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Abstract
Exploration in unknown environments is a fun-
damental problem in reinforcement learning and
control. In this work, we study task-guided ex-
ploration and determine what precisely an agent
must learn about their environment in order to
complete a particular task. Formally, we study
a broad class of decision-making problems in
the setting of linear dynamical systems, a class
that includes the linear quadratic regulator prob-
lem. We provide instance- and task-dependent
lower bounds which explicitly quantify the diffi-
culty of completing a task of interest. Motivated
by our lower bound, we propose a computation-
ally efficient experiment-design based exploration
algorithm. We show that it optimally explores
the environment, collecting precisely the infor-
mation needed to complete the task, and provide
finite-time bounds guaranteeing that it achieves
the instance- and task-optimal sample complexity,
up to constant factors. Through several examples
of the linear quadratic regulator problem, we show
that performing task-guided exploration provably
improves on exploration schemes which do not
take into account the task of interest. Along the
way, we establish that certainty equivalence de-
cision making is instance- and task-optimal, and
obtain the first algorithm for the linear quadratic
regulator problem which is instance-optimal. We
conclude with several experiments illustrating the
effectiveness of our approach in practice.

1. Introduction
Modern reinforcement learning aims to understand how
agents should best explore their environments in order to
successfully complete assigned tasks. In the face of uncer-
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tainty about the environment, a naive strategy might be to
explore the environment until it is uniformly understood
(system identification), and then devise a plan to complete
the task under this precise understanding of the environ-
ment (control). However, it is widely understood that such
a two-phased approach of system identification followed by
control can be wasteful since, depending on the task, some
aspects of the environment ought to be estimated more accu-
rately than others. For instance, if a task requires a precise
sequence of steps to be taken in order to be completed, one
need not understand all possible outcomes leading to fail-
ure after a missed early critical step. Since it may be very
costly for an agent to estimate all facets of a complex or
high dimensional environment to high precision, it is far
preferable to direct agents’ exploration only to those aspects
most relevant to their tasks. Motivated by this challenge,
this paper aims to answer:

Q1. What exactly must an agent learn about its envi-
ronment to carry out a particular task?

Q2. Given knowledge of the task, can the agent di-
rect their exploration to speed up the process of
learning this task-specific critical information?

Q3. Having explored its environment, how can the
agent best use the information gained to complete
the task of interest?

Our work provides answers to the above questions for a fam-
ily of decision-making problems in environments parame-
terized by a linear dynamical system, including synthesis of
the linear quadratic regulator. Specifically, for Q1 we show
that accomplishing a variety of tasks amounts to maximizing
a task-specific linear functional of the Fisher-information
matrix, a quantity of fundamental importance to optimal
experimental design. Indeed, our results naturally reduce
to classical linear optimal experimental design criteria (for
example, A-optimal) in the absence of dynamics. Answer-
ing Q2 in the affirmative amounts to being able to learn
just enough about the environment to drive the system to a
sequence of states that maximize this task-specific function
as fast as possible. We accomplish this via a sequence of
experimental design problems over control inputs given a
successively improving estimate of the environment. Fi-
nally, to answer Q3 we show that the certainty equivalence
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decision rule—choosing the policy that would optimally
complete the task if the estimate of the environment was
correct—is the optimal decision rule in an instance-specific
sense.

1.1. Main Contributions

Our primary contributions are as follows:

1. We develop task- and instance-specific lower bounds
which precisely quantify how parameter estimation
error translates to suboptimal task performance.

2. We cast the problem of optimal exploration as a surro-
gate experiment design problem we call task-optimal
experiment design. For linear dynamical systems, the
task-optimal design problem can be solved efficiently
by projected gradient descent. We demonstrate that the
solution to the design problem yields the information-
theoretically optimal exploration strategy, in a strong,
instance-dependent sense.

3. The task-optimal design depends on unknown problem
parameters. We therefore propose a meta-algorithm,
TOPLE, which sequentially solves empirical approxi-
mations to the design objective, and demonstrate that
this approach matches the performance of the optimal
design given knowledge of the true system parameters.
As a consequence, we obtain the first instance-optimal
algorithm for the LQR problem.

4. We show through numerous mathematical examples
that task-specific experiment design can perform arbi-
trarily better on a task of interest than uniform or task-
agnostic exploration. We also rigorously prove a strong
sub-optimality result for strategies with low regret for
online LQR, such as optimism-under-uncertainty.

5. We show that, for any exploration strategy which is
sufficiently non-degenerate, in a very general class
of decision-making problems which includes certain
classes of nonlinear dynamical systems, the certainty
equivalence decision rule is instance optimal.

6. Finally, we show that our approach yields practical
gains over naive exploration schemes through several
numerical examples.

All our results are non-asymptotic and polynomial in terms
of the natural problem parameters.

1.2. Task-Specific Pure Exploration

We consider linear dynamical systems of the form:

xt+1 = A?xt +B?ut + wt, x0 ⌘ 0. (1.1)

where xt, wt 2 R
dx , ut 2 R

du , A? and B? have appropri-
ate dimensions, and where for simplicity we assume that
wt ⇠ N (0,�2

w
I)1. We let ✓? = (A?, B?) capture the true

dynamical system; importantly, ✓? is unknown to the learner.
We also define a policy ⇡ as a mapping from past actions
and states to future actions ⇡ : (x1:t, u1:t�1)! ut. We let
E✓,⇡[·] denote the expectation over trajectories induced on
instance ✓ playing policy ⇡. While we show in Appendix B
that several of our results hold in a more general observa-
tion model which encompasses certain nonlinear systems,
throughout Sections 2 to 5 we assume we are in the linear
dynamical system setting.

We are interested in a general decision making problem:
given some smooth loss J✓?(a) parameterized by ✓?, choose
a 2 R

da such that J✓?(a) is minimized. For every ✓?,
we assume there exists some optimal decision aopt(✓?) for
which J✓?(a) is minimized. We require that J✓(a) and
aopt(✓) satisfy the following assumption.
Assumption 1 (Smooth Decision-Making, Informal). The
loss J✓(a) and optimal decision aopt(✓) are each three
times differentiable within a ball around aopt(✓?) and ✓?,
respectively, and their gradients can be absolutely bounded
over this range. Furthermore,r2

aJ✓(a) varies smoothly in
✓.

Our interaction protocol is as follows.
Task-Specific Pure Exploration Problem. The learner’s
behavior is specified by an exploration policy ⇡exp :
(x1:t, u1:t�1) ! ut and decision rule dec executed in the
dynamics Eq. (1.1).

1. For steps t = 1, . . . , T , the learner executes ⇡exp and
collects a trajectory ⌧ = (x1:T+1, u1:T ).

2. For a budget �2 � 0, the inputs u1:T must satisfy the
constraint E⇡exp [

P
T

t=1 kutk22]  T�
2. 2

3. Finally, the learner proposes a decision ba = dec(⌧) as
a function of ⌧.

The learner’s performance is evaluated on the excess risk

R(ba; ✓?) := J✓?(ba)� inf
a

J✓?(a),

and their goal is to choose an exploration policy ⇡exp which
induces sufficient exploration to propose a decision ba with
as little excess risk as possible. For simplicity, we assume
that the learner only collects a single trajectory. In contrast
to online control, the performance of the exploration policy

1See Appendix C.2 for a discussion on accommodating non-
identity, possibly unknown noise covariance.

2The upper bounds in this paper can be easily modified to
ensure that the budget constraint

PT
t=1 kutk2  T�2 holds with

high probability.
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is only evaluated on its final decision ba, not the trajectory
generated during the learning phase. To make this setting
concrete, we consider several specific examples.

1.3. Examples and Applications

The task-specific pure exploration problem captures many
natural settings. Under the assumed linear dynamics model
of (1.1) with ✓? = (A?, B?), the unknown quantity of inter-
est aopt(✓?) can represent any function of the environment
defined by ✓?. In the simplest case of system identifica-
tion, we may have aopt(✓?) = ✓?, ba the least squares es-
timate of ✓? given the trajectory ⌧ = (x1:T+1, u1:T ), and
J✓?(ba) a measure of loss, for example the Frobenius norm:
J✓?(ba) = kba � aopt(✓?)k2F. Even in this simple case, the
learner can reduce J✓?(ba) far faster with a deliberate ex-
ploration policy relative to a naive policy such as playing
isotropic noise. The next several examples illustrate that
the task specific pure exploration framework generalizes far
beyond this simple system identification task.

Example 1.1 (Pure Exploration LQR). In the LQR problem,
the agent’s objective is to design a policy that minimizes
the infinite-horizon cumulative cost, with losses `(x, u) :=
x
>
Rxx+ u

>
Ruu. The resultant cost function is

JLQR,✓? [⇡] := lim
T!1

E✓?,⇡

"
1

T

TX

t=1

x
>

t
Rxxt + u

>

t
Ruut

#
.

It is well known that the optimal policies are of the form
ut = Kxt where K 2 R

du⇥dx ; we denote these policies
⇡
K , and let JLQR,✓(K) = JLQR,✓[⇡K ]. Here our decision a

is the controller K and our loss J✓ is JLQR,✓. Under stan-
dard conditions, J✓(·) admits a unique minimizer, which we
denote Kopt(✓). Furthermore, both J✓ and Kopt are smooth
functions of K and ✓, respectively, and can be shown to sat-
isfy Assumption 1.

Example 1.2 (Inverse Reinforcement Learning). In this
setting, we assume there is some agent playing accord-
ing to the control law u

agent
t

= K
agent

xt in the sys-
tem ✓? = (A?, B?), inducing the closed-loop dynamics
Acl,? = A? + B?K

agent. Furthermore, we assume that
K

agent = Kopt(✓?;Ru,?) for some parameter Ru,? 2 R
da

and a known map Kopt(·; ·). A?, B? and Ru,? are unknown,
but we are told the value of Kagent (e.g., estimated through
observation of the agent’s actions). We assume we have
access to the closed-loop system

xt+1 = Acl,?xt +B?ut + wt

and our goal is to infer the parameter, Ru,?, the player is
utilizing. This can be thought of as an inverse reinforcement
learning problem, where we assume the agent is playing in
order to minimize some cost parameterized by Ru,?, and
we want to determine what the cost is. In this setting our

decision a is the cost vector Ru and we define our loss as:

JIRL,✓(Ru) = kRu �Ru,opt(✓)k2F
and the certainty equivalence estimate as:

Ru,opt(✓) = argmin
Ru2Rda

kKagent �Kopt(✓;Ru)k2F.

Under amenable parameterizations of Kopt(✓?;Ru,?), this
will satisfy Assumption 1.
Example 1.3 (System Identification with Parametric Un-
certainty). Consider the system identification problem
where we only care about estimating particular entries of
(A?, B?)—for example, the gain of a particular actuator
or the friction coefficient of a surface. In this setting, we
choose our loss to be:

JSID,✓(b✓) = kb✓ � ✓?k2M := vec(b✓ � ✓?)
>
Mvec(b✓ � ✓?)

where M ⌫ 0 has a value of 0 at coordinates which cor-
respond to the known entries of (A?, B?) and a value of 1
at coordinates which correspond to the unknown entries of
(A?, B?). Our decision, ba, is the least squares estimate of
✓?.
Example 1.4 (Linear Experimental Design). If A? = 0,
B

>

?
= �? 2 R

du , (1.1) reduces to

yt = �
>

?
ut + wt (1.2)

for yt, wt 2 R, ut 2 R
du . This is the standard linear re-

gression setting, and our framework therefore encompasses
optimal linear experiment design in arbitrary smooth losses
(Pukelsheim, 2006). For example, we may consider the
A-optimal objective JLED,�?(�) = k� � �?k22. Alterna-
tively, we could minimize the negative log-likelihood rela-
tive to some reference distribution ⌫ so that JLED,�?(�) =
EU⇠⌫,Y⇠p(·|U,�?)[� log(p(Y |U,�))] where P (Y |U,�?) is
the likelihood of observations such that yt ⇠ p(·|ut,�?)
(Chaudhuri & Mykland, 1993; Chaudhuri et al., 2015;
Pronzato & Pázman, 2013). Non-smooth G-optimal-like
objectives such as J�?(�) = maxx2X hx, b� � �?i2 for
some finite set X ⇢ R

du can be captured in our frame-
work by using an approximate smoothed objective such as
JLED,�?(�) =

1
�
log

⇣P
x2X

e
�hx,���?i

2
⌘

for large �.

Many other examples exist—from more general control
problems, to incentive design, and beyond. As we will
show, there is a provable gain to performing task-guided
exploration on examples such as these. We present our
results for general loss functions J , but consider several of
the examples stated here in more detail in Section 3.

1.4. Related Works

Experiment Design and Control. Experiment design
has over a century-old history in statistics, and numerous sur-
veys have been written addressing its classical results (see
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e.g. (Pukelsheim, 2006; Pronzato & Pázman, 2013)). More
recently, (Chaudhuri et al., 2015) gives a non-asymptotic
active learning procedure for adaptive maximum likelihood
estimation, again adapting the design to the unknown pa-
rameter of interest; unlike our work, their setting does not
address dynamical systems.

In the controls literature, there has been significant attention
devoted to optimally exciting dynamical systems (Mehra,
1976; Goodwin & Payne, 1977; Jansson & Hjalmarsson,
2005; Gevers et al., 2009; Manchester, 2010; Hägg et al.,
2013) to optimize classical design criteria for system iden-
tification. More recent works (Hjalmarsson et al., 1996;
Hildebrand & Gevers, 2002; Katselis et al., 2012) have
focused on designing inputs to meet certain task-specific
objectives, as is the focus of this work. In control, the op-
timal design depends on the unknown parameters of the
system, and prior work rely on either robust experiment
design (Rojas et al., 2007; 2011; Larsson et al., 2012; Hägg
et al., 2013) or adaptive experimental design (Lindqvist &
Hjalmarsson, 2001; Gerencsér & Hjalmarsson, 2005; Baren-
thin et al., 2005; Gerencsér et al., 2007; 2009), the method
of choice in this work, to address this challenge. Past re-
sults were often heuristic, and rigorous bounds are asymp-
totic in nature (Gerencsér et al., 2007; 2009). In contrast,
we provide finite sample upper bounds, and unconditional
information-theoretic lower bounds which validate the opti-
mality of our approach. Our adaptive algorithm also admits
an efficient implementation via projected gradient descent,
whereas past designs require the solution of semi-definite
programs, which may be prohibitive in high dimensions.

More recently, (Wagenmaker & Jamieson, 2020) provided
a finite sample analysis of system identification in the op-
erator norm. Our work shows that designs which optimize
operator norm recovery can fare arbitrarily worse for con-
trol tasks compared to task-optimal designs. Moreover, the
techniques in this work translate to providing an efficient
implementation of the computationally inefficient procedure
proposed by (Wagenmaker & Jamieson, 2020). In addition,
our lower bounds consider a more realistic “moderate �”
regime (see Remark D.1 for comparison).

Non-Asymptotic Learning for Control. While the adap-
tive control problem has been extensively studied within
the controls community (Åström & Wittenmark, 2013), ma-
chine learning has produced considerable recent interest in
finite-time performance guarantees for system identification
and control, guarantees which the classical adaptive control
literature lacked. In the control setting, results have fo-
cused on finite time regret bounds for the LQR problem with
unknown dynamics (Abbasi-Yadkori & Szepesvári, 2011;
Dean et al., 2017; 2018; Mania et al., 2019; Dean et al.,
2019; Cohen et al., 2019), with (Simchowitz & Foster, 2020)
ultimately settling the minimax optimal regret in terms of

dimension and time horizon. Others have considered re-
gret in online adversarial settings (Agarwal et al., 2019;
Simchowitz et al., 2020). Recent results in system identifi-
cation have focused on obtaining finite time high probability
bounds on the estimation error of the system’s parameters
when observing the evolution over time (Tu et al., 2017;
Faradonbeh et al., 2018; Hazan et al., 2018; Hardt et al.,
2018; Simchowitz et al., 2018; Sarkar & Rakhlin, 2018; Oy-
mak & Ozay, 2019; Simchowitz et al., 2019; Sarkar et al.,
2019; Tsiamis & Pappas, 2019). Existing results rely on ex-
citation from random noise to guarantee learning and do not
consider the problem of learning with arbitrary sequences of
inputs or optimally choosing inputs for excitation. Recent
work has begun to consider instance-optimal bounds with
more targeted excitation (Wagenmaker & Jamieson, 2020;
Ziemann & Sandberg, 2020); the former is discussed above.
The latter presents an asymptotic, instance-dependent lower
bound for the online LQR problem. Our results, in contrast,
consider offline pure-exploration for a class of tasks much
more general than LQR, and are finite-time. Furthermore,
(Ziemann & Sandberg, 2020) do not provide a matching
upper bound for their lower bound.

Reinforcement Learning. Viewing linear dynamical sys-
tems as a particular class of Markov Decision Processes
(MDPs), our work can also be seen as studying PAC re-
inforcement learning (RL), where the goal is to find an
✏-good policy with probability 1 � � on a fixed MDP and
reward function. Existing literature on PAC RL has tended
to focus on obtaining coarse, worst-case bounds (Dann &
Brunskill, 2015; Dann et al., 2017; 2019; Ménard et al.,
2020). Only recently has progress been made in obtain-
ing instance-dependent bounds, and here the results are
either restricted to the much simpler generative model set-
ting (Zanette et al., 2019; Marjani & Proutiere, 2020), or are
asymptotic in nature and only apply to finding the optimal
policy (Marjani et al., 2021). In contrast, our work pro-
vides tight, non-asymptotic, and instance-dependent upper
and lower bounds for finding ✏-good policies, albeit in a
restricted class of continuous RL problems.

1.5. Organization

The remainder of this paper is organized as follows. In Sec-
tion 2 we provide an overview of our results, state an infor-
mal version of TOPLE, and introduce the essential quantities
used in our analysis. Section 3 states several corollaries
of our main result in specific settings and gives our bound
for the LQR problem. Section 4 provides explicit examples
where task-guided exploration yields provable gains over
task-agnostic exploration, and Section 5 presents numerical
experiments demonstrating that this improvement occurs
in practice as well. We close in Section 6 with several
interesting questions motivated by this work.
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2. Summary of Results
We now turn to the presentation of our results. We assume
we are in the setting described in Section 1.2. Throughout,
we let O?(·) suppress terms polynomial in problem param-
eters, log 1

�
, and log log T ; we let a . b if a  C · b for a

universal constant C > 0.

2.1. Optimality of Certainty Equivalence

Before describing the optimal exploration policy for collect-
ing data, we resolve the optimal procedure for synthesizing
a decision, and its sample complexity. Given a trajectory
⌧ = (x1:T+1, u1:T ), the least squares estimator of ✓? is

b✓ls(⌧) := argmin
A,B

TX

t=1

kxt+1 �Axt �Butk22.

Note that b✓ls is the maximum-likelihood estimator of ✓?.
For our upper bounds, we propose the certainty-equivalent
decision rule:
Definition 2.1. The certainty equivalence decision rule se-
lects the optimal control policy for the least-squares estimate
of the dynamics; ce(⌧) := aopt(b✓ls(⌧)).

Certainty Equivalence has a long history in controller design
(Theil, 1957; Simon, 1956). To analyze this strategy, we
quantify both the error in our least squares estimator, and
how it translates into uncertainty about the control synthesis.
The former is quantified in terms of the expected covariance
matrices under exploration policies:

�T (⇡; ✓) :=
1

T
E✓,⇡

"
TX

t=1


xt

ut

� 
xt

ut

�>#
,

�T (⇡; ✓) := Idx ⌦ �T (⇡; ✓).

where ⌦ denotes the Kronecker product. The latter requires
that we measure how uncertainty in ✓ translates into uncer-
tainty about the optimal decision rule for the task of interest:

Definition 2.2 (Model-Task Hessian and Idealized Risk).
We define the model-task Hessian as

H(✓?) := r 2
✓
R✓?(aopt(✓))

��
✓=✓?

,

and the idealized risk

�T (⇡; ✓?) := tr(H(✓?)�T (⇡; ✓?)
�1).

Intuiviely, the model-task Hessian measures the local curva-
ture of J✓?(a), as the decision a varies along the directions
of optimal policies aopt(✓) for parameters ✓ in a neighbor-
hood of ✓?. The idealized risk capture how the least-squares
error propagates through this uncertainty.

Our results will show that � characterizes the instance-
optimal sample complexity for decision making, and con-
sequently, by optimizing over ⇡, of pure exploration. To
formalize this, we require a notion of local minimax risk:
Definition 2.3 (Decision-Making Local Minimax Risk).
Let B ⇢ ⇥ denote a subset of instances. The T -sample
local minimax decision risk on B under exploration policy
⇡exp is

M⇡exp(R;B) := min
dec

max
✓2B

E⌧⇠✓,⇡exp [R✓(dec(⌧))]

where the minimization is over all maps from trajecto-
ries to decisions. Typically, we shall let B take the form
BF(r; ✓?) := {✓ : k✓ � ✓?kF  r}.

By choosing B to contain only instances close to ✓?, the
local minimax risk captures the difficulty of completing
our task on the specific instance ✓?, yielding an effectively
instance-specific lower bound. Finally, we make the follow-
ing assumption on the system dynamics.
Assumption 2. Let ⇥ denote the set of all stable ✓: ⇥ :=
{✓ = (A,B) : ⇢(A) < 1}, where ⇢(A) denotes the spectral
radius of A. We assume that ✓? 2 ⇥.

While this assumption restricts our results to stable systems,
similar assumptions are standard in much of the recent lit-
erature. Appendix C discusses generalization to unstable
systems. Under this assumption we have the following re-
sult.
Theorem 2.1 (Optimality of Certainty Equivalence). Let
⇡exp be any sufficiently regular policy, and consider J✓(a)
and aopt(✓) satisfying Assumption 1 and ✓? satisfying As-
sumption 2. Then for all � 2 (0, 1/3) and all T sufficiently
large, a trajectory ⌧ generated by ⇡exp and ✓? satisfies the
following with probability 1� �,

R✓?(ce(⌧)) . �
2
w
log(dx

�
) · �T (⇡exp; ✓?)

T
+ O?

�
1

T 3/2

�
.

Moreover, for some r = ⌦(1/T 5/12), and B = BF(r; ✓?),
the synthesis minimax risk is lower bounded as

M⇡exp(R;B) � �
2
w

3
· �T (⇡exp; ✓?)

T
�O?

�
1

T 5/4

�
.

In Appendix B we state the full version of this result, which
holds in a more general martingale decision making set-
ting encompassing certain instances of the nonlinear system
formulation considered in (Mania et al., 2020). This result
establishes that, for a given exploration policy ⇡exp and for
T sufficiently large, the certainty equivalence decision ce(⌧)
is the locally minimax optimal synthesis rule—there does
not exist a more efficient way to utilize the acquired informa-
tion to produce a decision. Note that, under some reasonable
assumptions, an expectation bound can be obtained from
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the high probability bound. We precisely quantify what it
means for a policy to be sufficiently regular in Appendix B.
In short, it entails that the policy sufficiently excites the
system, and that the covariates concentrate to their mean.
Lastly, note that our lower bound differs substantively from
the � ! 0 lower bounds common in the adaptive estimation
literature (see Remark D.1). Appendix C provides a more
thorough discussion of these points.

Proof Sketch of Theorem 2.1. For the proof of the lower
bound, we first show that for any decision ba = dec(⌧) for
which R✓(ba) is small, we can infer an instance b✓(ba) such
that kb✓(ba)� ✓k2

H(✓?)
is also small (see Appendix E). This

equivalence reduces our problem to that of estimating ✓ in
the H(✓?) norm. We then show a lower bound on a Gaussian
martingale regression problem with general quadratic losses
via a careful though elementary Bayesian MMSE compu-
tation. Unlike vanilla Cramer-Rao, this approach allows us
to obtain a lower bound which holds for any estimator, not
simply unbiased estimators (see Appendix D). Combining
these results gives the stated lower bound. The proof of our
upper bound mirrors this: we approximate R✓?(ce(⌧)) as
a quadratic, kb✓(⌧) � ✓?k2H(✓?)

, and prove an upper bound
on the error of the least squares estimator for martingale
regression in general norms (see Appendix F).

2.2. Task-Optimal Experiment Design

Given that the optimal risk for a fixed exploration policy
⇡exp is governed by

�T (⇡exp; ✓?) = tr(H(✓?)�T (⇡exp; ✓?)
�1),

it stands to reason that the optimal design procedure seeks
to minimize this quantity. To this end, we introduce several
quantities describing the optimality properties.

Definition 2.4 (Power-Constrained Policies). Let ⇧�2 de-
note the set of causal polices that have expected average
power bounded as �

2. That is, for any ⇡ 2 ⇧�2 , we will
have E✓,⇡[

P
T

t=1 kutk22]  T�
2 for all ✓.

Definition 2.5 (Optimal Risk). We define:

�opt(�
2; ✓?) := lim inf

T!1

inf
⇡exp2⇧�2

�T (⇡exp; ✓?),

the risk obtained by the policy minimizing the complexity
�T (⇡exp; ✓?).

Definition 2.6 (Exploration Local Minimax Risk). Let B ⇢
⇥ denote a subset of instances. The T -sample local minimax
exploration risk on B with budget �2 is

M�2(R;B) := min
⇡exp2⇧�2

min
dec

max
✓2B

E⌧⇠✓,⇡exp [R✓(dec(⌧))].

Algorithm Sketch. We are now ready to state our algo-
rithm. TOPLE proceeds in epochs. At each epoch it chooses
a policy ⇡ that minimize the certainty-equivalence design
objective, �T (⇡; b✓), based on the estimate of the system’s
parameters produced in the previous epoch. As the estimate
of ✓? is refined, the exploration policy is improved, and
ultimately achieves near-optimal excitation of the system
for the task of interest.

In the policy optimization step on Line 6, we optimize over
a restricted class of policies, ⇧p

�2 , which contains only pe-
riodic signals. As we show, this restriction is expressive
enough to contain a near-optimal policy, while allowing us
to represent �T (⇡; b✓i) in a convenient frequency-domain
form. We then adopt a (sharp) convex relaxation of these
policies that transforms the experiment design into a convex
program, admitting a simple, efficient projected gradient
descent implementation. A formal definition of TOPLE and
detailed explanation of these points is given in Appendix B.

Algorithm 1 Task-OPtimaL Experiment Design (TOPLE),
Informal

1: Input: Initial epoch length T0, budget �2

2: ⇡0  N (0, �2
/du · I).

3: for phase i = 0, 1, 2, . . . do
4: Run system for T02i steps, playing input

ut = ⇡i(x1:t, u1:t�1)
5: Compute least squares estimate

b✓i 2 argmin
A,B

P
T

t=1kxt+1 �Axt �Butk22
6: Select policy for epoch i+ 1,

⇡i+1  argmin⇧p

�2
tr(H(b✓i)�T (⇡; b✓i)�1)

Theorem 2.2 (Task-Optimal Experiment Design). Consider
J✓(a) and aopt(✓) satisfying Assumption 1 and ✓? satisfying
Assumption 2. For sufficiently large T , the trajectory ⌧
generated by Algorithm 1 enjoys the following guarantee
with probability at least 1� �:

R✓?(ce(⌧)) . �
2
w
log(dx

�
) · �opt(�2; ✓?)

T
+ O?

�
1

T 3/2

�
.

Moreover, it produces inputs satisfying
E✓?,TOPLE[

P
T

t=1 kutk22]  T�
2, and can be imple-

mented in polynomial time. Finally, for r = O?(1/T 5/12)
and B = BF(r; ✓?), the local minimax risk is lower
bounded by

M�2(R;B) � �
2
w

64
· �opt(�2; ✓?)

T
�O?

�
1

T 5/4

�
.

We emphasize that the only assumptions needed for Theo-
rem 2.2 to hold are that our system, ✓?, is stable, and that
the loss we are considering, R✓?(a), is sufficiently smooth.
For any system and any loss satisfying these minimal as-
sumptions, including those stated in Section 1.3, Theorem
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2.2 shows that certainty equivalence decision making is
instance-wise optimal, and that TOPLE hits this optimal rate.
Furthermore, while TOPLE relies on experiment design, its
sample complexity is also optimal over algorithms which
incorporate feedback. We precisely quantify the lower order
terms and burn-in times necessary for this result to hold in
Appendix B, and consider relaxations to our assumptions in
Appendix C.

Proof Sketch of Theorem 2.2. The key technical difficulty
lies in proving that our restricted class of policies, ⇧p

�2 ,
contains a near-optimal policy. We show this in Ap-
pendix H by a careful truncation argument and application
of Caratheodory’s Theorem. Given this, the lower bound
follows by a similar argument as in Theorem 2.1. For the
upper bound, we show that once ✓? has been estimated well
enough, the certainty equivalence experiment design on
Line 6 achieves the near-optimal rate (see Appendix J).

3. Interpreting the Results
To make our results more concrete, we return to the exam-
ples introduced in Section 1.3, and show how TOPLE applies
in these settings.

3.1. Instance-Optimal LQR Synthesis

Consider the pure exploration LQR problem stated in Exam-
ple 1.1. We define

RLQR,✓?(K) := JLQR,✓?(K)�min
K

JLQR,✓?(K)

where JLQR,✓?(K) is given in Example 1.1. Recall the dis-
crete algebraic Ricatti equation, defined for some (A,B):

P = A
>
PA�A

>
PB(Ru +B

>
PB)B>

PA+Rx

If ✓ is stabilizable and Rx, Ru � 0, it is a well-known
fact that this has a unique solution, P ⌫ 0. We denote the
solution for the instance ✓? = (A?, B?) by P?. We also
recall the definition of the H-infinity norm of a system:

kA?kH1
= max

!2[0,2⇡]
k(e◆!I �A?)

�1kop

Finally, we let �LQR(�2; ✓?) := �opt(�2; ✓?) in the case
when our loss is the LQR loss, J✓? = JLQR,✓? . Given these
definitions, the following corollary shows the performance
of TOPLE on the pure exploration LQR problem, and that
relevant quantities can be expressed in terms of the problem-
dependent constants kP?kop, kB?kop, and kA?kH1

.
Corollary 1. As long as T � CLQR(dx log

2
T + d

2
x
), with

probability at least 1 � �, TOPLE achieves the following
rate for the LQR problem:

RLQR,✓?(ce(⌧)) . �
2
w
log(dx

�
) · �LQR(�2; ✓?)

T
+ CLQRd

5
x

T 3/2 .

Furthermore, any algorithm must incur the following loss:

M�2(RLQR;B) �
�
2
w

64
· �LQR(�2; ✓?)

T
� CLQRd

5
x

T 5/4

where B is as in Theorem 2.2 and CLQR = C
0

LQR/

min{�6
w
, �

6
/d

3
u
, 1} for C

0

LQR polynomial in kP?kop,
kB?kop, kB?k�1

op , kA?kH1
, kRukop, �2

,�
2
w
, du, log log T ,

and log 1
�

.

As this result shows, TOPLE is instance-optimal for the LQR
problem, with sample complexity governed by the constant
�LQR(�2; ✓?). To the best of our knowledge, this is the first
algorithm provably instance-optimal for LQR—albeit in the
offline LQR setting.

3.2. System Identification in Arbitrary Norms

Next, we consider the case of system identification in ar-
bitrary norms outlined in Example 1.3. In this setting
our loss is RSID,✓?(b✓) := JSID,✓?(b✓) = kb✓ � ✓?k2M , and
it can be shown our idealized risk is �T (⇡exp; ✓?) =
tr(M�T (⇡exp; ✓?)�1). Defining

�SID(�
2; ✓?) := lim inf

T!1

inf
⇡exp2⇧�2

tr(M�T (⇡exp; ✓?)
�1)

Theorem 2.2 implies that

RSID,✓?(ce(⌧)) . �
2
w
log(dx

�
) · �SID(�2; ✓?)

T
+ CSIDtr(M)d3

x

T 3/2

and that this rate is instance-optimal, for some constant
CSID polynomial in kB?kop, kA?kH1

, �2
,�

2
w
, du, log 1

�
,

and log log T . In particular, if M = I our loss RSID,✓?(b✓)
reduces to the Frobenius norm, implying that TOPLE is the
optimal Frobenius norm identification algorithm.

4. Task-Guided Exploration yields Provable
Gains

We turn now to several examples which illustrate that taking
into account the task of interest when performing explo-
ration yields provable gains over task-agnostic exploration
schemes. We focus on the LQR setting and compare against
the following natural exploration baselines:

• System Identification in Operator Norm (Wagen-
maker & Jamieson, 2020): Let ⇡op denote the
exploration policy that is optimal for estimating
✓? = (A?, B?) under the operator norm kb✓ �
✓?kop = sup

u:kuk21 k(b✓� ✓?)uk2. Explicitly, ⇡op =
argmax

⇡2⇧�2
�min(�T (⇡; ✓?)).

• System Identification in Frobenius Norm: Let ⇡fro

denote the exploration policy that is optimal for es-
timating ✓? = (A?, B?) under the Frobenius norm:
⇡fro = argmin

⇡2⇧�2
tr(�T (⇡; ✓?)�1).
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• Task-Optimal Gaussian Noise: Let ⇡noise

denote the exploration policy such that
⇡noise =: ⇡noise(⇤?) where ⇡noise(⇤?)
plays the inputs ut ⇠ N (0,⇤?) and ⇤? =
argmin⇤:tr(⇤)�2 tr(H(✓?)�T (⇡noise(⇤); ✓?)�1).

In stating our results, we overload notation and let
RLQR,✓?(⇡exp) = RLQR,✓?(ce(⌧)) for ⌧ ⇠ ⇡exp, ✓?. We
are concerned primarily in how the complexity scales with
the dimension, dx, and 1

1�⇢
where ⇢ is the spectral radius of

the system, and use ⇥(·) and O(·) to suppress lower order
dependence on these terms. Our first example shows that,
if (A?, B?) is properly structured, TOPLE achieves a tighter
scaling in 1

1�⇢
than all naive exploration approaches.

Proposition 4.1. Consider the system A? = ⇢e1e>1 , B? =
bI , Rx = I , and Ru = µI . There exist values of b,, µ,
and �w such that the loss of TOPLE, optimal operator norm
identification (Wagenmaker & Jamieson, 2020), optimal
Frobenius norm identification, and optimally exciting Gaus-
sian noise have the following scalings:

RLQR,✓?(TOPLE) = O
⇣

d
2
x

(1�⇢)2
�
2
w

�2T

⌘

RLQR,✓?(⇡fro) = ⇥
⇣⇣

d
2
x

(1�⇢)2 + dx

(1�⇢)5/2

⌘
�
2
w

�2T

⌘

RLQR,✓?(⇡op) = ⇥
⇣⇣

d
2
x

(1�⇢)2 + dx
(1�⇢)3

⌘
�
2
w

�2T

⌘

RLQR,✓?(⇡noise) = ⇥
⇣⇣

(1�⇢)�1+d
4
x(1�⇢)

(1�⇢)2

⌘
�
2
w

�2T

⌘
.

TOPLE achieves the optimal scaling in 1
1�⇢

and, as ⇢! 1,
will outperform other approaches by an arbitrarily large fac-
tor. In addition, we note that Frobenius norm identification
outperforms operator norm identification for this task. A
key ingredient in the proof of this result is our convex re-
laxation of the optimal policy computation. Intuitively, on
this instance, the first coordinate is easily excited and ⇡op

and ⇡fro will therefore devote the majority of their energy
to reducing the uncertainty in the remaining coordinates.
However, the LQR cost will primarily be incurred in the first
coordinate due to the same effect—this coordinate is easily
excited and therefore the first coordinate of the state grows
at a much faster rate. As such, the task-optimal allocation
does the opposite of ⇡op and ⇡fro and seeks to learn the first
coordinate more precisely than the remaining coordinates
so as to mitigate this growth.

In our next example, our system behaves isotropically but
our costs are non-isotropic. As a result, certain directions in-
cur greater cost than others, and the task-optimal allocation
seeks to primarily reduce uncertainty in these directions.
Proposition 4.2. Consider the system A? = ⇢I, B? =
I, Rx = I + e1e

>

1 and Ru = µI . Then there exists a
choice of µ,, and �w such that

RLQR,✓?(TOPLE) = O
⇣

1
(1�⇢)4

�
2
w

�2T

⌘

RLQR,✓?(⇡op) = RLQR,✓?(⇡fro) = ⇥
⇣

dx
(1�⇢)4

�
2
w

�2T

⌘

RLQR,✓?(⇡noise) = ⇥
⇣

d
2
x

(1�⇢)4
�
2
w

�2T

⌘
.

We note that TOPLE improves on task-agnostic exploration
by a factor of at least the dimensionality. These examples
make clear that, in the setting of a linear dynamical system,
when our goal is to perform a specific task, exploration
agnostic to this task can be arbitrarily suboptimal.

4.1. Suboptimality of Low-Regret Algorithms

In contrast to our pure-exploration setting, where we do not
incur cost during exploration, a significant body of work
exists on regret-minimization for the online LQR problem
with unknown A?, B?. Here the goal is to choose a low
regret policy ⇡lr so as to minimize

Reg
T
:= E✓?,⇡lr

hP
T

t=1`(xt, ut)
i
� T min

K

JLQR,✓?(K)

for `(xt, ut) as defined in Example 1.1. While our objec-
tives differ, it would seem a natural strategy to run a low-
regret algorithm for T steps to obtain a controller Klr, and
then evaluate the cost JLQR,✓? on this Klr. The following
result shows that there is a fundamental tradeoff between re-
gret and estimation; in particular, the optimal ⇥?(

p
T ) (see

(Simchowitz & Foster, 2020)) regret translates to a (very
suboptimal) ⌦?(1/

p
T ) excess risk R✓?,LQR(Klr).

Proposition 4.3 (Suboptimality of Low Regret, Informal).
For any sufficiently large T and any regret bound R 2
[
p
T , T ], any policy ⇡lr with regret E⇡lr,✓? [RegT ]  R

which returns a controller Klr as a function of its trajectory
must have E✓?,⇡lr [RLQR,✓?(Klr)] = ⌦?(

d
2
udx

R
).

In particular, Proposition 4.3 implies that popular low-regret
strategies, such as optimism-in-the-face-of-uncertainty
(Abbasi-Yadkori & Szepesvári, 2011; Abeille & Lazaric,
2020), are highly suboptimal in our setting. The key intu-
ition behind the proof is that low regret algorithms converge
to inputs ut ⇡ K?xt approaching the optimal control pol-
icy; in doing so, they under-explore directions perpendicular
to the hyperplane {(x, u) : u = K?x}, which are necessary
for identifying the optimal control policy. We formally state
and prove this result in Appendix C.7.

5. Numerical Experiments
Finally, we show that task-guided exploration yields prac-
tical gains. Figures 1, 2, and 3 illustrate the performance
of TOPLE on several instances of the pure-exploration LQR
problem. We compare against the baselines presented in Sec-
tion 4 and the oracle task-optimal algorithm (which we refer
to as “TOPLE Oracle”). For all baselines, we compute the
inputs in an oracle, offline manner, using knowledge of A?
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Figure 1. LQR loss vs time on A? a Jordan
block and B?, Rx, Ru randomly generated.
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Figure 2. LQR loss when varying ⇢ on ex-
ample stated in Proposition 4.1.
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Figure 3. LQR loss when varying dx on exam-
ple stated in Proposition 4.2.

and B?, and play them for the entire trajectory. Our imple-
mentation of TOPLE follows precisely the formal statement
of the algorithm given in Appendix B, and we rely on the
aforementioned convex relaxation and a projected gradient
descent solution to efficiently solve the experiment design
problem. This convex relaxation can, in fact, also be ap-
plied to the optimal operator norm identification algorithm,
rendering the algorithm from (Wagenmaker & Jamieson,
2020) computationally efficient. We therefore rely on this
relaxation and a projected subgradient descent method in
our implementation of the operator norm identification algo-
rithm. All data points correspond to averaging over at least
50 runs of the algorithm. Additional details and plots with
error bars are provided in Appendix M.

Figures 2 and 3 illustrate performance on the instances stated
in Proposition 4.1 and Proposition 4.2, respectively. Every
point in the plot corresponds to the LQR loss obtained after
T = 60000 steps. As these plots clearly illustrate, the theo-
retical gains stated in Proposition 4.1 and Proposition 4.2
appear in practice as well—there is a clear improvement
in terms of the scaling in ⇢ and dx when performing task-
guided exploration, even over moderate time regimes. Fig-
ure 1 illustrates the performance of TOPLE on a more “typi-
cal” problem instance: A? a single Jordan block and B?, Rx,
and Ru randomly generated. Figure 1 gives the average loss
versus time obtained by averaging the performance over
15 different realizations of B?, Rx, Ru. As in the previous
examples, TOPLE outperforms all other approaches.

6. Conclusion
In this work, we have shown that task-guided exploration of
an unknown environment yields significant improvements
over task-agnostic exploration. Furthermore, we have de-
rived an instance- and task-optimal exploration algorithm
which applies to a wide range of decision making problems,
and derived corresponding instance- and task-dependent
lower bounds. Our results also establish that certainty equiv-
alence decision making is optimal, and we obtain the first

instance-optimal algorithm for the LQR problem. This work
raises several interesting questions:

• While our martingale decision making setting encom-
passes certain classes of nonlinear systems, all our
results fundamentally rely on linear observations of the
parameter of interest, ✓?. Task-optimal exploration re-
mains an open question for general nonlinear systems,
and is an interesting future direction.

• We show that the smoothness conditions on our loss
are met by a wide range of decision making prob-
lems. However, it remains an interesting future direc-
tion to obtain an optimal algorithm that holds without
these smoothness assumptions. As (Wagenmaker &
Jamieson, 2020) shows, when the loss is the operator
norm—which we note does not satisfy our smooth-
ness assumption—the optimal algorithm takes a form
very similar to TOPLE. Does a general algorithm and
analysis exist for both smooth and non-smooth losses?

• Our work focuses on the offline, pure-exploration set-
ting. Extending our analysis to obtain instance- and
task-optimal rates in the online setting is an interesting
direction of future work. For the online LQR problem,
(Simchowitz & Foster, 2020) obtain the optimal scal-
ing in terms of dimension but their rates are suboptimal
in terms of other problem-dependent constants. On the
lower bound side, (Ziemann & Sandberg, 2020) pro-
vide an instance-dependent lower bound but give no
upper bound. Solving this problem may require new
algorithmic ideas, and we leave this for future work.
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