
(b)

Let us control the two resulting terms.

Computing term (a): First, we bound the dominant term (a):

Lemma D.3. The following identity holds:

]EO/NDfu“(@T) [”0/ - ]EG/'NDfuu(@T) [0//] ||?\lj| = ai)tr(Ml/2(ET + A—l)—1M1/2).
Proof. Due to the fact that we have gaussian likelihoods, we we
T
dP(Dr | 0) x exp(— Z —(0,2))°) x exp(——HTETﬂ + —GT Z 20, )
et e
On the other hand, for any given 6, dP(f) o exp(—16 T A~16). Hence,

1

dP(6 | Dr) x exp( )

T
1
T34 AL T T
0 (S + )9+g9 Eﬁ ZYy )

Thus, 6 | D is conditionally Gaussian with covariance o2 (X7 + A=) 1. It follows that:
Eo g (07) (18" = Egrappyy(0)[0”1134]
=tr (Ml/QEG’NDfun(@T) [(0/ - EQ”NDfuu(’DT) [BN])(GI - EB”NDfuu(@T)[GN])T] M1/2>

= o2tr (MW(ET + A‘l)‘lMl/Q)

As a direct consequence of the above lemma, we find that

t - E E E E,[ 2 (MY2(Sg + A~ —1M1/2]
erm (a) 0 D20 8D (D) O o,tr( (7 + ) )

= B E[olt(M2(Sr+A7")" 1M1/2)],

O~N

where in the last line, we have invoked Lemma D.1.

(D.6)

D.7)

Upper bounding term (b) :  Let p,. := Pg.pr(6,,)[||@ — 60| > r] denote the probability that @ lies within the truncation

region. Then, for any nonnegative function f(#) > 0,

1

Eoni [£(0)] = 1= » Eo~n(60.0)[f(0) - I{[|0 — Oo]| < 7}] <

1
- Egn(00,0)[(6)]
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Thus,
term (b) = Eon, EnrnoEornn(o,) [0 — 60ll3 - I{[16" — 6013 > r?}]

<7 > Eo (00,0 EDr~0B0 ~D(0,) [[18" — 0oll3 - I{[16" — bo]13 > 1*}] (D.8)

By the replica lemma (Lemma D.1), the second line is equal to

Eq. (D.8) =

1
T, Eo~N(00.0) y [16 = 6oll3 - 1{[16 — 0oll3 > r}] -

We now bound the above. Note that @ — 6 has the same distribution as A"/?g, where g ~ A (0 Id) Hence, p, =
Pgn(0,1,)[8 T Ag > r?]. For 72 > 2tr(A), Markov’s inequality therefore implies p, < 1/2, so tha
by the same change of variables,

Eon(o,n) [0 — 00l - 1{[10 — 0013 > r*}] = Eguno,1,) 8" Ag - I{g" Ag > r?}],

Thus, for 72 > 2tr(A) = 2tr(I'""!) (which follows from the condition of the theorem, r > /5tr(I'~1), it holds that

term (b) < 2Eg.ar(0,1,) [gTAg g Ag > 7"2}} = 2/2 Plg" Ag > r?]dr.

We now require invoke a coarse consequence of the Hanson-Wright inequality:
Lemma D.4 (Consequence of Hanson-Wright). For any u > 4tr(A), we have

Plg"Ag > tr(A) + u] < e TTor

Proof From Proposition 1.1. in (Hsu et al., 2012), we have ¢ > 0, it holds that P[g " Ag > tr(A) +2v/#||Al|r +2||A|opt] <
~t. In particular, if v/#||Allop > ||Allr, then P[g" Ag > tr(A) + 4t||Allop] < e~*. Reparametrizing u = 4t||Al|op, we

have that if \/u[[Allop/2 > ||A]lr, thenP[gT Ag > tr(A) + u] < e~"/4IAlor Lastly, the condition /u[[A[lop/2 < ||Allr
is equivalent to u > 4||A||%/||Allop- Since ||A]|% < tr(A)||Allop, it suffices that u > 4tr(A). This concludes the proof. [

Hence, under the assumption of the theorem, 2 > 5tr(I' 1) = 5tr(A), we may bound

o0

term (b) < 2/ Plg" Ag > 7]dr

r2

2/ Plg"Ag > tr(A) + 7]dT
r2—tr(A)

0 . r2 —tr(A)

PR’ A— _r A

< 2/ e AlMATop :8||AH0p6 4[[ATlop
r2—tr(A)

7‘2
< 8||Allope PMATor (D.9)
Concluding the Proof: Combining Egs. (D.6), (D.7) and (D.9), we have

mfmaxIEgRlS(G 0)> E E[o tr(MYV2(Sp + A7)~ 1M1/2)}

0~Nir
- 32||A||0p|\z\4||ope*m

Since A = I'"1, the last line of the above display as ¥ (r; ', M) := 321?(”13)" cxp(—%)\lllin(F)). Finally, we lower bound

the first line of the above display crudely via Jensen’s inequality: indeed, since X + tr(X ~1) is a convex function (on the
domain of positive-definite matrices), and since convexity is preserved under affine transformation, we have

JE E ofvtr(Ml/Q(ET+A’1)’1M1/2)] W {awtr(Ml/Q(]g[ET}+A1)1M1/2)

Subsituting in I' = A~1, and noting that the distribution A\;, is supported on the ball B concludes the bound. O
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D.3. Proof of M -norm Regression Upper Bound (Theorem D.2)

Proof. Let  be a parameter to be tuned, and set. Since M may not be full rank, we consider a perturbation
N:=M+ I, ¢=tr(MT™)/tr(T7Y),

where ¢ > 0 is to be chosen. We further define

* Z € RT*4 denote the matrix whose rows are 2,

o w € RT as the vector whose entries are wy.
. (9}5 the least squares estimate of 6, defined in Eq. (D.2)
» We let vy, ..., v, be the eigenvectors of NY/2T'~1N1/2 and \; := X\;(N'/2I'~1 N'/2), which we note are determinis-
tic.
The error of the least-squares estimate is then,

163 — 0113 = (27 2) ' Z" w3,

Since € < Apin(I")/4, we can apply Lemma J.4 to get

2¢e
777" 1Y, < ¢
Iz 2) lov < S T @ =6 < R (0

‘We now invoke the following lemma, controlling the relation of (weighted) squares of matrices in the PSD order:
Lemma D.5. Let A, B,M = 0and C = A — B. Then,
AMA+T7CMC = BMB/2

The lemma is proven at the end of this section. Instantiating Lemma D.5 with A =T "' and B = (Z"Z)" ! and M = N,
we have

13[| NV ||ope®

NIt
+ )\min(r)4

I~(Z2"Z)"'N(Z"Z)!
Suppose that € is chosen sufficiently small that, for a constant « to be specified
13HN||01D€2.

(D)1 (D.10)

ol "INT™! =

we shall revisit this point at the end of the proof. Then,
(Z"Z)"'ZT w3 < (Z272) 27w} (D.11)
=w Z(Z'Z)'N(Z'"Z)'Z™w
<(Q+a)w ZIINT'ZTw
= (1+a)INV2 T2 w3

dg
=(1+a)) (v NVPTTINYENT2Z T w)?
j=1
dg
— (1 + a) ZA?(U;N71/2ZTW)2
j=1
de
=(1+a) Z )\?(’U;FZ;W)Q, where Z; = ZN~'/%yp; ¢ RT. (D.12)
j=1

We specialize the self-normalized martingale concentration inequality:
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Lemma D.6 (Theorem 1 of (Abbasi-Yadkori et al., 2011)). Let {et}tzl € RN be a scalar, Fi-adapted sequence such that
e| Fi_1 is 02 sub-Gaussian. Let {x; };>1 € (R%)N be a sequence of F;-adapted vectors. Fix a matrix Vo = 0. Then, with

probability 1 — 6,
1 T
<202 log <5 det (VO‘”Q <Vo +y° xtxj> v0‘1/2>> .
Vot 3271, xex])~? t=1

In particular, if d = 1, then selecting a scalar Vo = T,

T
E Xt€t
t=1

T
E Xt€t
t=1

T T 2
+ 2 1=l
< 202 H1 T t=1 )
<20+ Y ) og( =

Applying Lemma D.6 with a union bound over indices j € [d], it holds with probability 1 — ¢ for all j € [d] simultaenously
for any fixed 7 > 0

d([1Z,]13 + 7))

(v] Z] w)* < 2073 (1 Z;]5 + 7A;) log A0

(D.13)

In addition, note that for any 7 > £,

1Z513 = o] NV2ZTZN 20, < o] NV 4 el) N2
< (14 B)o] NTVAONT 20 = (14 AN < (1+7)07

Hence, with probability 1 — ¢ the following holds for all j € [d] simultaenously

2(1 + 27)02 142
(’(}]TZIW)Q < ( + T)Gw log d(T + )
Aj 1
Hence, combining with Eq. (D.12), we have that with probability
do d(r! +2)
(ZTZ)'Z w3 <200+ )1 +7)00 > N log ——~—
j=1
dir=1 +2)

<214 a)(1 + 7)o log r(NY2DINY/2),

5
Finally, we can simplify tr(N'/2T'"1NY/2) = tr(NT~1) = tr((M + ¢I)I'™1) < 2tr(MT 1) for our choice of { =
tr(MT 1) /tr(T'~1); thus, choosing 7 > 1/4 > 3 (recall the assumption,3 < 1/4), we have

6d
(ZTZ)'Z " w|3%; < 502 (14 a)log 5 Str(MT™Y), wp. 1 —6. (D.14)

13HNHop‘—2

To conclude, let us compute find a suitable constant « satisfying Eq. (D.10). Recall that we wanat oI "' NT ! > N (T

Since N > ¢, and € < BApin(T), we want
ag > 1352||NHOP = 1352(“M”0p + C)

Recalling ¢ = tr(MT~1)/tr(I~1) < ||M||op, We can chose o > %

HM”Op)\min (Fil), we can take

. In particular, since tr(MT' 1) >

2652\\M||0ptr(F_1) 2 —1
= = 26/8 >\max 1—‘ tr F
132 o Aumin (D)1 (D)
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Proof of Lemma D.5. Clearly, AMA = BMB+ CMC + BMC + CMB. Since CMC,BMB > 0:

BMC + CMB = BMC + CMB — ACMC — BMB/4
—(B/2 - 2C)M(B/2 — 2C)

> —2(BMB/4+4CMC)

~BMB/2 —8CMC

Thus,
AMA > BMB+CMC — BMB/2—-8CMC =BMB/2—-TCMC.

E. Lower Bounds on Martingale Decision Making

In this section, we convert the information theoretic bounds for M -norm estimation considered in Appendix D to the smooth
decision making problem with decision a € R% . In particular, in this section we work in the MDM setting.

Smoothness Assumptions and Consequences. We first recall the smoothness assumption on our loss R in the MDM
setting.

Assumption 3 (Smooth Decision-Making). There exist rquad(0x) and constants . > 0, Lq;, Lg;, © € {1,2, 3}, and Lyess
such that for any 0 and a satisfying

He - 9*”2 S rquad(e*)7 Ha - aopt(e*)”Z S Laquuad(e*)v (Bl)

the following conditions hold

* The optimal action Qo () is unique, and moreover, there is a parameter y such that R(a';0) > £||a’ — aope(6)]]3 for
all @' € R (not restricted to o' satisfying Eq. (B.1)).

[VaR(a;0)[lop < Lr1,

V2R(a;60)]lop < Lo, and [|VER(a;6) op < L.

L]

Hv9a0pt(9)”0p < La1, ”vg%pt(@)”or) < Lq2, and ”vgaom(e)[évévé]”w < Ly forall d € R% with [8]]2 = 1.

V2R(a;0) is Lipschitz in 0 with Lipschitz constant Lyess.

The above assumption directly yields the following Lipschitz conditions.

Proposition E.1. Assume that R, aop satisfy Assumption 3. Then for any model 6 € R and action a € R% satisfying
(B.1), it holds that

. Vgi)R(a; 0) is Lipschitz in the operator norm with Lipschitz constant L1y fori=0,1,2

. Véi)aopt (0) is Lipschitz in the operator norm with Lipschitz constant Lq(i41), fori =0, 1.

In the above, we adopted the convention V" f () = f(x).

Relating Smooth Decision Making to //-norm Estimation. The next step is to relate smooth decision making to M-
norm estimation. We begin by introducing the revelant gradients and Hessians, and in particular, the rask Hessian H(6)
introduced in Section 2.

Definition E.1 (Key Gradients and Hessians). For some 6, and function R, aopy, let:
o Mqy(0,) := V2R (a;0,) at a = agpt (6y)-
* Gy(0,) == Voaop(0) at § = 6,.
o H(0,) = V2R (aopt(0); 6,) at @ = 0,. In particular, H(0,) = Go(0,) " Mqa(04)Ga(0s).
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The following result utilizes Assumption 3 to guarantee that #(6) is itself a smooth map, and that the norm induced by

~

H(6,) can be used to approximate R (ap(0); 0, ), both of which are critical pieces in our analysis.

Proposition E.2. Assume that R, aopt satisfy Assumption 3 and that 7 satisfies ||§ — 0.ll2 < Tquada(0«). Then the following
hold:

R(topt (0); 0.) — 110 — 0,306, | < Lauaa - 10— 013, [H(0) = HO)llop < Ly - 16 — 0.
where:

1
Lquad == E(LRSLil +3LroLa2Lar + Lr1La3), L3 := 6Lguad + LraLa1 + LhessL21.

Lower Bound for Smooth Decision Making. We now state our key lemma, which allows us to reduce smooth decision
making to M -norm estimation and obtain a lower bound on the local minimax risk in terms of estimation in a particular
norm.

Lemma E.1. Assume that the excess risk R and optimal decision function a.p, satisfy Assumption 3 with smoothness
parameters Lr; and Lo, and radius parameters 1quaq dictating the region in which the smoothness holds. Let r > 0 be a
radius parameter satisfying

r S Tquad(e*)/4

and define the associated balls Br(0,) := {0 : ||0 — 0|2 < r}. Then,

; -~ ; : 1 0 2 3 2,2
min  max By, [R(a;0)] 2 min { min max 5B, [H@ - 9”7—[(9*)} — Cir’, ulgyr

where we define the constant, for a universal numerical constant cq,

Ci=a (LalLa2LR2 + L3 Lrs + Lhess)-

By tuning the radius parameter r(7") appropriately, we achieve the following general purpose lower bound on the excess
risk:

Theorem E.3. Suppose the smoothness assumption Assumption 3 holds with its stated smoothness parameters. In addition,
fix a regularization parameter A > 0, and suppose that T satisfies

6/5 /2 6
7 2 e { (2t ()

Finally, define the localizing ball By := {6 : ||0 — 0,13 < 5dg/(XT)°/C}. Then, for any 6 € Br(6.),

. . 2 . —1 CQ
min max Eg .., [R(a;0)] > oy, Jnin tr (7—[(0*) (Eb, ey [B1] + AT - 1) ) ~ DTy

where we have defined the constant, for a universal numerical constant co,

Cr=c ((LalLaQLR2 + L3 Lrs + Lhess)d:;/Q + L§1LR2)-

E.1. Proof of General Decision Making Lower Bounds

For the remainder of Section E, unless otherwise stated we assume the expectation is taken with respect to 6 and some fixed
exploration policy 7ep,. Hence, we write [E[-] in place of Eg . [].
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E.1.1. PROOF OF THEOREM E.3

For simplicity, we shall write 72 = 5dy/(AT)%/6. The result follows by instantiating Theorem D.1 to lower bound:

i E 093
min 02X o (10 = Olfaro.]

via the simplification provided by Lemma E.1. Apply Theorem D.1 with parameters I' = \T - I, so that tr(I'"!) = f\l—"T and
Amin(I') = AT'. Then, the remainder term ¥ from that theorem is bounded by

32“7—[(9*)”01) 1 2
r: <—————e¢ —=r
\I/( ,F,'H(@*)) h\ >49) AT

Selecting 72 = 5dg /(AT)%/6 yields

S 32HH(0*) ”oP

U(r; T, H(0)) T

exp (fdg()\T)l/G)
Noting that 72 > 5tr(I"), Theorem D.1 yields that

i ax E 902
min | max 0o Ll 1320.)]

: -1\ _ 32[1H(0.)llop 1/6
= %w 9:|\9£1191*rﬁ2Sr o (7—[(9*) (Ee’wexp [ET] +AT I) > B T P (7d0()\T) )
3212 Lro

>02  min tr (7-[(9*) (Eb,menp [B7] + AT - I)_l)

Y 9:010—0, |[2<r eXp (_dQ(AT)l/(S) ’

AT

where in the last line, we invoked Assumption 3 to obtain

1H(O)llop = G a(0) " Ma(0.)Ga(0:)lop < L3y L2

Now, observe that our condition on AT, namely \T' > (8Od9/rquad(9*)2)6/5, implies that = (5dp/(A\T)%/%)1/2 <
17 quada (0). Hence, we can apply Lemma E.1 to obtain

min max
a 0:]0—0,|2<r

2L2% L
—Cyr3 — 32La Lro exp (—dg()\T)l/6> }

E[R(q;6)] > min {5uL§1r2, tr (7—[(0*) (Eo,r.., [E7] + ATI)*)

012” min
0110—6. Jla<r

AT

for C7 as in Lemma E.1 To conclude, we consolidate

3212, Lo
AT

C1(5dg)®/? + 32L§1LR2()\T)1/4 exp (7d9(>\T)1/6)
(\T)5/4

C1r + exp (—de(AT)l/ﬁ) -

Observing that (AT')'/* exp (—dg(AT)'/°) is bounded above by a universal constant (since dg > 1, and for all d > 1,
maxg>q ze 9 < max;>o e * is bounded), the above is at most

o Cydy? + L2, Ly Cs
(AT)5/4 (AT)5/4

for C5 as in the statement of the lemma. To conclude, it suffices to show that for our choice of 7, we have

5ul?r? >0  min  tr (7—[(9*) (Ep.ror, [S7] + /\TI)_l) .
01160, |2 <r
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Lower bounding Eg . [S7] + AT = XTI, and upper bounding tr(H(6,)) < dg||H(0)lop < doL2; L2, and substitut-
ing in the choice of r2, it is enough that

2 doLg Lo

2 5/6 >
:uLcll (5d9/(>\T) ) Z Oy AT

Rearranging requires that

2
UwLRZ
)

AT)Y/6 >
(AT)" > "

which is satisfied for our choice of \.

E.1.2. PROOF OF LEMMA E.1

Our strategy is to show that an action a with low excess risk can be used to produce an estimate of a parameter § with low
error in the task hessian norm || - [|3, (9)- Specifically, we define the perturbation term

b, (a) = argémin [Ma(6,)"% (@ = aopt () — Ga(64)8) |2
= (Ma(0,)"?Ga(6,))  Mq(6:)"/?(@ — aope (64))
and define the induced estimate

0(3) = 0, + 5.(a)

Ensuring a close a,,(0,): We first want to restrict the lower bound to being only over @ close aopt (). To this end, note
that

min max E[R(a;6)] = min { min max  E[R(a;0)],

G 0:)10—0.)3<r(T) [ Aaope (6.)[3<r2 60:0—6, [3<r2

max E[R(a;0)]
@:[|@—dops (04)[|2>72 0:(10—0,]|3<r2
where we are free to choose r, as we wish but our choice will satisfy r4 > Lg17. Now:
[a = aopt(04) |2 < (& = aopt (0)[|2 + [|aopt (6) — dopt ()2
<@ = aope(0)ll2 + Lar [0 — 04]l2
S ||a_ aopt(6)||2 + Lalr

By the argument above, [|@ — aopt(6)]|3 > 7a(T') then implies that:

R(@:0) > 51~ aopt ()3 > § (18— Bope (012 = Larr)® > § (70 — Lar)’
Choosing 74 = (1 4+ v/2)La17,
i E[R(a;6)] > uL?,r?
bt oo g T ) 2 T
Thus, definining the constant
Co = (1+V2)La,
So ultimately we have:
min ma, E[R(a;0)] > min min ma, E[R(a;0)], unL>,r? E.1
a 9:||9—9*H§(ST(T) (R(@:9)] = {a:na—aopt(o*)@gcgﬂ 9:||9—0*ﬁ(g§7~2 [R(@;0)], nLay } (E.1)

We now proceed to lower bound the first term in the above expression. In particular, throughout we assume that

1@ — aopt(04)[|2 < Car,  Ca = (1 + V2)La1, (E2)
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Taylor expansions: Fix at € [0, 1], parameter 6, estimated action d, and define the interpolations
ap =ta+ (1 —t)aepe(0), 0 =10+ (1 —1)6,

Throughout, we will let @’ and 6’ denote certain values of a; and 6 for some interpolation parameters ¢',¢” € [0, 1] chosen
so as to satisfy the application of Taylor’s theorem to follow.

First, by Taylor’s theorem,

~ ' d o 1d* 1d?

R(a;0) = R(acpt(0); 0) + %R(at, 0)]i=0 + 5@7%(%’ 0)|t=0 + G B

= R(aopt(0):0) + (VaR(a;0)|aza.,.(6)) | (@ — aope(6))
1

+ 5 (a0pe (6) — @) " (VaR(0;0) 0,y (9)) (Gope(6) — @)

1 — ~ ~
+ éviR(a? 0)|a=a'[@ = aopt(0), @ — aopt(6),a — aopt (0)]

R(at; 9)|t:t'

where ¢’ € [0,1],a’ = dy. The second equality follows by the chain rule and since 4@, = a — aopt(6). Since aop(6)
minimizes the excess risk, we have

R(aopt(0);0) =0,  VaR(a;0)|a=a,,.(0) =0
Thus, we may simplify
~ 1 ~ ~
R(@0) = 3 (dopt(0) = @) T (VER(8; 0) la=aope () (dopt (0) — @)
1_. ~ ~ ~
+ 5 VaR(a;0)|a=a [0 = dopt(0), 8 = aopt(0), @ — aopi (0)]
We can similarly Taylor expand a,p¢ to get:
Aopt () = Gopt (64) + Ga(04)(0 — 0,) + Viaop: () |o=e [0 — 64,0 — 6,],
where again we set 0’ = t"/0 + (1 — t"")0, for some t” € [0, 1]. Recall the definitions

Oy = arggnin 1M (6:2)"% (@ = aopi(64)) — Ga(6:)5) |12
= (Ma(9*)1/2Ga(9*))fMu(‘9*)1/2(a — Aopt (04))
0(a) = 0, + 5,
Writing @ = dopt (64) + Ga(64)84 + dg for some & and denoting 8y = 6 — 6., we then have:

R(G:6) = %(59 —5.) T Ga(0,)T Ma(6,)Ga(6,) (50 — 5.)

1
+ §5aTMa(9*)5a — 84 Ma(0.)(Viacps(0)]o—e [56, 54))
—_—

(al) (a2)

1

+ §(V3aopt(9)\0:9/ 80, 86]) " Ma(64)(V5aopt (6)lo=o 56, 56])
(a3)
+ (59 - 5*)TGu(9*)TMa(9*)(v3%pt(0)|9:9’ [60, 50]) - (59 - 5*)TGa(9*)TMa(0*)5E
(ad) (a5)

1 ~ ~

+ i(ﬂopt@ —0) " (V2R(%50)|azagy(0) — Ma(0)) (aope(0) — @)
(ab6)

1 - ~ —~
+ EVER(C‘; O)]a=a’[a@ = opt(0), @ — Aopt (), @ — aopt (0)]

(a7)
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Controlling the Taylor Expansion through norm bounds: We verify thatwe are in the regime where Assumption 3
holds.

Claim E.1. For a satisfying Eq. (E.2), it holds that
0" — 0.2 <110 — bill2 < Tquaa(Os) (E.3)
max{[[a — aopt (6], lla” = aopt (6x) 12, l[aopt (6) — aopt (B)lI} < Lar7quaa(fs) (E4)
Proof of Claim E.1. By assumption, we have,
r< %rquad(ﬁ*) (E.5)
Now recall that 6 = ¢’ + (1 — ¢')6,, for some ¢’ € [0, 1], so
10" = Oull2 < (160 = Oull2 < v

From this and trivial manipulations of ||6 — 6,||op, [|fo — 0||op, it follows that (E.S5) implies (E.3).
To verify (E.4), recall that a’ = t"a + (1 — t"")agpt(6) for some ¢ € [0, 1]. Hence,

max{|[a — dopt (0|, [|0" — dopt (62, [|dopt () — dopt (641}
<A — aopt (0] + [[aopt (0) — aops (65)]]

From Eq. (E.2), it holds that [[@ — aopt(64)|| < (1 + v/2)7Lgy1; moreover, since || — 6,]| < rquaa(fs), the smoothness
condition, Assumption 3, implies that that ||aop; (64 ) — dopt(0)|| < La1 |6« — 0| < 7Lq1. Hence,

max{|[a@ — aops (04) |, [|a" — opt (0x)[|2, [|@opt (0) — aopt (04[]}

< (2+ V2)Lair < 4Layr

Thus, (E.5) implies (E.4) holds.

O
The following bounds will be useful.
* By assumption: [|@ — aopt(64)(|3 < Car,
186113 = 116 — 0113
* We have that
1Ma(6.)"2Ga(8.)8.l2 < [|Ma(6.)"?(@ — aopt (6:)) |2 < | Ma(62)/*|lopCar
This follows since, recalling the definition of &, and letting UXV'T = My(0,)/2G4(6,), we have

| Ma(0,)12G o (0:)84]]2 = || Z8TU T My (6,)2(@ — aopt(64))]]2 and since | 23X, < 1.

L]

[Ma(04)285l2 < | Ma(6:)"/2 (@ — aope(64))ll2 + [ Ma(B:)/2Ga(0.)8l2 < 2] Ma(8.)"2(@ — aope (64))l2
* By Assumption 3, so long as (E.3) holds: ||Gq(0x)lop < Lat, | VZaopt(0)|o=¢[lop < La2-

* By Assumption 3, so long as (E.4) holds: [|[VER(a;0)|a=a |lop < Lrs.

1Mo (0.)2]lop = /ITMa(0:)]lop = \/|\V§R(a;9*)|a:aopt(9*)Hop < /L. To see why the first equality holds,
note that for any PSD M = USU ", | MY/2||op = || ZY/2||op = max; \/5; = /max; 0; = /|[M[op-



Task-Optimal Exploration in Linear Dynamical Systems

Lower bounding the excess risk R(a;6): Throughout the remainder of the proof, we let ¢ denote a universal numerical
constant which may change from line to line. From the above observations

(a2) = cLaoLpaCqr®

By the bounds given above:

(a4) = cLaz(La1 + Ca)Lraor®
To bound (a6), we can apply Proposition E.1 to get that, when (E.4) holds,

IVaR(;0) amaup(0) = VaR(®:0)[a=aup.(0.)llop < Lr3lldope(6) = dopt (6:) |2 < LraLarr
Using that ||aop (6) — all2 < [|aopt (8) — dopt (04)[]2 + [|aopt (0x) — @ll2 < (Lq1 + Cqr), we have:
(a6) = ¢(La1 + Ca)*(LrsLa1 + Lhess)r”

This same bound on ||aep (6) — @l|2 gives:

(a7) = cLr3(Lar + Ca)’r*/?
It remains to bound (a5). Recall that

o = argémin ||Ma(9*)1/2(a — opt (0x) — Ga(0x)8)]|2

50 8, is the projection of M, (6,)'/2(a — aopt(64)) onto the image of M, (6,)'/2G4(6,). It follows that:

Mq(04)"7%(@ = aopi(04) — Ga(0,)8,) = Mq(6)/?85 L image(Mq(6,)"/*Ga(04))
which implies

(a5) = —(89 — 8+) " Ga(6x) " Mq(64)05 = 0

Combining everything, we’ve shown that:

R(&0) > %(59 ~ 8.)TGal0)T Ma(0)Ga(0) (80 — 8.) + (a1) + (a3) - O(Cur?)
for

Cy =2La1LaaLra + 8L3 Lrs + 4Ly

However, M,(0) is PSD so (al), (a3) > 0, giving:
~ 1
R(a;0) > 5(59 —8,) " Ga(0,) T My (0,)Go(8,) (89 — b)) — cCr13
Completing the proof: By definition, 5y — 5, = 0 — 6(a) and Gq(6,) T Mo (6,)Ga(6,) = H(6,), so
(80 = 8.)" Ga(04) " Ma(0:)Ga(0.) (80 = 8.) = |10 = 0(@)I5,0,)
Putting things together, we then have that

E[R(a; 0)]

_ min max
a:[|d—aopt (04)|[2<Car 6:]|0—0,||2<r

1 ~
E |:2||€ — 9(&)”3_[(9*)] - 0017”3

>  min max
a:||d—aopt (04)][2<Car 0:]|0—0,||2<r

o~

Given knowledge of 6y, 0(a) is simply an estimator of 6, so it follows that from Eq. (E.1) that

1 12 . 1 m2
B [510- 0@ 0| 2, w8 [Li0-0)

o min max
@:||@—aopt (0:)[13<Car(T) 0:1|0—04 [13<r(T) 6 0:)0—0.

This concludes the proof. O
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E.2. Proof of Theorem B.1
We apply Theorem E.3 with A\ = )\, which is greater than 0 by Assumption 4. Then,
-1 -1
b (H(0.) (Bo oy [B1] + ATT) ™) 2 tr (H(02) (B, [B1] + Bo, o, [B2]) )
Under Assumption 5, for any 6 satisfying ||6 — 6, ||3 < 5dy/(AT)>/% and as long as 5dg/(AT)*/¢ < 7coy(6,)?, we have

Leoy(04,72)\/5dgT7/12
Egmexp [Xr] < CCOVEQ*)%X[) [Xr] + ( cov (O« ’;5)/12 0 + CCOVTl—a) T

Therefore, since our alternate instances, 6 € Br, do satisfy || — 6,]|3 < 5dg/(AT)%/5, if T is large enough that

Lcov(a*a 72) Vv 5d0T7/12
/\5/12

+ C'COVI—’I_a S CCOVTA

we will have, for all 0 € Br,

Leoy(04,72)\/5dgT7/12
E077rexp [Xr] < CCOVEQ*)%X[) [Xr] + ( cov (O« ’;/\5)/12 0 + CCOVTl—a) T

j CCOVEO*,ﬂ'exp [ET] + CCOVTA T j QCCOV]EQ*,TI'QXP [ET]

The result then follows from Theorem E.3 and simple manipulations. O

E.3. Proof of Proposition E.1 and Proposition E.2

Proof of Proposition E.1. We prove this for a generic function f : R — R™. Fix some z,y € R™ and let x; = tz+(1—t)y.
Then, by Taylor’s Theorem,

F@) = F@) + 5 f e
for some ¢’ € [0, 1]. By the chain rule, & f(z;) = Vo f(2)|o=s, * %2 = Vo f(@)|s=s, - (z — y). So:
1) = FW)llop < IVaf(@)|a=a, llop - |7 = Yllop

The result follows in our setting using the norm bounds given in Assumption 3. O

Proof of Proposition E.2. Let 0; = 10 + (1 — t)6,. Note that for any ¢, by Proposition E.1,

||a0pt(9t) - aopt(e*)HZ S La1||9t - 6‘*”2 S LuIHé\_ 9*”2 S Laquuad(e*)

where the last inequality follows by Assumption 3. We are therefore in the regime where the norm bounds given in
Assumption 3 hold, which we will make use of throughout the proof. By Taylor’s Theorem:

- d 1 d?
R(aopt (0); 0x) = Raopt(01); 0+) = Raopt(00); 0x) + %R(aom(gt); 0x)le=0 + 5

2 dt?
1d3
+ E@R(aopt(gt); 0.)|e=v

R(aopt (et)§ 9*) |t:0

where ¢’ € [0, 1]. Assumption 3 gives that R (aopt (60); 0.) = R(aopt (64); 0+) = 0. Furthermore, %R (aopt(6:); 65)|t=0 =
VaR(0;05) la=ao,. (80) * VoGopt (0)]o=4, - %ch:o, but by Assumption 3, VR (a; 04)|a=a,,,(6,) = 0- Finally, by the chain
rule and since %Ht -0 Oy:

d? ~ ~ . ~
R0t (00)3 0 )li=0 = (6= 0.) T VER (00 (0); ) o0, (B — 0.) = (B — 0.) H(0.)(F — 0.)
d? ~ —~ ~
R (Gop (60): 6.) = VER(@0pu (0):6.)l0=0, (6 — 0,0 — 6.,0 0]
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It then follows that,

—~ 1 ~ 1
R(aopt (0):6.) = 5118 = 030, | < GIIVER(opt (0):0.)lo=0,, (0 — 0..0 — 6,8 — 6.] o
The chain rule gives,
ViR (aopt(0): 0,)[0 — 64,6 — 0,,6 — 6]
= V3R (a0pt(0); 0.)[Votopt (0)0 — 0.], Votop: (0)[0 — 0], Voo (8)[0 — 6,]]
+ 3V2R (a0pt (6): 04) [V 3t0pt (0)[0 — 04,8 — 0., Vgaoy: (6)[0 — 6.]]
+ VaR(aopt (0); 05) [Viaopt (0)[0 — 05,0 — 6,,0 — 6,]]

$0,
IVER (aopt (6); 6:) o0, [0 — 04,0 — 0.,0 — 0.][lop < (LrsLZ, + 3LraLazLar + LriLas)[|0 — 0412,

which proves the first inequality. For the second inequality, recall that by definition,
H(0,) = ViR (aopt (0); 0.)]9—o.
s0, by Taylor’s Theorem,
H(0.) = ViR (aopt (6):6.) ] + 7 VGR(aOPt(at)§ 0.)le=v

for ¢’ € [0,1]. However,
d

a

d
%vgn(aopt(et);e*”t:t’ = VgR(aopt(H);e*)\ozet, :

Thus,
1H(0,) — V3R (a0pt (0): 0:)g_gllop < (LrsL2, + 3LraLazLar + LriLas)||0 — 04|

By the chain rule,
VR (aopt(6);0") = VaR(a;0")|acayy. (6) [Votopt (), Votopt (0)] + VaR(a;0")|a—a,,. (0) - Vaopt ()
So, by Definition E.1, since V,R(a; 9/)|a:aopt(0’) = 0, we have:
va (aOPt('g) )|9 ) sz(aopt(Q)Q ‘/9\)|9:§||op
= V2R 0.)] a5 V0000t (O)] g2 Votopt (Dlgg] + VeR(:0)] oo ) - Vatopt ()]s
~ VR0 [ Vo00pt )]y Voopi (6) ,_g]llop
§ LhessHVanpt(a)Lg:gj”ngo - 0*”2 + ||VGR(C1; 0*)|u=uopt(§) : vgaopt(e)‘ezé\“op

< LhessLil”‘g = Oull2 + La2l| VaR(a; 9*)%:%]“(5) ||op

However, V R (a; 0,)],_, (9 is Lipschitz continuous so, since VaR(a;04)|a=ap 6.) = 0,

IVaR(@:0) o @y lop = IVaR(@0.)]oa. . @ — VaR(8:0.)lamaups 6. o

< LRQHaopt( ) - aODt( *)HQ

< LraLarll — 0.2
Since 7—[(5) = V2R (aopt (6); §)|9:§, we’ve shown that:

|H(64) — H(O )||op (LraL3, +3LraLasLar + LroLar + LriLas + LessL21)||60x — é\||2

which proves the second inequality.
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F. Upper Bounds on Certainty Equivalence Decision Making
F.1. Certainty Equivalence Upper Bound

In this section we assume we are in the linear dynamical system setting of Section B and that we are playing an exploration
policy Texp.

Proof of Theorem B.3. We define the following events.

A= {R(aopt(é\ls); 0) < 50 (H(0)Eo, r,, (1] ) log 2 4 1 Tlofza} (Good event)
E = PDain(Br) > A, 20 < TTr} (Sufficient excitation)
E = {0 — 0,2 < Tquad (0x) } (Quadratic approximation regime)
E3 = {|IX1 — Eo, xp, [E7]llop < CTg min(Eo, 7o, [27])} (Concentration of covariates)

We would like to show that .4 holds with high probability. The following is trivial.
P[A°] < PLA°N &L NE N &3] + PIET] 4 PIEL N &S] + P[E5]
Events &; hold with high probability: We now show that the events &1, &;, and £3 hold with high probability. Since
Texp Satisfies Assumption 7, we will have P[Ef] < § and P[ES] < § as long as
T Z Tsc(ﬂ—cxp)v T Z Tcon(ﬂ-cxp) (Fl)

By Lemma F.1, on the event &, with probability at least 1 — 4,

~ log(1/6) + dg + logdet(Tz /A + 1)
§ — <
B~ 0.1 < c\/ o

So as long as

T C(log(1/8) + dg + log det(Tr /A + 1))

F.2
Arquad(a*)2 ( )

we will have

~ log(1/6) + dy + logdet(Tp/ A+ T
||else*||2gc\/ g(1/9) gdetTr/A+D) . (0,

AT
Thus, P[&; N €] < 6.

Events &; imply good event holds: We now consider the event £, N € N £3. By Proposition E.2, since R satisfies
Assumption 3, on this event we have

R(topt (016); 04) < 101 — 011340, ) + Lauadl|Ois — 0ull3 < [0 — 04345, + C1/T/?

where the last inequality follows by the bound on |5 — 6, ||> shown above for

(log(1/0) + dg + logdet(T'r /A + 1))3/2

Cl = CLquad A?’/Q

By Theorem D.2, on the event &3 and if T is large enough so that
Coon/T* < 1/4 (F.3)
and since || X7 — Eg, r.., [Z7]|lop. With probability at least 1 — 4,

~ 6d,
181 = 0 l3a.) < 5%t (H(B.)Eg, o, [Br] ) log =
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13002 C2,, _ - 6dy
S A i (B, o (STt (B, 1y (£ 700 (H (BB, ., [E7] ™) log =
_ 6dy 26002 C? dotr(H(6,)) 6dy
2 1 w n *
< 5oy tr(H(04)Eg, r.,,[X7] ") log 5 T i}lﬁa log 5
where the final inequality follows since
1
Eg, merp [2T] = B, e, [{E1} 2] > PIEJAT - T > §AT 1
Thus, P[EcN & NE; N E3] < § with
26002 C2, dotr(H (0, d
Cy m 60073, Coondotr(H(6)) log 6dy
A )
so it follows that P[.4°] < 46. The final result then follows by rescaling § and so long as T is large enough that (F.1), (F.2),
and (F.3) hold, which will be the case if (B.6) holds. O

F.2. Euclidean Norm Estimation

Lemma F.1. Assume our data is generated according to Eq. (B.2) and let

T
EES mainz lye — 607 23
t=1

Then on the event

with probability at least 1 — 0:

~ log(1/68) + dg + logdet(T'r /A + I)
; — <
0.1 < c\/ o

Proof. Define the following events:

) log(1 1 T I
A=< 6; =042 < c\/ 08(1/9) + do +A<;gdet( /A4 1)

&

T —-1/2 7 1
(Z z,,z?) Zztw: < CQO’w\/IOg(S + dg +logdet(Tr /A + 1)
t=1 t=1

op

Our goal is to show that P[.A° N &] < 4. The following is trivial.
PANE] <PA°NENE&E]+PIENES

As 0 is the least squares estimate, we will have that 0, = (Zthl ztz;)_lthzl 2y = 0, +
(Cirg, 22 )™ 31, zew/|. Given this, the error can be decomposed as:

T -1 T —1/2 T -1/2
E ztz;r E ztw;r < E ztz;r E ztzt—r E ztwt—r
t=1 t=1 t=1 t=1 t=1

2 = op = = 2

T -2 7 T
_ § T § T E T
- Zt Zt Zt wt / AInin Zt Zt
t=1 t=1 t=1

2

161 — 042

It follows that, on the event £ N &7, the error bound given in A holds. Thus, P[A° N E N &;] = 0. Lemma D.6 implies that
PENES] < 6,50 PlA°NE] <. O
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Part 111
Linear Dynamical Decision Making

G. Notation for Linear Dynamical Systems
We next introduce notation used throughout Part III. Throughout, we consider linear dynamical systems of the form
Ter1 = Acry + Boug + wy (G.1)

where A, € Ré=*d= B, € R¥%=*du and w;, ~ N(0,021). We denote § = (A, B) and 0, := (A,, B,). We will sometimes
break up the state into the portion driven by the input, x}*, and the portion driven by the noise, z;. In particular, we have

ri = Awrf + Boug,  x, = Awxl’ +wy
Due to linearity, z; = " + x3".

G.1. Covariance Notation

At the center of our analysis are the covariance matrices that arise from excitation of the linear system with a certain input.

For an input sequence u := (uy, ..., u;) € R, we define the open loop input covariance
t—1
IR0, u,zp) == Zx;‘(x;‘)—r where 2%, = AxY + Bus, x5 =29 (G.2)
s=0

We overload notation, so that the above is also defined when u = (us)gz1 fort’ > t, or even infinite sequences u = (us)s>1.
In addition, if w = (us)i_, for ¢’ < ¢, we define '™ (6, u, ;) to be the open loop covariance when playing u periodically:
that is, the input uy = Umoq(s,+)- Recall that:

t—1
anse 9 A ZAS S)T +ZASBAHBT(AS)T

s=0

and observe that we can equivalently define
T30, M) = E [me] | s " N(0,A0), wy " N(0, Ay, s < 8,20 = 0]

We also define the following, which corresponds to the total expected average covariates starting from some state x( and

playing any input u; = u; + u¥, where u = (u;)F_; and ul* bR N(0,021):

T
1. 1 .
Dr(6,w,0,,0) = T (0, w20 + > (0, 0,) (G.3)

We also set:

1—\;10156 = .

[wzt SO ANANT + - TV ASBLBT (AT 0 ]
0 %“I
We briefly recall the following definitions stated in Section B. We will consider the set of inputs
k
Uy y = {U = (Ur)j—y : Us e HL, U is symmetric, Ztr(Ug) < kQ’yQ}
=1

For some U € U,> j, we define

k
re 1 —_ re re
rieag, 1) EE: A)LBU,BM (et T — A)7H, Iy39(0,U) = k 010, U)
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which, as we noted in Section B, correspond to the steady-state covariates when the input U is played periodically. Finally,
we set:

?,k(eaU7au) — El-\freq 9 U Zrnmsc 9 Uu

which correspond to the expected steady-state covariates of the noisy system when playing inputs U'.

G.2. Lifted Dynamical System

We will set

= (AB), A~ [g‘ ﬂ, B H (G.4)

and in particular 5* = (g*, E*). Then consider the dynamical system:

T = w
zi41 = Avze + Bougpr + { g (G.5)

0

We note that z; = [x4; ut], where z; is the state of (G.1). It follows that

T T 1T
T T
ET::Eztth:E [t}{t
Ut | | Ut
t=1 B

so a bound on the covariates of the system (G.5) can be directly applied to the state-input covariates from (G.1). For
subsequent results, we will use z; := [4; u].

G.3. Linear Dynamical Systems as Vector Regression

We can write the system (G.1) in the form

Ys = <¢*7Us> + MNs (G6)
To obtain this mapping, we reindex time: for a fixed ¢ of (G.1), define s = (d, + d,,)t + i for some i € {1,...,d,}.
Furthermore, we set ¢, = [A.1;By1;- -5 A d,; Brd,] € RdierId“, where A, ;, B, ; denote the jth row of A, and B,,

respectively, ns = [wq];, and vy = [0, ..., 0,2, us, 0, . .., 0], where x; starts at index (d, + d,,)(i — 1) + 1. With these
definitions we will have ys = [z41];. It follows that if we run (G.6) from time s = 1 to s = (d, + d,,)T + d the set
of observations obtained will be identical to those obtained from x;41 = A,z; + Byus + we. Thus, (G.6) is simply a
vectorization of x, 1 = A,z + B*ut + wy. It is easy to see that, if $ denotes the least squares estimate of ¢, obtained
from observatlons of (G 6) and A B denote the least squares estimates of A,, B, obtained from observations of (G.1), we
will have ¢ = [Al, By;.. Ad : Bd ]. Furthermore,’

(de+d)T+dy
Xt = Z ZsZg —Id ®thxt =I®Xr
s=1

Thus, EXp = 14, ® EZ?:l v, ||Br — EXrllop = | Zt L Tt EZt 1 222 [|op, and Ain (E Zt Tz ) =
Amin (EX 7). This equivalence allows us to apply results from Section D and Section E in the dynamical system setting.

G.4. Key Parameters in the Analysis
For any § = (A, B), the H ., norm of 6 is defined as:

. wr _ —1
Ol = s (€T = )7 Bl

3Note that we change notation slightly here. Previously 37 denoted the set of covariates in the general regression setting after 7" steps,
while here X7 is the set of covariates after (d + du)T" + d. steps in the general regression setting, but corresponds to running our linear
dynamical system for 7" steps. As subsequent results are concerned with the time scale of the linear dynamical system, this change in
notation will simply further analysis.
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To control the transient behavior, let:
(A, p) = sup{[|A*[lopp™" : k >0}

7(A, p) is the smallest value such that || A%, < 7(A, p)p” for all k. We will define

p 'Zmax{l 2||A*||HOCHA*HOP }
271+ 2/ As [l 1 Axllop

and 7, := 7(A,, p,). The following result relates 7, ﬁ and |0, |%_ to ||A.|l2. and | B«|lop> which will aid in
simplifying our results.

Lemma G.1. The following upper bounds hold:

<2+ 20 A, T <20+ 2] Bullop) | Aullree,  10sllree < 1+ (14 [[Bullop) | Asllre -

- =
In addition, we can relate the value of 7 for a lifted system 0 to the original system 6.
Lemma G.2. Let A be defined as in (G.4). Then (A, p) < (1 + p~* | Bllop)T (4, p).

We introduce the following constants to control the smoothness of the covariates:

[ 1—ps 1 }
Teov(0y) := min , ,1
0= min{ P

8(cs + ol Bull3p) L dou(Bullop +1)

Tx
+ 34921 AL 113, (I Bsllop + 1)?
e - | Axll3,, (I Bxllop + 1)

Lcov(e*v ’72) =
Lemma H.5 implies that, if
10 — Oxllop < Teov(0x)
then for any u € U2 1, if T3 is divisible by k,

||F§§1,T2 (0,u,00) — F%,Tg (0, u, UU)HOP < LCOV(Q*/VQ) |0 — 9*”01)-
This holds regardless of the loss R.

Finally, in our analysis it will be convenient to work with a slightly different definition of the optimal risk, which we define
as:

@Zspt('yz;ﬂ*) :=liminf min tr(?—[(ﬂ*) %T(a*,u,O)*l)

T— o0 UEZ/{,YQYT

As the following result shows, ®,,¢ and @7, are equal up to absolute constants.
Lemma G.3. @, (7?;6,) and &%

ot (77 0.) are equal up to constants:

1
72opt(7%304) < D5 (7%505) < 1600p (7756

G.5. Linear Dynamical Systems Notation Proofs

Proof of Lemma G.4. We have that

-1
~ w A, B, 0
e = s (1= 5 %)) 12
op
-1
A B
< wr * *
op
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For each w, set A(w) := (e*“I — A,)~!. Then, using the block matrix inverse formula,

(awl_[A* Bﬂ>_1:[A@A -ﬂuwy—wgﬂ

0 0 0 e
Thus,
N A, B\ ! Alw) —A(w)e "B,
e (G il ) IR S | ot
op

<1 1 By llo A o
<L (14 1Buflp) max 4G o

=14 (L + [ Bullop) [ Axl 1. -

In the case of scalar A,, Lemma 4.1 (Tu et al., 2017) shows that || A% ||, < || %A*Hﬂoopk. In the case when d, > 1, we can
apply their proof to the sequence u " A¥v for some u, v with ||ul|z = ||v]|2 = 1. Doing so, we obtain

uT Ak < LA et

As this holds for all u and v, we have || A¥||,, < || %A*HHOO p*. As 7(A,, p) is the smallest value satisfying || A¥|,, <

7(Ay, p)p* forall k, it follows that 7(A,, p) < || A.||3... We next wish to upper bound ||+ A, |3 by [|As|[3.. for some
choice of p. Lemma F.9 of (Wagenmaker & Jamieson, 2020) gives that

||A lmplleS ||%A*Hop S 2||A*||Hoo

1
1
—=A <
o pllon < 2/l Al 7o

A sufficient condition to meet this is

p 2||A*||HOCHA*Hop
~ 14 2[[Adlpe [ Asllop

As p, satisfies this, it follows that 7( A, px) < || plA* l#.. < 2||A«l%... Combining this with Lemma G.2, we conclude
that

T < (L4 97 I Billop)T(Aws i) < 201+ o Billop) 1Al < 2(1 + 2] Bullop) | Ax 3¢

Finally, by definition of p; it follows

1= = max{l + 2[[ Al [[Asllops 2} < 2+ 2] Aullao [ Axllop

We then upper bound || Ay ||op < || Ax||#.. to obtain the final result. O

Proof of Lemma G.2. Note that:

. Ak Akle
k_
A= { 0 0
Thus,
~ Ak AF-1B _ _
||Ak||Op = sup [ 0 0 } v|[ = sup ||Ak111 + AF 1szHOp < ||Ak||0p + || Ak 1B||Op
veSdtr—1 op wveESItr—1

so, for any p > 0,
HAkHOPP_k < HAkHOPp_k + ||BH0p||Ak_1||0pp_k < T(Aa /0) +p_l||BH0p||Ak_1”0pp_(k_l) < +p_1||B||0p)T(AaP)

O
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Proof of Proposition B.4. 1. Follows by Parseval’s Theorem and simple manipulations. For 2., take some ¢ such that

% = ¥ for some integer n. Then,

k,
= E uge "
s=1

Furthermore, if % % for all integers n, we will have

k'

k' k
27rfs Z _ _ 21\'7nnod(.s k) ]{j kj/ .
k= Use k = E umod (s,k)€ R N § = 7" Un
ok k
s=1 s—1

s=1

K k k' /k—1 k k' Jk—1
2nls ~ _ 27r13(ka+r 27rﬁ7‘ _, 2nlks
= e =S S S S e S e
s=1 r=1 s=0 r=1 s=0
Plugging this into the expression for F‘,j/eq(G, u’), the conclusion follows. O
Proof of Proposition B.5. Fix some m and j € [d,] and consider the segment of w,,, u?, = (ut)zk(J Dkmi1- BY

construction, this is a signal with period k. Assume we play this input starting from some state xy not necessarily equal to 0.
J
Let 2;"™ denote the response generated on the noiseless system. By Parseval’s Theorem and Proposition B.4, it follows that
km
1 fa ; . 1 ul, wl T
—T.°Y0,u]) = lim — Y x,™(z,™)

k m—oo km
t=0

Furthermore, by the construction of qu given in ConstructTimeInput, we have

1 g . dy, 2ne - e )
EFieq(au{): ﬁz)‘e,j(e?kzI—A) 1B’U£’j'UZjBH(el = I—A) H

Now note that, if we play the entire sequence of inputs u,,, we will have

dykm Jjkm

> apn (i) Z S )T
t=0

J=1t=(—-1)km+1

j—1
is equal to the final state produced when playing the previous 1nput T (]’” Dkm . Note

will scale

where the starting state, 55(] Dkm+1°

-1
that, as we assume the system is stable and the input has bounded energy and is of period k, the norm of x( "
j—1)km

sublinearly m (see Appendix 1.3). It follows that,

'an uj u‘Jr.n T
A dumk Z & = Ak mk: Z Z G

J=1t=(—-1)km+1

Jjkm

. 1 wi, ol
DR N A DR AL CASY

j=1 t=(j—1)km+1

req(@ u))

27l

k
= 5 Y3 (e F T — AT B e ol ) B (e F T — A)H

= =3 (e F T — AT BUBM (e 1 — A)7H
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where the second to last inequality follows by the definition of A\, ;,ve ; givenin ConstructTimeInput. To see that the
power constraint holds, note that, by Parseval’s Theorem and the construction of the input,

d,mk jkm dy, m k k

SEES SIS SRCITED 9D S RVATED BE RNEIGAR )< mio?
t=1 J=1t=(—-1)km+1 j=1 = j= £=1 (=1

where the final inequality holds since U € U2 . O

Proof of Lemma G.3. Fix some T. In the proof of Theorem B.2 we showed that, for some 6, satisfying ||, — 6]|% <
5(d2 4+ dpdy) ) (Mmoo T°7°),

mm o0

: * -1 1 ss 2, 1
7rr€nl_11132 tr (7—[(90) (]E(g*,ﬂ'[ET] + AInln oo ’ I) ) = 16T (bopt (’Y 70*) -0 (W)

Following the proof of Theorem B.2, we can use Proposition E.2 to show that

: - : . - 1
in, o (#4(00) (Bo, #[B1) + Moo T- 1)) < min (#0) (o, 2 [Sr] + N T- 1)) +0 (Tn/u)

< min tr (’H(@*) (]Ee*,w[ET])il) +0 <Tli/12>

well 2

Renormalizing by T, it follows that for any T’

1 1
inf ®r(f,;7) = min tr (7—[(9*) (Eg, »[%r/T))" ) > E‘I’fit( v%:0,) — O <T5/12>

mell 42 7T€H
Taking lim inf7_, , of both sides proves the first inequality.

For the second inequality, some trivial manipulations of (J.8) in the proof of Lemma J.7 shows that, for sufficiently large 7,

min tr (H(00) (B, £[27]) ") < 4 in tr (HO)T57E.,0.0))

7761_1,72 ueuwz,T

Renormalizing by 7" and taking lim infp_, . of both sides gives the result. O

H. Lower Bounds in Linear Dynamical Systems
H.1. Regular Policies in Linear Dynamical Systems

The following result shows that Assumption 4 and 5 are met if we assume the dynamics are linear, and that 7, satisfies a
certain regularity condition. This implies that Theorem B.1 holds for a fairly general set of policies in linear dynamical
systems.

Lemma H.1. Assume that Tex, € IL,2 plays input u; ~ N (uy, o; I ) where Uy and 0., are chosen deterministically at time
0, and uy is periodic with period k. Then if our dynamics are

Te41 = Awxy + Baur + wy
Texp and 0, satisfy Assumption 4 and 5 with o = 1, cooy = 1, and
A=min{o2,02},  Leov(02:7?) = Coya(02 +72), Teou(02) = €5, Coon = Coyar®(VTh + k2)
for some constant Csys = poly (|| By |op, || Ax 2., ) and with dg = d2 + d,d,,.

Proof. That this policy satisfies Assumption 4 with A = min{o2, 02} is trivial.

To see that Assumption 5 is satisfied, fix some 6 and denote @ = (u;)¥_,. Then, by definition,

1 1 1
TE0 e [B7] = F Zr () 7,)
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Note that since ey, € IL,2 and %, is periodic we have Zf:_ol ﬂtT %; < kvy?. By Lemma H.4, it follows that

1. o~ 1 - A, 0012, VT + 1k+? A, 0)20]12, k242
H—P‘{J(e,a,o)—frf‘ﬂ(eﬁ) < (4, p)l1015., v AN A A6)
T k op (1 - pk)T (1 - pk)QT
which implies that
1 ~
| B0 [B2] ~ T340, 0| < A0)
op

Applying this same bound to 6,, the triangle inequality gives

1 1 ~ w 5~
|0 e (2] = o, oy (87| < WP E 8 0) — DE (o)l + A) + A(0)

Lemma H.5 gives that, as long as ||0 — 0, ||lop < Tcov(64)/2,
||F§‘?’k(971~t,/\u) - %,k(€*>1~"aAu)|‘0p < 2LCOV(6*7'72)H9 - G*HOP

where reoy (6,) and Loy (6, ) are defined here as in Lemma H.5. Note here that we use that ||6 — 6, l|lop and Hg— 0, llop are
within a factor of 2 of each other since

max{||A — A*||0p> B — B*HOP} <16 — 9*||0pa ||§_ 5*”013 <|A- A*”Op +[|B — Biyllop

It remains to simplify A(6). By Lemma F.9 of (Wagenmaker & Jamieson, 2020), as long as |6 — 6, llop < /1|0s )7, we
will have that ||0||#_. and ||0,||%_, are within a constant factor of each other. Next, note that Lemma H.1 implies that, so
long as [|0 — Oxlop < € [|AF|lop < T(Ax, p)(p + T(AL, p)e)k. This implies that

(A, p+7(A., p)e) = sup A% lop(p + 7(As, p)e)F < T(AL, p)

Aslongas e < (1 — py)/(27(Ax, p)) we can then choose p = p, + T7(Ax, ps)e which will allow us to upper bound

T(Avap) < CT(A*,/)*)
(L=p") = (1—=pk)

It follows that A(f) < cA(6,). By Lemma G.4 and some algebra, the assumptions then hold with

c1(02 + o2)73
T T e (1B 1A

. [ 1—ps 1/2
Teov (0 )c;;mm{ , ,1},
* Tx L+ (1+ ||B*||0p)||A*||H:>o

caTe(L+ || Bullop)*l| Ax 5y VT k? N cs77 (14 || Bullop) | A7 k%72

A:min{aﬁ,,ai}, Lcov(e*;’YQ) =

Ccov =

a=1, cov=1

1—pk (1—pk)? ’
For the final statement we simplify all expressions involving problem-dependent constants by simply upper bounding them
by constants that are poly (|| A||#.. , || B« |lop ), and noting that o2 < ~2. O

H.2. Proof of Theorem B.2

Proof. The outline of the proof is as follows.

1. Apply Theorem E.3 to show that

min max Eg . [R(ar;0)] > min
a 6eBr 0:(10— 00|12 <5(d2 +d, d,,) / (ANT/5)

E [tr (H(ﬁ*) (b men, [B7] + AT - I)il)}

for a particular choice of A.
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2. Apply Lemma H.3 to show that, for any policy 7.y, and any 6, there exists a periodic policy wexp such that

Eo r [27] 2 Eopry [Bey7] + 02

3. Given that 7 exp is periodic, apply Lemma H.4 to show that we can upper bound the expected covariates by the expected
steady-state covariates:

EO g

»Texp

[Be,7] = Eomy [TE53(0,U)] + c3

4. Use the frequency-domain representation to show that there exists a non-random input U’ that meets the power
constraint and achieves the same steady state covariates:

Eo.m [T05(0,U)] = Ti5(0,U)

5. Apply the perturbation bound for the steady state covariates given in Lemma H.5 to show that, for any 6 in our set, we
can upper bound the covariates on € by the covariates on 6,:

FEF(0,U") S TR0, U) + e
6. Finally, we conclude the proof by optimizing over 7, to obtain a lower bound scaling as @ (7% 6,).

Throughout the proof, we assume expectations are taken with respect to ¢ and 7y, and therefore write E[-] in place of
Eg .., []- As stated in Section G.3, linear dynamical systems our simply an instance of vector regression and we can
therefore apply the results of Section E in this setting.

Applying Theorem E.3: Define

1 -
Al o i= limsup max —— Amin (7 (64, U, 0))

min, oo T 00 UEU 2 1/ 107"

Under Assumption 6 and by Lemma H.2, we will have that \* > 0. Then the first conclusion of Theorem E.3 holds

mm oo

with A = AL, . Thatis, if 7' is large enough that the burn-in of Theorem E.3 is met, we will have
min max Eg . [R(ar;0)] > min E [tr (7—[ 0.) (E[Xr] + Ain I _1)]
3 6EBr 0, exp[ ( T )] - 9HefaoH%§5(d3+dzdu)/()\:nm ooTs/G) ( ) ( [ T] OO )

Sufficiency of periodic policies: Our goal is to lower bound

i E[t (He E[S7] + Moo T - 1‘1}
0:10—00 |25 (d2 +dad) Mo T L (0.) (E=x] ) )

Fix some 6 such that ||y — 0]|2. < 5(d? + d.d.) /(A5 o T°/9), and consider the extended system 0, as defined in (G.4).

mm o0
Let z* denote the component of the state of 6 driven by both the random and deterministic components of the input and z¥
the component driven by the process noise. Then z; = 2{* + z{’, so

T T T
Z Zzt + 2 (2 + 27) Z +Zt( )T)
=1 =1 =

Therefore,
T w/_u T noise ()
E[X7] = 2E[Zt:12t (2 )T] + Qthlrto *¢(0,0)

By the power constraint on u; and Lemma H.3,

2T+T. 4T

EZzt (z)" <E Z 22(z3)7T +5eI<EZzt (z8)7 4 5el

t=1 t=1
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for some input & with period kg := T, = 2H ((d? + d,)/2 + 1) satisfying ]E[Zfi‘o_l u] uy) < kgy?, and

N e(1-p?) .
= {1 g <8T(A o) 2T2> /1 gp}

The final inequality follows by upper bounding 7, < 2T, which will hold by our definition of H and assumption on the size
of T. Choosing ¢ = A%, . T/5, we can upper bound

4T
B[z (5) T+ S TE0(0,0) S E D 2 (=) " + 3 15000, 0) + Mmoo T - 1
t=1

From time domain to frequency domain: The conditions of Lemma H.4 are met for this w, so it follows that

EY ()" 2 EDy(0,a)

. <T<A,p><2H<<di +d.)/2+ DIVATHT | (A, p)*(2H (3 +ds)/2+ 1>>2> 0B 1

1—pk (1—pk)2
Then if
1 A, p)(2H((d2 + dy)/2 + 1))WAT + 1 A, p)2(2H((d2 +dy)/2+ 1)\  ~
- (7( ) (“f_jk/ TOWAT 1 | 7(4,p)’( é(_mp:)z )/2+1) )ne%’{ﬁ D)

we can upper bound

EY () 4+ ST (0,0) + Mmoo T - T 2 ELE(0, %) + Y7 T1o5(0,0) + 2\ 5y 0T+ T

Sufficiency of deterministic inputs: Let Zj{vz’ %, denote the set of inputs with average expected power bounded by 72 and
period k3. Then we have shown that

tr(H(e VE[Er] + Noinoc T -1)—1) %tr(?—l(@ ) (EFZ‘TSS( )+ ST TReise(g0) 4 3A%,, OOT-I)%)

Y

tr(?—[(G*) (EI‘Z}’SS(@ w) + Y1 TPOR0(§,0) 4 3A%, T - I)_l)

Vv
I
SE
B

kg
ELNe9(6,u) = gk% (e*a I — A)~*Bu,af BM(e'*a I — A)
u ut:l
AT 1 &
:mfZ(e%I A) ' BE[aal| BN (e Ve 1 — A)M
v =1

Define U; := E[i;ut']. By Parseval’s Theorem, and the power constraint on u, we have

i2 (V) = B[y i) = Elka o tZou) ui] < k3y

Thus, optimizing over over the (possibly random) input w, is equivalent to optimizing over PSD matrices U, that satisfy this
trace constraint. Therefore,

1 . ~ e —1
5 min (0. (BOE0,u) + SLAT0,0) + 30n T 1) )
2ueuvz)kﬁ
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L in tr(?—l(a*) (ri“’“(é w) + 327 Teise(g0) + 3A%, T-I)_l)
2 ueu’ﬂ,kﬁ 4T ’ t=1"1 ’ min,oco

Y

> 81T uemm tr (7—[(9*) (I‘ZST(@ u,0) + 30 00 I)_l )

2 57 gl tr(H(0.) (T50.U.0)+ 3 N

where the constraint set in the second minimization is simply the set defined in (B.10), and we can thus drop the expectation.

From 6 to 0,: By assumption

16 = bullop < 16 = Oullr < 16 = boll 7 + 1160 — .l < 2/5(d2 + duda)/(\ Afyin 0T *)

so if
2¢/5(d2 + dodu) /() Non 0o T 1%) < Teon (0:) (H.2)

we are in the domain of Lemma H.5 and

IT55(0,U,0) — L5505, U, 0)lop < Leov(02,7%) - 110 — Osllop = Leov(0x:7?) - 10 — Olop
< Leov(0x:7 v2)24/5(d2 + d,d,)

- /2% . T5/12
mln (o)

Loy (9* '72)2 5(d% + d:r:du)

It follows that as long as

— < Ahin,oo (H.3)
)\1,’(1'1111 OOT5/12
then _ _
I‘ZST(G’ U7 O) = I‘ZST(H*? U’ O) + /\:nm oo I
and thus,
1 ~ N —1 1 o —1
_ : SS . > . : SS * .
T UGIIT,EAT tr (’H(H*) (I‘4T(9, U,0) + 3N min,co I) ) 2 57 Ueer/tliEH tr(H(Q*) (I‘4T(9*, U,0) + AN im0 I) )

Concluding the lower bound: Next, by Lemma H.8, so long as

87|06, 2 =
4T2max{ ”HA* Ien” 7 }( ma ||(e“*)I—A*)QB*|op> (H.4)

min,co 2||9*HH00 w€[0,27]

then for any 7" > 4T and U* € U2 47, there exists a U’ € U2 7+ such that

*
)‘min,oo

<
op

Hl—\freq 9 U/) _ 71—\fI‘GQ(9 U*) %

Furthermore, by Lemma H.9, if

e 2/ .92 2 1— 2 2)\* .
4T > max 167(4,, p) (Z *+’y /du),log (~ P Amin,co ! (H.5)
(1= P72\ 167(A., p)(07, +77/du) ) 2108 p

mln oo

then, for any 7" > 4T,

[y

1 AT o 1 T’ o
= DT O/ ) = 5 ST V)| S SN
t=1 t=1

op
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By what we’ve just shown, for any 7" > 4T

I‘éslsT(g*7 U/7 O) j I‘STS/ (a*a U*7 O) + )‘:nin,oo I

Thus,
- -1
Tl o (’H(O*) (P50, U,0) + W - 1) )
PR | . = -1
> l%m_:&f T Ue%glj/ tr (7—[(9*) (1"35,(9*, U,0) + 5\ 0 o0 I) )
Let

1 freq /7
* — (T rrleq )
min, T Tl,r;fT Uerg{ 2(7"/ 107" )\mm( T (9 ) U))

Note that by Lemma H.8, so long as

~ ) N N
T> max{ 6 7y , T } ( max ||(e“"I—A*)_2B*||Op) (H.6)

/\:nm o 2116, [ 3¢ wel0,27]

then for any 7/ > T and U* € U.2 1, there exists a U' ¢ U.2 7 such that

1 e 1 treq, 7 * *
HT f q(g*a U/) - Frg“’q(o*v U ) < )‘mm 00
op
This implies that so long as T satisfies (H.6), we will have X%, > $A%;, . By definition of A 1. forany 77 > T

there exists some input U” € U, 7+ such that Amin(T55 (6, U”,0)) > 10}, 7- It follows that for any 7" > T,

~ —1 —1
min tr(fﬂ(o*)( 35,(9*,U,0)+5A;im.1) )2 min tr(?—[(&)( (0., U, 0) + 10\, 1 - ) )

U€u721TI UGM’YZvT/

- - -1
> min tr (H(Q*)(F?,(G*,U,O)+I‘§,§,(9*7U//70)) )

Uel. 2 1
’ ~ —1
>y (’H(G*)( %S,(Q*,U,O)) )
1 7 ~ —1
> 5yl (’Hw*)( 2(0..U.0) )

This implies that

e 1 . o . -1
l%m_:&f 3T UEIBiI;,T/ tr (7—[(9*) (I‘T, (04, U, 0) + 5\ in.0o I) )

1 - -1
> - . SS/ . T HSs 2. ).
Uit 67 papin (H(g*)( (0 ’U’O)) ) 16T(I)°Pt(7 04)

Putting everything together, Theorem E.3 and what we have shown imply that as long as T’ is large enough so that the
burn-in of Theorem E.3 is met, T > H((d? +d,)/2+ 1) and (H.1), (H.2), (H.3), (H.4), (H.5), and (H.6) hold, we will have

Gy
()\* )5/4

mll’l o0

min max E[R(a;0)] > % L% (V%5 6,) —

@ 0:)10—0013<5(d2+dadu)/ (M. 00 T3/ 6) 16T

where Cy = O((LalLang + L% Ls + Liness) (42 + dpdy )?/? + Lﬁle). Finally we can lower bound @2 (12; 6,)
with @ (725 0, )/4 by Lemma G.3.
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Simplifying the Burn-In Time: It remains to simplify the bound. First, note that by Lemma F.9 of (Wagenmaker &
Jamieson, 2020), as long as ||§ — 64 ||op < ¢/]|60x]|7.., we will have that ||0]|4_ and ||6,]|7.. are within a constant factor of
lop < 7(Ax, p)(p + 7(Ax, p)e)*. This

each other. Next, note that Lemma H.1 implies that, so long as || — 6, llop <
implies that B B ~ _ B
(4, p+7(As, p)e) = sup |4 [lop(p + T(AsL, p)e)F < T(AL, p)

Aslong as € < (1 — p,)/(27(A,, p)) we can then choose p = p, + 7(A,, p,)e which will allow us to upper bound

T(ZLP)” < CT(Z*aP*)n
AP = - pm)

As we have assumed || — 0o 7, [|0x — 90||F < VB2 + dodu) /(Mo 0o T/ 12), We can upper bound 16— 6, ]lop <
10 = 0ullr < 2/5(d3 + dudu)/ () Nin, T°/1%). Some algebra, Lemma G.2, and the definition of Loy (6,7?) and

Tcov (05 ) then gives that as long as
1 1
T>p01y 1 Da T*7||B Hopadﬂcadung ||Hooa7 vo—wa)\*ialogT

these bounds on ||0]|,_ and 7(A, p) will hold, T > H((d2 + d,)/2 + 1) and (H.1), (H.2), (H.3), (H. 4) (H.5), and (H.6)

hold. Finally, we use Lemma H.2 to replace Ay, ., with A5 .., and Lemma G.4 to upper bound 7, 1_ - and 16|12 by
poly ([ Bellops | A«ll2.)- [
Lemma H.2.

[
min{ mm< ZAf (A)T +00> ALB.B] (Ai)T> ,oi} <limsup sup  2\in (U505, 1))

=0 T— 00 Ueuwz,T

Proof. Fix T and consider playing the input u; ~ N(0, 02 - I). By definition,

T
fo(xw]

By Lemma H.3, it follows that there exists some input u = (Et)f;Ol with average expected power bounded by 72 such that

T T
ZF?OiSE(G*,O’u) — ZF?0186(9*70) +E

T 2T+k L
E [Zx}‘(x;‘)—r] <E [Z ¥ (x®)T| 451
t=1 t=1
where k := T = 2H((d? + d,)/2 + 1) and
= |lo = /lo = O(logT)
¢ 87(A,, p)3y2T? 5’ ©

By Lemma H.4,

2T+k
w/ fr
E lz iy (x )T] = Erziik

t=1

G o (E DB VITTRTTh? | 7 pIB IR K?Y
L= =)

By definition of T4 and for any U € U,z j,

k
G 1B, BH (et 1 — A)M

t=1

re T
EF;T(}H@(Q U) ?

| =
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k
% > (e F 1 — A) T BE[wal| BY (e F 1 — A)7H

t=1

T =

Define Uy := E[i,i}']. By Parseval’s Theorem, and the power constraint on %, we have

S tr(Uy) = B[y abtiy] = B[RS g uf ue) < k*y?

It follows that there exists some U € U,z 5, such that ETgr? , (6,, %) = Ty, (0., U). Putting this together, we have that

Amin (Z 0050, v /\/dy > < Amin ( 2T + k) ;Sﬂk(blﬁ)) + O(W/Tlog T + polylog T)

t=1

< swp Awin (27 + B340, U)) + O(VTlog T + poly log T)

UEL{ 2 2T+k
Dividing through by 7" and taking the lim sup;_, ., we have
T
: 1 noise : SS N
lim sup — Amin ZF (9*,0'u) <limsup sup 2Anin(T757 (0%, U))
T—oo 1 =1 T—oo UeU,2 ¢
Finally, we see that by definition and some algebra that

lim sup — )\mm (Z [hoise( 9*,0u)> = Amin (a iA T 402 ZAtB BT(At) >

T—o0

t=0 t=0
:min{ n( ) AL +022AtB Bl (AY)T ) 5}
=0 t=0

Noting that

[ dy dy

Amin ( Z ALADT 402y AiB*BI(Ai)T> > Amin (oi S ALANT 402y AiB*BI(Ai)T>

t=0 t=0 t=0

completes the proof. O

H.3. Periodicity of Optimal Inputs

In what follows, consider an arbitrary system (A, B), with A stable. Let p > p(A) be less than 1, and recall 7(4, p) :=
sup,,>q P~ "[|A"||op, finally for any error parameter ¢ > 0,

e(1-p%) )
H. := |log ( logp| . (H.7)
{ STBIZ, (A, 7212 )/
and define the effective time horizon
T.:=2H((d* +d,)/2 +1). (H.8)

Lemma H.3. Consider some input {u;}1_g' satisfying ]E[Zth_ol u, us] < T2, Then there exists an input {1, } ;<" such
that

< T?

T.—1
N @ a
t=0

and extending to times t > T, — 1 via a periodic signal Uy = Uwoa(t,T.), Where equality here holds almost surely, satisfies

2T+3T, /2

E[éxf(mf)T}jE[ > af(a )}+5d

t=1

where above, % are the states under the initial inputs (u;), and x are the iterates under (ii;), and where we take x% = 0
in both.
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Proof. In what follows, we regard € > 0 as fixed, and write H < H..

We consider the response on the system with no process noise starting from 2§ = 0. Given some input {ut}z:ol € U2, the
state evolves as

t—1

xy = g A7 By,
s=0

We will use G to denote the Markov parameters for this system:
Gy :=[B,AB,...,A"2B, A" B]
and will define the extended input, u;, and truncated extended input, . as:
U = [Ut;ut—l; cee §u1;uo], Uy, g o= [ut;ut—l; cee ;Ut—H+2;Ut—H+1]

Ift < H—1, we define u_s = 0 for all s > 0. Then the state can be written as z}* = G;u;_;. We can approximate the
state using the last H inputs as xf g = Grus—1.m. The following result bounds the error in such an approximation.

Claim H.1. Fix some input u; with IE[ZZ;_Ol uf ug) < T~?% and assume we start from x¥ = 0. Then, under our choice of

_ 2 .
H > log(wéﬁ(%)/ log p, we will have

Ellzi(z}) " — aliy (@) llop < €

Proof of Claim H.1. We first bound the state difference:

t—H—1 t—H-—1

ot —atla = D AT Bu|| <A opl| 3o AT Bu| < n(A, )" il
s=0 s=0

By Jensen’s inequality, we can bound E||z} || as

t—1
Elafls = E||S° A= 10| < |Blonr(4.p) (zpt 1, |2>
s=0 2
t—1
< ||BllopT (A4, p) pAt=s—1E leusH%
s=0
t—1
< ||BllopT(A, p) pAt=s=1) ]EZHUsH%
s=0

_ I1Bllop7(4, )T
< el

< HBHOPT(AJJ) V2T

= p™. Thus, by the triangle inequality and what we have just shown,
p2

Thus, E[|z¢ s — 22

2||B||Z,7(A, p)**T
1—p2?

Elai(2)" — oty (@tn)  lop < El(latllz + lzitgl2) 2} — afnll2) <

where the last inequality follows by noting that our above argument also applies to bounding E||x}||2. The conclusion
follows by some algebra. O

_ 2 .
Fix H = flog(swg;(:(%)/ log p], then, by Claim H.1,

T [T/H] [T/H]

Eth )T <E Z Z xt( T<E Z Z xﬁH(a:ZH)T—I—eI

t=1 Jj=1 t=H(j-1)+ Jj=1 t=H(Gj—-1)+1
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Now consider a realization of (u;) in our probability space.

Defining
Hj

Uj;H = Z ut,l;Hull;H (H9)
t=H(j—1)+1

we can rewrite the covariates in terms of the Markov parameters as

[T/H] [T/H] Hj [T/H]
YSUED SIIEE A SRCH () DRSNS I ST
j=1 t=H(j—-1)+1 j=1 t=H(j—1)+1 j=1

‘We will define the set of normalized covariance matrices as

2H
My = {GHUG; : U of form (H.9) for input {a,}7%,, "/ u, = 1}

t=1
The following result will allow us to express this in a more convenient form.

Claim H.2. Consider any n and some {U’;. ;}7_,, U,y € Mpy. Let p; € [0,1], > j=1Pj = L. Then there exists some set
. (d2 +d )/241 gy (d2 -+ /241
of matrix inputs {U7], Hlj= , Uj, € My, and some set of weights g; € [0,1], . q; = 1 such that

n dy(du+1)/2+1
ijGHU;;HGT = Z qJ'GHUQ’/;HGL'
j=1 j=1

Proof. This is a direct consequence of Caratheodory’s Theorem. By definition, M C Sfi“”. The dimension of Sfﬁ“” is
(d? + d,)/2 so the points in M can be thought of as living in a (d2 + d,.)/2-dimensional space. Caratheodory’s Theorem
then gives that, for any point, z, that is a convex combination of elements of M,  can also be written as a convex combination
of at most dim(,M) + 1 points in M. Taking z = Z?:l p;GuV).y Gy, it follows that there exists (d2 + d..) /2 + 1 points

Uz € M and set of weights ¢; € [0,1], 377", ¢; = 1 such that z = E;‘izler”)/QH 4;GuVUS Gl O

We shall use the following definition going forward:

Definition H.1. For a given U;. 5, let v2[U;. 7] denote the power of the input corresponding to Uj, ;7. That is, if U;. 5 is
formed according to (H.9),

Hj—1
Y2 [U,.m] = Z ug ug (H.10)
t=H(j—2)+1

Note then that U,z = v*[Uj;u] - U,y for some U, € My,
Instantiating Claim H.2 with

[T/H]
Uiy < Ujn/¥* Vs, and pj =¥*[U;a]/( > ¥*[Uin),

i=1

d2+dg)/2+1
}( )/

we have that there exists some set of matrices {U JiH C My and some set of weights g; such that

[T/H] [T/H] (d2+d)/2+1 )
> GuUnGh = Y (Uil > 4;GuU;nGy (H.11)

Jj=1 i=1 j=1
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For future reference, we denote

[T/H]

72 = Z VQ[Ui;H]

=1

Note that while U;,;; € My, the associate covariates may not be realizable in only H ((d2 + d,,)/2 + 1) steps, because
for a given ¢ will be present in both blocks U;.y and U; ;. y—these blocks cannot be chosen independently. However, this
response can be realized in 2H ((d2 + d,)/2 + 1) steps, which we recall is precisely our definition of 7.

Fora given j € {1,...,(d2 +d,)/2 + 1}, let {i.; }22! be the set of inputs for which (H.9) is satisfied for U,.z, and

such that ZQH ! HtT Ut = 1. Let {1 }1=, denote the sequence of inputs formed by concatenating { 772q; Tt ) e

for all 5. That is, set
Uy =/ +7%q; Ty v where j = [t/j|+1,t' =t—(j'—1)2H

Finally, extend u; to all ¢ via ti; = Uped(s,7.), Where the equality holds almost surely. Then,

2Hj
1 ¥%¢;T. _ .
7 J “GuU;uGl = § ay (@)’ (H.12)
t=2Hj—H+1

2
S0 Z(d da)/2H1 2T ¥2q;Gu UJ G J; corresponds to half of the input response, and thus

(d2+ds)/2+1 (d2+dg)/2+1 2Hj

ok Z 4;GuU;nGl = r Z Z oy ()T

, T./2 , ,
J=1 Jj=1 t=2Hj—H+1

(d2+dg)/2+1 2Hj

w Z Z x?;H(xgH)T

j=1 t=2Hj—H+1
((d2+d,)/2+1) 2H
(@) Z u a \T
- Z xt;H(xt;H)
j=1 t=2Hj—H+1
2H(%/21((d§+dz)/2+1)

®) u u
j xt;H(xt;H)

where (a) holds because, by construction, we will have fo = x?—&-jZH((d? tdy) /210 H for any j, since the input is 7-

periodic, and () follows as we are simply including more PSD terms in the sum. As this holds pointwise in our probability
space, it follows that

[T/H] (d2+ds)/2+1 2THT.
E Z Z xﬁH(l’;H)T =E5° Z qJ’GHUj;HGE =E Z $?H($?H)T
J=1 t=H(j-1)+1 j=1 t=1

The input sequence {1, } .-, satisfies

(d2+d.)/2+1 2H-1

= T./2
IR RS SIS o v
t=0 j=1 t=0

(d2+ds)/2+1
@ T/2 5
@ g Te/2 =2 Y

Jj=1
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T./2 .,
=R
T Y

(v)
< T.~?

where (a) follows since Zt o ST .jut;; = 1 almost surely, and (b) follows since

[T/H] [T/H] Hi—1

v =E Z V(Uun) =E Z Z ufup < 2T°
i=1

i=1 t=H(i—2)+1

Thus, u, satisfies the power constraint £ ZtT;gl ﬂ;r Uy < T.v?, which implies it also satisfies the constraint E Zthl TJ up <
T~?. By Lemma H.1, given our choice of H and this power constraint,

e e
E Z x#H(J;gH)TjE Z xf(a:f)T—HleI
t=1 t=1

Finally, note that for any s, we can bound
Te+s—1
E ) @ <27y
t=s

since the sum can be contained by at most two periods of the input. The conclusion follows. O

H.4. Frequency Domain Approximation

Lemma H.4. Let {u;}"=) be a signal with E[Ef;ol u/ u] < k2. Consider playing u; periodically for T steps on system
0 = (A, B) with no process noise, where we assume xo = 0 and set uy = Umod(t,k) @lmost surely. Then,

op

T T
1 N
HIEthxtT—E 3 (e F ~1 Byt BY (et 1 — A)H
t=0

t=1
(A, )07 | BllopVT +1ky*  7(A, p)?(10113, I Bl k>
1—pF (1—ph)?

where (i)1_, = § ((ue)E,).

Proof. Define G(e*) = (eI — A)~'B and let (#;)L_; = § ((x;)L_,) denote the T point DFT of z;. Then, by
Parseval’s Theorem,

T T o
P Yl - 1 Y e )

ﬂ \

op op

2nt

t=
1 T
< =Y NG T i — @lla (|2 + |G le T i)

By Taylor expanding,
G(e™) =) et AB
s=0

By definition of a DFT, and since xg = 0,

T—-1t

T-1 T-1 [/T—s5-2
—,2nt 2t —5— _,2me 27re
:§ BLTt(Et: eLTtAtslBuSZE E eLT(t-i-l)At 5Bu8
t=0

t=1 s s=0 t=0

|
A

Il
o



Task-Optimal Exploration in Linear Dynamical Systems

T-1
.~ —, 27ty
Ug = e T
t=0
Therefore,
T-1 9] T—-1 /T—s—-2
2me . . L2me ( L2mt _,2ne —.2mt
G(e" T )iy — Ty = E et (1) gt T °Bug — E E et (D) gt Y518 By
s=0 \t=0 s=0 t=0
T-1 [eS)
—1 20t (t4-1) gt 7L27‘£s
= g e T A T ° Bug
s=0 \t=T-s—-1
T-1 oo
_ e*L%“(T*S*l)AT*S*l § e*’»%[(t‘l’l)At 67L2;283U3
s=0 t=0
T-1
_ 27rl(T 1) z :AT 5— IG( TZ)BUS
s=0
Thus, since ugs = us4p by assumption,
T—-1
L2me . T—s—1
- &L = ) o op s
1G(e"T it — Zolla < 7(A, p)[|0]l3 || Bl p s ]2
s=0

[T/K] k—1

(A, )0 Bllop Y 0™ D llusllz
j=0 s=0

k—1 [T/k]

D lusl3 > oM
s=0 j=0

< 7(A, p)l16ll3... | Bllop VE

(A, ) 9llr. NI BllopvVE

<
1—pk

k—1
> llusl3
s=0

By Parseval’s Theorem, and again since us = Ug4k,

T T-1 k—1
Doladz =T Juells < TTT/R] Y Mluell3
t=1 t=0 t=0

So,

T

T
Ol .. . .
onG )i, oGl F i o < 17 SlG(e i — | 3 el
t=1

Ola. |, 7(Ap)2]0112 OOHBH? = S
< Wl | AP S ol 717/ S el
t=0

A, p)||0 Op,/
7(A, P01, I Bllop VE[T/E] § ZH 2

1—pF
Again by Parseval’s theorem, and by the same calculation as was performed above,

T - t—1 2
N —Tz ool —Tz zAt - 1Bus z PIBI2, (zpmnusnz)
t=1 s= t=1

s=0
T7(4,p) ||BH2 k‘k .

( 2 Z” 5”2
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So,
T T
27rt 27rt - -
TZ (e Yty — || X (et ||2<* ZIIG A NDNELE
—1 t=1
k—1
Ol |,..7(A p)? ||9|| IBH% k= (A, IBH% k
< Pl |7 s 3l =3l
T (1- (
k—
_ 7T(A,p)? HQHHOCHB”?)pk S
= == >l
It follows that
T T
27t
E th:rf 7?2 G(etTH)H
= t=1 op
k—
(A, P01, IBlop /FTTTRT A2 (A, p)? ||9||Hm||B||zpk:E 1
< = >l + === >l
(A, p) 1015, I BllopV'T + 1kv? T(Avp) HGIIHOCHBllipkzv2
- 1 _pk (1 _pk)Q
and the conclusion follows. O
H.5. Smoothness of Covariates
Lemma H.5. ForallU € U2 j, and all § with
1—-p 1
0—0,|or < mi , L1 = reov(0s H.13
100 < min{ g 0 G L = (8 (19

if Ty is divisible by k,

y 8(0 4+ 0all Bullap)T(Ax, p)® 402 (|| Bullop + 1)7(Ay, p)?
||I‘%§17T2 (97 U,O’u) T1 T> (0*7U UU)||OD ( (1 = + =

_ p2)2 1— p2

o , (H.14)
+ 3477 | A3 (1Billop + 1) )10 — Oxllop

=: Loy (0 ) 10 — 0. Hop

Proof. For convenience denote € = [|0 — O4lop. ASTF, 1, (0,U,04) = Lo, ®TF 1,(0,U, 04),
”F%Sl,Tz (07 U, O'u) - F%“SI,TQ (0*7 U, O'u)”op = ||F§“51,T2 (05 U, Uu) - F%%,Tg (0*7 U, O'u)”op
By definition, when 75 is divisible by k,

T
ss 1 fre 1 noise
T (0.U,00) = T (60.U) + 7= th (6,0u)

27l

T, 2
99, U) = - (et 1 — A)"'BU,B" (¢! F 1 — A)~H

~

?r\*—‘
I\Mw

1
t

—

— t—1
I\noise 970_’“ _ 0_2 AS(AS T +O’2 AsBBT AS T
t w u
s=0 s=0
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Thus,

||F§§1,T2 (97 Ua Uu) - 1—‘%§17T2 (0*3 U7 0u) HOP

1 fre fre noise noise
SEHFTQQ(@,U) L7200, U)lop + ZIIT (0,0u) = TP 0k, 0u) [lop

(a) (b)
Lemma H.7 gives that, when (H.13) holds,

(@ < (max 21T = A 1Bullop (1611 = A4 ol Balop +2) )

(max AT = A) T BT = A) 7 apl|Bulop +2))

1692[|(e T — A,) "L ) 3
+ (wg[lg;;ﬂ] 7II( A7 lop )€

< 34 wlr— A, 12 Byllo 1 2)
< (wg[lggiﬂ C )3 (1B flop +1)2 )€

while Lemma H.6 gives that, when (H.13) holds,

b) < (8(03” + 02| BulI2,)T(Ax, p)? N 403||B*||opT(A*,,0)2> - 2037(A*,p)262

(1—=p?)? 1—p? 1—p?
< 8(07211 + O'Z”B*ng)T(A*, p)S + 40’121,<||B*H0p + 1>T(A*7p)2 €
: (=) =y
The result follows. O
Lemma H.6. Assume that ||[A, B] — [A, E]Hop < e and that € < %, then
t t R
Z o2 AM(AM)T 402 AFBBT(AF)T) =3 (a AR (AR)T +03AkBBT(Ak)T)
—o k=0 op
_ [ 8(0% + a2 BI2)T(A. p) 2Bl (A 0 | 207(4,0)°
- (1—-p?)? 1—p? 1—p?

Proof. First note that ||[A, B] — [A, B]|lop < € implies | A — Allop < €, [|B — Bllop < ¢. We will denote A = A + A 4,
where ||A 4]lop < e. We can upper bound

t t
Z o2 AMAM)T 402 A" BBT(AF)T) =Y (g Ak(AR)T +agﬁk1§§T(2k)T)
—0 k=0 op
t t N
o Y IAF(AR)T = (A+ AL (A+A4)") Tlop + 02 Y I[A*BBT(A*)T = (A+ A4)*BBT((A+A4)") lop
k=0 k=0

By the triangle inequality,
IAR(AR) T = (A + AL (A +A4)") lop
<[ ARAR) T = AF((A+ AN T+ AM(A+ AT = (A+ A0 (A+ 20" o
< (1A% lop + (A + A4)* lop) I A* = (A + Aa)*[lop
By Proposition H.1,

I(A + Aa) llop < 7(A, p)(p + 7(4, p)e)*
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and
(A + D) — A¥]|oy < kT (A, p)2(p+ (A, p)e)F e
Combining all of this we have
IAR(AR) T — (A+ A0 (A +24)") T lop < kT(A, p)* (0" + (p+7(A, p)e)") (p + T(A, p)e)" e

Denote p2 := p + 7(A, p)e. Since we have assumed that € < . p2 < 5 + 3p. Then it follows:

17
2T(A,p)

271(A,p)3e
P2
< 012”7' A, p)le ( p + P2 )
Aol e\ T o T G- 27
202 7(A, p)3e

t
o, Z ||Ak Ak —(A+ AA) (A+ AA)k)THop Zk pp2) +p%)
k=0

- (1=p3)?
< 802 1(A, p)e
(1—p?)?

where the last inequality follows since 1 — p3 > %(1 — p?). Denoting B=B+A B, and using what we have already
shown, we have

|A*BBT(A¥)T = (A+ A)*BBT (A4 24)") [lop

= |A*BBT(AF)T — (A+ AA)BBT((A+ AT — (A+ AL ABT((A+Ax)M)T
—(A+ A" BAL(A+ A0 T = (A+ 22 ApAL((A+A4)") lop

< |A*BBT(A*)T — A*BBT((A+Aa)")T + A*BBT((A+A4)")T = (A+A4)"BBT (A+24)") " lop
2||BllopT (A, p)?(p + T(A, p)e)* e + (A, p)(p + T(A, p)e)* €

< IBI2, (1A lop + 1A + A2)*[lop)[A* = (A + Ax)*[lop + 2| BllopT(A, p)*(p + (A, p)e)**
+7(A, p)*(p+ 7(A, p)e)*e

<\ BIZ k(A p)* (0" + p5)p5~ e + 2(|BllopT (4, p)*p3"e + T(A, p)*p3*e?

Thus,

t
o2 > IIA*BBT(AF)T — (A+ A0 BB ((A+A4)") op
k=0

t
< o2|BI2, (A, p)%e > k(pF + p5)ph " + 202 Bllop(A, p) Zp +ou7(4A,p) QZp
k=0 k=0
SoullBlle,T(A p)% | dog||BllopT(A,p)%e | 2057(A p)*e?
(1*p) 1—p? 1—p?

The conclusion follows. O
<

Lemma H.7. Assume that |[[A, B]—[A, B][lop < € € < (maxyepo.20 2]|/(e“T—A) " |op) ™Y and Uy = 0, S5, tr(Uy)
k2~2, then:

k ~ ~

Z (eI — A)T'BUB" (e I — A)™H =3 (e 1 — A)"' BU,B" (e T — A)™"
=1 (=1

< (mas BT~ A2, 1Bl (16111~ ) op 1Bl +2) )

Ea

op
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+(max BT = )220 T = A) ol Bllop +2) ) €

we(0,27]

wr —-1y3 3
(e 168771 = )G )e

Proof. Note first that ||[A, B] — [A, B]|lop < ¢ implies ||A — Allop < €, | B — Bl|op < € since:
I[4, B] = [A, Bllop = _ max_u'([A,B]—[4,B])v> max u' ([4, B] - [4, B))v = || A — Allop
u€S2d veSdtr w€S?? ug1.24=0

vesdtr yVd41:d+p=0

If we denote A = A—l—AA,B = B + Ap, then:

k k
> (e 1 — AT BUBM (e T — A)TH =N (e — A) T BU,BM (e T — A)7H
=1 /=1 op
k k
< |3 (e 1 — A)TBU BN (e T — A)M = > (eI — A)T'BU B (e T — A)~H
=1 =1 op
(i)
k k
+{[D (eI — AT BUBM (e T — A)7H =Y (eI — A) T BU B (et T — A)7H
(=1 (=1

op

(@)
By Lemma F.4 and F.7 of (Wagenmaker & Jamieson, 2020):
N < 16k22 LwI_A—lo wJI_A—IEQ
(1) < max 16K (€1 = A)7 opll (€T = 4)7 Ble

< 1 2 2 wr _ A =193 B 2
_wg[l(%);ﬂ] 6k°~7 (e ) Hop(” lop + €)7€

Note that these lemmas assume that U, are rank 1, but a trivial modification extends the results to arbitrary U, = 0 satisfying
25:1 tr(Uy) < k?~2. Further:

k
Z (e¥] — A" AgU,BM (e T — A)~

k
+ > (e T — AT AU AR (e T — A)TH
/=1

= op op
< @18 lenl Bl +18515,) (s 16T = 4715, ) 3 Z Vel
< K292(26]| Bllop + ) ( max [|(e] - A>-1||3p)
w€e0,27]
The result is then immediate. O]

Proposition H.1. Assume that || A¥||p, < 7p* for all k > 0 and that ||Al|op < €. Then, for k > 1,

1A+ A) lop < T(p+ 76", [I(A+A)* = A < 7(p+7€)* — 7p" <hr?(p+Te)" e

Proof. If A and A were scalars, the Binomial Theorem would give:

(A+ A = Zk: (1;) AR A

s=0

As matrix multiplicatlon does not commute, we cannot simply apply the Binomial Theorem. However, we note that, for a
fixed s, we will have (¥) terms of the form

APLATL AT2 A™2 AT ATs ATs+1
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where Zfill n; =k — Z _,m; = s. Critically, there will be at most s A terms in this product. Then, using our
assumption on || A*||,,, we have
Op)

s+1 s
||An1A’n’L1A’I’L2Am2 AT A ATt ”Op <H ”Am > (H HAml
i=1

qugiie

— Ts+1pk—ses

As this bound does not depend on the specific values of n;, m;, we will have

k
4+ 8y < 3 (F)rostbses = (v

s=0

where the final equality holds by the Binomial Theorem. Similarly, note that ||(A + A)* — A*||,,, will behave identically,
except that the A term will be removed from the expansion of (A + A)*. Thus,

(A + A)F Akop<z() Skt = r(p el — 7t

To show the final conclusion, note that, for k > 1, the derivative of (a + z)* is £ (a + z)* = k(a + 2)*~!. By the Mean
Value Theorem,

(at2)* — (at )| < (max k|<a+z>’f-1|) o=y

z€[w,y]

Applying this observation in our setting gives that

r(p+re)f —1pF <1 ( H[IOaX]k‘(p—‘r z)k= ) Te < kr?(p+7e)* e
ze|0,7e€

H.6. Infinite-Horizon Approximation

Lemma H.8. Fix any k and input U* € U2 .. Then for any:

drllfl?  w ( L )
k> =7 wI_ A)2B
> max{ P s b (L T = 4B

there exists an input U € U, j, such that:

1 re: 1 re: *
Hkr; 10, U) — ng 90, U%)| <e

op

Proof. For simplicity denote Gy, ¢ = (e*™*/¥I — A)~! B. Consider some k and, given ¢ € [1, k], let £;(¢) € [1, k] be the
index such that |¢;(¢)/k — ¢/k| is minimized. Let £, ' (¢) : {1,...,k} — 2{1-~*} return the set of indices that map to /.
Then:

1 1

k
El—\freq(e U* _ k2 ZGk @Uk Ele = — Z Gk L (0) + AZ) k[(Gk £ (2) + Al)

N‘

k E
* 1 *
:E Gk7€<k2 E: Uk,£/>Gl1: ?E (kak U;eAe "'Akaszék(é)"‘Akaer)
el (0)
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Set Uy ¢ = k2 Ze'ee 1(p UF o denote 6 := maxyepy g IA¢||2, and note that ||0]|%_. > |Gk, for all k, £. Then:

,,,,,

’irfjeqw, U) — %Fgeqw, U*)

IN

k
1 * *
=53 (G U AR + DUF Gl gy 0 + DeUF A
(=1

op

op

2616013, + 62 N
|| HH Z”UkeHOp

2 k
< 200l + 6
k {=1

< (200ll3.. +0%)7?

te(UZ,)

where the final equality holds since (7,36‘ , 18 a feasible input and so must meet the power constraint. By Lemma H.1 of
(Wagenmaker & Jamieson, 2020):

Hth — Gk/’Z/HQ < 27T|€/l€ — f’/k’/| < max ||(eLwI — A)QBHOp)

we(0,27]

Using this we can bound:

wel0,27] we(0,27]

1Gas — Crsniollz < 2/6/F — €u(0) /K] ( max [|(e"“1 - A)?Bnop) <n/k ( max )€1 - A>2B||op)

since any = € [0,1] is at most 1/(2k) from the nearest fraction ¢/k. This implies

0 <m/k ( max ||(e*“I — A)_2B|0p>

we[0,27]
SO:
1 fre 1 fr 27T||0||7'l 7 —2
—T2°0,U) — =T'7°49, U™ (eI —A)"*B
R O s (€T~ 4)?Blly
2 2
w —2
+ 2 (wg[l(%(ﬂ]“e I—A) BlOp)
4[| 0] 2.7 2
< —T “wlr—-A~*B
< . ax (e )" Bllop

where the last inequality holds so long as k& >
must choose:

Mo (max,e(o,24] || (€T — A)72B|op ). To make this less than ¢, we

4710|372
b B (s a2,
€ wel0,27]

Finally, note that the input U 1,¢ 1s feasible since:

k L L

ICUVESI D ML REF S WT

=1 /=1 Z’Eégl(f) =1
The conclusion follows immediately. O
Lemma H.9. If

8 A’ 2( 52 + 211 BII? 1 1— 1

7> mae { AP+ RIBI) L (1— )%
(1—=p?)? € 87(A, p)*(os, + 02| Bll3,) /) 2logp

then, forany T' > T,

T’

T

1 .

T E F?OISC(G,O'U _ T/ E ansc 0 Uu) <e
t=1

op
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Proof. By definition of F?Oise’

T

1 d noise nome
ftzzlrt (97 Ou *T,ZF qu)

t=1

op
1 T tfl 1 T t—1
— TZ (02 A%(A%)T +02A°BBT(A%)T) - FZZ(aiAS(AS)T—kUiASBBT(AS)T)
t=1 s=0 t=1 s=0 op
1 T_1 s s 2 s T s\ T
=7 T —5)A%(A%)T (T — s)A°BB (A))
s:O
T -1
1 ;
— = Y (o (T' = ) A*(A)T + o2(T" — 5)A*BBT (A*)T)
s=0 op
T—1 s s
- (03(1 — A4 + o021 —)ASBBT(AS)T)
pore T T
= 2 1 s AS(AS T 2 1 S ASBBT AS T
Zo(aw(T,) (49T + 021 - ) (4)7)
s= op
T-1 s
- H > (7 - 7) 0247477 +024°BBT(4")7))
s=0
= 2 1 s AS(AS T 2 1 S ASBBT AS T
= > (21— A AT + 01— Z)ABBT(4Y)])
s=T op
T—1 T'—-1
< |7 =T 7 (A ) (0% + alIBIZ,) D 50> + (00, + 02| B2, T(A,0)* D (1= 5/T")p>
s=0 s=T
2 2T+2
-1 - pe+p T
<|T'™" =T Y7 (A, p)*(os, + UZHB”;))W
27" +2 2T+2 2T
2 2 . _21p12 \P +p7 T+ T
+ T(Aap) (aw + Ju”B”op) (1 _ p2)2T/
A7(A, p)* (o, + ol B2,
< ? P T71 27T
= (1—p2)2 (T +p™)
If we set T large enough such that
Pk + ORIBI) oy gy AP+ GRIBIS)
(1—p?)? (1-p?)?
the desired bound will hold. Rearranging these gives the result. O

I. Certainty Equivalence Decision Making with Sequential Open-Loop Policies

In this section we assume we are in the linear dynamical system setting of Section B and that we are playing an exploration
policy Texp.

Proof of Corollary 2. This is a direct consequence of Theorem B.3 and Lemma I.1. The stated results follows from some
algebra to simplify terms and using Lemma G.4, to upper bound poly (7., = p ) terms by poly (|| Byllops || A%, ), and

setting dg = d? + d,d,,, the dimensionality of (A, B). O
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I.1. Sequential Open-Loop Policies Satisfy Assumption 7
Lemma L.1. Any policy meyp € ny%l meets Assumption 7 on some system 0, with

T (ﬂ'exp) = c1d, ((dx +dy) IOg('_V/)‘min(Fillzise(g*v ou)) + 1) +log %)
- CQAmitl(Fggise(gﬂ Uu))

~

1
con (Texp) = Mmax {Tsc('/Tcxp (n+ \/70.1“/7 ) log (n‘af' ) }

Ceon =1 CBT (U +f}/) 1/10g2+d1+du
(1—p.)° /2 )‘min(nglsc(Q*vau)) g

a=1/2

for universal constants c1, cs, 3.

Proof of Theorem B.3. Let:
T—1

t,

T I T

E zzy 0 =1,...,n, Y = E ZsZg
s=t

t=t;_1

Sufficient Excitation: We first show that the sufficient excitation condition is met by 7. First, note that by Lemma
1.3 and some algebra, for any time ¢, ¥, < T%I with probability at least 1 — §/n. Fix a time ¢ > Ty (7exp) Where
Tse(Texp) 1s defined as above. Since mexp, € Hi%l, the low-switching condition implies that there exists some set of epochs

{i1,...,im} C [n], such that for j € [m], t;, 41 —t;;, > %Tsc(wcxp), ti;+1 < t,and
- 1
D (a1 —1i,) > 5t
j=1

This follows directly from the fact that, for any ¢y, there exists some epoch ¢ € [n] such that |[{¢g, o + Tse(Texp) — 1} N
{tiy. oy tiz1 — 1} > %’Fse(ﬂexp). Now consider some j € [m]. By Lemma 1.2, if

. _ S n
fiyi — s, = 1o ((do + du) 108(7/ Aumin (T (B, Auy) + 1) +log ) (L)
we will have that, with probability at least 1 — §/n, for some ca,
E{i], :Eij+1 = Co (tt +1 — t )Amm(rnolsc(e*’ Au R )))

However, by definition of I'™°"¢ and since by assumption Amin (Au,i;) > o2, we will have /\mm(r;,{:ise(é*, Auij)

u’

)\* ( u): Wh]Ch lmphes that log( /)\nome (UU> + 1) Z 1Og(’7/)\m1n (Fggibe(9*7 Auﬂ;j )) ) AS we know that tij +1— tij

noise

éTse(wexp), it follows that (I.1) is met, so we conclude that with probability at least 1 — 6 /n,

(AVARAYS

Zﬂ;.:ﬂj+1 = CQ(t7 i+1 — { ))‘nmse(au)

J

Union bounding over this event holding for each j € [m], it follows that with probability at least 1 — 4,

m m
= Z Eﬂ]: i. Z CQ ij+1 ))‘zoise(au) - t)‘:(lome( )
j=1 j=1

By proper choice of constants, we will then have that the sufficient excitation condition of Assumption 7 is met with

Toe(Texp) = c1ds ((dw + dy) 108(7/ Amin (T500 (B, ) + 1) + log %)
A = CQAmin(ngise(gm Uu))
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Concentration of Covariates: We define the following events for some ¢; to be specified.

€ = {lI=1 — Eo, reny [Brlllop < G2 Arain (Bo, e, [Z7])} (Good event)
&1 = Danin(B1) > 2 min (T5°(6,, 0,)) T} (Sufficient excitation)
Eri = {12 — Eo, 7o, [Billlop < €} (Concentration of covariates)
Esi = {Hztil Iz < 01*2_7:5} (Bounded states)

We would like to show that £ holds with high probability. The following is trivial.

PlE] < PlE“N & N (NZ1€2,) N (Ni1E5,:)] + PIET] + ZP[EM NEs il + Zp[g?f,i]

i=1 i=1
We first show that &1, & ;, €3 ; hold with high probability.

Note first that, by what we have just shown, P[Ef] < ¢ as long as T' > T (Texp). By Lemma 1.8, since 7ex, € ny%l B.4, we
will have that P[€5 ;] < § as long as

T> (n+/do2 /%) log 20D

Next, we show that P[€3; N &5 ;] < d. Setting

- ['noise 5*“/\“74_ o _ _ 3 T~ + *2 2TV (1 — p2
_( T8 B Aadllon f—y— , a2 VT VPO | |Au”0p}>

1.2)

1—ps (1—=pe)?

1 cs max{o2, || Ayllop 72 1
“A/log —+d, +dy C = (log = + dy + dy
1/0g6+ +d, + 1= )2 (og6+ +dy)

Lemma 1.4 with p = p, implies directly that P[E3 ; N 551] < §. For future convenience, we can upper bound ¢; by

3.2 2
CgT*(O'w-i-’y)\/T 1
log = +d, + d,
—ppz V85T

as long as
1
T > log s+ dy +dy 1.3)

On the event & N (N, E2,:) N (NP1 E34), we have

127 = Eo, oy (Brllop = || D2 Bi = >~ Eo.ir, [
=1 =1
om0 + VT

n
=T )

n n
<Y B = B, e [Billlop < Y €
S i—1

1
log5+d2+du

and

EG*,‘NEXP [ET} t EO*,ﬂexp [H{gl}ET] Z P[gl]CQ)\min(rgjise(a*y Uu))T I Z )\min(l—‘szise('&vﬁ Uu))T I

|~

Thus, P[gc N 51 n (m?zngi) n (ﬁ?zlgdyl)] =0witha = ]./2 and

i)
(1- p*)5/2>\min(1“2fse(9m ou))

1
log = + d, + d,

Ceon := 5

Thus, P[£°] < 2n + 1. Rescaling 6 and setting Tcon (7exp) to guarantee (1.2) and (I.3) hold gives the result.
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1.2. Concentration of Covariates

Lemma I.2 (Lemma E.3 of (Wagenmaker & Jamieson, 2020)). Assume that our system 0 ls driven by some input
up = Uy + uy’ where Uy is deterministic and u’ ~ N(0,A,). Then on the event that Zt L2z =X TTr, for some I'r,
choosing k so that:

T> 252600

2 _ . 1
k (2(d$ +dy)log % + log det (P (T25) =1 1 Tog 5) 14)

we will have with probability less than §:

ZZtZt % MTFHOISC(H A )

Lemma L.3. Assume that we are playing a policy Tex, € HSO and that § € (0,1/3). Then with probability at least 1 — 0,
and assuming we start from some state xo = 0,

Zztzt <T (\/>log5 +7> 1
< cT(u + HB*nzp)nA*u;w) (Vi tog 5+ 1A ) -1

Proof. Note that we can break the state into the portion driven by the conditionally non-random input, u;, and the process
noise and random input. We denote these components as z;* and z{. Then

T
H Z ZtZtT
t=1

Note that the input u; will almost surely satisfy Zz:ol i, uy < T~2. We can then apply Lemma 1.7 to get that

u ,p)* YT
Z”t”Q— ( 7[))2

To bound the component Zle |2%1|3, we apply Lemma 1.8 with 42 = 0, union bounding over all 7" steps. We simplify
the bound by upper bounding n by 7" and using that § € (0,1/3) implies log T/ > 1. The second bound follows by
Appendix G.4. O

T T
L= Do lzl3 <2 (=113 + 112113
t=1 t=1

Lemma 1.4. Consider the system
Ter1 = Axe + Buy + A,}U/th

where A € R w, ~ N(0, 1) and uy is deterministic and satisfies Zle uf uy < T2, Assume that we start from some
state xy. Then we will have that, with probability at least 1 — §
< c3l| A lopT (4, p)?

T T
T T
E T4 —EE TiX
Ht_O o = “llop = (1—p)?

c17(A4, p)IT5(6, 0) lop ca7(A, p)* (VI Bllop + [[o]l2) foo L
+< T VT + (e VIAwllop | /log 5 +d

for universal constants c1, cs, 3.

1
log = +d
(og5+)

Proof. Consider the systems
2 = Az + Buy, 2, = Az + A 2w,

and note that z; = z¢* 4+ z3”. Therefore,

T T T T T T T

T T T T T T
E ] = E zyay E (w}‘x;" +alxy )—i— E Pz, E E ] = E zyxy +E E z
t=0 t=0 t=0 t=0 =0 t=0 t=0
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The second equality is true as 2 is deterministic and x% is mean 0. Fix some v € S?~1. By Lemma 1.5 and Lemma L6,
we’ll have, simultaneously with probability 1 — 4:

27(4, p)[IT5(0,0) lop 8[| AwllopT (A, p)* 4
< T log log —
= 1= JThog s+ a-p? %5

7(A, p)2(AVTY||Blop + ||z 4
o| ¢ ARV T By + sl o o

T

T
Z v'xy) EZ(U xy’)

T, u wT
E v xyay
t=1

AT, | 8||A lepr(A,p)? |4
< T log log —
= 1-p2 5 1-p2 85

27 (A, p)2(4VTH||B||op + ||z 4
+ L Vo J00l1) o, o 1o 5

Note that if M is symmetric || M ||op = sup,cga-1 [vT M. Fix v to be a vector for which this equality is attained. Let 7
be an e-net of S~1. Then we can then find some vy € T such that |[v — vg||2 < ¢, and thus,

IN

22

[T Mv — vg Muo| < [v" Mv — vy M|+ |vg Mv — vg Muo| < 2||M|lopllve — vll2 < 2€]|M||op
Therefore,
[vg Muo| > v Mv| — v Mv — vy Mug| < (1 — 2¢€)||M||op
50 || M ||op < 175 maxye7 [v" Mu|. Applying this in our setting and choosing € = 1/2, gives

T T
T T
Y —E E zP < 2max
veT i

op
By Corollary 4.2.13 of (Vershynin, 2018), we will have |7| < 5¢. Using our high probability bound on

‘Zt LTz —ESS (0T x> ‘ given above, and union bounding over 7', we conclude that, with probability at least

27(A70)||F%015°(9,0)||op\/ 4 8] AwllopT(A, p)*
T(log — 1
e (og5+dog5)+ -

27 (A, p)*(4VTH|IBllop + || z0ll2)
+ (1 _ p)g \/2||Aw||op(

4
(log 5 + dlogh)

T
J—E E xtxtT
t=0

op

4
log 5 + dlogh)

Lemma LS. Consider the system
Tyl = Al‘t + Aqlu/Q’U]t

where A € R¥? w; ~ N(0,1), and assume xo = 0. Then, for any v € S, we’ll have that, with probability at least

1-96
T T .
27 (A, p)|IT5=¢(6,0)|lo 8||A lopT (A, p)? 2
T 2 E T 2 < T 1% Tl P 1 Z.
tEﬂ(v xt) tEﬂ(v x)?| < - 6 -2 og 5
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Proof. This is a direct consequence of the Hanson-Wright Inequality. Note that,
ZAt TN 2w, = Gy

where we have defined Gy = [ATIAYZ AR AN AR 0,000 € RIXT g =
[wg ,wi,...,wi_o,wp_4]". So,
(v 2¢)? = wi Gl oo Giror

and,
T

T
Z ’U xt = Zm;G:m}TGtmT = m;GTmT

t=1 t=1

where G := Y, GJ v G,. The Hanson-Wright inequality then immediately gives that,

€2 €
P >e| <2exp (—cmin{ , })
[ 2 ] 1G2IZ TGrlon

Z(vTxt)Q -E Z(vTxt)2

For a fixed §, rearranging gives

lz vl x)? — Z(vTxt)Q >2

t=1
We proceed to bound ||Grl|lop and ||Gr||%. Consider some v € S%~! and note that, if we write u =

IG 7% 10g(2/6) + 2[|Grllop 10g(2/5)] <9

[ug ,ui ... uj_o,up ], where u; € R?, using the definition of G; given above, we have:
t—1
Giu = E AFS*lA}U/ZuS =z}
5=0

where x} is the state of the system with matrix A when the input v is played and there is no noise. Thus,

T T T

-

uTGTu:g Gtu E v xy) 2 < Amax E xyxy
t=1

t=1 t=1

Then, invoking Lemma 1.7 with ¥2 = ||A,,||op and B = I, we can bound,

T
7(A, p)?[|Aw |
T P o
)\max (Zx}‘x}‘ ) < Z ||x’tu||2 ( _ 2 =
part p)
As this does not depend on u, it is a valid bound on |G ||op:

A7(A, p)*[[Awlop

[Grllop < 1) (15)
To bound ||Gr||%, we can write,
T T T T T T
G|} = te(GrGr) =) Y tr(Glov GiGlov Go) =Y Y (0T GiGIv) <D GG,
t=1 s=1 t=1 s=1 t=1 s=1

From the definition of GG, we have,

min{t,s}

GtGI — Amax{t—s,0} Z AkA AkT Amax{s—t 0y — Amax{t—s, O}anﬁilf?ts}(e’ O)Amax{sft,O}T
k=0
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SO,

1G G Jlop < AT O g ARO[ | TRARE, 13 (6, 0) lop < 7(A, )P *MITREET, 3 (6, 0) lop

which implies

T T T T
SOSTIGGTIZ, < (A, )2 [TEee(0,0)2, 33 2

t=1 s=1 t=1 s=1
. _ 4 2(T+1) _ 9,2 A. p)2||Tnoise (g 0)”2 T
— 2 || noise 2 (1 p )T+2p 2/0 T( 7p) H T ( ’ op
- T(A? p) HFT (9) O)”op (1 _ p2)2 S (1 — p2)2

Combining everything, we have shown that, for any v € S~ 1,

T T .
27(A, p)|IT77 (6, 0)llo 2 8l AwllopT(4p)? | 2

P T2,)> —E Tay)?| > P T R0 [T log < P log S| <

ISR L R e H R

Lemma 1.6. Consider the systems
2t = Azt + Buy, 2, = Az + A 2w,

where A € R4 w;, ~ N(0,1) and u; a deterministic signal with ZZ;I u) uy < T2 Assume that ¥ = 0. Then, for
any v € S, we will have that, with probability at least 1 — §

(A,p)2(4\/T’Y||B||0p+“xg”Q) 2|| A || logg

Proof. We adopt the same notation as in the proof of Lemma I.5. Defining

T
T umzu

G :=[A"1B,A"2B,...,AB,B,0,...,0] € R>*%T  ywp=[ud ui ..., up_o,up ] € RIT

we have
u t u w
xzy = Giupr + A'zf, z’ = Gporp

which implies

T T
ZUT@"?@”T <u Z (G TGy + TZAtTvaGt> =g wr~N(0,g'g)
1

t=1 t=1

By standard Gaussian concentration results, we then have that

L 2
JP’[ 2\/2nglog6] <46
t=1

It remains to bound g " g. To this end, note that

ngS(

We can bound || A*||op < 7(A, p)p* and,

T
T ux;u

T
u g (G} TvaGt

t=1

T
T T
zy E A ' Gy

t=1

4+
2

)

HA”QHOPT(A )

t—1

1G¢llop < 18 llop Y 114°[lop < AL/ lopT (A, p) Z —,
s=0 s=0
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SO,

T

T T
xy E At TG S‘
t=1 2

Furthermore, letting G}, = [A'=1, A2 ... A 1,0,...,0], we have

T
|21 Aw® IIOpT (4,p)° Z < l=8lle 1A [lopT (4, p)?
1- — (1—p)?

T
Uup Z Gu T’U’UTGt

t=1

T
Z G/ T’U’UTG/

< ||uT||2HB||OpHA’}U/2H0P < ||uTH2||B||0P||A11U/2HOPH /T||0p

2

2

where G/, = Zt (G v GY. By (L5), |Gl llop < 47(A, p)?/(1 — p)?. Since we have assumed that ZtT:1 uf up <

T2, we also have |lur|s < v/T~. Combining everything, we have shown that

2
4\/T’YBOTA7[)2 LU TA7p2
glg < ||Aw||0p< [ BllopT( ) I lzg |27 (A, p)

(1—p) (1—p)?
Thus,
T
A, p)?(4VT~||B “ 2
P T ux:u—l' > T( ap) ( \/>FY|| H20p + ||£E0 H2) 2||AwHop10g7 <6
2 (1-p) 5
O
1.3. State Norm Bounds

Lemma L.7. Consider the system
Tyl = A.Tt + But

and assume that we start at state xo = 0. Then if ZZ:Ol u) uy < T2, we will have

S ot « AP IBIE T
per (1-p)?

Proof. By definition 7 = ZST;ol AT=s=1 By, so

lewtllz<z<z [ 1||op|B||op|us||2> <7(4 )| BIIS Z(Zpt - 1|us||2>

t=1 \s=0 t=1 \s=0

Letting p; = p', v; = |[ut||2, we define y = S2"_f p'~*"jus |2 = (p * v)[t], where * denotes convolution. By Parseval’s
Theorem,

T /t—1 2 T L T
> (Z pt—s—lus||2> T S
t=1 k=1

t=1

where Y}, denotes the DFT of ;. As convolution in the time domain is multiplication in the frequency domain, we will have
Y, = P, V), where Py is the DFT of p; and V}, is the DFT of v,. We can explicitly calculate P, as:

1_67L27l'ka
t 2 _
Pk*Zp 7 T

Thus,
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Note that, also by Parseval’s Theorem, the constraint 3, |Ju[|3 < 4? translates to 25:1 [Vi|? < ~2. So,

1 T 1 67L27rka 2 2 T 7L27Tk3 T
2z Vi 2k
T; 1— —.2zk | k| e H1<T2 5 Zl 1— e Q;kp k
5 1— 6—1,27rka 4’}/2T
— T max | < ;
ke{l,..TH| 1 — et (1-p)
The conclusion follows. O

Lemma L.8. Assume that we are playing a policy Teyp € Hf{ozl. Then with probability at least 1 — 6, assuming zy = 0,

c7(A,, p)? 2(n+ 1 2(n+1
l[2¢]I5 < 1(*[)2)('72T+ (Vdgo? +VnTH?) 1og¥ + (02 +nvy?) log %)

and if

1
(n++/d Uw/7 log (n; )

this bound can be simplified to

2 < CT(A*vp)272T
ll2ell5 < T 1_,2
-p

Proof. By Assumption B.4, for s in epoch j, we can always write the input u, as us = us + ul, where u is i, measurable
and u? ~ N (0, A, ;). Given this, we break the state up into the component driven by , Wthh we denote as z;*, and the
component driven by the process noise and u; , which we denote as z;. By linearity, we will have that z; = 2{* + 2, so

213 < 201215 + 20127113
We can easily bound ||2]|3 as:

t—1

< (L )’

s=0

213 = HZAt 1B,

t—1

ST(AZ*,P)Q(ZPQt s— 1))(2”“5” ) %

p

where the final inequality follows since, by assumption, Zé o llus|3 < T? almost surely. We now bound ||z°||3. Note
that due to the possible correlations between A, ; and previous epochs, we cannot naively apply Gaussian concentration.
We first upper bound ||z||3 as

2 =1 -
<o S A By
, < 2 g
N t—1
<or( Ao (X 0 M) +2HZAt “hw
s=0

§2T(g*7 p)? (i 2(t—s— 1))(Z”uwH )—’_2HZAt 51y,

22 ||2=HZAt B +w,)

2 il N
AER
S

We note that || >2°_1 U At=s=1y |12 is simply the norm of the the state of a dynamical system driven by noise w,. We can
therefore apply Lemma 1.9 to get that with probability at least 1 — 4,

= 2 s 2 e 2
|30 et <4y i@, 0 g 2 + 405, 0) o log 2
s=0
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We can upper bound

_ 2 (A 2
||ansc(0*,0 ||op — 0' S 0_2 T(A*’P)QZp% < O'wT( *ap)

ZAt (AT

T35 (,., 0)]|3 < dy || L5 (6., 0)]12,

To bound ZZ;}) |u||3 we can apply Hanson-Wright to some epoch j to get that

tiy1—1 tjp1—1

w w 2 2
S IIESE S IR 20/ (rur — s 12108 2 + 2o log >

s=t; s=t;

tiy1—1

2 2
Z tr(Ay, )+ 2\/( (ZES] — 1 )HAUJ||2 log — 5 Jr2||Auj||0p log — 5

s=t;

2 2
< (b1 — 1) +2\/(J+1—t) 410g5+27210g5

Assume that ¢ occurs in epoch i. Then if this bound holds for all epoch j < 4, we can bound

t—1 i
_ _ 2 2 2 2
2 2 -2 2 . . 92
SE:O Jug'lz < tv° + ;:o \/(tj+1 —t;)y*log 5T 21" log 5 <ty” 44 /itytlog 5T 217" log 3

Union bounding over all n epochs and the bound on the process noise, we then have that with probability at least 1 — 6,

er(Ay, p)? : 2(n + 1 , 2(n + 1
222015 < 1(_,05) (’72t + (Vdyo? + \/EWQ) log (T) + (02, +iy?) log (T)>

The result the follows by combining this with our bound on ||z*||%, and upper bounding ¢ by 7" and i by n. The simplified
bound holds by noting that for large enough 7', we can upper bound the two lower order terms in the bound on ||z} |3 by
(dyo2 +)T.

Lemma L.9. Consider the system
T = Az + Aqlu/th

where wy ~ N (0, 1) and assume that we start at state xo = 0. Then, with probability at least 1 — §

is 2 noise 2
o[l < 2\/IIT‘%°“(0,0)II% log = +2[[77(0, 0 [lop log -

Proof. Using the same notation as in the proof of Lemma 1.5 and 1.6, we will have that x7 = Grtwr. Applying Hanson-
Wright then gives that, with probability at least 1 — 4,

2 2
|27 a7 — tr(G1Gr)| < 24/||GFGr||7 log 5+ 2||G7Grllop log 5

By definition of G we have that

T-1 T-1
GrGr =Y M(ATAN?, GrGr =) A°A,(A°)T =T5(6,0)
s=0 5=0

So,
1G7Grllop = 1GTGTllop = IT5(0,0)|lop, |G GrlE = tr(GrGrGrGr) = T57(0,0)|1%

This concludes the proof. O
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Theorem 1.1 (Hanson-Wright Inequality, (Vershynin, 2018)). Let X € R? be a random vector with independent, mean-zero,
sub-Gaussian coordinates. Let A € R4, Then, for every € > 0, we have

2
PIXTAX —EXTAX| > €] < 2exp (—cmin{ c ¢ })
[ 2 KA KAl

where K = max; || X; ||y,

Recall that, if X; is gaussian with variance 02, || X;||y, < Coy.

J. Experiment Design in Linear Dynamical Systems
J.1. Proof of Theorem B.6

Proof. Fix an epoch i and let T = E;:O Tj;. Note that, by the definition of T}, we will have T; = %(T + Tp). Similarly,
T;—1 = (T + Ty). Define the following events.

~ log(1/8) + (dy + du)1og(F/Nfpiee + 1
e _ {”9“_ llor < C \/ og(1/6) + ( )log(7/ ) _. }

T 1 X;

noise

5 iy 2@ 4 ded,) | G C
52:{R(aopt(01);9*)§5012u (H(0.)Eq, [S7]") log 24 — ) T +T§}

4r2y2)2 — > 2
£ = {nzTn < T 8y I log 4 SITF o log 5

for C1, C5 as defined in Corollary 2.

Events & hold: By LemmaJ.1, we know that TOPLE € Hi‘?). By Lemma I.1, this implies that TOPLE satisfies Assumption
7 with

n _
Tbe(TOPLE) = Cldw ((dl + du) log(:}//)\zoise =+ 1) + 10g g), A = 02/\;oise’ FT = ’7 i
Thus, as long as
T > T.(TOPLE) J.1n

we will have that with probability at least 1 — &, Ayin (X7) > caAio;6oT and Xy < THI. We can therefore apply Lemma
J.5, our operator norm estimation bound?, to get that P[£{] < §. Furthermore, by Corollary 2, we will have, as long as T
is large enough for the burn-in, (B.7) to be met, that P[£$] < §. To show that &3 occurs with high probability, we break
up the state into two components: z;*, the portion of the state driven by ., and z}”, the portion of the state driven by the
input noise and process noise. As the structure of TOPLE is identical to that of the algorithm considered in (Wagenmaker &

Jamieson, 2020), Lemma D.7 of (Wagenmaker & Jamieson, 2020) gives that

2 4T<Av*ap)2kz'272
e
and we choose p = p,. Note that while this result is stated as a high-probability bound, since we are only considering the

non-random portion of the input, it will hold deterministically. Crucially for subsequent steps, this scales as k? instead
of T, which is the scaling we would obtain applying Lemma 1.8 would scale. Next, applying Lemma 1.9 gives that, with

probability 1 — 4,
2 T'noise ||2 2 T noise 2
2 < ay I3l 1og 2 + 41T5 o log 2

Note that we can apply Lemma 1.9 since the input noise variance is deterministically fixed for all epochs, and by upper
bounding the state bound for epochs ¢ > 1 by the state bound that would hold if we always set the input noise to have
variance 72 /d,,. This implies P[£$] < 6. Altogether then, we have that P[£; N E; N E3) > 1 — 34.

||21TL7T1-

(B

“Note that we could have instead employed Lemma F.1 to upper bound |\§¢—1 — 0,|| 7. By exploiting the matrix structure of 6, and
using an operator norm bound instead, we are able to save a factor of dimensionality in the burn-in time.
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Events &; imply optimal inputs: We now assume that £&; N €5 N &3 holds. Assume that 7} is large enough that

€op,i—1 < min{rcov (9*)7 rquad(e*)/ V d:Ey /\Eoise/(4Lcov(9*a 72))} J.2)

Then, as long as,

1 ~ dy 43272k /T + d272k2 + o2
T; > poly s T [0 || 20 oz i3 + . it it % J.3)
L= px )\HOISS
6, 2 S
ki > max ol 7 < max <e“’IA*)QB||op> (1.4)
Al oise 2|60, [ wel0,27]

we can apply Lemma J.7, which gives that the performance achieved by Uj is nearly optimal. That is, for any 7" > Tj,

3tr (H(&)FSTS/,T' (6., 0)71>

r(H(0.) (Bo, [S1]) ) < tr(H(0.) o, [Ta, © XFg_g, 220 ) ™) < min - 20
where
C o 4\/@(d2 + dxdu)Lhess + 8Lcov(9*772) (H(e*)) €op,i—1 + 8(di + d:cd )Lcov(eﬂ’y )Lhess c2)p i— 1
o )‘:(101% ()‘;owe) Tl ()‘;01%) E

and we have chosen e such that 1/(1 — ¢)3 = 3/2. Recall that Algorithm 4 uses T; = Cipnicd, 2" and k; = Cipii2L7/4). We
then have that,

3/4 3/4
Cinit. T1/4 > O 24 > b > Cipgg20/471 = @T}M
d1/4 ini = Mg = Vini 2d71/4 ]

On event &3, which upper bounds 2, it follows that (J.3) and (J.4) hold as long as

Ol <#7T7 5 )
- poly \ 1=, T« || *||Hoo <d5/4 203/4T3/4+d3/2 203/2\/>

i = - init init

/ 2 2
+ 02 + 4/ |75 log 5) (1.5)

~ 1/4 Lw 1\V-2n
VRN - A G e (manew (e = A4)"Blop)
; = X m N =
’ )\nmsc 2”9*”7-[00 03/4

init

(1.6)

We have then shown that, on the event & N & N &3 and assuming 7' is large enough to meet the burn-ins stated above, we
have, for any T”,

R(opt (0:); 05) < 502, (H(0,)Eq, [E1]71) log

5 T3/2
o (HOITE 0 00w 07Y) oy s ddy) o C
) ) , z Uy 1 2
< 15073, uerzf{lng, T log s + T3/2 T2
24(d> .
102 gl B )

As this bounds hold for any 7”7 > T;, we take lim inf7/_, o, to obtain

15025 (v%6,) . 24(d2 4 dod,) C C. 24(d? + dd.,)
w opt s Uk T x Wy 1 72 T x Wy
T, log 5 T3/2 + T2 + 100 Cexp 7{5

R{aopt(0:); 0,) <

We can also upper bound <I)0pt( 2:0,) by 16<I>Opt(72; 6,) via Lemma G.3. On & N & N &y, it is easy to see Coxp =

Cy/ T3/2 4+ /T? for some Cy, C5. The conclusion then follows by rescaling & by a factor of 3, and since 7; > T'/2. The
fact that the average expected power of the inputs is bounded by v? follows by Lemma J.2. Finally, some algebra shows that
the burn-in times stated above are all met as long as Assumption 8 holds. O
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Lemma J.1. TOPLE € ny%l with o, = ﬁ andn = O(logT).

Proof. This follows directly by the formal definition of TOPLE, Algorithm 4. In particular, we see that at each epoch i,
TOPLE plays open-loop inputs @, that are F;, measurable. Furthermore, ¢; and A,, ; are deterministically specified at the
start of the algorithm, tr(A, ;) <72, Amin(Aws) > 72/(2d,), and Lemma J.2 gives ZZ:OI ) Uy < 2 deterministically.
The fact that n = O(log T') follows since we increase the epoch length exponentially. Finally, the low-switching condition
follows since the length of the epochs increase exponentially—once T is large enough that T' > Ty (Texp ), we will have that
at least half the initial interval is contained in the final epoch. Then for subsequent epochs, any interval of length Tye (Texp)
will contain at most one epoch boundary. O

Lemma J.2. Running Algorithm 4, we will have % Zthl Elu] us] < ~2

Proof. By Proposition B.5, we have that 23:1 (ul)Tul < T;y?/2. Thus,
T; T; T;
D Elufu] <T?/2+ ) El(uf)Tuf] = Tin?/2+ Y 7*/2 =T
t=1

t=1 t=1

Thus, the average expected input power for a given epoch is bounded by ~2. It follows then that, after running for i epochs,

T 7 T_] i
1
Z ol w) = 7 30 3 Bl ] < 5 YT =
t=1 ] 1t=1 j=1
where the last equality follows since, by definition, 7' = Z;Zl T;. O

J.2. Certainty Equivalence Experiment Design

Lemma J.3. Fix a nominal instance 0, and let 0 be some instance such that 160, — t/9\||o < €, for o € {op,2}. Let
re,U) e Si" be a map that satisfies, for all U € U.> and all § with |0 — 0, ||o < Tcov(6x),

HF(Q, U) 7F(0*7U)H < LCOV

op < Leov(0:,7%) - 10 — 0.l 4.7

Assume that for all U € U2 g, Anin(T'(0,,U)) > A and that €, < min{7cov (0x), A/ (2Lcov (05, 7)) }, €2 < Tquad (04)-
Let:

~

U = argmin tr (”}‘-l(A)l"(é\7 U)_1> , U* =argmintr (H(0.)T(0,,U) ")
Uel 2, Uel s,

Then, under Assumption 3, we have:

- 2do L ess 4Lcov 9*7 2 t 9* 4d Lcov 9*7 2 L ess
tr (H(9*>F(9*,U*)_l) —tr (7_[(9*)11(9*717)—1)‘ < 9)\h € + ( 12) T(H( ))60 + 0 ()\2 g ) h €03

Proof. By Proposition E.2, under Assumption 3 and since [|f, — 0|2 < 7quad (65), we have

||H(9*) ( )HOP < LheSSH 9||2

Furthermore, by Lemma J.4, (J.7), and since €, < A/(2Lcov (0x,7?)),

~

IT(0, U _F(G*aU)Hop < 2Lcov(9*a72)5o

FA -1_71 N -1 o <
IT@. )™ =Tl U lor < 33 =70, 77)e0) x

~

Thus, denoting Ay, = H(6) — H(6,) and As,—1 = T(6,,U)~L —'(§,U) "', the above bounds and Von Neumann’s trace
inequality imply:

tr(H(é)r(é,U)—l)—tr(H(e) (0,,U)" ’<|tr AnT (0, 0) ) | + |tr(H(0) Ag1)| + [tr(AyAs )]
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LCOV * 2 * 2 LCOV * 2 L ess
(07" (H(0.) | 2dsLeoe(0217") Liess

S Lhesstr (F(e*a U)_l) €2 + 2

)\2 o )\2 o€2
2 2
S dGLhess €+ 2Lcov (9*7 Y Q)tr(H(e*)) €0 + 2d0Lcov(9*27 vy )Lhess €€y
A A A
=: f(e)

[
-+
=
—~
BN
—
>
*
~—
=
—~
)
X
g
~—
L
~—

where the second inequality holds because U is the minimizer of tr ("H(@\)F(@ U)_l). If instead tr (7—[(5)1"(@\7 U )_1) <

tr (H(0.)I' (6., U*)~1), we can replace tr (H(0,)I'(6,, U*) ™) with tr (”H(O*)I’(&*, ﬁ)_1> in the above calculation to
get the same result. The conclusion follows.

O
Lemma J.4 (Matrix Perturbation Bound). Assume A, B € Si 1 [|[A = Bllop < € and € < Ain(B). Then
A7 = B Ygp < -
o )‘min(B)()‘min(B) - 6)
Proof. Denote A = A — B. By the matrix inversion lemma:
A*l — (B+A)71 — B71 _Bfl(Bfl +A71)71B71
S0:
A7 =B Mop = B~ (B~ '+ A7) "B op
<[BTHENB™ + ATH  |op
_ 1
/\min(B)2O'd(B_1 =+ A_l)
However: ) ) Nain(B) — A
oa(BM+ AT > 04(ATY) — oy (BT = - = i o
[Allop  Amin(B) Amin (B) | A op
Since we have assumed € < Amin(B) and since ||Al|op < €, this lower bound on o4(B~! + A~1) will be positive, so:
1 < )‘min(B)HAHOP < ||A||0p
Amin(B)?0a(B71 + A7) 7 Apin(B)2(Amin(B) — [|Allop) ~ Amin(B)(Amin(B) — [[Allop)
The result follows since ||A|lop < €. O

J.3. Operator Norm Estimation

Lemma J.5. Let
T

- - - ,
els—%%l;Hth Az — Buy[3
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Then on the event
& i= {Mmin(Sr) = AT, Sy X TT7 }

with probability at least 1 — §:

~ log(1/8) + d, + logdet(Tp /A + 1)
||915 - e*Hop S C\/ AT

Proof. Define the following events:

5 log(1/6) + dy + log det(Tp /A + I
A= 9i9*||0pgc\/°g( /6) + +A0Tg et(Tr/A+ )

T —1/2 T
1 —
51 = (Z ZtZ;r> Z thtT S C20y \/log g + da? + IOg det(FT/A + I)
t=1 t=1

op

Our goal is to show that P[A° N E] < §. The following is trivial.
PlA°NE] <PANENE]+PENET]

As 0y is the least squares estimate, we will have that éI = (Zthl 2z )71 Zthl nal, = 0] +

T TV—1 7T T . .
(X i—p_1, 2t2¢ )~ 24—y 21wy - Given this, the error can be decomposed as:

T

T -1 7 T —1/2 T —1/2
) T T T T T
161s — O llop = E 2124 E zZpw, < E 2124 E 2124 E Zpw,
t=1 t=1 op t=1 op Il NE=1 t=1

op

T -1/2 p T
_ T T T
= E 22y g 24w, /A | Amin E Zt2y
t=1 t=1 t=1
op

It follows that, on the event £ N &1, the error bound given in A holds. Thus, P[A° N E N &] = 0. Lemma J.6 implies that
PENES] <6, s0PLA°NE] <. O

Lemma J.6 (Lemma E.6 of (Wagenmaker & Jamieson, 2020), see also (Abbasi-Yadkori et al., 2011)). Assume that z, is
generated by (G.5) with w; ~ N'(0,02 1) and input u; = Uy + ul, where U is F;—1 measurable and uy’ ~ N(0,A,,). On
the event that V. > 23:1 ztz;'— = V_, we will have that, with probability less than §:

T 12 7
1
<Z ztzt—r> Zztw;r > aw\/1610g5 + 8logdet(V, V= + I) + 16(d, + d.,) log 5.
t=1 t=1 op
J.4. Optimality of Inputs

Lemma J.7. Fix an epoch i of Algorithm 4 and let k; denote the discretization level of the input set at that epoch, Uz /3 .,
and assume that T; /(d, k;) is an integer. Let k be any value satisfying d,, < k < T;/2 and take ¢ € (0, 1). Then, as long as

2dy, 73 (2kiy + lzr—m,[12) (4 + 210 kiy + Tllzr-1, ||2)) 1677(07, + 7 /(2d.))
(1 — pEI)Q(l — p*))\goisee ’ (1 - pz)2)\;oisee

(Tfk,?dw?Jrnkmfde\/ﬁ) 16,10, [3,.. 10( (1= p2)*Agice ) 1 }

Tizmax{

(1—pk)? 1—pf Nroise€ 1672(02, +72/(2d.)) ) 2log p.

noise
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8|6, 2 S
k; > max | :HH“”Y , .l < max ||(e*“I — A*)QBHOP) ,
Anoisee QHQ*HHW w€l[0,2]

—~ 0 AX i
Heifl - H*Hop S €op,i—1 S min {rcov<9*)7 Tquad( *) nose }

\/@ ’ 4Lcov (0*3 72)
we have, for any T' > T},

2t (H(a*)r$,7T/(§*, U, 0)*1) Couo

r(H(0) o, w1 lls. ® Slpg,72]) ") < min (1 o°T; e
~2, 7! )
where
C o 4\/@(6@ + dxdu)Lhess + 8Lcov(6*a ’72)‘51"(7'[(9*)) €op,i—1 + 8(d§ + dmdu)Lcov(e*,’Yz)Lhess 6gp,i—l
or ;oise ( ;:oise)2 T; ()‘fmise)2 T; .

Proof. We will show that the following set of inequalities hold for large enough T and arbitrary 77 > T

tr(H0.) o 0,11, © Xf_g_g, 22 ) ) (.8)
@ 1 . ~ .
< mtr (H(e*) :1:‘!'7Ti/du (9*, Ui, ’)// \V 2du) 1) (Steady—state)
®» 1 . . N Cenp .
< Ueggl/lz,ki mtr (7—[,(6*) Ty (O U, v/ 2dy) ) + 1—op (Optimal inputs)
© min g (H(G T3 (0, U,~v/\/2d )*1) + e (Infinite horizon)
T Uty 0 (1—€)3T; T TLTIAT T “ (1—¢)?
(i) min = ———tr (7—[(9 T 7 (05, U 0)_1) + Cexp (Noiseless inputs)
T Uep 0 (1 —€)3T; *ETLTI0 T (1—¢)2

Steady-state: By definition,

Eo, v, 714, @ ZEZT,TI, 22 | = TiTr, (5*, Ui, v/\/2dy, zr—1,)

Note that the inputs played by Algorithm 4 are constructed as in Lemma J.8. It follows then that, by Lemma J.8§, as long as,

T > max { 2dut (A, p)* (2kiy + |27 |2) (4 + 27(As, p))kiy + 7(As p)[l2r-13|2))
= (1= p5)2(1 = p)Auuin (T35 (s, 7/ V2 )€ ’
(A, p)2k2dur? (A, p)kidur? /T da 16d, 16113,
< Ty 1 — phi > Amm(F%j?}S;(f)*,v/\/E))E}

we will have

T, (0., Ui, v/ 2du, 2r—1,) = (1= €)°T5, 1, g, (05, Ui v/v/2d,,)
This implies that

T, (B Ui, /v 2 20-) = (1= 25 1, (B2 Us, 7/3/2d0)
from which (a) follows.

Optimal inputs: We next apply Lemma J.3, which bounds the suboptimality of certainty equivalent experiment design, to
show (b). We instantiate Lemma J.3 with

A = /\min(r;gmise(g*a'y/ \% 2du))/27 F(ev U) = %,Ti/du (97 U7'7/ \% Qdu)
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Note that Lemma H.5 gives that the smoothness condition (J.7) holds for Ly (6, 72) as defined in (H.14). Furthermore, it
is clear that, as long as T; > 2k, we will have Apin (I'(0,, U)) > A for all U. To apply Lemma J.3, we need

161 = Oullop < min{Teoy (62), Amin (T2 (6s, 7/ V/2d0)) / (ALeoy (05, 7v2)) Y, [16i-1 — Oull 7 < Tquaa(6s)

where we choose to instantiate Lemma J.3 in the operator norm, and since the matrix Frobenius norm coincides with the

vector 2-norm. The condition on ||§1-_1 — 0, ||op Will hold as long as our assumption on €, ;—1 holds. Since §; — 6, is at

most rank d,, we have R R
Heifl - G*HF <v d:z:”eifl - 9*||op < rquad(a*)
where the last inequality again holds so long as our assumption on €, ;—1 holds. Then, since we design the input U; on the

estimate #;_1, the conditions of Lemma J.3 are met for U, so

1
T;

tr (H(OTS, 1, ja, 0 Uit/ V2d) ) = min tr (HOITF 1,4, (0., U7/ V2d0) )

U€u72 /2,k;

(4\/@ (d2 + dydy) Liess Amin (T3 (B4, 7 /v/2d0) + 8 Loy (65, 72)tr(7-l(9*))> Copui_1
)‘min(FEOise(g*a 'Y/\/E)Q T;
8(d2 + dudu) Leov (05, 7°) Liess €op.i—1
Amill(rrl;()ise (5*, ’Y/\/E)Q T;

=: Cexp
and thus (b) holds.

Infinite horizon: Now,

U5 10, (0., U, v/y/2dy,) frgie;ld (0,,U) + Zrme O.,7/+/2d)

U € U, o, since T; /(d,k;) is an integer,

k.
X T; ‘ 2me ~ i~ ~ 2me ~
;e?d 0., U) = (% I — A)'B,UB, (e I — A,)™"

Then, by Lemma H.8, as long as

A o
k> max e e L (T YRR
AT @,y /VAT))e 200 e, | \oElioe

then for any 7" > k; and U* € U,z /5 7, there exists a feasible U’ € U,z /5 1, such that

€ ise /7 S
S iAmin(FI];Olb (9*77/ 2du))

op

d fre 1 freq *
Serh, (0.0 — TR0

Furthermore, by Lemma H.9, if

167(Ay, (0% +77/Q) ((1 —p%{xmin(rzoi%(@,w/m»e) 1 }
(1—p?)? )‘mm(rnmse( Y/ V/2dy))e 167 (A, p)% (03, +7%/(2dw)) 2logp

T; > max {
then, for any 77 > Tj,

1 o~
T. ZFHOISC *77/ /2d Zrnmsc *7,}// /2d < %)\min(l—wr];msc(e*’,y/ /2du))

op
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Now note that, by definition,

min tr(?—[(ﬂ*) T T, d 9*,U,'y/\/2d )<tr( (0)TTF 10/, 9*,U,'y/\/2d )

Uel 25 4,
By what we’ve just shown, for any 77 > T;

T T/ du 9*7U 7'7/\/ 2d
:ﬁ, T 9*, U~ ,'Y/ V 2d mln ansc *,’7/@

= (1 - G)F?/)T/ (g*aU*a’Y/ Vv QdU) 2T, Zrnome *7'7/ \% 2d mln ange *a’)// \% 2d

5(1—e)I‘STS,’T,(g*,U*,v/\/2du)—|—iAmm B9 (04, 7/V/2du)) - T — S Amin (TR0 (0, v//2d))
= (1= OTF 1(0., U v/v/2dy)

From this (c) follows directly.

Noiseless inputs: Finally, since

U5 7 (04, U, v/\/2d,) = T 1(6,,U*,0)

we can bound

min (’H(G )TF 9*, U, v/m ) min  tr (7—[(9*)1"35,’7«, (5*, U, 0)_1)

Uell 2 )5 7/ Uell 2 )5 71

<2 min tr (HO)TF 7 (0..U,0)7")
<2, 5 b (0.)T7 1 ( )
which proves (d). Finally, to simplify the bound, we note that /\mm(F“‘”be( Y/ V2dy)) > Agise» and we choose
P = Px- O
Lemma J.8. Fix an input U € U, j, and consider a system 0 = (A, B). If we start from some state xo and play the time

domain input u; = ConstructTimeInput(U,T/d,, k) where ConstructTimeInput is defined in Algorithm 3
then, so long as T'/d,, is divisible by k, and

T> 2dy7(A, p)* (2| Bllopky + l|zoll2) (4 + 27(A, p) [ Bllopky + 7(A, p)[x0]l2))
< max k)2 noise ’
(1—pF)2(1 - p))‘min(FT/g (0,7/v2dy))e
(A, p)*K*dy* | T(A, p)kduy®/T/d, 16d., 10113,
(1= )2 1= Nevin (DR (0. 7/V2) e

we will have
9 Ua ’Y/ 2du7 1'0 1 - 6 ;%T/du (97 U7 ,-y/ V 2du)

Proof. Let iiy,; be defined as in Algorithm 3 for this U, and denote U; = (iiy ;aif! ;)§_,. Let ; ; denote the time domain
version of {1, ;}}_;. as is specified in Algorithm 3. Since U € U,z , some algebra shows that

??‘\»—t

k
Z .t,_éaj t+s < Qdu'}/

for any s > 0. We break up the sum of the response based on which input is being played:

JT/dw

> i)’ Z DR AN

J=1t=(—1)T/dy+1
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which gives:

3T/ du

dy,
Z Z xt Zl—\nmse 0 'Y/\/ﬁ

=1t=(j—1)T/dy+1

d, T
- 1 noise
Z (FT/d (0, UyaI(J T/d, )+ — d, Zrt 0,7/v 2du)>

t=1

FT (97 Ua ’7/ V 2duv 0)

H \

If we start from some initial state 2/,

t—1
¢ = Aty + Z AT By = a0 4 Y
s=0
then,
T T
in ,0 /1~ s ,0
P, 0.Us @ yrya) = o ak@d)T =20 [Fr @ T + 3@ )T + a0 @) T+t @) ]
t=0 t=0
Now,
T T T
,0/~u u ~u u ~u
Do @ < Netonryallz Y 1A Mo T N2 < llafs_1yrya,ll2m (A, 0) D o 1T 12
=0 op =0 =0
e 27'(Aaf9)2||x6’_1)7"/du||2HB||0p'Z€”Y
- (1=p")(1—p)

where the last inequality follows by Lemma D.7 of (Wagenmaker & Jamieson, 2020), which gives:

< 27(A, p)|| Bllopky

[l

1— pk
Furthermore,
o o 2t _1y7/a, I137(A; p)
D G M g RN | B e
t=0 op t=0
Therefore,
1 T
lzﬁl/du(ev Uj, -r?j—l)T/du) + d. Z L0, /v 2dy)
Uot=1
i ||CC( DT/ dy l[2(4[| Blopky + (1 — )qu;1 7/a,l12)
~ Tin anse 2 J-1T/ (G—-1)T/du
= 17, (0, U5, 00 dZ 0/ v T-ME -0
T
— € nois €T noi
= (1= T, (6,U;,0) + d yorpe e(a,y/\/2du)+ﬁxmm 595°(0,7/ v/ 2du))
(A5 yza, 2@ Bllopky + (1= P g, l2)
1= pH)(1—p)

= (1= 74, (0.U;,0) +

T
Zrnmsc ,’Y/\/E)

U

where the last inequality holds as long as

20T (A Py (4B llopky + (0= )t ryra, o)
n (1 - pk)(]- - p)Amin(FIjl“?;e(gv 7/ \% 2du))€

J.9)
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By Proposition B.4, since T'/d,, is divisible by k, we will have that

T
d e
fre u 2t
I NCR —?E )1BU; U, BN (e T —
=1
where {U; /}/_, = §(jo0,--.,Ujr/q4,)- Then, by Lemma H.4, we will have,

H iir“l/du(ev Uj,O) 1—‘22731 (97 Uj)HOP

IN

(-7
el

< by nome
= 2du mln T/2

where the last inequality is true so long as

21.2 2 2
_— <8T(A,p) Ky | 87(A, p)kduy T/du> (

(=P =

Thus,

( 87(A, p)?*k*duy*

1— pk

0,7/V/2d.))

LwI_A —1B 2
e [[(e )" Bliso

4, (0,U;,0) + - ZF (0,~/+/2d,)

U

fr 1 noi T noi
Iwwwm+a2nm@WWM—ﬁgmqw

= (1= T75% (6,U)) Zrme 0,~//2d,)

It follows that if (J.9) holds for each j,

2 du

FT(evva/\/Ea 0) i ZF

o du(l — 6)2 freq
- T T/d

freq
T/dy

0,U) +

= (1— 0T 14, (0,U,7//2d,)

It remains to ensure that (J.9) holds by bounding ||x}‘j_1)T Jd |l2- Again by Lemma D.7 of (Wagenmaker & Jamieson, 2020),

we have

A, p)||Bllopk
( p)” H P 7]1{ > 1}+T(A p) (G—-1)T/d.

||$E§71)T/du“2 1—

Some algebra gives the result.

87(A, p)kd,~? T/du> (

9 T
+ (1 ;6) Zl—\?oise(g
0,7/v2dy)

A)~H

—lw —1 2
wg[l(%%(ﬂ ||(6 I— A) B”op

2d,y,

) Amin (

noise
FT/2

(0,7/V/2du)) -

(0,7/v2dy))e

v/ V/2dy)

(4, p) (2| Bllopky + [1z0ll2)

o2 <

L—p

k

)
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Part IV
LQR and Further Examples

K. LQR as Linear Dynamical Decision Making
K.1. LQR is an Instance of LDDM

Throughout this section we will assume that Ry, Ry, > I and that 6, is stabilizable. Note that, by Lemma 3.1 of (Simchowitz
& Foster, 2020), the assumption that 6, is stabilizable implies that in a neighborhood of 6., P, (#) and K,y (6) are infinitely
differentiable. We will make use of this fact throughout this section, freely taking derivatives of both quantities. Define:

Up, 1= ||P*||opa Up, = ||B*H0pa Vg, = ||RU||0p-

Theorem K.1. If 0, is stabilizable and R.,, Rx > I, Assumption 3 is satisfied for Ry qr with:

1l p=2

— 1 1 Vg,
2. Tquad(fx) = min { 15005, > 24005, 05, 0 2 } :

3. Ly = c1d,Up /Tp, + ”dl“&‘%l/“”, Lry = cgdx(\lf%*\lf%* + Up, (1 + \IJB*)\IJP*), Lrs =

cady (W WP 4 Wp, Wi, (14 W5, )W),

4. Loy = 8VY?, Lo =poly(¥p,), Laz =poly(¥p,, ¥p,).

5. Liess = duDoly(Vp, Wiy, Wp, 1/ W)+ d2 (W3 Wh + (14 Wp, )Wy, U + Liptee ).

for universal constants cy, ca, 3, Cq4.

Proof. From Lemma B.9 of (Simchowitz & Foster, 2020), we have that:
Rioe(K;0,) = tr (dlyap (Ax + B.K, (K — K,) " (Ru + B, P.B,)(K — K,)))

From this and the definition of dlyap it follows that Ry o (K; 6x) = 0. Furthermore, if we define K (t) = K, + tAg for
some A g, by the chain rule we have that

d

%RLQR (K(t)§ 9*) = VKRLQR (K§ 9*) |K:K(t) [AK]

Using the expression for %RLQR(K(t); 0,) given in the proof of Lemma K.2, we see that %RLQR (K (t);0)]t=0 = 0 for
Ak, from which it follows that V g Ryor (K; 04)| k=K, = 0. Under the assumption that A, + B, K stable, Lemma B.5 of
(Simchowitz & Foster, 2020) gives that:

dlyap (A + B.K, (K — K,)" (Ru + B P.B.)(K — K,)) = (K — K,)" (Ru + B, P,B.)(K — K,,)

If Ry = I, then (K — K,)"(Ry + B] P,B,)(K — K,) = (K — K,)T (K — K,), and thus, under these conditions, we
have
Rion(K;0.) 2 tr (K — K.) ' (K — K.)) = | K — K.|%

If A, + B, K is not stable but (A,, B,) is a stabilizable system, then the LQR cost is infinite but the optimal LQR cost is
finite so R(K;0,) = oo > |K — K,||%. Thus, we can choose p = 2. The gradient norm bounds follow directly from
Lemmas K.1, K.2, K.3, and K.4. Note that these bounds hold in the domain

16 = Oxllop < min{1/(15095,), U, /2},  [|K = Killop < 1/(30¥ 5, W) (K.1)
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and that Ly, = 8\11?3/*2. Since
16 = Oullop < 116 = Oullr, 1K = Killop < |K — KillF

choosing

0,) . 1 1 Up,
ua = min ) ) .
Faad 15005, " 2400, U5, " 2

we will have that any 6§ satisfying ||0 — 0.]|r < rquaa(65) also satisfies (K.1) and that any K satisfying | K — K, ||p <
La17quad (0% ) also satisfies (K.1). L)

K.2. Norm Bounds on Gradients
Lemma K.1. Assume that 0, is stabilizable and Ry, Ry = I. Consider some alternate instance 6y = (Ap, By) with
00 — Osllop < min{1/(1509%, ), ¥p, /2}. Then, for any § with |||op, = 1,

7/2
VoK opt (8)|o=6, l|op < 8‘I/p/*

V5K opt (0)|0=0, llop < POly(¥p,)
V5 Kopt (6)0=6, [0, 6, 6][lop < poly(Up,, ¥p,)
where c is a universal constant.

Proof. Fix some Ag with ||Ag||op = 1 and let §(s) = 6y + sAg. By the chain rule,

d _
%KOpt (0(s)) = Vo Kopt (0) |9:§(5) [Ag]

so to bound ||VgKopt(0)|o=6,]lop, it suffices to bound H%Kopt@(s))\szoﬂop for all unit norm Ay. Lemma 3.2 of
(Simchowitz & Foster, 2020) gives that, for s where 6(s) is stabilizable, and any unit norm Ay,

d ~
|7 Kopt (6(3)) lop < TP ()T

By Lemma K.6, 6(0) = 6, will be stabilizable, and || P(0) lop < 54/ 2 ¥ p,. Immediately, then, we have

V0 Kot (0)o=g, lop < 8TH

For the second bound, we note that
d2
ds?
and, since the Hessian is symmetric, to obtain a bound on |[V2Kp(6)|o=g,llop We can simply bound

I J‘—;Kopt(g(s)) |s=0|op for all unit norm Ag. However, Lemma B.3 of (Simchowitz & Foster, 2020), and the argument
made above give that

Kopt (5(5)) = VgKOpt (9) |9:§(5) [Ag, Ag]

d? ~
H @Kopt(e(s)ﬂszonop S poly(\llp*)

from which the second conclusion follows. Finally, for the third result, note that
d3

@Kom (5(5)) = VgKopt(e) |0:§(3) [Ag, Ag, A

As before, it is sufficient to simply bound || %Kopt(g(s))h:o [lop- Since 6(0) is stabilizable by Lemma K.6, Lemma K.8
gives
d? ~
1755 ot (0()ls=ollop < POLy ([LP(0)lop. [|B(0)llop, Il Act (0)[op)
By Lemma K.6, and Lemma B.8 of (Simchowitz & Foster, 2020), we can upper bound this by poly(¥ p,, U, ), which
gives the final conclusion. O
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Lemma K.2. Assume that 0, is stabilizable and Ry, Ry = I. For any 0 satisfying |0 —0, ||, < min{1/(1509% ), ¥p, /2}
and K satisfying | Ko — K. ||lop < 1/(309 5, ¥3?):

c2de Vg, (1+1/Vp,)
Up

*

IVER(K; 0)|k=rpllop < c1d:¥ B,/ VP, +

for universal constant c1, co.

Proof. Throughout this proof we will assume that P, = I, P = I, which holds by Lemma 4.2 of (Simchowitz & Foster,
2020) so long as Ry > I. Fix 6 and let K (t) = Ky + tAg for A satisfying ||Ak||op = 1. By the chain rule

%R(f((t); 0|0 = VER(K: 0) | 5c—rc, [Ax]

so to bound ||V gk R(K; )| k=K, ||op- it is sufficient to bound %R(f((t); 0)|t=o over all unit norm A.

For a given 6, we’ll denote Ky := Kopi(0), Py := Pso(6), and use A, B to refer to the system matrices associated with 6.
Then by Lemma B.9 of (Simchowitz & Foster, 2020), we have

R(K;0) = tr (dlyap (A + BK, (K — K¢) " (Ru + B PyB)(K — Ky)))
Define Q(t) := dlyap (A + BK(t), (K(t) — Kg) T (Ry + BT P4B)(K(t) — Kg)). It follows that ZR(K(t);0) =
tr(%Q(t)). By definition of dlyap,

Q(t) = (A+ BK(t))"Q(t)(A+ BK(t)) + (K (t) — Ko) " (Ru + BT PyB)(K(t) — Ky)
Differentiating Q(¢) (and hiding ¢ dependence for simplicity), and since K' = Ak, we have
Q = (A+BK)TQ'(A+ BK) + (BAk) Q(A+ BK) + (A+ BK)TQ(BAK)
A (Ru+ B"PyB)(K — Ky) + (K — Kg)' (R + BT PyB)Ax
- dIyap(A + BK,(BAR)TQ(A + BK) + (A+ BE)TQ(BA)
A% (Ru+ BT PyB)(K — Kg) + (K — Ko)T(Ru+ BT RyB)Ax )

By Lemma B.5 of (Simchowitz & Foster, 2020), we can upper bound this dlyap expression as,
1Q"(0)lop < 2l|dlyap(A+BK(0), I)]lop (H(A +BEK(0)"Q(0)BAK|op
(R (0) = Ko) (R + BT PyB)Axc|op

Since [|6 — O,]|op < minmin{1/(150¥% ), ¥p, /2} and | K(0) — K,|lop < 1/(30¥ 5, ¥%7), we can apply the norm
bounds in Lemma K.6 to upper bound this as

C\I’Ru(l + 1/\1’3*)
Up

*

1Q"(0)llop < ¢, \/¥p, +

As this holds independent of A and since |-£R(K (t); 0)|¢—o| < d.[|Q’(0)]], it follows that

Cdx\I/Ru(]. + 1/\:[/3*)
Up ’

*

IVER(EK; )| k=rollop < cdz¥p, /P, +
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Lemma K.3. Assume that 0, is stabilizable and Ry, Ry = I. For any 0 satisfying |0 —0, ||, < min{1/(1509% ), ¥p, /2}
and K satisfying | Ko — K. ||lop < 1/(309 5, ¥3?):

IVERUS: )l ic=icy lop < e1ds (05, 0h, + Wi, (1+05,) ¥, )

IV%ROK: 0) =k llop < cada (Wh, WH + Wi, Wi, (14 W5, )W)

for some universal constants c1, ca.

Proof. Throughout, unless otherwise specified, we adopt the same notation as is used i 1n the proof of Lemma K.2. Let
K(ty,t2) = Ko 4+ t1 A1 + taAko. By the chain rule, and since e K(tl,tQ) A1, 2 T K(tl,tg) Ako,

d d
— —R(K (t1,t2): )]y —ty—0 = VER(K; )| k—x, [A 1, Asco]
dts dt,

To bound ||V%R(K;0)|k—K,|lop, it then suffices to bound ||dt dth( K (t1,t2); 0)|ty=t,=0llop over all unit norm
A1, Ago. From the proof of Lemma K.2, we have that

d d d d
%ER(K(tl,tz), 0) =tr (dtzdtlQ(t17t2)>

where
Q(tl,tg) = (A + B[?(tl,tg))TQ(tl,tg)(A =+ B[?(thtg)) + (E(tl,tg) ) (R + BTPQB)( (tl,tz) K.g)

Using our expression for the ﬁrst derivate of ) from the proof of Lemma K.2, dropping the explicit ¢, to dependence, and
adopting the notation (Q;, = -~ T 40,

Qi = (A+BE)T(Qu)(A+ BK) + (BAx1)TQ(A+ BK) + (A+ BK) T Q(BAk1)
A (Ru+ BT PyB)(K — Kg) 4+ (K — Kg) " (Ru + BT PyB) A
- dIyap(A + BK,(BAg1)TQ(A + BR) + (A+ BK)TQ(BAK1)
Afer(Ru+ BTRB)(K — Ko) + (K = Ko) " (Ru + BT PyB)A)
then taking the derivative of this with respect to t5 gives

Qtr.t» = (A+ BEK) " (Q1,.4,)(A+ BK) + (BAga) " (Qu,)(A+ BK) + (A + BK) " (Q1,)(BAk»)
+(BAK1) T (Qn)(A+ BE) + (A+ BK) " (Q,)(BAK1) + (BAK1) " Q(BAK:)
+ (BAK2) "Q(BAK1) + Ay (Ry + B' PyB)Ago + Ajey(Ry + BT PyB) Ay
= diyap(A + BE, (BAk2)T(Q1,)(A+ BE) + (A+ BR)T(Q)(BAk) + (BAk1) T (Qu)(A + BE)
+ (A + BIN{)T(Qt2)(BAK1) + (BAk1) ' Q(BAK2) + (BAk2) ' Q(BAK1)
+ Ajy(Ry+ BT PyB)Acs + Afeo(Ru + BTPQB)AKl)

We would like to bound the operator norm of @y, +, (0). Note that the bound on ||Q’(0)||op given in Lemma K.2 still applies
in this setting due to our restriction that || K(0,0) — K,|jop < 1/(30¥p, \I/?:,/*Q), S0

C C\I/R
1QO)or < G-+ Gz

Cg‘I’Ru(l + 1/‘1’3*)
Up

*

1@, (0)lop, 1@, (0)llop < c2¥p, /¥p, +
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Furthermore, we are in the domain where Lemma K.6 holds so,

Q1,12 (0)[lop < [|dlyap(A + BK(0),1)]op (2IIB||op||A + BE(0)lop (1Q1, (0) [lop + | Q1 (0)[lop)
+ 20| BI2,1QO)lop + 2 R + BT PyBllop )
< cUE U5 +cUp, (1+ Vg, )Up,
Since |dt s L R(K (t1,t2); 0)| < de||Qs, .1, l|op- the first bound follows.
To bound ||V, R(K; 0)|op, we define K (1, b2, t3) = Ko + t1 Ag1 + taAga + t3Ags, for
[AK1llop; [ Akzllop, [|Axsllop =1
and note that by the chain rule

d d d

—— —— —R(K(t1,t2,13); 0) |t —ts—ts—0 = VK RK;0)| k=, [Ar1, Arc2, A
dtg dtQ dtl ( (17 25 3)7 )‘tl—tg—tg—o K ( ) )|K7K0[ K1, K2, K3]
so, as before, it suffices to bound HdTg,ded?lR( (t1,t2,t3):0)|t, =ts=t5=0|op OVer all unit norm A1, Ago, Ags. Again
we have that
d d d d d d
— — R(K(t1,t2,13);0) = tr [ — — —Q(t1, 1o,
dts dty dty (K (1 t2,2);) <dt3 PTRUGELE 3)>

To bound this, we can differentiate the expression for (), ¢, given above with respect to ¢3:

Qtytats = (A+ BE) (Quy 15,0)(A+ BE) + (BAgs) " (Quy,1,) (A + BE) + (A + BK) " (Qu,.1,) (BAKs3)

+ (BAK2) " (@1, 4,)(A+ BK) + (BAka) " (Q1,)(BAks) + (A + BK) " (Qy, 1,) (BAK2)

+ (BAks) " (Q1,)(BAK2) + (BAK1) (Quat,) (A + BE) + (BAK1) T (Q1,)(BAKs)

+ (A4 BK) " (Qu,.3)(BAK1) + (BAks) " (Qu,)(BAk1) + (BAk1) " Qr, (BAK2)

+(BAK2) Q+;(BAK1)

= diyap(4 + BE, (BAks) T (Qu,)(A+ BR) + (A + BE)T (Qu,.02) (BAks)

+(BAk2) " (Qy1,)(A+ BK) + (BAk2) " (Q1,)(BAks) + (A + BK) T (Q1, 1,) (BAKko)
+ (BAk3) " (Q1,)(BAK2) + (BAK1)  (Quaty)(A + BE) + (BAk1) T (Qr,)(BAKs)
+ (A4 BK) " (Qu,.3)(BAK1) + (BAks) " (Qu)(BAk1) + (BAk1) " Qr,(BAK2)
+(BAK2) Qi (BAK))

Thus,

1@t 125 O)lop < [ldlyap(A + BE(0),1)]op (QIIBIIopIIA + BE(0)lop ([1Qt1.¢2 (0 lop + Q1,14 (0) lop

+[1Qta.ta (0)llop) + 21 B3, (1@ (0)lop + Q¢ (0)llop + 1| Qe (O)IIop))

Note that the norm bounds proved on ||Q’(0)||op given in Lemma K.2 still applies in this setting due to our restriction that

(1Ko — Kyllop < 1/(30¥ g, \IJ}?’D/*Q), and similarly our bound proved above on ||Q¢, +,(0)||op can be used to bound each of
the second derivatives. Combining these results, and using that U'p, > 1, gives

Qs a5 (0)[lop < U WHZ 4 cUp Up (14 Up, )WY

The second bound then follows directly. O
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Lemma K.4. Assume that 6, is stabilizable and Ry, Ry, > 1. For 8y,01 satisfying |00 — 0xlop, 161 — Oxllop <
min{1/(1509% ), ¥p, /2} and Ky satisfying | Ko — K, |lop < 1/(30¥ 5, \I/?,/*Q), we have

IV2ROK: ) ity — V3RO 0) ko op < (dmpoly@a, Up, s, 1/ V)

Up U
(W50, (14 )0 0, + ) )y iy

Proof. Note that, since the Hessian is symmetric,

IVER(EK; 00)| k=0 — VER(K;01)| k=10 llop
= AR IVER(EK; 00)| k=Ko [Arcs Ax] — VER(K;01)| k=1, [Ax, Ak]|

so it suffices to bound |V4R(K;00)| k=r, Ak, Ax] — VER(K;01)| k=1, [AK, Ak]| over all unit norm Ag. Let

Ag = (A4, Ap) satisfy [|Agllop = 1 and denote A(s) = A, + sA4, B(s) = B, + sAp, and 0(s) = (A(s), B(s)).
Assume that 01 = 0y + s1Ag for some s1. Fix Ak with || Ak |lop = 1. By the chain rule,

d ~
%V%R(K; 0(s)) | k=ro[Ars Ax] = Vo(VER(K; 0)| k=i [Axcs Ar])| g5 [D0]
So by Taylor’s Theorem,

VER(K; 00)| k—reo [Ars Ar] = VER(K;01) | k—reo [Aics Ac) — Vo(VER(E;0(5) | k—reo [A iy Ax])]s=ss[Ad] 51

for some s € [0, s1]. Thus, since [|6g — 61]lop = ||51206]|op = $1, denoting 85 := 6(s2),

IVER(K;00)| k=Ko [Ax, Ax] — VER(K; 01) | k=ko [Ak, Ak
< |Vo(VER(K; 0)| k=K, [AKk, Ak ])lo=0,26]] - |80 — 61 |op

So we can simply bound |V (V% R(K;0)| k=, [Ax, Ax])|o—a,[Ag]| over all unit norm Ay, and all 6y = 6 + sy,
s2 € [0, s1]. Note that Ay = i(@l — ), so

02 = Oullop = 100 + 5280 — Oullop = [[(1 — s2/51)00 + (s2/51)01 — Os|lop
< (1= s2/51)[160 = Oullop + 52/51[161 — bsllop < min{1/(1509% ), g, /2}

so we are in the domain where the bounds given in Lemmas K.2, K.3, and K.6 hold. By Lemma K.3, we know that (where
we drop the dependence on s for brevity)

VER(K; 8(5)) | k=ro [, Akc] = tr (diyap (A + BEo, 2BAK)T(Q1)(A+ BKo) + 2(A + BKy)T(Q1)(BAK)
+2(BAK)TQ(BAK) + 2A% (Ru + BTPgB)AK)
—: tr(M(s))
where () and (); satisfy

Q = (A+ BKy)"Q(A + BKo) + (Ko — K3)" (Ru + B' P;B) (K, — Kj)

Q1 = (A+ BKo) " (Q1)(A + BKo) + (BAk) " Q(A + BKy) + (A+ BK,) ' Q(BAK)
+ Ak (Ry + B"P;B) (Ko — Kj) + (Ko — K3) " (Ru + B' P;B)Ax

and Py = P (0). It follows, by the definition of dlyap, that M satisfies,

M = (A+ BKy) "' M(A+ BKy) + 2(BAk) " (Q1)(A+ BKy) + 2(A + BKy) " (Q1)(BAK)
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+2(BAk) " Q(BAK) + 2A) (Ry + B P;B) Ak

and that p p
- 2 ~~ — -
dSvKR(K,HHKZKO[AK,AK] tI‘(dSM)

Differentiating this expression for M with respect to s gives (where here we let (.)’ denote the derivative with respect to )
tr(M') = tr((A + BKo)"M'(A+ BKy) + (Aa + ApKo) " M(A+ BKy) + (A+ BKy) " M(A 4 + ApKop)

+2(AsAK) T (Q1)(A + BKo) + 2(BAK) " (Q1)(A+ BEo) + 2(BAk) ' (Q1)(Aa + ApKo)
+2(Au + ApKo) T (Qu)(BAK) +2(A + BEKo) (@) (BAK) +2(A + BKo) T (Q1)(ApAk)
+2(ApAk) 'Q(BAK) +2(BAk) Q' (BAK) + 2(BAK) T Q(ABAK)
+20%(ALP;B+ BTPB + BTP(;AB)AK)

= tr(dlyap(A + BKy, (A + ApKo) T M(A+ BKy) + (A+ BKo) M(A 4 + ApKp)
+2(ApAK) T (Q1)(A+ BKo) +2(BAk) ' (Q1)(A+ BKo) + 2(BAk) T (Q1)(Aa + ApKy)
+2(Aa+ ApKo) ' (Q1)(BAK) +2(A+ BKo) ' (Q)(BAK) +2(A+ BKg) ' (Q1)(ABAk)
+2(ApAK) " Q(BAK) +2(BAK) ' Q' (BAK) + 2(BAK) ' Q(ARAK)
+2A%(ALP;B + BT PAB + BTP(;AB)AK))

< dg||dlyap(A + BKo, I)|lop (2(1 + [ Kollop) [ A + BEollopl| M [[op + 4[| A + BEo|lop||Q1]lop
+ 4 Bllop (1 + [ Kollop) 1Q1 lop + 414 + BEollop|| Bllop | Q1 llop + 411 Bllop |Qllop + 211 B3, 1€ llop
+ 41 Bllop | Pyllop + 21 B2, 1Pl )

Then, using bounds proved in Lemmas K.2 and K.3 to upper bound this at s = sq,

(M (52)) < eda W, ((1+ | Kollop) VT, 1M (52) lop + VTr Q1 (52) o
+ 05, (14 [ Kollop)1Q1(52)op + W, /W, 101 (52) lop + . 1Q(52) o
+ 05 1Q (52)llop + Wi, W, + W 1IPSllop)

By Lemma K.2 we can bound

C C\I/R C\IfR (1+1/\IJB )
Q S+ 0 < cUp,\/Up, + —1o -
H (SQ)HOP — \IJP* \IJQB*\I]?D*7 || 1(52)”013‘ > C¥B, P, \I/P

*

and by Lemma K.3 we can bound
1M (52)lop < VAR 02)]se=ico lop < e (W%, Wh, +Wa,(1+ V5, )0p,)
Furthermore, by our assumption on K and Lemma B.8 of (Simchowitz & Foster, 2020),
| Kollop < [ Kollop +1/(30 5, UH?) < \/Wp, +1/(300 5, W7
and by Lemma 3.2 of (Simchowitz & Foster, 2020) and Lemma K.6
1P, lop < 1Py 13 < ¥,

It remains to bound ||Q’(s2)]|op and || Q] (s2)]lop- Given the expression for ), we can differentiate it to get

Q' = dIyap(A + BKy, (Aa + ApKy) "Q(A+ BKy) + (A+ BKo) ' Q(A4 + ApKy)
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— (K5 (Ru + BT P;B) (Ko — Kj) — (Ko — K7) (Ru + BT P;B)(Kp)
+ (Ko~ K5) (AR P;B + BTPB + BT PAp) (Ko - Kp))

SO,

1Q"llop < [ldlyap(A + BKo, I)|lop (2(1 + [ Kollop) |4+ BEollop|Qlop + 2[l(Ru + BT PgB) (Ko — K7)lop | K5 llop
+2[[Ko = Kgllop |1 B(Ko — Kg)llopl| Pllop + 1B(Ko — Kg)llipHPéHop)

Lemma 3.2 of (Simchowitz & Foster, 2020) gives HKé-( )||op <17 Pjon) ||Z;/> 2 < c\Il;/ . Then by the Mean Value Theorem,
S2 S *

HKO - K5(52)||op < ||K0 - K*Hop + “K* - K5(32)||0p

3/2
<1/(@B0Up, W)+ max 155, lopll6 = B llop
5:]10(s) =0 [lop <min{1/(150¥3 )W, /2}

<c(1+1/Tp,)/ 03

Using this, Lemma K.6, and what we have shown above, we can then bound

Q" (s2)llop < C(‘I’B*‘Ifl* (U2 Up, /U )US + Up + Ug, [T

/(W Up) + Up, (U5, 93))
We now bound ||Q (s2)||op- Differentiating the expression for ()1 given above yields:

Q= dIyap(A + BKy, (Aa + ApKp) ' Qi(A+ BKy) + (A+ BKy) ' Q1(Aa + ApKp)
+(ApAK)"Q(A+ BKy) + (BAK) " Q' (A+ BKy) + (BAK) ' Q(A4 + ApKy)
+ (A4 + ApKo) ' Q(BAK) + (A+ BKo) ' Q'(BAk) + (A+ BKy) ' Q(ApAk)
+ Ag(ALP;B+ B'PiB+ BT P;Ap) (Ko — K;) — Aj(Ru + B P;B)(K})
~ (K3)"(Ru+ BT PsB)Ax + (Ko — K) (ALF;B + BT PLB + BT PAp)Ax)

Since we have already shown that the operator norms of all terms in this expression are polynomial in problem parameters,
we can bound

1Q1(s2)llop < poly(¥p,, ¥r,, ¥p,,1/¥p,)
Plugging these quantities into our bound on tr(M’(s3)), it follows that

Up U
tr(M/(s2)) < 2 (qﬂ&qf;g (L4 U )R+ RP)

Up,
+ dxpoly(\llp* ’ \I/Rnu leB*? 1/\113*)

As this holds regardless of A g, Ag, and for all 6 with [|02 — 0, ||op < min{1/(150¥% ), ¥, /2}, we have shown that

IVER(K;00)| k=K, [Ak, Ax] — VER(K; 01) | k=16, [ Ak, Axc]|
< |Vo(VER(K; 0)| k=K, [Ak, Ak])lo=0,[26]] - |00 — 01 |op
. Up U
<& (Wb, + (14 Wo )0, 0, + T 6y - 0]y
B.
+ d,poly(¥p,, Vg, Vp,,1/¥p,) - [|60 — 01 op

from which the desired result follows. O
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K.3. Norm Bounds on Control Theoretic Quantities

Lemma K.5 (Lemmas 3.2, B.3, B.8, and C.5 of (Simchowitz & Foster, 2020)). Let 0(t) = (A + tA4, B, + tAp) and
P(t) := Poo(6(2)), K(t) := Kopt (8(2)). If max{||Aallop, |ABllop} < € and Rx, Ry = 1, then, for t where (A(t), B(t))
is stabilizable,

1| P'(8)]|op < 4IIP®)]3,e.

2. |[P"()lop < POLy(P(2)]|op)e>
3 K@) op < VTP op.
4K (8)]|op < TIP3

5. K" (1)op < pOly([|P(2)]lop) e

Lemma K.6. Assume that 0, is stabilizable and Ry, Ry = I. Consider some alternate 0 = (A, B) with ||0 — 0, ||op <

min{1/(1509%, ), U, /2} and a controller Ko with | Ko—Kopt (62)[|op < 1/(30W 5, UY?). Denote Py := Po(6), Ko :=
Kopi(8). Then the following are true.

~

- Ve, [[Pollop = 1.

2. 0 is stabilizable.

3. Wp, 2 |Pollop and [ Pyllop < 5/ 205,

4 ||Bllop < 30,

5. (R + BT PyB)(K, — Ko)lop < c1 (W}~ + W Wp )/ (W}?).

6. ||(Ru+ BT PyB) (Ko — K.)llop < c2(Vr, + 0% Wp,)/(Up, U2,
7. ||dlyap(A + BKg, I)|[op, [[dlyap(A + BKo, I)|lop < c3¥p,.
8. |[A+ BKolop < cay/Up,.

for absolute constants c1, ca, c3, c4 and where = denotes equality up to absolute constants.
Proof. First, note that Ry > I implies ¥p,, || Pyllop > 1 by Lemma 4.2 of (Simchowitz & Foster, 2020), and that

[Ac — Allop, [| B« — Bllop < [|0 — 04]lop. Given our assumption on [0 — 6, ||op, it follows that 8%, |6 — 0, ||op <
8/(150¥%, ) < 2 < 1. Proposition 6 of (Simchowitz & Foster, 2020) then implies that ¢ is stabilizable and that

3
1 Pollop < (1—4/75)"2Wp, < 5\/;‘%

Applying the same bound in the opposite direction, we have that 8| Py [|2,]16 — 0.]lop < 82203 |16 — 0, [[op < 82 115 =
4

<1,s0
< b

_ /71
Up, < (1_4/71) I/QHPGHOP < ﬁHPOHOP
From which 3. follows.
If | B(Ko — Ka)llop < 1/(5]|Pallop)®/?, A + BKj is stable, by Proposition 7 of (Simchowitz & Foster, 2020). By
Proposition 6 of (Simchowitz & Foster, 2020), || B(Ko — Kp)|lop < || B(EKo — K.)llop + || B(EKx — Ko)llop < || Bllopl| Ko —

Kyllop + c||P9||ZIé2||€ — Oullop < 1/(5||P0||§1/32), where the last inequality holds by our bounds on ||Ky — K,||op and
|6 — 64]|op, and plugging in the appropriate constants. Thus, A + BK is stable. Then the following hold.

* |Bllop < ¥p, + [0 — Ou]lop < 3V p,, where the last inequality holds since [|0 — 0. ||op < U5, /2.



Task-Optimal Exploration in Linear Dynamical Systems

* Let ¢ = 8 Py[[2, 16 — 0. lop- Since ¢ < 1/2 and [|6 — 0, o < 1/(32]Py||%,). then

1/2 1/2
||(K* - KO)T(Ru + BTPGB)”op < ||R1/2||0PHR1/2(K* - KG)“op + ||P / B”op”Pe/ B(K* - Kﬁ’)Hop

< ATIRY lop + 9B Bllop) | Po1{2116 — 6. lop

(W2 + (| Pal|6h” | Bllop)
1Py (347
(U + 0 g,
vy’

(a) holds by Proposition 6 of (Simchowitz & Foster, 2020).

Since || Ko — K. Jlop < 1/(c||Bllop||Po155°)
(Ko — K.) T (Ra + BT PoB)lop = || Ko — Kullopl| Ru + BT PaBlop

_ |Ru+BTPsBlloy _ c(¥r, + ¥ Vp)
3/2 — 3/2
cllBllop | Poll o Up, U

* By Lemma B.5, ||dlyap(A + BKy, I)|lop < || Psllop < c¢¥p,, so long as Ry > I.

* By Lemma B.12 of (Simchowitz & Foster, 2020), if || B(K¢ — Kp)|lop < 1/(5||dlyap(A + BKg,I)Hg{,Q) then
ldlyap(A + BEo, I)op < 2|[diyap(A + BKy, I)op. Note that | B(Ko — Ko)llop < 1/(5/|dlyap(A + BKy, 1)[55°)
holds since || B(Ko — Ky)llop < 1/(5]|Pol262) < 1/(5||dlyap(A + BKqy, I)||20%).

Note that || A + BKg||2, < ||dlyap(A + BKg,I)||op, s0, as long as ¢ < 1/2,

|A+ BKollop < [lA+ BKellop +[B(Ko — Eo)llop < /1 Psllop + tI Bllop + 32/ Pol| (160 — O lop

Up, + \I/3/2 <cy/Vp,.

P,
O
LemmaK.7. Let 0(t) = (A, +tAa, B, +tAp) and P(t) := P (0(t)), K (t) := Kopt (0(1)), Aai(t) := A(t)+B(t) K (¢).
Ifmax{||Ax — Allop; ||Bx — Bllop} < € and Rx, Ry = 1, then for t such that (A(t), B(t)) is stabilizable:
1P ()lop < (1 + 1At (B)lop) (1 + [1B(1) [op)pOly (| P(£) lop)€®

Proof. For simplicity, we drop the ¢ throughout the remainder of the proof. By Lemma C.2 of (Simchowitz & Foster,
2020), P" = dlyap( oy Q2) where Qo = AT P'A + AP AL + Q. Q) = AT PAs, + ALP' Ay, + ALPB'K' +
(BK")TPAq+ A} PrAq+ A} JPAL and Ay, (1) = A'(t) + B/ () Kope (A(t), B(t)) = Aa + ApKopi(A(t), B(1)).
By the definition of dlyap

cl’

= A(—:EP/IACI + QQ
SO:

P — AT P Ag + ATP"AL + AL P Ay + Q) = diyap(Aa, AL TP A + ALP" AL + Q))
By Lemma B.5 of (Simchowitz & Foster 2020), [|[P"lop < |IPlloplldl P"Aq + ALP"AL + QQHOp <

7/2
HPHop(2||A'clTP"TAc1||op + [|@2llop)- Aq = Aa + ApK + BK' so [|Ajllop < (V[ Pllop + 7||B\|op||PH [)e.
Lemma K.5, [|A}; P" Aallop < [[Aalop(1 + ||BH0P)p01y(HPHOP)

It remains to upper bound the operator norm of Q5. By definition of Q2, we see, for small absolute constant c:

T T
1@allop < e(IAGP Alblop + 14" P Alsllop + | AP Allop + 11 4% + 144" P Balop




Task-Optimal Exploration in Linear Dynamical Systems

+ 1AL T PAY Nlop + 1AL TP A s llop + 1AL P'AY Nlop + 1AL T PB'E|op
+ IALP'B'K lop + [ AGPB'K oy )
By Lemma K.5, | A%[lop = [|ApK’ + BK"|lop < TIPS + || Blloppoly (|| Pllop)e®. By definition, A, [lop <

& ||B'lop < e Finally, Ay = ApK'so [|A [lop < 7||P||7 [%¢2. We see then that, by Lemma K.5, every term in the
above sum is order €3

so, combining everything, we have:
1P lop < (1 + [[Actllop) (1 + || Bllop)pOly (|| Pllop)€®
O

Lemma K.8. Ler 0(t) = (A +tA4, B, + tAp) and K (t) := Kopi (0(¢)), Aa(t) := A(t) + B(t) K (t). If max{||A. —
Allop, [|Bx — Bllop} < € Rx, Ry = I, then for t such that (A(t), B(t)) is stabilizable:

1" ®)llop < pOly (1P () llops 1B lop, | Act(t) lop)€”
Proof. As before, we drop the ¢ throughout the remainder of the proof. By Lemma B.3 of (Simchowitz & Foster, 2020):
= Ry'Q4(t) + Ry ' (Ru+ B'PB)'K’
where Q3 = AL PAy+ B"PA4, + B'"P'Aqand Ry = Ry + BT PB. So, using the identity (X 1) = —X 1 X/X 1

K/// _ RSIQSI+R61(RU+BTPB)/R61Q§+R61(Ru+BTPB)IR61(RU+BTPB)/KI
+ Ry (Ru+ B"PB)'K' + Ry'(Ru + B' PB)K"

By Lemma C.3 of (Simchowitz & Foster, 2020), || Ry '|lop < 1. (Ru + BTPB) = ALPB+ B"P'B+ BTP'Ap
so by Lemma K.5, |[(Ry + BT PB)'|lop < poly(||Bllop, [|Pllop)e. Similarly, we see that ||(Ry + BT PB)"|lop <
poly (|| Bllop, | Pllop)€?. Using Lemma K.5 to bound || K|, and || K" ||op, we have:

1" lop < 1| Q5llop + |Q5llopPoly (| Bllop, 1 Pllop)e + pOLy (1 Bllop: [1Plop)e®
It remains to bound ||Q% ||op and ||Q%||op- By definition:
Qy =2ALP' Aq + ALPAL + ALPAs, + B "P'Ay, +B"PA, +B'P'Aq+B™P

Using previously computed norm bounds, we have [|Q%|lop < poly (|| Bllop, || Pllop)€®. To bound QY%, we can differentiate
the above, obtaining that, for a small absolute constant c:

15 llop < C(HATP”AclHop +IABP Adllop + 1A P A lop + AP Angllop + [ AFPAllop

+ HBTPI ;deOP + ||BTPAA01HOP + ||BTP/HA<:1||OP
BT Al 5 157 A llop)

A% llop < NABK"||op < poly(||Pllop)e®. Then, using Lemma K.7 and previously computed norm bounds, we have:

HQ HOP < pOly(HPHOp, ||BH0pa HAdHOP

Combining everything gives the stated result. O

L. Provable Gains for Task-Optimal Design
L.1. Preliminaries for Comparison of Designs

Asymptotic Notation. We assume that p is close to 1, and are prlmarlly concerned with the scaling in d,; and —. As such,

we let ©,(-) hide numerical constants and terms lower order in 1= That is, we write 2 = O ,( (1713)") ifr = 25 +
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n—1 cj . . . o -1 .
ZJ L T=py for numerical constants cy, . . ., ¢,,. Similarly, we write z = @p(w) ifz= T—pm p)n + Z] 1 T=p)7 p)J for

¢n > 0. In addition, we let ~, denote that two quantities have the same scaling in 1 — p, up to absolute constants.

©,(-) does not suppress dimension dependence, but in some cases it will be convenient to hide dimension dependence
that is lower order in l%p. In such cases, to make clear that we are doing this, we will use ©, 4, (-). Formally, z =

©,.d, (ﬁ + (1(1#)1,) if v = 25 + ZJ = p) 1 p)p + 300 ! bl dp)J In general we will only apply this
notation to the final sample complexities when we are concerned with identifying the leading terms. We will also use O(+)
in its standard form, suppressing lower order dependence on d,, and =5
Convex Representation of Inputs. Recall that Theorem 2.1 show the task complexity achieves by any policy scales as
tr(H(0,)Tr(m; 0,)~1) (where, throughout this section, we let I'r(7; 6,) denote the expected covariates under policy 7).
In particular, if we are playing periodic policies, as Lemma H.4 shows we can approximate I'r(7; 0,) with T3 (; 6,) so
the complexity scales instead as tr(H (0, )55 (m; 0,) ™). Similarly, if we are playing only noise, the complexity scales as
tr(H(0,)The (m;0,) 1) /T.

Throughout, we will assume that v% >> 0% so we ignore the contribution of process noise to I'33(7; 6,). If our policy plays a
periodic input U = (Uy)5_; € U,z 1, recall that

53 (m:6,) ) 'B U B (e 1 — A4,)7H

_Me

Some algebra shows that

L 21t _
(eL%I — g*)_lé* — {(e v *IA*) !B,

As we have already shown, a general matrix signal U can be realized in the time domain via a certain decomposition (see

Appendix B.5.3) so in the following we will consider optimizing over Uy so that I'5%(m; 6, ) satisfies our objective.

We will consider the performance of TOPLE, optimal operator-norm identification, optimal Frobenius norm identification,
and optimal noise excitation. By construction, TOPLE plays periodic inputs. Similarly, note that the optimal Frobenius norm
identification algorithm is itself an instance of TOPLE—with M, (6+) = I—so we can assume that the optimal Frobenius
norm identification algorithm also plays periodic inputs. As (Wagenmaker & Jamieson, 2020) show, the optimal operator-
norm identification also plays periodic inputs. In all cases, then, we will consider the complexity tr(H (0,53 (3 05) 1),
For optimal noise excitation, we consider instead the complexity tr(H (6, )T (7 6,) 1) /T.

Simplifications. Note that due to the structure of I', we have

tr(H(0,)Tr(m;6,) Ztr H,Dp(m;60,)7h)

i=1

where we let H; := [H(0x)](i—1)(d-+p)+1:i(d+p),(i—1)(d+p)+1:i(d+p)» the ith (d 4+ p) x (d 4 p) block diagonal element of
H(0.). We will denote elements of H (6,) with [H(0)]a,; 4,,,, Where

(H(0)] A, Anm = Vec(Hij)TH(G*)Vec(Hnm)

and 0;; = (eze ,0) (and similarly for B). See Appendix G.3 for a more in-depth discussion of the vectorization of linear
dynamical systems. By our construction of H(6,), the elements [H(64)]a,,., 4., and [H(04)]B,,...B,,, Will lie on the
diagonal of H(6,), while other elements will not. Furthermore, elements of the form [#(0,)]4,,,..4,,, (and replacing A
with B) with m # n will not be contained in any H;, as these will lie off the block-diagonal. It follows that the expressions
given above include all entries of H(6,) that will appear in our calculations.

Computation of Inputs. For each exploration strategy, our goal will be to compute the inputs 7 optimal for a given
exploration criteria, and then compute the value of ®7(7;6,) = tr (H(6,)Tr(m;6,)~") for this input. As Theorem 2.1
shows, the task complexity of any given exploration strategy 7 scales as @7 (73 6,) = tr (H(6.)Tr(m;6.) 7).
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Note that the optimal Frobenius norm identification algorithm is simply TOPLE, but with #(6,) = I. Thus, for the optimal
task-specific strategy and the Frobenius norm identification strategy, we can compute the optimal inputs by choosing those
inputs which minimize ®7(;6,) = tr (% (6,)Tr(m;6,) "), for each H(6,). By Lemma G.3 we have that ®op¢ (7% 6.)
and @5 (v%; 0,) are equivalent up to constants, where

ss 2, e i S : ss (9 -1
Cope (773 04) := liminf Ergir;jtr(%(@*) 7.7 (05,1, 0) )
Note that this corresponds to the covariates obtained when playing an input that is only sinusoidal and has no noise
component. Furthermore, as TOPLE is optimal and itself plays periodic inputs, it suffices to consider only periodic
inputs. Putting this together, for large enough T, for the task-optimal and Frobenius norm strategies, we simply analyze
tr (H(0,)T5:(m; 6,) ") and only consider periodic, non-noise inputs.

The case of operator norm identification is similar. As is shown in (Wagenmaker & Jamieson, 2020), the optimal inputs here
are also periodic, so it follows that tr (H(6,)Tr(m;6.) ™) &, tr (H(0.)T5:(m;6,) 1), for m the optimal operator norm
inputs. Furthermore, an argument similar to that used in the proof of Theorem B.2 can be used to show that the optimal
inputs are sinusoidal with no noise component. It follows that we can, in this case, also simply analyze the steady-state
covariates with no noise component.

Note that TOPLE itself does mix the sinusoidal input with a noise component to ensure sufficient excitation. While the above
argument shows that this does not improve the complexity of Frobenius or operator norm identification evaluated in the
Frobenius or operator norm, one might hope that the inclusion of noise would help these exploration strategies more easily
transfer to the actual task of interest. We make two remarks on this. First, as we are concerned with the inputs optimal on
Frobenius and operator norm identification, and as these inputs do not require this noise component, the result we obtain
would still hold even if this was the case. Second, our analysis shows that if we play the noise that optimally excites the
system for completing the task of interest, the complexity obtained is still suboptimal. Thus, even if we were to mix the
operator or Frobenius norm identification inputs with the optimal noise, the resulting strategy would still be suboptimal, so
our conclusion holds regardless of whether noise is played or not.

Finally, to simplify the analysis further we ignore the contribution from the excitation due to the process noise when
computing the covariates. This is reasonable for small values of o2, which will make this contribution lower order.
L.2. Computation of Task Hessian
Lemma L.1 (Computation of Task Hessian). Consider the following instance of the LQR problem:
A, =prere] +po(I —ere]), B, =0bl, Ry=riere] +ro(l —eie]), Ruy=pl
Then, if n # m,

1 bpr 9 1 ( ijnaf1 9
1

H(O) A, =
Ot = T —a2) T anan) (5 Pom) (=)

— ApQm

and if n = m,

. 1 bpn(l + agz) 2
B T ey G wr)
Ifn #m,

T ) a2

bpnal ko, )2

0 = ( ntn —
(0] B B 1—anam - (14 0%p)(1 —a2) Pl e

and if n =m,

1 (  bpakn(1+ ai)>2
(1 + B2p) (1 — a2) \Pm" 1—a2

n

(H(ONBpn,Brn =

Finally, if n # m,

—km ( bpn )2 + 1
(n+b%pn)(1 —a2) 1 — anam (1 + 0%p) (1 — a)

bpnaflkm ) bpna%
1—apnam’1—anam

GICRIFTIE (aan -
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and if n = m,

[H(O0)] Ann B =

B 2
(ut b2pn1)(1 — &) (bpq(lz;”)) (pnan - w).

Furthermore, all other elements of H(0,) which appear in E _ tr(H;Dp(m;0,) 1) are 0.

Proof. Note that here P, is diagonal with diagonal elements p; = [P,];; satisfying

212 2
pib°p 1
Pi = pipi — ;bQ + R = pi = o (me 1+ ppi + \/41)2% + (= b2 — up?)Q)
where we set p; = p2, k; = ko2,% > 2. It follows that K, is diagonal and that k; := [K.,]; = H’fﬁgﬁ;i, $0 A, is also

diagonal. Let a; := [Ac1 4]ii-

By definition, H(6,) = (VeKopt(0)lo=0.) " (VERK;0.)| k=K., (0.)) (Vo Kopt(0)|o—0, ). Our goal is to calculate how
H(0,) scales with the problem parameters, and from this determine the error rate of different exploration approaches. To
this end, let A(tl,tg) = A* + tlA}A + tzAz 5 B(tl,tg) = B* + tlA% + tQA]QB, Aé = (All4, AzB), Ag = (Ai, A2B)’ and
K (t1,t2) = Kopt(A(t1,t2), B(t1,t2)). Then by the chain rule,

L R (K (b1, 2): 6)ler—tnm0 = (Vo Kope ()0, [AL) T (V3RS 0.) =i, ) (Vo FKopt (8)]0—s. [AZ])

dto dty
= vec(A§) TH(0,)vec(A2)

Thus, to determine the value of H(6y), we can simply evaluate %%R(K (t1,t2); 0% )|t;=t,—0 for different values of
A}, AZ. Now recall that,

R(K;0,) = tr (dlyap(A, + B. K, (K — K,) " (Ru + B] P.B,)(K — K,)))
—tr (Z(A* + B, K)*(K — K,)" (Ry + B P.B,)(K — K,)((A, + BJ{)US)
s=0
Setting K’ = K (t1, t2) and differentiating this with respect to ¢1, t5, we find that

d d
dt dt R(K(tlatQ);g*”tl:tg:O

=tr (Zs 0 cl*(Ktl(O 0)) (/J/I+b2 )(Kt2( ) ))Ail*)
= 2o otr (AL (K" (0,0)) T (] + b P,)(K'(0,0)))
= Yo @ (K1 (0,0) T (ul + b2 Po) K (0,0)]

L (Kt (0,0)T (U + b2P,)K'2(0,0
:Z[ ( )(ul_ai) (0,0)}i

vec(A) TH(0,)vec(AR) =

i=1

Recall that , 4
K'(0,0) = —(uI +b*P.) " ((A%) " PiAay, + bPAY |+ bP'(0,0)Ac,y)

where AYy =AY — ALK, and
P'(0,0) = dlyap(Ae,«, Q:) ZA QAL Qi= AL PAL 4+ (AL ) P A,

Thus,
[K1(0,0)T (ul + b2P,)K"(0,0)];; = [ (AR)T P Aary + bP, AL +bPY(0,0)Acr) - (I +b*P,) ™

((A3)TPiAcrs + BPAY +BP™(0,0)A0) |

(2
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=[(AB) " PiAcia + bPAY  +bP"(0,0)Aa )]s - (I +0°P,) 7"
(AB) T PiAc s + bP.A% | +bP™(0,0)Aci ] i
= (pias|AR)i. + DPAY ]oi + ba [P (0,0)]..) " - (uI +b*P,) ™"
: (pzaz [AZB]Z, + bP*[A?L;C]]:,i + bai [Ptz (07 0)],1)

and

[P"(0,0)]:,; = Z[ Q1 A42,,: Z—ZaAcl* [@1]:i = (I — ajAcs)” [Ql]

s=0 s=0
= (I — a;jAc) " (AaPe[AL i + piai[AY i)
Putting this together, we have that
vec(Ap) T H (0, )vec(A2)

.
5 (piai[A}g]i,: + (I +a;(I — a;Aay) " Ac ) PlA L + bpiai (I — aiAcl,*)_l[A}L;Cl]i,:)

(I + 0Pt (pz'ai[AQB]i,: +b(I + a;i(I — aiAe)” Acw) PaA% i + bpial (I — a;Aa ) " [AL )
de dy

-y (piaslAble + 2 (A4 — KAL) + P (AL - ky[Ab),)
prl g b2pj )(1—a?) 1 = aa; "1 aiag o !
bp; bpia?
: (piai[AQB]i,j m([ﬁ] — ki[AR)50) + ?@([A%i,j —kj [AQB]LJ‘)> (L.1)
We now evaluate the above when AL, = A% = 0and Al = epe) , A% = ene,),. For this to be non-zero, we must have that

either £ = n,0 = mor £ = m, 0 = n and, as noted previously, we can 1gn0re the case when ¢ = m, o = n. Therefore, if
n #m,

_ 1 bpr 9 1 bpnafl 9
(O A A = (4 0%pp)(1 — a2) <1 — anam) + (1 + ?pm)(1 —a2) ( 1-— anam)

and if n = m,

. 1 bpn (1 + CL%) 2
[H(e*)]A7lnaAn1z - (/14 + b2pn)(1 _ a%) ( 1— a% )

Now consider AL, = A% = 0and AL = ese], A% = e,e,) . As before, for [H(04)]B,,.5,,, to be non-zero, we need either
£ =mn,0=mor{=m,o = n. Therefore, if n # m,

1 bprkm o 1

HOBe o = ()0 az)

bpnagkm \2
1—anam (1 + ?pm)(1 —a2) 1—anam

andif n = m,

B 1 bpnkn(1+ aj)\?
("0 B, By = i+ (1 —a2) (Pnan W)

Finally, we consider the case where A, = ese), A% = 0and AL = 0,A% = e,e} . Again, we must have that either
¢=n,0=morl=m,o=nfor [H(0.)a,, B,. tobenon-zero. Therefore, if n # m,

—km, ( bpn, 9 1

bpnaZky, \  bpnal
0 = B . a
[H( *)]Anm,an (’u ¥+ b2pn)(1 _ agn) )

1— anam) + (1 + b6%p) (1 —a2) (p"a" 1—anam’1— anam

and if n = m,

B 1 bpn (1 +a?) bpnkn (1 + a?)
RO = gp i —a2) (5= a2 ) (pra 1—a2 )
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L.3. Proof of Proposition 4.1

Here we choose p1 = p,p2 = 0,0 = /1 —p, k1 = kg = \/1177;), and p = ﬁ. With these constants, some algebra
shows that

a=0(p), = O,(1 p) a; =0,i>2
kli(g(l* ), k1:0,122
p1= @p(mh pi = @p(ﬁ),i >2

Plugging these values into the expression given for (6, ) in Lemma L.1, we have

QR -y ((l_lp)g) MO A = O, (1;) 2

(0] 5vr s = O, <(1_1p)) R CTIUN) P— ((1_1P)> m>2

[H(a*)]A117B11 = @p <(1_1p)5/2> ) [H(e*)]Almelm = @P <(1_1p)3/2> , M 2 2

All other terms are 0 or do not scale with ﬁ and can therefore be ignored. It follows that the sample complexity will scale
as

tr(H(0,)Tr(m;6,) ") ~, tr(HiDr(m;6,) ")
where here

1 1
[ (1—p)? seren + ZeJeJ e Zed +iCd4) T (1—p)2 (e164, 11 + €a,11e])

d
1 - T T
+ (1 — )3/2 E :(ejederj + €d,+j€; )
P =2

Sample Complexity of TOPLE. Our results show that the sample complexity of TOPLE scale with steady state covariates,
and we can therefore analyze tr(H,55(m; 6,)~1). As TOPLE plays the optimal inputs and we are concerned with obtaining
an upper bound on its performance, we will simply construct a feasible input, which will then upper bound the actual
performance.

In particular, we will set U, = 0 for all but two ¢ (and their conjugate partners), and for those ¢ will set U, = U’ :=

n 0 . In that case, we will have
0 ualy,—1
w _ -1 w _ —1 H w _ —1 Lw _ —1 H
TS5 (716, o 2real (etr] — A,)~' B, i (eI — A,)~ ' B, n (et2] — A,)~' B, 9 (e*2] — A,)"' B,
I I I I
et — p| (1 = p)us 0 real((et — p) "1 )V/I = pus 0
_ 0 2(1 — pluol 0 real((e1) 1) /T — pual
real((e*t — p)~1)v/T — puy 0 2uy 0
0 real((e*1)1)/T = puol 0 2us
€2 — p2(1 = p)uy 0 real (e — p) 1)y T= puy 0
i 0 0 0 real((e*~2)71)\/T = pual
real((e*2 — p)~1)y/T — puy 0 0 0
0 real((e2) 1) /T — pual 0 0

where we simplify using the values of A,, By, w; and wy are the input frequencies we choose, and the real comes from the
conjugate symmetry. We write “o” instead of “="" as additional normalization by factors of 7" and k are necessary to yield
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equality, and for simplicity we currently ignore. We will handle these factors later. For large enough 7', w; and ws can be
chosen essentially as desired, so we set w; = 1 — pand ws = ™ + 1 — p. As we take p close to 1, we have

et = cos(wy) +tsin(wy) =1+ (1 = p) +o(l —p), e“?*=-1—1(1-p)+o(l—p)

It follows that
real((e*) 1) = —real((e"“?) ™)
1—p 1
1 wy -1y _ 1— 2 wi =2 1— 2
real((e p)") e +o((1=p)7), le ol SR +o((1—p)7)
_ -1-p _
real((e*“? — Hhe — Z 40(1—p), |e¥2—p|2=0(01
(( P)) e (1=p) | ol (1)
Plugging these in, we get that the above is equal to:
e O((1 - p)un) 0 O p)u) 0
0 4(1 = pluol 0 0
= - 0((1 - p)%/?uy) 0 4y 0
0 0 duol

This has the form given in Lemma L.2 so, applying this result and approximating % + O((1 — p)uy) as i and
\/% — O((1 — p)*/%uy) as \/%, (we note that this approximation will not affect the leading terms in the inverse due to

the form of the inverse given in Lemma L.2) we have that the inverse of this matrix will be

4(31*P) 0 —\S/ﬁ 0
U1 U1l

0 saom! O 0 Lo

—/1—p 1 ( . )

3 0 3 0

Ul U1

0 0 0 ﬁ]
Plugging this into our expression for tr(#H (0, )T (m;6,)~1) gives

1 d, 1 d, 1

Ttr(H(0)Tr(m;0,) 1) ~, + + + —

(T=pPuy  (1=pPuy  (1=pPuy  (1-pQuy (1-p)y

where u} denotes u;/k?. As we are interested in obtaining an upper bound on the sample complexity of TOPLE, we upper
bound this by

o+ o)

It remains to choose u}, u} that satisfy u} + (d, — 1)u} < 4?/2. Choosing the values that minimize the above gives the

final complexity:
d2
0 (s ).
(1—p)*y

Sample Complexity of Operator Norm Identification. As was shown in (Wagenmaker & Jamieson, 2020), the optimal
operator norm identification algorithm will choose the inputs that maximize A, (IS5 (7; 0, )). We will first construct an
input with diagonal U, and, as in the previous section, with ug = ... = u4_, and will then show that this input is in fact
optimal.

Intuitively, the optimal operator norm identification algorithm seeks to input energy at frequencies which best excite
the system (maximize Apyin (I'53(7;64))), and that balance the gain in each direction. Note that, regardless of the input
frequencies, the computation in the previous section shows that, other than the first element, the diagonal components
of I'S3(m; 6,) will scale as (1 — p)usg, u1, and uq, respectively. Ignoring for a minute the contribution of the off-diagonal
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terms, the value of the first coordinate will be maximized if energy is input at the frequency w; which maximizes
le“ 1T — p|=2(1 — p)uy. It is easy to see that this is maximized at w; = 0, which gives the value to the first coordinate of

Y1 and, ignoring off diagonal entries, a minimum eigenvalue of
1—p

Amin (T (73 64)) = 27 min{ f‘jp, (1 = p)ug,ur,us} = 2T min{(1 — p)ug,us }

To maximize this while respecting the power constraint, operator norm-identification will choose uy ~, ¥?/d, and
uy =, (1 — p)y?/d,, which will yield the minimum eigenvalue of

Amin (7 (75 04)) ~p T(1 - p)'YQ/dw

Now taking into account the off-diagonal terms and applying Lemma L.3, using the expression for I'33(w; 6,.) given in the
analysis of TOPLE, we see that the contribution of the off-diagonal entries causes the minimum eigenvalue to instead be 0.
However, if we instead set the inputs to those chosen in the previous section, as we saw there we have

725+ O((1 = p)us) 0 S O((1- ) ) 0
0 41 = p)ual 0 0
I3(m;6,) =27 | )
T( *) \/1177/) _ O((l _ p)3/2u1) 0 Ay 0
0 0 4UQI

Applying Lemma L.3 to this, after some algebra we see that
Amin (T'7 (75 64)) =, Tmin{fi—lwul,ug, (1= plug} = Tmin{u, (1 — p)us}
Choosing uz =, ~?/d, and u; ~, (1— p)v?/d, to balance this as before, we have that this input yields
Amin (U7 (3 64)) =, T(1 — p)Vz/dx

Observe that this achieves the same minimum eigenvalue as that achieved ignoring off-diagonal terms (up to constants) and
that, furthermore, the form of the minimum eigenvalue given in Lemma L.3 implies that the off-diagonal terms will only
decrease the minimum eigenvalue. It follows that 7'(1 — p)7?/d,, is an upper bound on the minimum achievable eigenvalue
when the inputs are diagonal so, since this input achieves this value, this is the near-optimal diagonal input for operator
norm identification. It follows that the optimal covariance with diagonal inputs will take the form given in (L.3).

We now show that the globally optimal inputs are diagonal. We have just shown that the optimal covariance, when playing a
diagonal input, will take the form

s 0 M0
. 0 A= g 0
7 (% 0.) =, 2T Y/ R (O C L
0 0 0 2o

Now consider some A € C%=*%: and consider perturbing our optimal diagonal input at some frequency w by A to form
the new input U,, + A. For our new input to be in our feasible set, we must have that tr(A) < 0 and that A is symmetric.
We want to show that, for every such perturbation, Apin (IS5 (7';64)) < Amin (TS5 (7%; 6,)) (where 7’ denotes the perturbed
input). By first-order optimality conditions, this will imply that the diagonal input is optimal.

The resulting perturbation to the input will perturb I'33(7*; ,) as

SS (/. _ TSS(,_*. GAGH GA . m(ejw _ p>—1 0
FT('R— ,9*) = FT(T( ,9*) + 2Treal (|: AGH A :|> , G = |: 0 me_]‘w]

where here G is equal to (e/“I — A,)~!B,. Note that the eigenvectors corresponding to the minimum eigenvalues of
I5(n*;0,) are v, ..., vq, = €a,...,eq, and, some algebra shows,

oy = | L4 =p) = 1 - 401~ p) +16(1 — p)?
2

: ,0,...,0,1,0,...,0] - [— 1—p+0(1—p),O,...,OJ,O,...,O}
—p
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where the 1 as at the index d,, + 1. Some algebra shows that

T GAGH GA o .
ireal([AGH A vi=1=pAy, 1>2

where, since v; = e; the inner products select only the diagonal elements, and

GAGH GA ; _ ; _
v real ({ AGH A }) (UM ((1 —p)%e? — p| 72 = 2(1 — p)real((e?* — p)~1) + 1>A11

<( (1-p)? Lo 2= p)(eosw = p) >A11

v,

cosw — p)? + sin® w (cosw — p)2 + sin® w

- (1_ ((1—9)(Cosw—p)w> A

- cosw — p)?2 + sin?

_(;_ (A =p)(cosw —p)
(1 ) Au

1+ p% —2pcosw

and note that (1 - %) > ( for all w. We must have that Z?; A;; < 0 to meet our constraint. This implies

that either all A;; = 0, or there exists ¢’ such that A;/;» < 0. By the above expressions, it follows that, if i’ > 2, the latter
case will cause the minimum eigenvalue to decrease, and if ' = 1, the minimum eigenvalue cannot increase. It follows that
our perturbation A cannot increase Apyin (I'S5(7*; 6,)), which implies that the optimal input is in fact diagonal.

Returning to the optimal covariates obtained with diagonal inputs, using the inverse expression for '3 (7*; 6,.) given in the
analysis of TOPLE (L.2), we then have that

4(1—p)
37.L1

From the expression for H(6,) given in (L.1), we see that we can express

[H(e*)]All,All = C%, [H(Q*)]3117311 = Cg, [H(Q*)]AM,BM = C1C2

for some values c1, co. It follows that,

Ttr(H(Q*)I‘T(Tr*; 9*)_1) = [H(e*)]AlhAll

O Ay YL 1 ((d>

3u, + [H(e*)]BlhBll ﬂ + ®P7dm 1 — p)2u2

HO Lt s 2 4 2H O b =L + IO = 5 (VI per—2) + (1= )k
Now plugging in values of c;, co, we have
S (=) s 1=t -0 )
Which gives
Ttr(H(0.)Tr(*50.)7") = Op,4, < CR. ) (L.5)
(L=p2ur (1 -p)up

Plugging in our values for u;, uy gives the complexity:

e < de i )
PN =pPy? T (=p)2 )

Note that our analysis is somewhat sensitive to the constants present in the entries of tr(# (6, )Tz (m;6,)~!) that correspond
to up. It is difficult to determine the precise constants that will appear in actual operator norm identification allocation.
However, we note that any increase to the value of the constant in the off-diagonal term, %p, will cause the minimum
eigenvalue to decrease, by Lemma L.3, and we can therefore expect the constants to be no larger than their stated values.
If we use constants smaller than what is stated here, this will only cause the magnitude of the off-diagonal terms in the
inverse, _3‘/7?, to decrease, which will further reduce the contribution of the term 2[H(0,)] a,,.5,, _T\/ll_ip, causing the
final complexity to be larger. However, this will not change the fact that

4(1 - p) —Viop 3 ;
37% —  ~ + [7‘[(9*)]311,311;1 = ®p ((1/))21“)

So it follows the true complexity is as stated.

[H(Q*)]Au,Au +2[’H(9*)]A11,311
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Sample Complexity of Frobenius Norm Identification. Note that TOPLE is the optimal Frobenius norm identification
algorithm. In this case, Ho(6,) = I, so the optimal Frobenius norm identification algorithm minimizes tr(I(m; 6,)~1).
A similar argument to that used in determining the optimal operator norm identification inputs can be used to show that here
the optimal covariance is again of the form (L.3). Then using our inverse expression from the previous sections (L..2), we
have that
s/ .g—1y . L—p dy 1 dy dy 1
Ttr(TT (5 0,) ") =, o + T + o + w " 0= pus + ”

u1, uz will be chosen to minimize this while respecting the constraint u; + (d, — 1)ug < ~2. Some algebra shows that this
is minimized for values

e Y ) YVI—p

Uy =~
) p
a2 dy

Uz ~p

Plugging these into the complexity expression for operator norm identification, (L.5), gives the complexity

o dy n d2
PN =P T (=02

Sample Complexity of Optimal Noise Identification. Finally, we turn to the policy which plays the inputs u; ~
N (0, A,) for optimal A, satisfying tr(A,) < +2. In this case, our results show that the sample complexity will scale as
tr(H(0,)T55°(0,, A,)~1)/T. Our goal is then to determine the optimal choice of A,. A simple application of the KKT
conditions shows that the optimal A, is diagonal (see the proof of Proposition 4.2 for this stated explicitly in a similar

setting), and will take the form A, = diag([u1, us, ..., us]). In this case, some algebra shows that
Uy 0 0 0
noise ~ 0 (1 - p)UQI 0 0
I‘T (9*7 A*) ~p 0 0 Uy 0
0 0 0 wel

SO

HOITE 0.0 = 00 (T + = )

Choosing u1, us that minimizes this gives the complexity

1 d2
© Jda < + z ) .
PN =p? (1= p)y?
Lemma L.2. Consider diagonal matrices D1, Do, D3 € R**?. Then,

H_[Dr DT _[C Gy
B D2 D3 o 02 03
where C,Cs, and C5 are diagonal and

[Ds)ii
[D1]ii[Dslii — (D)%’

[D1]ii
[D1]ii[Dslii — (D)%’

—[Da]ii
[D1)ii[Ds)ii — (D)%

[Cilii = [C3]ii = [Caii =

provided these quantities are well-defined.

Proof. Note that we can permute the columns and rows of D with some permutation P such to create a block diagonal
matrix D':
Dy ... 0
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From the block diagonal structure and the inverse of 2 x 2 matrices, we have
(D)=t ... 0
D)y t=| | (D)=
0 oo (DTt

1 [Ds]ii —[Dz]n]
[D1)ii[Dslii — [Do)?, | —[D2lii  [D1lis

The orthogonality of a permutation gives that D = PTD'P,so D=1 = PT(D’)~! P. Permuting the form of (D)~ gives
the expression in the statement of the result. O

Lemma L.3. Consider diagonal matrices D1, Do, D3 € R?*?. Then,

Amin (Bé lD)zD = ie{f{lﬂd}% ([Dl]n' + [Dslii — \/([Dﬂn + [Dslii)? — A([D1]ii[Dslii — [Dﬂfi)) :

Proof. Let P be the permutation described in the proof of Lemma L.2. Note that the eigenvalues of PDP T are the same as
those of D since, if we write the eigendecomposition of D as VAV T, we see that PDPT = (PV)A(PV)", and that PV
is orthogonal, so this is the eigendecomposition of PDP . Given this, we have that A, (D) = Min;ef1,. d} Amin(D})-
The eigenvalues, A, of D} satisfy

(ID1)is = M([Dsis — A) = [Da]f; = 0

Solving this for A and taking the minimum solution gives the result. O

L.4. Proof of Proposition 4.2

We now choose p1 = pas =1,b=1,k1 = ﬁ, Ko =1, pu= ﬁ. With this choice, some algebra shows that

5 =O((1—p), 4= O/ p)),i >2
! :O(l)a #:Gp(ﬁ)viZQ

1—(Li

1—aq

k‘l = (9(1), k‘, = (9(1 - p),i Z 2
b1 = ®p((1_1p)4), bi = GP(ﬁ)vZ >2

(L.6)

Plugging these values into the expression given for (6, ) in Lemma L.1 gives:
1 1
[H(0.)]A11,4, = O, W ;o [H(0)]as,,40, = Op m ym > 1

1
(M0 a4, =0, (1), n>1, [H(0)]| 4.4, = O (@p)g> ;n>1m>1
1
1—p)*

<
1 1
(MO b= 00 (s ) om0 1 O = 00 (1) o> L > 1

[H(e*)]Bu,Bn = ep < > ) [H(a*)]Bn11Bn1 = Gp(l)vn >1

CICR -y ((1_/))4) R CTIUN Pr— (ailp)4> 1

1
(M0 a8, =0, (1), n>1, [H(0.)]|4,..B.. = Op ((1[))2> sn>1,m>1

Sample Complexity of TOPLE. As we will consider p close to 1, elements scaling as @P(ﬁ) for n < 2 will be

dominated by elements scaling as © p((l%p)n) for n > 2. For simplicity, we henceforth ignore these elements. Given these

approximations, we see that H,; for ¢ > 1 is approximately diagonal and therefore:

dytd,
r(HTr(m0,) ") =, > [l [T 0.) 7,5

Jj=1
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H;, however, contains non-negligible off-diagonal elements, [#(6.)] 4,,..B,,, and will take the form:

dy d,
1 1 z 1 1 z
Hirm, ——eie] +———= Y eje] + ————eq 1160 11+ = Y Cdti€d 4
P —pr (1—p)5jz::2“ (1—p)t =Tt (1—p)3; e
1 &
— ) (ejeq, 1 ;+ €a,tje; )
(1—p)* = 3Cdy+j 3%
1 b
= ———(e1 —eaq,11)(er —ea, 1) + Y ———=(e; — (1= plea,15)(e; — (1= plea, ;)
(I-p) — (1-p)
Jj=2

As we are concerned with showing an upper bound on the performance of TOPLE, we can simply choose a feasible set
of inputs and compute the sample complexity obtained by them. Since TOPLE obtains the optimal sample complexity, it
follows that this will be a valid upper bound on performance. Given this, let U, = 0 for all but a single ¢ to be chosen

(and it’s conjugate partner), and assume that the nonzero U, = diag([u1, . . .,uq,]) is real and diagonal. We will choose
Uz = ... = ugq,. In that case, we will have
(ewt] — A,)71B, (e ] — A,)"'B,]"
% (m;0,) o 2real I U, It
_ e —p| 72U, real((e™* — p)~ U,
7 real((er — p)~HU, U,

where we simplify using the values of A,, By, wy = (27¢/k, and the real comes from the conjugate symmetry. Since Uy is
diagonal, we can apply Lemma L.2 to invert this:

e —p| 72U, real((er = p) U] _[C1 Gy
real((e* — p)~ U, U, 0y O
where
1l = ui Cal — el — p)

B (e A L e e (e R
et — pl Pu!
2

e = o7 —real( (e = p) 1)

[Cslii =

We choose wy = 1 — p. Then,

Lw.

et —p=cos(wp) — p+esin(wy) =1—p+e(l—p)+o(l—p)

and
real((e — p) 1) = = 4 o((1— p)?), | —p| 2= = +o((1—p)?)
2(1— p) ’ 2(1—p)?
So it follows that
A(L - p)? —2(1-p) 2
[Cilii =, T [Calii =, T (Cs)ii =, w

Using our expressions for H; given above and this expression, we have that

1 n dy n 1 n dy N 1 N d, )
T=p2d;  (T-pPuy  (L-p)ih  (T—pPuy  (L—p); (1 )i

Ttr(Hal7(m50,) ") = Op.0, (

Ss — dm dI ;
T (007 = O, (s + iy )+ 151
2 2
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where u denotes u;/k?. Thus,

Ss - 1 dw
Ttr(H(0)TF (m:0.) ") = Op.a, ((1 —oh (- p)Bug>

We can choose u1 and uy as we wish as long as they meet the power constraint v} + (d,, — 1)u} < 2. Choosing the values
that minimize the complexity yields:

TP 30.) = 8. (e + (=g

By our construction, this is an upper bound on the performance of TOPLE.

Sample Complexity of Operator Norm and Frobenius Norm Identification. We can follow a similar argument as that
used in the proof of Proposition 4.1 to show that the optimal inputs will be diagonal for both operator norm and Frobenius
norm identification. Furthermore, as both A, and B, are scalings of the identity, the optimal operator norm and Frobenius
norm identification algorithms will allocate the same energy to each coordinate. Note that the input constructed in the
previous section will yield the maximum gain, so it follows that both operator and Frobenius norm identification will play
inputs at similar frequencies, and the analysis in the preceding section can be applied here. However, given that the inputs
are isotropic, we will have u; = uy = v2/d,, which will yield a sample complexity of

N do d;
THOITR (7309 ™) = Ona. (=502 + (1= g )

Sample Complexity of Optimal Noise Identification. When playing noise, the complexity will scale as
tr(H(0,)T55(0,, A,)~1)/T. To analyze the sample complexity of this approach, we must first determine the A, = 0
that minimizes this and satisfies tr(A,) < 72. In our setting, we will have

noise — ZZ:OPQSAU 0 ~ l%A“ 0
S R

So it follows that

dCL‘
S (H(0)TF™ (0, Au) ) 2 D [(1 = p)tr(HinAyh) + tr(Hi2AL )]
i=1
where H; 1, H; 2 denote the first and second d, x d, block diagonals of H;, respectively. Computing the gradient of this
expression and the constraint tr(A, ) < 2 and applying the KKT conditions gives that the optimal A, must satisfy:

dy
=S = o)A T () T+ (M) T Ha (M) T+l =0

i=1

As H; 1,H; 2 are diagonal, up to lower order terms, it follows that a diagonal A, will satisfy this expression. Furthermore,
given the symmetry of A, B, it is clear that A, will then take the form diag([u1,us, . . ., uz]) for us + (dz — 1)ug < 72,
Plugging this into the expressions given above, we have that the complexity scales as

B d, 1
HIPE 0,00 = O (=55 + T

Choosing u;, ug that minimize this yields the complexity

noise - di
tr(H(0.)TF (05, ML) ™) = Opa, <(1p)472)
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Figure 4. LQR loss versus time on A, aJordan Figure 5. LQR loss when varying p on ex- Figure 6. LQR loss when varying d, on exam-
block and B, Rx, R randomly generated. ample stated in Proposition 4.1. ple stated in Proposition 4.2.

M. Details on Numerical Results

In Figures 4, 5, and 6, we plot Figures 1, 2, and 3 with error bars. In all cases the error bars indicate a standard error. We
make several additional remarks on the experiments. For Figure 4, we chose d, = d,, = 5 and chose p = 0.8, which gave us

0.8 1 0 0

(an)
(0e)
—
P (e
= O O O

As was stated in the main text, we generated B, , Ry, and R,, randomly. For each realization, we ran 15 trials, so Figure 4 is,
in total, the average over 225 trials. As different Ry and R,, would cause | H (6, )]op to vary widely, we divided the loss
of each realization by || (6,)||op to ensure they were on the same scale. The reader may wonder why the error decays
in a stepwise fashion. This is due to the convex relaxation of the inputs. In this example, the majority of the energy is
concentrated in the first eigenvalue of the input, and thus, when the matrix input is decomposed, the majority of the energy is
played in only a fraction of 1/d,, of the time. We therefore see a much steeper decrease in this time. As we show, however,
our convex relaxation is tight and nothing is lost by playing inputs in this way.

For Figure 5, we chose the values of Ry and R,, as given in the proof of Proposition 4.1 and set d,, = d,, = 5. For Figure 6,
we chose Ry and R, as given in the proof of Proposition 4.2 and set p = 0.99.

Our implementation of TOPLE uses the convex relaxation and projected gradient descent solution given in Appendix B.5.
While (Wagenmaker & Jamieson, 2020) does not provide a computationally efficient solution to their proposed operator
norm identification algorithm, we note that the convex relaxation given in Appendix B.5 can be applied to this problem as
well, yielding a computationally efficient version of the algorithm given in (Wagenmaker & Jamieson, 2020). We rely on
this computationally efficient relaxation for our implementation of the operator norm identification algorithm.
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