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Abstract

High-dimensional black-box optimisation re-
mains an important yet notoriously challenging
problem. Despite the success of Bayesian optimi-
sation methods on continuous domains, domains
that are categorical, or that mix continuous and
categorical variables, remain challenging. We
propose a novel solution — we combine local op-
timisation with a tailored kernel design, effec-
tively handling high-dimensional categorical and
mixed search spaces, whilst retaining sample effi-
ciency. We further derive convergence guarantee
for the proposed approach. Finally, we demon-
strate empirically that our method outperforms
the current baselines on a variety of synthetic and
real-world tasks in terms of performance, compu-
tational costs, or both.

1. Introduction

Bayesian Optimisation (BO) (Jones et al., 1998; Brochu
et al., 2010; Shahriari et al., 2016), which features expres-
sive surrogate model(s) and sample efficiency, has found
many applications in black-box optimisation, particularly
when each evaluation is expensive. Such applications in-
clude but not limited to selection of chemical compounds
(Hernandez-Lobato et al., 2017), reinforcement learning
(Parker-Holder et al., 2020), hyperparameter optimisation
of machine learning algorithms (Snoek et al., 2012), and
neural architecture search (Kandasamy et al., 2018; Nguyen
et al., 2021; Ru et al., 2021)

Despite its impressive performance, various challenges still
remain for BO. The popular surrogate choice, vanilla Gaus-
sian Process (GP) models, is limited to problems of mod-
est dimensionality defined in a continuous space. How-
ever, real-world optimisation problems are often neither
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low-dimensional nor continuous: many large-scale prac-
tical problems exhibit complex interactions among high-
dimensional input variables, and are often categorical in
nature or involve a mixture of both continuous and cate-
gorical input variables. An example of the former is the
maximum satisfiability problem, whose exact solution is
NP-hard (Creignou et al., 2001), and an example for the lat-
ter is the hyperparameter tuning for a deep neural network:
the optimisation scope comprise both continuous hyperpa-
rameters, e.g., learning rate and momentum, and categorical
ones, e.g., optimiser type {SGD, Adam, ...} and learning rate
scheduler type {step decay, cosine annealing}.

These problems are challenging for a number of reasons:
first, categorical variables do not have a natural ordering
similar to continuous ones for which GPs are well-suited.
Second, the search space grows exponentially with the di-
mension and the mixed spaces are usually high-dimensional,
making the objective function highly multimodal, often het-
erogeneous, and thus difficult to be modelled by a good,
global surrogate (Rana et al., 2017; Eriksson et al., 2019).
Partially due to these difficulties, only very few prior works
(Hutter et al., 2011; Gopakumar et al., 2018; Nguyen et al.,
2020; Ru et al., 2020a) have focused on developing BO
strategies for such problems, and, to the best of our knowl-
edge, achieving promising performance, easy applicability
for high-dimensional inputs and reasonable computing costs
simultaneously is still an open question.

To tackle these challenging yet important problems, we pro-
pose a novel yet conceptually simple method. It not only
fully preserves the merits of GP-based BO approaches, such
as expressiveness and sample efficiency, but also demon-
strates state-of-the-art performance in high-dimensional op-
timisation problems, involving categorical or mixed search
spaces. Specifically, we make the following contributions:

* Propose a new GP-based BO approach which designs tai-
lored GP kernels and harnesses the concept of local trust
region to effectively handle high-dimensional optimisation
over categorical and mixed search spaces.

* Derive convergence analysis to show that our proposed
method converges to the global maximum of the objective
function in both categorical and mixed space settings, under
some assumptions.
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* Empirically show that our method achieves superior per-
formance, better sample efficiency, or both, over the ex-
isting approaches for a wide variety of tasks. The code
implementation of our method is available at https:
//github.com/xingchenwan/Casmopolitan.

2. Related work

BO for high-dimensional problems A popular class of
high-dimensional BO methods (Kandasamy et al., 2015;
Rolland et al., 2018; Wang et al., 2017; 2018; Mutny and
Krause, 2019) decompose the search space into multiple
overlapping or disjoint low-dimensional subspaces and use
an additive surrogate (e.g. additive GPs). However, accu-
rately inferring the decomposition is often very expensive.
Another group of BO methods (Binois et al., 2015; Wang
et al., 2016; Binois et al., 2020) assume the objective func-
tion is mainly influenced by a small subset of effective di-
mensions and aims to learn such low-dimensional effective
embedding (Wang et al., 2016; Nayebi et al., 2019; Letham
et al., 2020). However, its effectiveness is conditional on
the extent the assumption holds. A recent state-of-the-art
approach is Trust-region Bayesian Optimisation (TURBO)
(Eriksson et al., 2019), which constrains BO on local Trust
Region (TR) centered around the best inputs so far. This
circumvents the aforementioned issues such as the need for
finding an accurate global surrogate and over-exploration
due to large regions of high posterior variance. However, its
convergence properties are not analysed, and it only works
in continuous spaces.

BO for categorical search spaces The basic approach
is to one-hot transform the categorical variables into con-
tinuous (Rasmussen, 2006; GPyOpt, 2016; Snoek et al.,
2012). While simple in implementation, the drawbacks are
equally obvious: first, for a dj-dimensional problems with
{n1,...,ngq, } choices per input, the one-hot-transformed
problem has Zfi 1 n; dimensions, further aggravating the
curse of dimensionality. Second, categorical spaces differ
fundamentally with the continuous in, for e.g., differentia-
bility and continuity, with function values only defined in
finite locations. These lead to difficulties in using gradient-
based methods in acquisition function optimisation of the
transformed problems.

To ameliorate these drawbacks, BOCS (Baptista and
Poloczek, 2018) first tailors BO in categorical spaces: it uses
a sparse monomial representation up to the second order and
Bayesian linear regression as the surrogate, and is primarily
used for boolean optimisation. Inevitably, its expressiveness
is constrained by the quadratic model, while scaling beyond
the second order and/or to high dimensionality is usually
intractable due to the exponentially-increasing number of
parameters that need be learnt explicitly. Combinatorial

Bayesian Optimisation (COMBO) (Oh et al., 2019) is a state-
of-the-art method that instead uses a GP surrogate (which is
capable of learning interactions of an arbitrary order), and
is capable of dealing with multi-categorical problems via a
combinatorial graph over all possible joint assignments of
the variables and a diffusion graph kernel to model the in-
teractions. Nonetheless, both methods deal with categorical
optimisation only, which is an important problem in its own
right, but does not extend to our setting of mixed-variable
problems. They also suffer from poor scalability (e.g. to
avoid overfitting COMBO approximately marginalises the
posterior via Monte Carlo sampling instead of cheaper op-
timisation, and it needs to pre-compute the combinatorial
graph beforehand). Other methods, such as COMEX and
its inspired works (Dadkhahi et al., 2020; 2021) take a
non-Bayesian black-box optimisation approach to improve
computing efficiency, but they are typically less sample-
efficient with respect to the number of function queries and
are less suitable for problems where querying the objective
functions is expensive. Finally, several recent works aim
to improve BO on combinatorial structures by improving
the effectiveness (Deshwal et al., 2020) or reducing the ex-
penses (Swersky et al., 2020) of the acquisition function;
these are largely orthogonal to our method, and we defer
a thorough investigation on whether there are additional
benefits by combining with these methods to a future work.

BO for mixed input types BO in mixed categorical-
continuous search spaces is still rather under-explored, de-
spite attempts in modelling less complicated spaces, such
as mixed continuous-integer problems (Daxberger et al.,
2019; Garrido-Merchan and Hernandez-Lobato, 2020). In
our specific setting, Categorical and Continuous Bayesian
Optimisation (COCABO) (Ru et al., 2020a) first explicitly
handles multiple categorical and continuous variables: it
alternates between selecting the categorical inputs with
a Multi-Armed Bandit (MAB) and the continuous inputs
with GP-BO, and uses a tailored kernel to connect the two.
However, COCABO requires optimising a MAB over a non-
stationary reward (since the values of continuous variables
improves over BO iterations and hence so does the function
value). Furthermore, MAB requires pulling each arm at least
once, and hence it is difficult to scale COCABO to high-
dimensional problems, where the total number of possible
arm combinations explode exponentially. Lastly, while the
two sub-components are provably convergent, COCABO as a
whole is not. Related works along this direction also include
Gopakumar et al. (2018) and Nguyen et al. (2020), but the
continuous inputs are constrained to be specific to the cate-
gorical choice, and being MAB-based, it also suffers from
aforementioned limitations. Separately, Bliek et al. (2020)
recently propose Mixed-Variable ReLU-based Surrogate
Modelling (MVRSM), which the authors claim to be suitable
for mixed-variable, high-dimensional problems. However,
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Figure 1. Illustration of CASMOPOLITAN in categorical space. Suppose we optimise over a 3-dimensional problem with {3, 2, 2} choices
for each input respectively. Initially (Step 1), the best location so far h}, = arg maxn{y;},—, (marked in red) is [0, 0, 1] with TR radius

L = 2 (the

nodes, with different shades denoting their Hamming distances to h7.. The gray nodes are outside the current TR). In

optimisation of the acquisition function (Step 2), we conduct local search within the TR, moving to a neighbour only if it has a higher
acquisition function value «(-) and is still within the TR. In case of successive failures (Step 3a) in increasing h7., we shrink the TR down
to length L" . . below which we restart the optimisation, or in case of successive successes (Step 3b), we shift the TR centre to the new

h

h’ and/or expand TR up to length Ly, ... Note that the combinatorial graph is shown here for illustration; it does not need to be computed

explicitly or otherwise.

in trading for efficiency, the expressiveness is limited by the
ReLU formulation and we compare against it in Sec. 4.

In addition to these more recent works explicitly handling
the mixed spaces, earlier attempts such as SMAC with Ran-
dom Forest (RF) (Breiman, 2001) surrogates (Hutter et al.,
2011) are also compatible. However, the predictive distribu-
tion of the RF used to select new evaluation is less accurate
due to reliance on randomness from bootstrap samples and
the randomly chosen subset of variables to be tested at each
node to split the data. Moreover, RFs easily suffer from
overfitting and require careful hyperparameter choice.

3. CASMOPOLITAN: BO for Categorical
and Mixed Search Spaces

Problem Statement We consider the problem of optimis-
ing an expensive black-box function, defined over a cat-
egorical domain or one with mixed continuous and cate-
gorical inputs. Formally, we consider a function in the
mixed domain for generality: f : [H,X] — R where
H and X C R% denote the categorical and continuous
search spaces, respectively (for problems over categorical
domains, we simply have f : 74 — R and the goal is to find
h* = argmax f(h)).We further denote z = [h, x] to be an
input in the mixed space where h and x are the categorical
and continuous parts, dy, to be the number of categorical
variables, i.e. h = [hq, hg, ..., kg, ], and the number of pos-
sible, distinct value that the j-th categorical variable may
take to be n;. Given f, at time ¢ we observe the noisy per-
turbation of the form y; = f(z:) + ¢; where ¢; ~ N (0, 0?)
and o2 is a noise variance which can be learned by maxi-
mizing the log-marginal likelihood (Rasmussen, 2006). We
sequentially select inputs z; V¢ = 1, ..., T" (or simply h; if
the problem is purely categorical) to query f with the goal

Algorithm 1 CASMOPOLITAN.

1: Input: #init (the number of random initialing points at ini-
tialisation or restarts), #iter 7', initial TR size for categorical
L{ € Z*, and continuous variables L§ € RY.

2: Output: The best recommendation z

3: restart = True // Set restart to True initially

4: fort=1,...,T do

5: ifrestart then

6: Reset TR L" = L and L® = Lg and reset GP. Ran-
domly select #init points in the search space as z¢ (if
at initialisation), or set the TR center as the point de-
termined by Eq. (3) and randomly select #init points
within the newly constructed TR as z; (if at subsequent
restarts).

7:  else

8: Construct a TR TRy (h{) around the categorical dimen-
sions of the best point h} using Eq. (2).

9: Construct a hyper-rectangular TR of length L7,
TR« (x{) for the continuous variables.

10: Select next query pt(s) within the TRs z; =

argmax,(z) s.t. x € TRa(x;),h € TRx(hy).
11:  endif
12:  Query at z; to obtain y;; fit/update the surrogate D; <
D1 U (z¢,y+) and optimise GP hyperparameters.
13:  Update the TRs and decide whether to restart.
14: end for

of finding the maximiser the objective z* = arg max f(z)
with the fewest numbers of iterations. We further include a
primer on GP and BO in App. A.

3.1. Categorical Search Space

Our first contribution is to propose a conceptually-simple yet
effective BO strategy that preserves all of the advantages of
GP modelling, but is specifically designed for the categorical
search space (later extended to the mixed space in Sec. 3.2).
We present an illustration in Fig. 1 and the pseudocode
in Algorithm 1. We name our algorithm CASMOPOLITAN
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Figure 2. Tllustration of CASMOPOLITAN in mixed space. Note that in Steps 1 & 3 we show the GP posterior on X conditioned on the
incumbent h, and in Step 2 we show the acquisition function on X conditioned on h at various optimisation steps. Suppose we optimise
over a 5-dimensional mixed problem with the categorical dimensions identical to that in Fig. 1 and 2 additional continuous dimensions.
Initially (Step 1), the best location so far z% = arg max,{y;)}2—; = [h’%, x%] (with the continuous TR and x’ in red box and cross). In
optimisation of acquisition function (Step 2), we interleave the local search on H described in Sec. 3.1 with gradient-based optimisation
on X until convergence. In Steps 3a/3b, we adjust both the continuous and categorical TRs correspondingly and restart if/when either

shrinks below its minimum length.

(CAtegorical Spaces, or Mixed, OPtimisatiOn with Local-
trust-reglons & TAilored Non-parametric), and we highlight
the key design features in this section.

Kernel design In Line 12 of Algorithm 1, we impose GP
on the categorical variables with a kernel defined directly
on them (note that it does not increase the dimensions like
one-hot transform). Specifically, we modify the overlap
(or Hamming) kernel k(h, h') = 2 Zfil 0(hy, hY), in Ru
et al. (2020a) and Kondor and Lafferty (2002):

dp,

ko (h, h') = exp (dih 3 tib(hi, h;)), (1)
1=1

where {¢;}" are the lengthscale(s)', and 4(-, -) is the Kro-
necker delta function. The modification affords additional
expressiveness in modelling more complicated functions:
for e.g., the kernel in Eq. (1) can discern the dimensions
to which the objective function value is more sensitive via
learning different lengthscales but the original categorical
overlap kernel treats all dimensions equally. We empirically
validate the performance gain of the exponentiated kernel in
Sec. 4.4, and we prove this kernel is positive semi-definite
(p-s.d) in App. D.1.

!The lengthscales will be different for each dimension if we
enable automatic relevance determination (ARD).

Trust region One key difficulty in applying GP-BO in
high-dimensional problems is that the surrogate, by default,
attempts to model the entire function landscape and over-
explores. Optimisation over the categorical search space
also suffer this problem. To effectively scale up the dimen-
sions, we adapt the TR approach from Eriksson et al. (2019)
in categorical search space (Line 8 in Algorithm 1). How-
ever, the challenge is that the Euclidean distance-based TR
is no longer applicable; instead, we define TRs in terms of
Hamming distance, i.e. a TR of radius L" from the best
location, h*, observed at iteration 7" includes all points that
are up to L variables different from h*:

dp,

- hE b
oI dmm <t} @

TR (") 1

The TR radius is adjusted dynamically during optimisation,
expanding on successive successes (if best function value
f7 improves) and shrinking otherwise. Since Hamming
distance is integer-valued bounded in [0, dy], we also set
these two values as the minimum and maximum TR lengths
L. and L"

min max-*

TRs in local optimisation are typically biased toward the
starting points. Therefore, most local optimisation ap-
proaches rely on a restarting strategy to attain good per-
formance (Shylo et al., 2011; Kim and Fessler, 2018). In
our case, we restart the optimisation when the TR length L"
reaches the smallest possible value (Line 13 in Algorithm 1).
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Rather than restarting randomly as in Eriksson et al. (2019),
we propose to restart our method using GP-UCB principle
(Srinivas et al., 2010), which as we will show in Section 3.3
is crucial for theoretical guarantee. Specifically, we intro-
duce an auxiliary global GP model to achieve this. Suppose
we are restarting the ¢-th time, we first fit the global GP
model on a subset of data D;_; = {h},y; ;;11 where h7
is the local maxima found after the j-th restart. Alternative,
arandom data point, if the found local maxima after the j-th
restart is same as one of previous restart. Let us also denote
pgr(h; DY) and agl(h; Dy ) as the posterior mean and
variance of the global GP learned from D} ;. Then, at the ¢-
th restart, we select the following location hgo) as the initial
centre of the new TR:

hy") = argmax 1y (h: D7) + v/Biog(h: Diy). ()

where [3; is the trade-off parameter. As formally shown in
Sec. 3.3, this strategy is optimal in deciding the next TR by
balancing exploration against exploitation (Srinivas et al.,
2010). Finally, while the use of UCB-restart is primarily
theoretically driven, we show that it could offer empirical
benefits over random restarts, and the readers are referred
to App. B for details.

Optimisation of the acquisition function Since we pre-
serve the discrete nature of the variables in our method, we
cannot optimise the acquisition function via gradient-based
methods. Instead, we use the simple strategy of local search
within the TRs defined previously: at each BO iteration, we
randomly sample an initial configuration hy € TR, (h*).
We then randomly select a neighbour point of Hamming
distance 1 to hy, evaluate its acquisition function «(-), and
move from hy if the neighbour has a higher acquisition func-
tion value and is still within the TR. We repeat this process
until a pre-set budget of queries is exhausted and dispatch
the best configurations for objective function evaluation
(Line 10 in Algorithm 1).

3.2. Extension to Mixed Search Spaces

In addition to the purely categorical problems, our method
naturally generalises to mixed, and potentially high-
dimensional, categorical-continuous spaces, a setting fre-
quently encountered in real life but hitherto under-explored
in BO literature. To handle such an input z = [h, x| where
x is the continuous inputs, we first modify the GP kernel to
the one proposed in Ru et al. (2020a):

k(z,2') = )\(kz(x,x/)kh(h, h'))
+ (=N (kb h) + k(xx)), @

where A € [0,1] is a trade-off parameter, kj, is defined in
Eq. (1) and k, is a kernel over continuous variables (we use

the Matérn 5/2 kernel). While we use the same kernel as Ru
et al. (2020a), we emphasise and formally show in Sec. 3.3
that, unlike COCABO, CASMOPOLITAN retains convergence
guarantee even in the mixed space.

This formulation therefore allows us to use tailored ker-
nels that are most appropriate for the different input types
while still flexibly capturing the possible additive and mul-
tiplicative interactions between them. For the continu-
ous inputs, we use a standard TURBO surrogate (Eriksson
et al., 2019) by maintaining, and adjusting where neces-
sary, separate standard hyper-rectangular TR(s) for them
TR, (x*), = {x| x € X and within the box centered
around x* } We include an illustration in Fig. 2. We restart
the continuous TR TR, in similar manner as described in Eq.
(3), if and when the either TR}, or TR, length L reaches
the smallest possible value.

Interleaved acquisition optimisation In Ru et al.
(2020a), the categorical h and continuous x of the proposed
points z = [h, x| are optimised separately similar to a single
EM-style iteration: the categorical parts are first proposed
by the multi-armed bandit; conditioned on these, the contin-
uous parts are then suggested by optimising the acquisition
function. In our approach, since both the categorical and
continuous inputs are handled by a single, unified GP, we
may propose points and optimise acquisition functions more
naturally and effectively: at each optimisation step (Line
10 of Algorithm 1), we simply do one step of local search
defined in Sec. 3.1 on the categorical variables, followed by
one step of gradient-based optimisation of the acquisition
function on the continuous variables. However, instead of
doing this alternation once, we repeat until convergence or
when a maximum number of steps is reached.

Other types of discrete input While we mainly focus on
categorical-continuous problems, our method can be easily
generalised to more complex settings by virtue of its highly
flexible sub-components. For instance, we often encounter
combinatorial variables with ordinal relations: for these, we
treat them as categorical, but instead of using Kronecker
delta function in Eq. (1) we encode the problem-specific
distances. We defer a full investigation to a future work, but
we include some preliminary studies in App. B.4.

3.3. Theoretical Analysis

We first provide upper bounds on the maximum informa-
tion gains of our proposed categorical kernel in Eq. (1) and
mixed kernel in Eq. (4) (Theorem 3.1). We then prove that
after a restart, under Assumptions 3.1 and 3.2, CASMOPOLI-
TAN converges to a local maxima after a finite number of
iterations or converges to the global maximum (Theorem
3.2). Finally, we prove that with our UCB-restart strategy,
under Assumptions 3.1, 3.2 and some assumptions described
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in Srinivas et al. (2010), CASMOPOLITAN converges to the
global maximum with a sublinear rate over the number of
restarts in both categorical (Theorem 3.3) and mixed space
settings (Theorem 3.4). We refer readers to App. D for the
detailed proofs.

Theorem 3.1. Let us define ~(T;k;V) =

1
maxacviaizr 3 081+ oKV lvweal s
the maximum information gain achieved by sampling T

points in a GP defined over a set V with a kernel k. Let us
define N := H?Zl n;, then we have,

1. For the categorical kernel kp, ~(T;kp;H) =
O(NlogT);

2. For the mixed kernel k, v(T; k; [H, X]) < O((AN +
1— NY(Tsky; X) + (N +2 —2)) log T).

Using Theorem 3.1, the maximum information gain of the
mixed kernel k can be upper bounded for some common
continuous kernels k.. For instance, when k,, is the Matérn
kernel, the maximum information gain v(T'; k; [H, X]) of
the mixed kernel is upper bounded by O((AN +1 -
A) T (et 1)/ @0t da(dot1)) (1og T) + (N +2 — 2X) log T)
as V(T kpre; X) = O(Td(dat1)/Rvtda(dat)) (1og T'))
(Srinivas et al., 2010). Similar bounds can be established
when k, is the squared exponential or the linear kernel.

To analyse the convergence property of CASMOPOLITAN,
similar to any TR-based algorithm (Yuan, 2000), we assume
that (i) f is bounded in [#H, X] (Assumption 3.1), and (ii),
given a small enough region, the surrogate model (i.e. GP)
accurately approximates f with any data point belonging to
this region (Assumption 3.2). We note that Assumption
3.1 is common as it is generally assumed in BO that f
is Lipschitz continuous (Brochu et al., 2010), thus f is
bounded given the search space is bounded. Assumption
3.2 considers the minimum TR lengths L2, , L". are set
to be small enough so that GP approximates f accurately in
TRs specified in Assumption 3.2. We note that in practice,
this assumption is only possible asymptotically, i.e. when
the number of observed data in these TRs goes to infinity. In
our implementation (see App. C), these TRs are always set
to be very small so that Assumption 3.2 can be close to true.

Assumption 3.1. The objective function f(z) is bounded in
[H,X), ie. 3F, F, e R:Vz € [H,X], F; < f(z) < F,.

Assumption 3.2. Let us denote L, , L. and L} L%
be the minimum and initial TR lengths for the categori-
cal and continuous variables, respectively. Let us also
denote oz as the shrinking rate of the TRs. In the cat-
egorical setting, for any TR with length < [(L", +
1)/as] — 1,2 the corresponding local GP approximates f
accurately. That is, the GP posterior mean approximates
f accurately whilst the GP posterior variance is negligi-
ble within this TR. In the mixed space setting, the local

*The operator [.] denotes the ceiling function.

GP approximates f accurately within any TR with length
L* < max (L, /s, L ([ (Lipin +1)/ovs] — 1)/ L§) and
L < max ([(Li, + 1) /as] = L [L§ L/ (s LE)1).

Theorem 3.2. Given Assumptions 3.1 & 3.2, after a restart,
CASMOPOLITAN converges to a local maxima after a finite
number of iterations or converges to the global maximum.

Finally, we define the cumulative regret after I restarts, R,
to be ijl (f(z*)— f(z})) with z} being the local maxima
found at the j-th restart and z* being the global maximum
of f. We then provide the regret bounds of CASMOPOLITAN
in both categorical (Theorem 3.3) and mixed space setting
(Theorem 3.4). With these regret bounds, it can be seen that

CASMOPOLITAN converges to the global maximum with a

. . I
sublinear rate over the number of restarts (i.e. Ry/I ==,

0) in both categorical and mixed space settings.

Theorem 3.3. Let us consider the categorical setting, f :
H — R. Let ¢ € (0,1) and B; = 21og(|H|i®7%/6() at the
i-th restart. Suppose the objective function f satisfies that:
there exists a class of functions which pass through all the
local maxima of f,® share the same global maximum with
f, and is sampled from the auxiliary global Gp GP(0, k).
Then given Assumptions 3.1 & 3.2, CASMOPOLITAN ob-
tains a regret bound of O* (\/I(I; ky, 1) log |H|) w.h.p.
Formally,

Pr{RI < /CLIBAT; kp, H) VI > 1} >1-¢,

with C; = 8/log(l + o72),
O(Nlog(N)log(I)) and N = H?i1 nj.
Theorem 3.4. Let us consider the mixed space setting, f :
[H,X] = R. Let ¢ € (0,1). Suppose the objective function
f satisfies that: there exists a class of functions g which
pass through all the local maximas of f, share the same
global maximum with f and lies in the RKHS Gy ([H, X])
corresponding to the kernel k of the auxiliary global GP
model. Suppose that the noise €; has zero mean conditioned
on the history and is bounded by o almost surely. Assume
llgll? < B, and let 3; = 2B + 300, log(i/¢)?, then given
Assumptions 3.1 & 3.2, CASMOPOLITAN obtains a regret
bound of O* (\/I'y(I; k,[H, X])/)’[) w.h.p. Specifically,

YLk H) =

Pr{RI < /OB K [H, X]) VI > 1} >1-¢,

with C1 = 8/log(1 + o= 2), v(I; k; [H, X]) = (’)(()\1\7 +
1=M)Y(T; ey X)+(N42-2)) logT) and N = Hjlhzl n;.

Discussion We show in Theorem 3.2 that our TR-based al-
gorithm with BO converges to a local maxima or global max-
imum after a restart. We note that similar convergence can

3This means for every function g belonging to this class of
functions, g(h}) = f(h}) where h} is a local maxima of f.



Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

be found in the original TR-based algorithms using gradient-
descent (Yuan, 2000). However, our proof technique is very
different from Yuan (2000). In addition, in Theorems 3.3 &
3.4, the fact that CASMOPOLITAN converges to the global
maximum with a sublinear rate over the number of restarts -
not over the number of iterations as in Srinivas et al. (2010)
- can be considered as the price paid for a more relaxed as-
sumption. In particular, Srinivas et al. (2010) assume that it
is possible to model the objective function f with a GP with
kernel k on the whole search space. On the other hand, we
relax this assumption in Theorems 3.3 & 3.4 by assuming
that there is a class of functions, which pass through the
local maxima and share the same global maximum with f,
that we can model with a GP with kernel k. Further details
on this class of functions can be found in Apps. D.4 & D.5.

Despite the aforementioned strengths, there are some lim-
itations with our theoretical analysis. First, the maximum
information gains v(T'; kx; H) and y(T'; k; [H, X]) derived
in Theorem 3.1 increase exponentially with the dimension
of the categorical input (dy,). Thus, these terms can be large
when the categorical dimension is high. As we are solving
a noisy NP-hard combinatorial problem, it might not be
possible to get away these exponential terms without a strict
assumption. Second, as briefly discussed above, Assump-
tion 3.2 is true asymptotically, resulting Theorems 3.2, 3.3
and 3.4 to hold asymptotically. One way to eliminate this
assumption is to instead prove CASMOPOLITAN achieves € -
accuracy, that is, CASMOPOLITAN can find a point whose
function value is within e of the objective function global
maximum, where € is a small positive value depending on
the minimum TR lengths L% , L". . We consider these

min’ ~“min-

directions for future work.

4. Experiments
4.1. Categorical Problems

We first evaluate our proposed method on a number of opti-
misation problems in the categorical search space against a
number of competitive baselines, including TPE (Bergstra
et al., 2011), SMAC (Hutter et al., 2011), BOCS (Baptista
and Poloczek, 2018)* and cOMBO (Oh et al., 2019) which
claims the state-of-the-art performance amongst compara-
ble algorithms. We also include two additional baselines:
BO, which performs the naive BO approach after convert-
ing the categorical variables into one-hot representations,
and TuRBO, which is identical to BO except that we ad-
ditionally incorporate the TR approach in Eriksson et al.
(2019). We experiment on following real-life problems (for
detailed implementation and descriptions for the setup of

4BOCs is only run in Contamination, as it by default does not
support multi-categorical optimisation and on Weighted Maximum
Satisfiability (MAXSAT), a single trial takes more than 100 hours,
rendering comparison infeasible within our computing constraints.

these problems and those in Sec. 4.2, see App. C).

+ Contamination control over 25 binary variables (3.35 x 107
configurations). This problem and the Pest control problem
below simulate the dynamics of real-life problems whose
evaluations are extremely expensive (Hu et al., 2010).

* Pest control over 25 variables, with 5 possible options for
each (2.98 x 10'7 configurations) (Oh et al., 2019).

* Weighted maximum satisfiability (MAXSAT) problem over
60 binary variables (1.15 x 10*® configurations).

In all experiments in this section and Sec. 4.2, we report
the sequential version (denoted as cAsMOPOLITAN-1 as
batch size b = 1) of our method as all baselines we consider
are also sequential. We investigate the parallel version of
varying batch sizes of our method in Sec. 4.3.

The results are shown in Fig. 3: our method achieves the
best convergence speed and sample efficiency in general,
and in terms of the performance at termination, our method
again outperforms the rest except in Contamination and
MAXSAT where it performs on par with COMBO. However,
it is worth noting that in terms of wall-clock speed, our
method is 2 — 3 times faster than COMBO in the problems
considered (See App. B).

4.2. Mixed Problems

We then consider the optimisation problems involving a mix
of continuous and categorical input variables. In these exper-
iments, in addition to SMAC, TPE, BO and TURBO described
in Section 4.1, we also include a number of recent advance-
ments in this setup including COCABO (Ru et al., 2020a) and
MVRSM (Bliek et al., 2020). Additionally, we run a small
comparison against several other high-dimensional BO meth-
ods such as ALEBO (Letham et al., 2020) and REMBO (Wang
et al., 2016), and the readers are referred to details in App.
B. Note that we do not compare against BOCS and COMBO
since they are suitable for purely categorical spaces only.
Under this setup, we consider the following synthetic and
real-life problems of increasing dimensionality and com-
plexity:

¢ Func2C with dj, = 2 and d,, = 2, and Func3C with dj, = 3
and d, = 3, respectively (Ru et al., 2020a).

* Hyperparameter tuning of the XGBoost model (Chen and
Guestrin, 2016) on the MNIST dataset (LeCun, 1998), with
d, = 5 and d;, = 3 with 2 choices for each.

* 53-dimensional Ackley function (Ackley-53) (Bliek et al.,
2020) with dj, = 50 where h € {0,1}°° and d,, = 3 where
x € [-1,1]3.

* Black-box adversarial attack on a CNN trained on CIFAR-
10 inspired by Ru et al. (2020b), but with adapted sparse
setups where we perturb a small number of pixels only. The
task is an optimisation problem with d;, = 43 (42 pixel
locations being attacked with nj.4o = 14 choices each
and the image upsampling technique which has ny3 = 3
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Figure 3. Results on various categorical optimisation problems. Lines and shaded area denote mean =+ 1 standard error.
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Figure 4. Results on various mixed optimisation problems. Lines and shaded area denote mean =+ 1 standard error (except for Black-box
where we show the ASR against number of queries). Additional experiment results in App. B.

choices) and d, = 42 for continuous perturbation added to
each pixel under attack. We perform a total of 450 targetted
attack instances and limit the maximum budget to be 250
queries for each attack to simulate a highly constrained
attack setup.

We report the results on the objective function values in
Fig. 4 except for the black-box attack, where we instead
report the attack success rate ASR against the number of
queries following Ru et al. (2020b) (Additional attack re-
sults are shown in App. B). In this problem we also com-
pare against random search, as it has been shown to be a
strong baseline both in adversarial attack (Croce et al., 2020)
and high-dimensional black-box optimisation (Rana et al.,
2017) literature. Overall, it is evident that CASMOPOLI-
TAN performs the best, but it is also interesting to observe
that in lower dimensions (the first 2 problems), COCABO
featuring tailored categorical kernels performs well, while
MVRSM and categorical variable-agnostic TURBO, both fo-
cusing on high dimensions, under-perform. However, in
high-dimensional problems (last 2 problems), the relative
performance switches completely, suggesting that the focus
on dimensionality now outweighs the importance of treating
different input types differently. Nonetheless, with both
tailored kernels and focus on scaling to high dimensions,
CASMOPOLITAN consistently out-performs by a comfort-
able margin, further demonstrating its versatility.

4.3. Parallel Setting
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17
* 25
A Y
16 \ 2.0
S 15 S 15
£ <
€14 €10
13 05

10! 10?

Number of batches Number of batches

—%— CASMOPOLITAN-1
—¥— CASMOPOLITAN-2

—&— CASMOPOLITAN-4
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Figure 5. Parallel CASMOPOLITAN on representative categorical
and mixed problems by number of batches excluding the initially
randomly-sampled batches. Note the x-axis is in log-scale for bet-
ter presentation. We show the comparison by number of function
queries in App. B.

We would often like to exploit parallelism in computing
where we dispatch different queries to the black-box ob-
jective function for independent evaluations. This setting
necessitates the development of batch methods to propose
a batch of b points for simultaneous evaluation at each BO
iteration. However, this often involves trade-off between
wall-clock time efficiency against performance, because
surrogates in batch methods are updated only once per b
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objective function evaluations. Here we investigate the per-
formance of CASMOPOLITAN under different batch sizes
where b = 1 (sequential setting) 2, 4 & 8 in Pest Control and
Ackley-53 problems previously considered; where b > 1,
we use the Kriging believer strategy (Ginsbourger et al.,
2010) during acquisition optimisation to deliver b proposals
simultaneously. In both experiments, we keep the budget of
the objective function queries to be identical to that in Sec.
4.1 & 4.2 but scale the number of batches accordingly, and
the results are shown in Fig. 5: it is evident that larger batch
sizes, while leading to almost linear reduction in wall-clock
time, do not lead to significant performance deterioration,
except some minor under-performance at the end which
seems to scale with b. However, in both problems, CAS-
MOPOLITAN even with the largest batch size investigated
still outperforms sequential baselines in Figs. 3 & 4.

4.4. Ablation Studies
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Figure 6. Ablation studies of our method in categorical (left) and
mixed (right) optimisation problems. First row: Pest (left), Ackley-
53 (right); Second row: DifficultPest (left), Rosenbrock-200
(right).

Our method introduces a number of modifications over the
naive BO approach. To understand the benefits of these, we
conduct ablation studies in both the categorical and mixed
problems. Specifically, we include the following setups.

» The naive BO approach with global GP surrogate and one-
hot transformation on the categorical variables (Naive);
¢ One-hot transformed BO, but with local TRs i.e. TURBO

(TR);
* GP with global surrogates, but with the categorical over-

lapping kernel in Ru et al. (2020a) where applicable
(Overlap);

* BO with global GP surrogate, but with the kernel defined in
Eq. (1) or (4), where appropriate (CatKer);

* QOur approach that incorporates both local modelling and
the kernel in Eq. (1) or (4) (CatKer+TR).

We firstly include Pest Control and the Ackley-53 problems
as representative problems for the categorical and mixed
setups for the ablation studies. To further understand the rel-
ative importance of the various features of CASMOPOLITAN
especially as the dimensionality of the problems changes,
we also include two even higher-dimensional problems,
namely 1) Pest control with number of stages expanded
to 80, which we term DifficultPest (the number of possi-
ble configurations is more than 8.27 x 10°%), and 2) 200-d
Rosenbrock with 100 binary dimensions and 100 continuous
dimensions (detailed in App. C).

We show the results in Fig. 6: in most problems, the us-
age of the categorical kernel leads to improvements over
baselines, with kernels used in our method generally outper-
forming the overlap kernel. Unsurprisingly, the additional
benefits of local optimisation and the use of trust regions
increase with increasing dimensionality and complexity of
the problems, with largest benefits coming from the two
high-dimensional problems of the second row. Nonethe-
less, it is worth noting that even in the relatively modestly-
dimensioned Pest Control problem where the difference
between CatKer+TR and CatKer seems small, the out-
performance is still statistically significant (Two-sample
Student’s t-test yields p = 0.043 < 0.05 at the final itera-
tion). Finally, our method, similar to TURBO, introduces a
number of additional hyperparameters related to the TR; we
examine the sensitivity of performance towards these extra
hyperparameters in App. B.

5. Conclusion and Future Work

We propose CASMOPOLITAN, a novel GP-BO approach us-
ing ideas of tailored kernels and trust regions to tackle the
challenging high-dimensional optimisation problem over
categorical and mixed search spaces. We both analyse our
method theoretically and empirically demonstrate its effec-
tiveness over a wide range of problems. Possible future di-
rections may extend our model to even more diverse search
spaces, such as problems on graphs, trees, and/or in condi-
tional spaces.
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