
Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

Appendix

A. Primer on GP and BO
Gaussian processes We consider a GP surrogate model
for a black-box function f which takes an input z =
[h,x] and returns an output y = f(z) + ε where ε ∼
N (0, σ2). Here, the input includes a continuous vari-
able x and a categorical variable h. A GP defines a
probability distribution over functions f under the as-
sumption that any finite subset {(zi, f(zi)} follows a nor-
mal distribution (Rasmussen, 2006). Formally, a GP is
denoted as f(z) ∼ GP (m (z) , k (z, z′)), where m (z)
and k (z, z′) are called the mean and covariance func-
tions respectively, i.e. m(z) = E [f (z)] and k(z, z′) =
E
[
(f (z)−m (z))(f (z′)−m (z′))T

]
. The covariance

function (kernel) k(z, z′) can be thought of as a similarity
measure relating f(z) and f(z′). There have been various
proposed kernels which encode different prior beliefs about
the function f(z), typically in the continuous space. Popular
choices include the Square Exponential kernel, the Matérn
kernel (Rasmussen, 2006).

Assume the zero mean prior m(z) = 0, to predict f∗ =
f (z∗) at a new data point z∗, we have,[

f
f∗

]
∼ N

(
0,
[
K kT∗
k∗ k∗∗

])
, (5)

where k∗∗ = k (z∗, z∗), k∗ = [k (z∗, zi)]∀i≤N and
K = [k (zi, zj)]∀i,j≤N . Combining Eq. (5) with the fact
that p (f∗ | f) follows a univariate Gaussian distribution
N
(
µ (z∗) , σ2 (z∗)

)
, the GP posterior mean and variance

can be computed as,

µ (z∗) =k∗
[
K + σ2I

]−1 y,

σ2 (z∗) =k∗∗ − k∗
[
K + σ2I

]−1 kT∗ .

As GPs give full uncertainty information with any prediction,
they provide a flexible nonparametric prior for Bayesian
optimisation. We refer the interested readers to Rasmussen
(2006) for further details on GPs.

Bayesian optimisation Bayesian optimisation is a pow-
erful sequential approach to find the global optimum of an
expensive black-box function f(z) without making use of
derivatives. First, a surrogate model is learned from all the
current observed data Dt = {zi, yi}ti=1 to approximate the
behavior of f(z). Second, an acquisition function is de-
rived from the surrogate model to select new data points that
mostly inform about the global optimum. The process is
conducted iteratively until the evaluation budget is depleted,
and the global optimum is estimated based on all the sam-
pled data. In-depth discussions about Bayesian optimisation
beyond this brief overview can be found in recent surveys
(Brochu et al., 2010; Shahriari et al., 2016; Frazier, 2018).

B. Additional Experimental Results

B.1. Running Time Comparison

In this section, we provide comparison of CASMOPOLITAN
against some baselines in terms of wall-clock running time
on a number of problems considered. However, since we
conduct our experiments on a shared server, inevitably there
are fluctuations in wall clock time depending on the server
load, leading to (perhaps rather significant) amount of uncer-
tainty over the computing time reported here and thus, the
figures here are for ballpark reference only. CASMOPOLI-
TAN scales O(N3), where N here refers to the number
of training data (note that in CASMOPOLITAN, this is not
necessarily the total number of observations, but only the
number of training samples of the GP surrogate of the cur-
rent restart), which is the time complexity of any GP-BO
method where the computational bottleneck is the inversion
of the covariance matrix (Shahriari et al., 2016). Practically,
due the implementation in Gpytorch which utilises Black-
box Matrix-matrix (BBMM) multiplication which reduces
the cost of exact GP inference to O(N2) (Gardner et al.,
2018). Overall, the computing cost of CASMOPOLITAN is
generally comparable to TURBO. On the other hand, previ-
ous methods generally scale worse. For example, in addition
to the inherent O(N3) complexity (or O(N2) if BBMM is
similarly exploited), COMBO additionally incurs the cost in
the graph Fourier transform of O(

∑dh

i=1 n
3
h) using the no-

tations of our paper (Proposition 2.3.1 in Oh et al. (2019)).
Furthermore, it also uses slice sampling for the approxi-
mate marginalisation of the posterior predictive distribution,
which is arguably more expensive than simple optimisation
of the log marginal-likelihood. A single iteration of BOCS
incurs complexity of O(N2dh

2) (Baptista and Poloczek,
2018), suggesting that the runtime of BOCS quadratically
also with respect to the dimensionality of the problem. Fur-
thermore, it is worth noting that the quadratic dependence
of dh stems from the second order approximation of their
sparse Bayesian linear regression model. This term will be-
come much more expensive if a higher order approximation
is used, e.g. it becomes dmh if an m-th order approximation
is used.

For the categorical problems, COMBO achieves comparable
performance in terms of the function value at termination in
2 out of 3 problems in Fig. 3 and thus the analysis of comput-
ing cost against it is of our prime interest (other methods are
either not competitive in terms of performance (e.g. TPE),
or are much more expensive and/or more constrained in
applicability (e.g. BOCS). The comparison against COMBO
(and BOCS where applicable) is shown in Table 1, where it
is evident that our method offers around 2-3 times speedup
compared to COMBO, whereas BOCS is orders-of-magnitude
more expensive.

For the mixed problems, we analyse the black-box attack

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

Table 1. Wall-clock time comparison of a single trial (mean± stan-
dard deviation across 20 trials for COMBO and CASMOPOLITAN)
on categorical problems on a shared Intel Xeon server.

Problem Ours COMBO BOCS

Pest 1130±80s 3330±50s ∼ 1d
Contamination 2350±180s 6630±400s n.s.
MAXSAT-60 12100±3000s 34300±2000s o.o.t
n.s: setup not supported
o.o.t: run out-of-time (> 100 hours) and did not finish.

problem. On average, the time taken to attack an image (suc-
cessful or not) is around 45 mins with MVRSM, which uses
ReLU surrogate instead of GP, whereas TURBO and our CAS-
MOPOLITAN run roughly 1.6× and 2.0× more expensive
– TURBO run faster likely due to its more frequent restarts.
However, in realistic setups suitable for BO where either the
objective function evaluation time completely eclipses the
algorithm running time (e.g. tuning of large-scale machine
learning system) or where sample efficiency, as contrasted
wall-clock efficiency, is otherwise more valued (e.g. the
black-box attack setup discussed here), the larger cost of
CASMOPOLITAN is likely justifies by its better performance.
Overall, we believe that CASMOPOLITAN offers a sound bal-
ance between good performance and reasonable computing
cost.

B.2. Additional Problems

Func3C The results are shown in Fig. 7. The results are
broadly comparable to that of Func2C in Fig. 4(a), although
in this case COCABO and vanilla-BO perform more strongly
near the end.

50 100 150 200
Number of evaluations

−0.2

0.0

0.2

0.4

0.6

m
ax

(f(
x)

)

Func3C

Figure 7. Results on Func3C

Noisy Contamination We conduct a further experiment
on the Contamination problem but with an additional noise
variance of 1× 10−2, and the results are shown in Fig. 8. In
this case, we again see CASMOPOLITAN and COMBO outper-
forming the rest and CASMOPOLITAN again enjoys a faster
convergence than the other methods. In this particular case,
COMBO outperforms CASMOPOLITAN, albeit marginally, at
the end.

0 50 100 150
Number of evaluations

21.50

21.75

22.00

22.25

22.50

22.75

23.00

m
in

(f(
x)

)

Contamination_1.0E-02
COMBO
CASMOPOLITAN-1
SMAC
TPE

Figure 8. Results on Contamination problem with noise variance
of 0.01.
Ordinal problems Sometimes we encounter ordinal prob-
lems, which are discrete variables that are similar to the cat-
egorical problems, but unlike categorical, there exists some
kind of ordering between the different values that a variable
can take. For example, in deep learning we often choose
batch size as powers of 2, where possible batch sizes are
{64, 128, 256, 512}. While current methods and popular
packages (e.g. COCABO and the Bayesmark5 package) of-
ten treat these as ordinary categorical variables by ignoring
such ordinal structure, this practice might not be optimal.
In this section, we describe an exemplary adaptation of
CASMOPOLITAN in the ordinal setting that recognises and
leverage such relations, and conduct a preliminary experi-
ment to validate it as a demonstration of the versatility of
our approach.

In our tailored kernel for the categorical variables (Eq. (1)),
we use Kronecker delta function which only has two possi-
ble outcomes: 0 if the two values are different or 1 if the two
values are the same. This is appropriate in the categorical
setting because there exists no ordering amongst different
choices a variable may take (e.g. consider choosing from
{SGD, Adam, RMSPROP}: to SGD, Adam can be considered
“as different as” RMSPROP. However, in ordinal-structured
problems such as the batch size example above, the choice of
128 is certainly “more similar” to 64 than 256. To recognise
this, we modify Eq. (1), reproduced below for convenience:

kh(h,h′) = exp
(1
dn

dh∑
i=1

`iδ(hi, h′i)
)
.

For ordinal variables, we use the ordinal kernel ko by re-
placing the Kronecker delta function with an appropriate
distance metric. One possible formulation is:

ko(h,h′) = exp
(1
dn

dh∑
i=1

`i
(
1− |hi − h′i|
|hi − h′i|max

))
, (6)

where |hi − h′i| is the distance that is dependent on the
problem-specific metric and |hi − h′i|max is the maximum
possible distance (in the context of the batch size problem,

5https://github.com/uber/bayesmark

https://github.com/uber/bayesmark

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

this is 512− 64). Note that when no ordinal structure exists,
|hi − h′i| is either 0 or |hi − h′i|max and Eq. (6) reduces to
the categorical kernel in Eq. (1).

We further include a preliminary empirical validation on
the 2D discretised Branin problem introduced in Oh et al.
(2019), where each dimension of the Branin function in
[−1, 1]2 is discretised into 51 equally spaced points – as
such, the problem has 2 ordinal dimensions with 51 choices
for each. Note that this is a rather extreme example due
to the large number of choices relative to the number of
variables, and the fact that the function landscape resembles
much more to a continuous problem instead of a typical
ordinal one, but we include it for the sake of illustration. We
also do not use trust region for this example due to the low
dimensionality and the fact that the point of this experiment
is to compare categorical and ordinal kernels. We show
the results in Fig. 9, where we also include the results for
COMBO which is the strongest baseline shown to outperform
other methods such as SMAC and TPE in Oh et al. (2019). It
is worth emphasising that COMBO also explicitly accounts
for the ordinal relations, so the comparison of it against
CASMOPOLITAN with ordinal kernel is fair.

0 25 50 75 100
Number of evaluations

10 2

10 1

100

101

Re
gr

et
 m

in
(f(

x)
f*)

Branin
COMBO
OrdKer
CatKer

Figure 9. Results on Discretised Branin. Lines and shades denote
mean and standard error across 20 trials. Note that since the
optimum is known in this case (f∗ = 0.404), in the y-axis we
show the regret in log-scale.

It is clear that CASMOPOLITAN with ordinal kernel
(OrdKer) outperforms both the ordinal-agnostic CAS-
MOPOLITAN (CatKer) and the ordinal-aware COMBO in
both convergence speed and final performance (OrdKer
converges to f∗ every single trial). To show why it is the
case, we plot the GP posterior variance of CASMOPOLI-
TAN with each kernel in Fig. 10: categorical kernel mea-
sures similarity via the Hamming distances only, and thus
each observation hi only reduces posterior variance on the
points sharing at least one common dimension as hi. On the
other hand, ordinal kernel further accounts for the similarity
amongst different values an input may take, and thus each
evaluation also reduces the variance in the vicinity of hi.

While we only consider a toy problem here, the fact that ko is
a simple modification over kh means it is trivial to scale the

0 20 40

0

20

40

0.0

0.2

0.4

0.6

0.8

1.0

(a) Categorical kernel kh

0 20 40

0

20

40

0.0

0.2

0.4

0.6

0.8

1.0

(b) Ordinal kernel ko

Figure 10. Posterior variance of GP with categorical and ordinal
kernels after 10 random initial points on the discretised Branin
problem. Black markers are the GP observations; red markers are
the proposed locations for the next evaluations.

approach to high dimensions with the local TR approaches
described in the main text and/or to the mixed inputs, such as
ordinal-continuous or even ordinal-categorical-continuous
search space. We defer a thorough investigation to this even
richer class of problems to a future work, which we believe
would be an exciting extension to the present work.

B.3. Parallel CASMOPOLITAN by number of objective
function queries

Supplementary to Fig. 5 which shows the comparison of
performances of CASMOPOLITAN of varying batch sizes
by number of batches, here we compare the performance
by number of objective function queries in Fig. 11. It is
evident that increasing the number of batches, at least in
the experiments we consider, does not lead to significant
performance deterioration even though we may achieve
near-linear reduction in wall-clock time if we have sufficient
parallel computing resources.

50 100 150
Number of evaluations

13

14

15

16

m
in

(f(
x)

)

Pest

150 175
12.25
12.50

100 200 300 400
Number of evaluations

0.5

1.0

1.5

2.0

2.5

m
in

(f(
x)

)

Ackley53

350 400
0.2

0.4

CASMOPOLITAN-1
CASMOPOLITAN-2

CASMOPOLITAN-4
CASMOPOLITAN-8

Figure 11. Parallel CASMOPOLITAN on representative categorical
and mixed problems by number of function queries.

B.4. Additional Results on the Black-Box Attack Task

Supplementary to the main text, in Fig. 12 we show more ex-
amples of the adversarial examples generated by our method,
where the diagonal images are the original, unperturbed im-
ages in the CIFAR-10 validation dataset that the CNN initially

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

classifies correctly while the off-diagonal entries are the ad-
versarial examples. From the 50 images attacked by us,
we select an image and we compare the objective function
value against number of queries in the 9 attack instances
in Fig. 13. It is clear that our method achieves higher suc-
cess rate within the highly limited budget (successful in 6/9
instances, as opposed to 3 and 1 in TURBO and MVRSM),
and even in cases where attack is unsuccessful within the
budget, our method still increases the loss more and pushes
it closer to the success boundary.

plane auto bird cat deer dog frog horse ship truck

Figure 12. Some adversarial examples generated by our method.

B.5. Sensitivity Studies on the Additional
Hyperparameters

Similar to TURBO, our method introduces some additional
hyperparameters related to the trust regions. In this sec-
tion we examine the sensitivity of the performance of CAS-
MOPOLITAN towards these hyperparameters on Pest and
Ackley53 problems. Specifically, we test the sensitivity
towards:

• Initial trust region length: unlike the hyperrectangular
TRs for the continuous space where Lxmin and Lxmax
are additional hyperparemeters, the Hamming distance-
based TRs are constrained to be positive integers in
(0, dh], relieving us from the need to tune Lhmin and
Lhmax. Nonetheless, the trust region length at the be-
ginning of each restarts is still a free hyperparameter.

• Failure tolerance (fail_tol): the number of succes-
sive failures to shrink the trust region. An aggressive
fail_tol setting (i.e. one that is very small) could

lead to rapid trust region shrinking and possibly more
frequent restarts. Note that it is generally rare to have
a large number of consecutive successes in increasing
the function value, and therefore we fix the success
tolerance (succ_tol) to be 2.

• Shrinking rate of TRs (αs): the multiplier when TR
shrinking is triggered L ← αsL; a more aggressive
value of αs leads to more rapid shrinking and restart
upon stagnation in improving f(z). Note that αs is
always coupled with the expansion rate αe = 1

αs
when

TR expansion is triggered, and hence we do not fur-
ther test the sensitivity to αe. Also, we use the same
expansion and shrinking rates in both continuous and
categorical TRs.

We show the results in Fig. 14 where the default hyper-
parameter values are fail_tol = 40, initial trust region
length 20 (for Pest Control with dh = 25) or 40 (for Ackley-
53 with dh = 50) and αs = 0.667 (and thus αe = 1.5). In
each of the experiments presented in Fig. 14, we only tune
the hyperparameter in interest, and leave all others at their
default values. For the mixed problems, we do not tune the
hyperparameters specific to the continuous TRs (e.g. the
initial, min and max continuous TR lengths) and instead
leave them at their default values in the official TURBO
implementation. Furthermore, due to the large number of
hyperparameter configurations, we only run each config-
uration once. The results show that the performance of
CASMOPOLITAN is generally insensitive to the hyperparam-
eter choice, as the vast majority of the results fall within 2
standard deviations of results in the main text running the
exactly the same configurations, suggesting that, as a whole,
the impact on performance due to different hyperparame-
ter choices might not be more significant compared to the
inherent randomness in initialisation in different trials. It
is further worth noting that in all cases CASMOPOLITAN
still outperforms the corresponding next best baseline – this
suggests that the performance difference is mainly driven
by the choice of different algorithms, as opposed to different
hyperparameters of the same algorithm.

B.6. Comparison against ALEBO and REMBO

In this section we run a small comparison of our method
against REMBO (Wang et al., 2013) and ALEBO (Letham
et al., 2020), the representative methods of the class of
high-dimensional BO methods. We compare against them
in the Ackley-53 problem with setups identical to the de-
scription in Sec. 4 in the main text, and we show the results
in Fig. 15 where for both algorithms, we run under their
respective default hyperparameter settings. We observe that
while both outperform COCABO, they are outperformed by
CASMOPOLITAN and TURBO by a large margin.

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

0 50 100 150 200 250
Number of queries

−20

−15

−10

−5

0
Lo

ss
 fu

nc
tio

n
CASMOPOLITAN Success: 6/9

(a) CASMOPOLITAN

0 50 100 150 200 250
Number of queries

−20

−15

−10

−5

0

Lo
ss

 fu
nc

tio
n

TuRBO Success: 3/9

(b) TURBO

0 50 100 150 200 250
Number of queries

−20

−15

−10

−5

0

Lo
ss

 fu
nc

tio
n

MVRSM Success: 1/9

(c) MVRSM

Figure 13. Attack loss function (described in Eq. (11) against the number of queries of an attacked image in CASMOPOLITAN, TURBO and
MVRSM, three most competitive methods of the black-box adversarial attack problem. Lines on each image denote the targeted attack to
the 9 target classes. Some lines terminate earlier than the full budget because the attack is successful before using up all the query budget.

100 200 300 400
Number of BO iterations

0.5

1.0

1.5

2.0

2.5

f*
(x

)

ALEBO
REMBO
Ours
TuRBO
CoCaBO

Figure 15. Comparison against REMBO and ALEBO on the Ackley-
53 problem. The lines denote the mean performance across 10
random trials.

B.7. Empirical Comparison of UCB-based and
Random Restarts

As discussed, the primary motivation of using UCB-based
restarts of the trust regions is to theoretically driven, but in
this section we investigate whether there exists any practical,
finite-time benefits of using the UCB-based restarts.

500 1000 1500
Function queries

10

20

1500 1750
2.5
5.0

Figure 16. UCB vs random restarts in 20d Levy over 10 trials. t-
test p-value between the two method is 0.048 at the final iteration.
Shades denote ±1 standard error.

Practically, optimising the UCB on the auxiliary GP exactly
is difficult. Instead, at each restart of the trust region, we
simply sample a large number of points, compute their UCB

scores based on the auxiliary GP, and select the top ones as
the initialising points for the next restart. We emphasise that
the auxiliary GP is not meant to fit well to the objective func-
tion, as otherwise we do not need trust regions to constrain
the surrogate, but is to instead generate better initialising
points than random selection. Based on this described proce-
dure, we conduct an experiment comparing UCB vs random
restarts on 20-dimensional Levy function, and we show the
results in Fig. 16. It can be seen that using UCB-based
restarts leads to small but statistically significant improve-
ments over the randomly initialising baseline. Furthermore,
in terms of running time, since the auxiliary GPs scale with
the number of restarts instead of number of observations,
we find the UCB variant to be only 1.9% slower in terms
of running time. With these results, we expect that the pro-
posed UCB criterion to lead to practical benefits even in
modestly higher-dimensional problems given an extended
query budget (such that we would typically observe a num-
ber of TR restarts for the effect of initialisation at the start
of each restart to be significant).

C. Implementation Details

C.1. Description of the categorical problems

A table containing the details and other characteristic details
of all the test problems are shown in Table 2.

Contamination Control Contamination Control is a bi-
nary optimisation problem in food supply chain (Hu et al.,
2010): at each stage, we have the choice of whether to intro-
duce contamination control, but early use of contamination
control could inevitably lead to increase in cost and as such
our objective is to minimise food contamination with the
smallest monetary cost (hence a minimisation problem). It
is worth noting that in this problem and the Pest Control

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

20 40 60
fail_tol

12.0

12.2

12.4

12.6

12.8

13.0

m
in
f(x

)

(a) fail_tol sensitivity.

10 20
init TR length

12.0

12.2

12.4

12.6

12.8

13.0

m
in
f(x

)

(b) Initial TR length sensitivity

1.25 1.50 1.75 2.00
αe

12.0

12.2

12.4

12.6

12.8

13.0

m
in
f(x

)

(c) Expansion factor αe

20 40 60
fail_tol

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

m
in
f(x

)

(d) fail_tol sensitivity.

20 40
init TR length

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

m
in
f(x

)

(e) Initial TR length sensitivity

1.25 1.50 1.75 2.00
αe

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

m
in
f(x

)

(f) Expansion factor αe

Figure 14. Sensitivity of CASMOPOLITAN performance towards various hyperparameters in Pest control (top row) and Ackley-53 (bottom
row). The red lines/shades denote the mean ± 2 standard deviation of the baseline results in the main text, where as the dotted black line
is the performance of the next best-performing baseline (COMBO and MVRSM respectively).

problem described below, the actions taken by the previ-
ous stage have implications on the following stages, thus
leading to highly complicated interactions amongst the dif-
ferent variables. In this problem, we use the implementation
used in Oh et al. (2019). However, it is worth noting that
while Oh et al. (2019) consider a 21-stage (with a total of
221 ≈ 2.1× 106 configurations) problem, we increase the
total number of stages to 25 (with a total of 225 ≈ 3.4×107

configurations). In this experiment we limit the maximum
number of evaluations of 150, as the running time of BOCS
quickly increases beyond our computing budget if we set
the it to a significantly higher value.

Pest Control We use the problem proposed in Oh et al.
(2019) which expands the contamination control problem
into a multi-categorical optimisation problem: at each stage,
we now need not only to determine whether to take an action
(to use pesticide or not), but also the type of the pesticide (4
choices in total). This thus gives rise to 5 potential choices
for each stage. Similar to Contamination control, we again
increase the total number of stages to 25 (as opposed to 21 in
Oh et al. (2019)) to give an expanded and more complicated
search space. In Ablation Studies of Sec. 4, we also include
a variant named DifficultPest, where the total number of
stages is further increased to 80.

Weighted Maximum Satisfiability Maximum satisfia-
bility problem is a classical combinatorial optimisation

problem that aims to determine the maximum number of
clauses of a given Boolean formula in conjunctive normal
form (CNF) that can be made true by an assignment of truth
values to the variables. Similar to Oh et al. (2019), we
take the same 60-variable benchmark from Maximum Sat-
isfiability Competition 20186 (frb-frb10-6-4.wcnf
problem from https://maxsat-evaluations.
github.io/2018/benchmarks.html)

C.2. Description of the mixed problems

Func2C and Func3C These synthetic problems were first
proposed in Ru et al. (2020a). In Func2C (dx = 2, dh = 2),
the value of h determines the objective function value that is
a linear combination of three benchmark functions, namely
Beale, Six-Hump Camel and Rosenbrook (abbreviated as
bea, cam and ros in Table 2); the function form of these 3
functions are:

bea(x) = (1.5− x1 + x1x2)2 + (2.25− x1 + x1x
2
2)2+

(2.625− x1 + x1x
3
2)2.

cam(x) = (5− 2.1x2
1 + x4

1
3)x2

1 + x1x2 + (−4 + 4x2
2)x2

2.

ros(x) = (1− x1)2 + 100(x2 − x2
1)2. (7)

6http://sat2018.azurewebsites.net/
competitions/

https://maxsat-evaluations.github.io/2018/benchmarks.html
https://maxsat-evaluations.github.io/2018/benchmarks.html
http://sat2018.azurewebsites.net/competitions/
http://sat2018.azurewebsites.net/competitions/

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

Func3C (dx = 2, dh = 3) is similar but has one extra cate-
gorical dimension to enable more complicated interactions.

XG-MNIST (dx = 5, dh = 3) This is a real hyperparame-
ter tuning task of a machine learning model (XGBoost). The
tunable continuous hyperparameters are maximum depth,
minimum split loss, subsample, learning rate of the opti-
miser and the amount of regularisation. The categorical
variables are the booster type, grow policies and training
objective. We use the xgboost python package and adopt
a train-test split of 7 : 3 on the MNIST data. Note that this
setup is identical to that used in Ru et al. (2020a).

Ackley-53 is a stylised version of the original 53-
dimensional Ackley function, whose original form is given
by:

f(z) = −a exp
(
− b

√√√√1
d

d∑
i=1

z2
i)
)
−

exp
(1
d

d∑
i=1

cos(czi)
)

+ a+ exp(1), (8)

where in this case a = 20, b = 0.2, c = 2π and d = 53 and
we define z ∈ [−1, 1]53. From this continuous form, the
first 50 dimensions are modified to be binary variables that
take the value of either 0 and 1, and the final 3 variables
are continuous and limited in the range of [−1, 1]3. This
adaptation is first proposed in Bliek et al. (2020). This
function has a known global minimiser of h∗ = [0, ..., 0]
and x∗ = [0, 0, 0] with f∗(z) = 0.

Rosenbrock-200 is a stylised and scaled version of the
classical Rosenbrock function. The Rosenbrock function is
given by:

f(z) = 1
50000

(d−1∑
i=1

(
100(zi+1− z2

i)2 + (zi−1)2)), (9)

where in this case d = 200. The first 100 dimensions
are then converted to binary variables, while the final 100
dimensions are continuous in the range of [−2, 2]100.

Black-box adversarial attack We adapt black-box setup
from Ru et al. (2020b), one of the first works that intro-
duce BO in the image adversarial attack setting. Specifically,
denotingM as the target model (or the victim model, in
this case a CNN image classifier) from which we may query
an image input I , the BO agent can only observe the pre-
diction scores on all C classes (for CIFAR-10, C = 10):
M(I) : Rd+ → [0, 1]C (thus a “black-box”, since gradients,
architecture and other information of the classifier itself are
never revealed to the attack agent). Therefore, denoting I
as the original, unperturbed image thatM correctly gives

its prediction as c, the targeted adversarial attack objective
is to find some perturbation δ ∈ Rd to be superposed on the
original image such thatM now mis-classify the perturbed
image to another target class t. In this work, we use the iden-
tical CNN models to the previous works (Ru et al., 2020b;
Tu et al., 2019; Alzantot et al., 2019), which approximately
gives 80% validation accuracy on the CIFAR-10 dataset.
Ru et al. (2020b) further claim that the query efficiency of
the BayesOpt attack strategy can be enhanced by searching
the perturbation over a latent space δ̃ ∈ Rdr with reduced
dimension dr � d and upsampling it back to the original
high-resolution image space Rd. This leads to a categorical
variable which is the downsampling/upsampling technique,
and in this work we have 3 options: bilinear, nearest and
bicubic interpolations. In our attack on CIFAR10 images,
we set d = 32 × 32 × 3 and dr = 14 × 14 × 3 following
Ru et al. (2020b).

In our work, we adopt a sparse setup where instead of
perturbing all the pixels, we only perturb one pixel per
row per colour in the latent space, allowing a total of s =
14 × 3 = 42 pixels in the reduced space to take non-zero
values. Such setup corresponds to add perturbation to some
pixels of the original image only, which is more actionable
in real life (for e.g., to evade real-life image classifiers this
only requires one to carefully manipulate some parts of a
printed image; this is contrasted to L2 attack, another often
studied setup where we perturb a small amount on every
pixel of the image which is less feasible in real life). We
additionally impose a constraint on the pixels ε to limit the
maximum amount of perturbations. Mathematically, the
goal is formulated as:

arg max
j∈{1,...,C}

M
(
I + Upsample(δ̃)

)
j

= t.

s.t. ||{δ̃i | δ̃i 6= 0}|| ≤ s and ||δ̃||∞ ≤ ε, (10)

where the first || · || denote the cardinality of the set of
non-zero elements of δ̃ and the second || · || is the L∞ norm.

In summary, the variables z ∈ R85 that we need to search
over include 42 categorical variables deciding the positions
of the pixels to be perturbed at each row (thus 14 choices
for each variable), 1 categorical variable on the type of
upsampling technique chosen (3 choices) and 42 contin-
uous variables defining the amount of perturbation to be
added to each chosen pixel. These setups conveniently cast
the problem of finding adversarial perturbation as a mixed
continuous-categorical optimisation problem for which CAS-
MOPOLITAN is suitable. In this case, we follow Ru et al.
(2020b) and select the following as the objective function f
we aim to maximise:

f(z) =
[

logM
(
I + δ(z)

)
t
− logM

(
I + δ(z)

)
c

]
, (11)

where δ(z) is the image perturbation δ induced by our com-
bined choices of the pixel locations and the corresponding

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

amount of perturbations. Essentially, in Eq. (11), we aim to
maximise the difference between the logit value of the target
class t and the true class c, and trivially the attack succeeds
if and when f(z) > 0. Thus, we terminate each experiment
either the attack succeeds or the maximum budget (250) is
reached. It is finally worth noting that the combined dimen-
sion z is 85-dimensional whose one-hot transformed dimen-
sion amounts to 633, which is clearly beyond the common
scope of usage of vanilla GP-BO that neither gives special
treatments to the categorical dimensions nor is tailored for
high-dimensional optimisation.

C.3. Experimental setup

We run all experiments on a shared Intel Xeon server with
256GB of RAM. For all categorical problems, we run 20
random trials with the exception of BOCS on Contamination
Control, where we only run 5 trials due to the very long run-
ning time of BOCS and our computing constraints (reported
in App. B.1). For the mixed problems, we follow Ru et al.
(2020a), where we run 20 trials for the synthetic problems
and 10 trials for the real-life problems. For black-box attack,
we run attack once on all 450 attack instances on 50 images.
We report mean and standard error in all cases.

CASMOPOLITAN Our algorithm introduces a number of
additional hyperparameters relating to the initialisation, ad-
justment and restarting of the trust regions. In the categorical
space, the distances (Hamming distance) are always inte-
gers, and the minimum (Lhmin) and maximum (Lhmax) trust
region sizes are always set to 0 and the dimensionality of
the problem (i.e. the diameter of the combinatorial graph),
respectively. The failure tolerance, which is the number of
successive failures in increasing the best objective function
value before shrinking the trust region size (fail_tol), is
set to 40 unless otherwise specified; the success tolerance
(succ_tol), which is the number of successive successes
in increasing the best function value before expanding the
trust region, is set to 2. We investigate the sensitivity in
performance of our algorithm to these hyperparameters in
App. B3. The only other GP hyperparameter is the amount
of noise (or jitter), where we constrain the noise variance in
the interval of [10−5, 0.1] and this value is learnt as a hyper-
parameter during the log-marginal likelihood optimisation.
We always start the experiments with 20 initial randomly
sampled points.

In the mixed setting that involves continuous variables, un-
less specified otherwise we always use the Matern 5/2 ker-
nel. In these continuous problems, we bound the lengthscale
in the range of [0.01, 0.5] and outputscale in [0.5, 5] and in
all cases, we normalise the continuous inputs x into hyper-
cubes [0, 1]dx and standardise the targets by their mean and
standard deviation from the initially randomly sampled loca-
tions y: ỹ = y−ȳ

σ(y) . When we compute the mixed kernel in

Eq. (4), we set λ = 0.5 as it is empirically shown to perform
the best in Ru et al. (2020a) that initially propose this kernel.
On the hyperparameters specific to the continuous trust re-
gions, since they are identical to those introduced in TURBO
(Eriksson et al., 2019), we do not change these settings from
their default values (Lxmin = 0.57, Lxmax = 1.6, Lx0 = 0.8)
with the exceptions of αs (and hence αe), succ_tol and
fail_tol which all follow the settings of the categorical
trust regions described above, instead of being independent
hyperparameters. For the trade-off parameter βi at each
restart, we follow the common practice of setting βi to a
constant value (Berkenkamp et al., 2019). In our case, we
set
√
βi = 1.96 as it has been shown this value of βi per-

forms well for a variety of BO tasks (Berkenkamp et al.,
2019).

During optimisation of the acquisition function, we use the
local search strategy (for categorical optimisation; in Sec.
3.1) or the interleaved strategy (for mixed optimisation; in
Sec. 3.2). In all cases, we initialise the search at the best
location found so far, and we set the maximum number of
local/interleaved search to be 100; for interleaved search in
mixed space, one local search move + one gradient-based
optimisation step count as one interleaved search step, we
use Adam (Kingma and Ba, 2015) as the default optimiser
for the log-marginal likelihood with learning rate 0.1 and
maximum step 100, although we find the performance to
be relatively stable at least for maximum step in the range
of [100, 300] and learning rate in the range of [0.03, 0.3].
By default, we optimise the log-marginal likelihood 3 times
and select the point(s) with the largest acquisition function
across the 3 runs, although we do not find optimising with
just 1 restart to be significantly worse. In this work we
use expected improvement (EI) as the acquisition function,
although our work is compatible with any other common
choice such as GP-UCB or Thompson sampling. When
CASMOPOLITAN is run in the batch setting, we use the
Kriging Believer strategy (Ginsbourger et al., 2010) to select
b points simultaneously: specifically, given observation data
Dt = {zi, yi}ti=0 and a GP model, we first optimise the
acquisition function as usual to propose the first out of the b
points required:

z(1)
t = arg maxα(z | Dt) (12)

We then fully trust µ(z(1)
t), the predictive mean at z(1)

t , as
a perfect proxy of the true objective function value f(z(1)

t),
and use this “hallucinated” input-output tuple (z(1)

t , µ(z(1)
t))

to update the GP Dt−1 ← Dt−1 ∪ (z(1)
t , µ((z(1)

t)). Condi-
tioned on this GP with “hallucinated” inputs and observa-
tions, we then optimise the acquisition function value again
to propose the second point z(2)

t and this process is repeated
until all b proposals are selected.

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

Other baselines Where possible and open-sourced, for
the other baselines we use the implementation from their
respective original authors:

• TURBO We use the official implementations made avail-
able by Eriksson et al. (2019) at https://github.
com/uber-research/TuRBO. For the implemen-
tation of TURBO in categorical space or where cat-
egorical variables are involved, we use the modi-
fied implementation supplied by the organisers of
the 2020 NeurIPS Black-box Optimisation Challenge
which includes TURBO as a baseline that addition-
ally supports one-hot transformation on the categorical
variables (https://github.com/rdturnermtl/
bbo_challenge_starter_kit). Note that for the
vanilla one-hot GP-BO, we also adapt from the TURBO
implementation but remove the additional features such
as trust regions and restarting.

• COCABO We use the official implementation by Ru et al.
(2020a) at https://github.com/rubinxin/
CoCaBO_code. Note that in original COCABO, there is
an option for the value of λ in Eq. (4) to be optimised as a
hyperparameter within bounds of [0, 1]; in our work for
fairness of comparison, we fix λ to 0.5 since it is the value
used in our method. It is worth noting that λ = 0.5 is also
shown to be performing overall the best in COCABO from
the results reported in Ru et al. (2020a).

• MVRSM We use the official implementation by Bliek et al.
(2020) at https://github.com/lbliek/MVRSM.

• COMBO We use the official implementation by Oh
et al. (2019) at https://github.com/QUVA-Lab/
COMBO.

• BOCS We use the official implementation by Bap-
tista and Poloczek (2018) at https://github.com/
baptistar/BOCS.

• TPE TPE (Tree Parzans Estimator) is implemented by
the Hyperopt python package, available at http://
hyperopt.github.io/hyperopt/.

• SMAC We use the implementation at https://
github.com/automl/SMAC3.

D. Proofs and Further Theoretical Analysis

D.1. Lemma D.1

Lemma D.1. The proposed categorical kernel in Eq. (1)
and mixed kernel in Eq. (4) are valid kernels (i.e. positive
semi-definite kernels).

Proof. For the categorical kernel in Eq. (1), we have that
exponential of a kernel is also a kernel, and since the cate-
gorical overlap kernel is a valid kernel (Ru et al., 2020a), its

exponentiated version is also a valid kernel. For the mixed
kernel in Eq. (4), since addition and multiplication between
kernels result in valid kernels, and since both kx(., .) and
kh(., .) are valid kernels, therefore, the mixed kernel in Eq.
(4) is also a valid kernel. �

D.2. Proof of Theorem 3.1

In this section, we derive the maximum information gain
of the categorical kernel kh (Section D.2.1) and the mixed
kernel k (Section D.2.2).

D.2.1. MAXIMUM INFORMATION GAIN OF THE
CATEGORICAL KERNEL

We derive the maximum information gain of the categori-
cal kernel kh proposed in Eq. (1) by bounding γ(T ; kh;H)
directly. Let us first consider the case when the objective
function f has only one categorical variable hwith n distinct
values (i.e. h ∈ {A1, A2, . . . , An} where Ai is a categori-
cal value and Ai 6= Aj when i 6= j). Let us consider T data
points h1, h2, . . . , hT , then its corresponding covariance
matrix KT is [kh(hi, hj)]Ti,j=1. As the maximum informa-
tion gain γ(T ; kh;H) is equal to log |IT + σ−2KT | where
IT is the identity matrix of size T ,7 thus, we will bound
γ(T ; kh;H) by bounding log |IT + σ−2KT |. Our general
idea is to perform a decomposition of KT , i.e. express-
ing KT = ΦEΨT where Φ ∈ RT×n, Ψ ∈ RT×n, and
E ∈ Rn×n, and then apply the Sylvester’s determinant the-
ory and the Hadamard’s inequality to derive an upper bound
for log |IT + σ−2KT |.

In the sequel, for ease of notation, we define the func-
tion q as a mapping from Ai to i. In particular, q(Ai) =
i, ∀i = 1, . . . , n. With the categorical kernel kh(h, h′) =
exp (lδ(h, h′)), in the following, we will prove that KT can
be decomposed as,8

KT = ΦEΨT , (13)

where Φ,Ψ ∈ RT×n, E ∈ Rn×n, and

Φ =


φ(h1)
φ(h2)
. . .

φ(hT)

 ,Ψ =


ψ(h1)
ψ(h2)
. . .

ψ(hT)

 ,
E = diag(exp (l) + n− 1, exp (l)− 1, ..., exp (l)− 1),

with φ(hi) being an n-dimensional row vector with 1 at
the 1st column, (−1) at the q(hi)-th column, and 1 at the

7|S| denotes the determinant of matrix S.
8When T = n, this decomposition is equivalent to the eigen-

decomposition. That is, the diagonal of matrix E consists of the
eigenvalues of KT and each column of Φ is an eigenvector of KT .

https://github.com/uber-research/TuRBO
https://github.com/uber-research/TuRBO
https://github.com/rdturnermtl/bbo_challenge_starter_kit
https://github.com/rdturnermtl/bbo_challenge_starter_kit
https://github.com/rubinxin/CoCaBO_code
https://github.com/rubinxin/CoCaBO_code
https://github.com/lbliek/MVRSM
https://github.com/QUVA-Lab/COMBO
https://github.com/QUVA-Lab/COMBO
https://github.com/baptistar/BOCS
https://github.com/baptistar/BOCS
http://hyperopt.github.io/hyperopt/
http://hyperopt.github.io/hyperopt/
https://github.com/automl/SMAC3
https://github.com/automl/SMAC3

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

(q(hi) + 1)-th column, i.e.,

φ(hi) =


[1 1 0 ... 0 0], if q(hi) = 1
[1 0 0 ... 0 (−1) 1 0 . . . 0], if 1 < q(hi) < n

[1 0 0 ... 0 (−1)], if q(hi) = n

,

and ψ(hi) being an n-dimensional row vector with the fol-
lowing formula,

ψ(hi) =



1
n

[1 (n− 1) (n− 2) ... 1], if q(hi) = 1
1
n

[1 (−1) ... − (q(hi)− 1) (n− q(hi)) ... 1],
if 1 < q(hi) < n

1
n

[1 (−1) ... − (n− 1)], if q(hi) = n.

To prove the decomposition in Eq. (13), we compute the
element at the i-th row and j-th column of ΦEΨT , i.e.
[ΦEΨT]ij , and then prove that [ΦEΨT]ij is equal to [KT]ij .
To compute [ΦEΨT]ij , it can be directly seen that,

[ΦEΨT]ij =
n∑
r=1

φr(hi)Erψr(hj),

where φr(hi) denotes the r-th element of φ(hi), ψr(hj)
denotes the r-th element of ψ(hj) and Er denotes the r-th
element on the diagonal of matrix E. We then consider the
following three cases:

Case 1: q(hj) = q(hi). First, let us consider 1 < q(hi) <
n, then we have,

[ΦEΨT]ij =1× (exp(l) + n− 1)× 1
n

+ (−1)× (exp(l)− 1)× (−q(hi) + 1)
n

+ 1× (exp(l)− 1)× (n− q(hi))
n

= exp(l).

Note that when q(hj) = q(hi), we will have hj = hi, thus,
the element [KT]ij is equal to exp(l). Similar arguments
can be made when q(hi) = 1 or q(hi) = n, that is, [KT]ij is
equal to exp(l). Therefore, [ΦEΨT]ij = [KT]ij = exp(l).

Case 2: q(hj) ≥ q(hi) + 1. Let us first consider 1 < q(hi),
then,

[ΦEΨT]ij =1× (exp(l) + n− 1)× 1
n

+ (−1)× (exp(l)− 1)× (−q(hi) + 1)
n

+ 1× (exp(l)− 1)× (−q(hi))
n

=1.

In this case, with q(hj) ≥ q(hi) + 1, we will have hi 6= hj ,
hence, the element [KT]ij is equal to 1. Similar arguments
can be made when q(hi) = 1, that is, in this case, [KT]ij is
also equal to 1. Therefore, [ΦEΨT]ij = [KT]ij = 1.

Case 3: q(hj) ≤ q(hi)− 1. Let us first consider q(hi) < n,
then,

[ΦEΨT]ij =1× (exp(l) + n− 1)× 1
n

+ (−1)× (exp(l)− 1)× (n− q(hi))
n

+ 1× (exp(l)− 1)× (n− q(hi)− 1)
n

=1.

Similar to Case 2, we also have hi 6= hj . Similar arguments
can be made when q(hi) = n, [KT]ij is also equal to 1.
Hence, [ΦEΨT]ij = [KT]ij = 1.

Combining Cases 1, 2, 3, we proved the decomposition in
Eq. (13). Now using this decomposition, we have,

γ(T ; kh;H) = log |IT +σ−2KT | = log |IT +σ−2ΦEΨT |.

By Sylvester’s determinant theorem (Sylvester, 1851),

γ(T ; kh;H) = log |In + σ−2ΨTΦE|. (14)

Next, we prove the matrix ΨTΦE is a positive semi-definite
(p.s.d.) matrix, and the maximum element on the diagonal
of ΨTΦE is equal or less than T (exp(l) + n− 1). Let us
denote mi as the number of times the categorical value Ai
appears in T data points. It can be directly seen that,

[ΨTΦ]ij =
T∑
r=1

ψi(hr)φj(hr) =
n∑
r=1

mrψi(Ar)φj(Ar).

Hence, the matrix ΨTΦ can be written as,

ΨTΦ = ΨT
AFΦA, ΦA,ΨA, E ∈ Rn×n, (15)

where

ΦA =


φ(A1)
φ(A2)
. . .

φ(An)

 =


1 1 0 0 ... 0 0
1 −1 1 0 . . . 0 0
1 0 −1 1 . . . 0 0

. . .
1 0 0 0 . . . −1 1
1 0 0 0 . . . 0 −1

 ,

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

ΨA =


ψ(A1)
ψ(A2)
. . .

ψ(An)

 ,

= 1
n


1 n− 1 n− 2 ... 2 1
1 −1 n− 2 ... 2 1
1 −1 −2 ... 2 1

...
1 −1 −2 ... −(n− 2) 1
1 −1 −2 ... −(n− 2) −(n− 1)

 ,
F = diag(m1,m2, . . . ,mn).

It is straightforward that ΨT
AΦA = In, thus, from Eq. (15),

we can see that ΨT
AFΦA is an eigendecomposition of ΨTΦ,

and hence, the eigenvalues of ΨTΦ are m1,m2, . . . ,mn.
As mi ≥ 0,∀i = 1, ..., n, so ΨTΦ is a p.s.d. matrix, and
therefore, ΨTΦE is also a p.s.d. matrix. Besides, note
that the r-th element on the diagonal of ΨTΦE can be
computed as [ΨTΦ]rrEr where [ΨTΦ]rr and Er are the
r-th elements on the diagonal of ΨTΦ and E, respectively.
Since [ΨTΦ]rr ≤

∑T
i=1(n − 1)/n × 1 ≤ T , and Er ≤

(exp(l) +n− 1), hence, [ΨTΦ]rrEr ≤ T (exp(l) +n− 1).
This results that the maximum element on the diagonal of
ΨTΦE is equal or smaller than T (exp(l) + n− 1).

Combining Eq. (14) and the Hadamard’s inequality (Mazya
and Shaposhnikova, 1999) on the positive semi-definite ma-
trix ΨTΦE, we have,

γ(T ; kh;H) ≤ log |In + σ−2W |,

where W = diag(diag−1(ΨTΦE)). Since the maximum
element on the diagonal of ΨTΦE is equal or smaller than
T (exp(l) +n− 1). Therefore, γ(T ; kh;H) = O(n log(1 +
σ−2T (exp(l) + n− 1))) = O(n log T). �

Now let consider the case when the objective function f
has dh categorical variables where each variable has nj
distinct values. This can be considered to be equivalent
to the case when f has one variable with

∏dh

j=1 nj distinct
values. Thus, the same proof can be used, and we have
γ(T ; kh;H) = O

(
(
∏dh

j=1 nj) log T
)
. �

D.2.2. MAXIMUM INFORMATION GAIN OF THE MIXED
KERNEL

We make use of Theorems 2 and 3 in Krause and Ong
(2011) to bound the maximum information gain of the
mixed kernel k. In particular, Theorem 2 states that given
two kernels: kh on H and kx on X , and if kh is a ker-
nel on H with rank at most m, then γ(T ; khkx; [H,X]) ≤
mγ(T ; kx;X) + m log T . On the other hand, Theorem
3 states that for any two kernels kh on H and kx on X ,
then γ(T ; kh+kx; [H,X]) ≤ γ(T ; kx;X)+γ(T ; kh;X)+
2 log T .

As proven in Section D.2.1, the kernel kh has at most rank
Ñ =

∏dh

j=1 nj (based on the eigendecomposition). Thus,
using Theorem 2 in Krause and Ong (2011), we have

γ(T ; khkx; [H,X]) ≤ Ñγ(T ; kx;X) + Ñ log T. (16)

Similarly, using Theorem 3 in Krause and Ong (2011), we
obtain

γ(T ; kh+kx; [H,X]) ≤ O
(
γ(T ; kx;X)+(Ñ+2) log T

)
.

(17)

We have the mixed kernel k defined as λ(kxkh) + (1 −
λ)(kh + kx) where λ ∈ [0, 1] is a trade-off parameter. By
combining Eqs. (16) and (17), we have,

γ(T ; k; [H,X] ≤ λO
(
Ñγ(T ; kx;X) + Ñ log T

)
+ (1− λ)(γ(T ; kx;X) + (Ñ + 2) log T)
≤ O

(
(Ñλ+ 1− λ)γ(T ; kx;X)

+ (Ñ + 2− 2λ) log T
)
. �

D.3. Proof of Theorem 3.2

We prove that under Assumptions 3.1 & 3.2, after a restart,
(1) if CASMOPOLITAN terminates after a finite number of
iterations, then it converges to a local maxima of f , or, (2)
if CASMOPOLITAN does not terminate after a finite number
of iterations, then it converges to the global maximum of f .
We prove this property by contradiction.

First, let us assume after a restart, case (2) occurs, i.e. CAS-
MOPOLITAN does not terminate after a finite number of
iterations. This means when the iteration t goes to infinity,
the TR length Lh is not shrunk below Lhmin in the categori-
cal setting, or, both Lh and Lx are not shrunk below Lhmin
and Lxmin in the mixed space setting. From the algorithm
description, the TR is shrunk after fail_tol consecutive
failures. Thus, if after Nmin = fail_tol×m iterations
where m = dlogαe

(Lh0/Lhmin)e9 in the categorical setting
and m = max(dlogαe

(Lh0/Lhmin)e, dlogαe
(Lx0/Lxmin)e) in

the mixed space setting, there is no success, CASMOPOLI-
TAN terminates. This means, in order for case (2) to occur,
CASMOPOLITAN needs to have at least one improvement per
Nmin iterations. Let consider the series {f(zk)}∞k=1 where
f(zk) = maxi=(k−1)Nmin+1,...,kNmin{f(zi)} and f(zi) is
the function value at iteration i. This series is strictly increas-
ing and the objective function f(z) is bounded (Assump-
tion 3.1). Thus, using the monotone convergence theorem
(Bibby, 1974), this series converges to the global maximum
of the objective function f .

Second, let consider case (1) occurs, i.e. CASMOPOLI-
TAN terminates after a finite number of iterations. We will
prove that in this case, CASMOPOLITAN converges to a lo-
cal maxima of f(z) given Assumption 3.2. For simplicity,

9The operator d.e denotes the ceiling function

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

let us consider the categorical setting first. Let us denote
Ls as the largest TR length that after being shrunk, the
algorithm terminates. By the definition of Ls, we have
bαsLsc ≤ Lhmin.10 Due to bαsLsc ≤ αsLs < bαsLsc+ 1,
we have Ls < (Lhmin + 1)/αs. And because Ls is an
integer, we finally have Ls ≤ d(Lhmin + 1)/αse − 1.
By choosing Ls = d(Lhmin + 1)/αse − 1, we have that
∀L > Ls, αsL ≥ αsd(Lhmin + 1)/αse > Lhmin. This says
that for all TR with length L > Ls, after being shrunk
one time, the algorithm doesn’t terminate yet. Therefore,
Ls = d(Lhmin + 1)/αse − 1 is the largest TR length that
after being shrunk, the algorithm terminates. This tells us
when the TR length first becomes smaller or equal than Ls,
CASMOPOLITAN does not terminate yet (Conclusion 1). In
addition, since GP can fit f accurately within a TR with
length Ls (Assumption 3.2), for any TR with length L ≤ Ls,
the solution of BO is a success (Conclusion 2). Combining
Conclusions 1 & 2, we have that when TR length first be-
comes smaller or equal than Ls, if the current TR center is
not a local maxima, CASMOPOLITAN can find a new data
point whose function value larger than the function value
of current TR center. Thus, in the next iteration, the TR still
keeps the same length whilst having center as the new found
data point. This process occurs iteratively until a local max-
ima is reached (i.e. when CASMOPOLITAN fails to improve
from the current center), and CASMOPOLITAN terminates.

Similar arguments can be made for the mixed space setting.
Let us remind that for the mixed space setting, CASMOPOLI-
TAN terminates when either the continuous TR length ≤
Lxmin or the categorical TR length ≤ Lhmin. Now let us con-
sider two cases. Case (i): when the continuous TR reaches
Lxmin/αs, the corresponding length of the categorical TR
is dLh0Lxmin/(αsLx0)e. Case (ii): when the categorical TR
length reaches d(Lhmin + 1)/αse − 1, the corresponding
length of the continuous TR isLx0(d(Lhmin+1)/αse−1)/Lh0 .
Based on Assumption 3.2, GP can fit accurately a TR
with continuous length Lx ≤ max

(
Lxmin/αs, L

x
0(d(Lhmin +

1)/αse − 1)/Lh0
)

and Lh ≤ max
(
d(Lhmin + 1)/αse −

1, dLh0Lxmin/(αsLx0)e
)
, then when Case (i) or Case (ii) oc-

curs, the GP approximates accurately the objective function
f within the corresponding TR, and thus similar argument
as in the categorical setting can be made. That is, if the
current TR center is not a local maxima, then CASMOPOLI-
TAN can find a new data point whose function value larger
than the function value of current TR center. And this pro-
cess occurs iteratively until a local maxima is reached, and
CASMOPOLITAN terminates. �

D.4. Proof of Theorem 3.3

Let us first remind our restart strategy in the categori-
cal setting. At the i-th restart, we first fit an auxiliary
global GP model GP (0, kh) on a subset of data D∗i−1 =

10The operator b.c denotes the floor function

{h∗j , f(h∗j)}i−1
j=1, where h∗j is the local maxima found after

the j-th restart, or, a random data point, if the found local
maxima after the j-th restart is same as one of previous
restart. Let us also denote µgl(h;D∗i−1) and σ2

gl(h;D∗i−1)
as the posterior mean and variance of the global GP learned
from D∗i−1. Then, at the i-th restart, we select the following
location h(0)

i as the initial centre of the new TR:

h(0)
i = arg max

h∈H
µgl(h;D∗i−1) +

√
βiσgl(h;D∗i−1),

where βi is the trade-off parameter in GP-UCB (Srinivas
et al., 2010).

To prove the convergence property of CASMOPOLITAN,
apart from Assumptions 3.1 & 3.2, let us also assume that at
the i-th restart, there exists a function gi(h) that: (a) is a sam-
ple from the global GP (0, kh), (b) shares the same global
maximum h∗ with f , and, (c) passes through the all the
local maxima of f and any data point h′ in D∗i−1 ∪ {h

(0)
i }

that are not local maxima (i.e. gi(h′) = f(h′) ∀h′ ∈
D∗i−1 ∪ {h

(0)
i }). In layman’s terms, the function gi(h) is a

function that passes through all the maxima of f and is a
sample from the auxiliary global GP (0, kh). It is worth not-
ing that our assumption is more relaxed than the assumption
in Srinivas et al. (2010) where it is assumed that the objec-
tive function f must be sampled from the global GP(0, kh).
Specifically, it can be seen that if the assumption in Srinivas
et al. (2010) holds, our assumption also holds because if
f(h) is a sample from GP(0, kh), then a choice for gi(h) is
f(h), thus, our assumption holds.

Using Lemmas 5.1 and 5.2 in Srinivas et al. (2010) for the
function gi, when βi = 2 log(|H|i2π2/6ζ), for all i, with
probability 1− ζ, we have,

µgl(h(0)
i ;D∗i−1) +

√
βiσgl(h(0)

i ;D∗i−1)

≥ µgl(h∗;D∗i−1) +
√
βiσgl(h∗;D∗i−1)

≥ gi(h∗).

Thus, with probability 1− ζ,

gi(h∗)− gi(h(0)
i)

≤ µgl(h(0)
i ;D∗i−1) +

√
βiσgl(h(0)

i ;D∗i−1)− gi(h(0)
i)

≤ 2
√
βiσgl(h(0)

i ;D∗i−1).

Combining this inequality with the fact that gi(h(0)
i) =

f(h(0)
i), and gi(h∗i) = f(h∗i), we have, with probability

1− ζ,

f(h∗)− f(h(0)
i) ≤ 2

√
βiσgl(h(0)

i ;D∗i−1).

Let us denote h∗i as the local maxima found by CASMOPOLI-
TAN at the i-th restart. As f(h(0)

i) ≤ f(h∗i), therefore,

f(h∗)− f(h∗i) ≤ 2
√
βiσgl(h(0)

i ;D∗i−1).

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

This results that, with probability 1− ζ,

RI =
I∑
i=1

(f(h∗)− f(h∗i)) ≤
I∑
i=1

2
√
βiσgl(h(0)

i ;D∗i−1).

Finally, using Lemmas 5.3 and 5.4 in Srinivas et al. (2010),
we can bound RI as RI ≤

√
IC1βIγ(I; kh,H) with

C1 = 8/ log(1 + σ−2) and γ(I; kh,H) being the maxi-
mum information gain for the categorical kernel derived in
Theorem 3.1. �

D.5. Proof of Theorem 3.4

Similar to the proof for categorical setting in Section D.4, let
us first remind our restart strategy in the mixed space setting.
Suppose we are restarting the i-th time, we first fit the global
GP model on a subset of data D∗i−1 = {z∗j , f(z∗j)}i−1

j=1,
where z∗j is the local maxima found after the j-th restart,
or, a random data point, if the found local maxima after the
j-th restart is same as one of previous restart. Let us also de-
note µgl(z;D∗i−1) and σ2

gl(z;D∗i−1) as the posterior mean
and variance of the global GP learned from D∗i−1. Then, at
the i-th restart, we select the following location z(0)

i as the
initial centre of the new TR:

z(0)
i = arg max

z∈[H,X]
µgl(z;D∗i−1) +

√
βiσgl(z;D∗i−1),

where βi is the trade-off parameter in GP-UCB (Srinivas
et al., 2010).

To prove the convergent property of CASMOPOLITAN in
the mixed space setting, apart from Assumptions 3.1 &
3.2, let us also assume that at the i-th restart, there ex-
ists a function gi(z): (a) lies in the RKHS Gk([H,X]) and
‖gi‖2k ≤ B, (b) shares the same global maximum z∗ with
f , and, (c) passes through all the local maxima of f and any
data point z′ in D∗i−1 ∪ {z

(0)
i } which are not local maxima

(i.e. gi(z′) = f(z′) ∀z′ ∈ D∗i−1 ∪ {z
(0)
i }). In layman’s

terms, the function gi(z) is a function that passes through
the maxima of f whilst lying in the RKHS Gk([H,X]) and
satisfying ‖gi‖2k ≤ B. Our assumption is more relaxed
than Srinivas et al. (2010) which assumed that the objective
function f lies in the RKHS Gk([H,X]). Specifically, it
can be seen that if the assumption in Srinivas et al. (2010)
holds, our assumption also holds because if f(z) lies in the
RKHS Gk([H,X]), then a choice for gi(z) is f(z), thus, our
assumption holds.

Using Theorem 6 in Srinivas et al. (2010) for function gi,
when βi = 2‖gi‖2k + 300γi log(i/ζ)3, ∀i, ∀z ∈ [H,X], we
have,

Pr{|µgl(z;D∗i−1)− gi(z)| ≤
√
βiσgl(z;D∗i−1)|} ≥ 1− ζ.

(18)

Note since ‖gi‖2k ≤ B, Eq. (18) is also correct using βi =
2B + 300γi log(i/ζ)3. By using the inequality in Eq. (18),

the proof technique is similar to that in Section D.4. In
particular, with probability 1− ζ, we have that,

µgl(z(0)
i ;D∗i−1) +

√
βiσgl(z(0)

i ;D∗i−1)

≥ µgl(h∗;D∗i−1) +
√
βiσgl(z∗;D∗i−1) ≥ gi(z∗).

(19)

Thus, with probability 1− ζ, we have

gi(z∗)− gi(z(0)
i)

≤ µgl(z(0)
i ;D∗i−1) +

√
βiσgl(z(0)

i ;D∗i−1)− gi(z(0)
i)

≤ 2
√
βiσgl(z(0)

i ;D∗i−1).

Since gi(z(0)
i) = f(z(0)

i), and gi(z∗i) = f(z∗i), hence,
f(z∗) − f(z(0)

i) ≤ 2
√
βiσgl(z(0)

i ;D∗i−1) with probability
1− ζ. With z∗i as the local maxima found by CASMOPOLI-
TAN at the i-th restart. As f(z(0)

i) ≤ f(z∗i), therefore,

f(z∗)− f(z∗i) ≤ 2
√
βiσgl(z(0)

i ;D∗i−1).

This results, with probability 1− ζ,

RI =
I∑
i=1

(f(z∗)− f(z∗i)) ≤
I∑
i=1

2
√
βiσgl(z(0)

i ;D∗i−1).

Finally, using Lemmas 5.3 and 5.4 in Srinivas et al. (2010),
we can bound RI as RI ≤

√
IC1βIγ(I; k, [H,X]) with

C1 = 8/ log(1 + σ−2) and γ(I; k, [H,X]) is the maximum
information gain for the mixed kernel derived in Theorem
3.1. �

Discussion It is worth emphasizing that the assumption of
the existence of such a function gi(z) (at the i-th restart) that
satisfies our requirements generally does not need to hold
when i → ∞. In fact, if this assumption needs to satisfy
∀i when i → ∞ then it will be same as the assumption
in Srinivas et al. (2010). We will show that generally this
assumption only needs to hold for a finite number of restarts.
In particular, it is common that for the objective function f ,
there exists a local maxima z̃∗ which is larger than all other
local maxima and only smaller than the global maximum.
Then as limI→∞RI/I = 0, there exists a finite number I0
that the function value of the TR center at the I0-th restart
will be larger than f(z̃∗), and thus the ‘local maxima’ found
after the I0-th restart is actually the global maximum, and
CASMOPOLITAN converges. Therefore, our assumption
regarding the existence of gi(z) only needs to hold until
the I0-th restart. This discussion is applicable for both
categorical and mixed space settings.

Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

Table 2. Configurations of the test problems.
Objective f Type Inputs

Contamination (Hu
et al., 2010)

real, cat, min, 25-
dim

Choices on whether to use control at each stage h ∈ {True, False}25

Pest (Oh et al., 2019) real, cat, min, 25-
dim

Pesticide choice at each stage (or use no pesticide) h ∈
{No pesticide, 1, 2, 3, 4}25

DifficultPest real, cat, min, 80-
dim

Pesticide choice at each stage (or use no pesticide) h ∈
{No pesticide, 1, 2, 3, 4}80

MAXSAT real, cat, min, 60-
dim

h ∈ {0, 1}60

Func2C synthetic, mixed,
max, 4-dim

x ∈ [−1, 1]2

(Ru et al., 2020a) h1 = {ros(x), cam(x), bea(x)}
h2 = {+ros(x),+cam(x),+bea(x),+bea(x),+bea(x)}

Func3C synthetic, mixed,
max, 5-dim

x ∈ [−1, 1]2

(Ru et al., 2020a) h1 = {ros(x), cam(x), bea(x)}
h2 = {+ros(x),+cam(x),+bea(x),+bea(x),+bea(x)}
h3 = {+5× ros(x),+2× cam(x),+2× bea(x),+3× bea(x)}

XG-MNIST real, mixed, max, 8-
dim

h1 (booster type type) ∈ {gbtree, dart}

h2 (grow policies) ∈ {depthwise, loss}
h3 (training objective) ∈ {softmax, softprob}
x1 (learning rate) ∈ [0, 1]
x2 (max depth) ∈ [1, 10]
x3 (minimum split loss) ∈ [0, 10
x4 (subsample) ∈ [0.001, 1]
x5 (amount of regularisation) ∈ [0, 5]

Ackley-53 synthetic, mixed,
min, 53-dim

h ∈ {0, 1}50

(Bliek et al., 2020) x ∈ [−1, 1]3

Rosen-200 synthetic, mixed,
min, 200-dim

h ∈ {0, 1}100

x ∈ [−2, 2]100

Black-box adversar-
ial attack

real, mixed, max, 85-
dim

Choice on the location of the pixel hi ∈ {0, 1, ..., 13} ∀i ∈
[1, 42], i ∈ Z
Upsampling technique h43 ∈ {bilinear, nearest, bicubic}
Amount of perturbation x ∈ [−1, 1]42

Note: real/synthetic: whether the problem is/simulates a real-life task or whether it is a standard benchmark function.
cat/mixed: categorical or mixed categorical-continuous problem.
max/min: maximisation or minimisation problem. We flip the sign of the objective function values where appropriate.

