Appendix for "Learning to Weight Imperfect Demonstrations”™

1. Proof
1.1. Proof of Theorem 1

Proof. We have the constraints 0 < 7(als) < 1and ) 7(als) = 1. Since 7(a|s) is strictly positive, if ) 7(a|s) = 1is
satisfied, then 0 < 7(als) < 1 can be also satisfied. So we can convert object function into an unconstrained optimization
problem by writing its Lagrange function as follows,
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where \; is the Lagrange multiple. The necessary condition for the extremum with respect to 7 is that derivative of 7(a|s)
to L equals to 0,
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Recall that d5(s) is hard to sample and we sample from d (s) instead, thus we have d.(s) ~ dx(s). Denote occupancy
measure p, can be also defined as p. = d,(s)m(als), the derivative of D (pz||p~) can be calculated as,
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where u = 7(a|s)/m(a|s) and f is the derivative function of f. Apply derivative of D (7||m) into Eq. (2), we have
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Thus f’(u) can be expressed as,
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According to the definition of Legendre transformation, we have

f*(p) = pu— f(u), (6)

where p = f’(u) should be satisfied. Then by applying derivative of p on both sides in Eq. (6), we have f.(p) = .
Combined with Eq. (5), u can be finally written as,
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The solution of 7 can be exactly expressed as
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where f] is the derivative of the conjugate function and C'(s) = —\,/d(s) is a constraint to ensure ) - 7(als) =1. O



1.2. Proof of Theorem 2

Proof. We start from the known formula as follows,
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Take logarithm function on both sides, we have
log 7(als) — log w(als) = 5 (As(s.a) + () (10)

Consider two action sets A1 = {a € A | T(als) > w(a|s)} and Az = {a € A | 7(a|s) < w(als)}, for Va; € A,
Vas € Ay we have
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Thus we have A;(s,a1) > A (s, as), which means there exsits a constant value € satisfies Q. (s,a1) > € > Q(s,a2).
Consider
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Define a two-stage value function V;(s) as follows,
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which means V;(s) follows 7 in the first [ steps and then follow 7 in the subsequent steps. When [ = 0, V1 (s) > V(s) for
Vs € S has been proved in Eq. (12).

We use mathematical induction and assume V;(s) > Vj_1(s) for Vs € S, we have
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thus Vi1 1(s) > Vi(s) is proved, Vs € S. So we can say that for

Vz(s) > Va(s),¥s €S (16)

2. Additional Experiment Details
2.1. Experiment Setting with Mujoco

Network Structure We use the neural network which has two fully connected layers and followed by Tanh as an activation
layer to parameterize policy, discriminator and value function in weighted GAIL and GAIL. To output continuous action,



agent policy adopts a gaussian strategy, hence the policy network outputs mean and standard deviation of action. The
continuous action is sampled from the normal distribution with action’s mean and standard deviation.

Hyper-parameters Selection We use the same hyper-parameters in different tasks for WGAIL and GAIL. The batch size
of training is set to 5000. The discount rate v of the sampled trajectory is set to 0.995. The learning rate of value function
and discriminator are set to 3 x 1074 and 1 x 10~2. We also conduct early stop to weight estimation task since we need to
control the discriminator in a near-optimal condition. The initial weight is set to 1 at the early training step and then update
every 50 iterations to stabilize the GAIL training procedure. To choose proper /3, we conduct experiments on Ant-v2 (Stage
2). The result is shown in Table 1, and as a result /3 is set to 1 in the Mujoco experiment. We use 1// in the exponent for the
first computation of weight.

Table 1. Performance with different 3.
B8 0 1 2 5 10
119.49|182.00|123.03|106.35|109.71

Data Quality The quality of three policy checkpoints used in the experiment is available at Table 2. We suppose the
demonstrations sampled from the same checkpoint share the same confidence score. The confidence score is the normalized
reward of each checkpoint.

Table 2. The quality of checkpoints in different Mujoco tasks, which is measured by the average cumulative (normalized) reward of
trajectories.

Task S A Random Ckptl Ckpt2 Ckpt3 (Optimal)
Ant-v2 R R 992.18 (0.00) 1892.77 (0.29) 2813.69 (0.58) 4145.89 (1.00)
HalfCheetah-v2 ~ R!7 RS -1.08 (0.00) 1437.14 (0.41)  2773.33(0.78)  3546.63 (1.00)
Hopper-v2 R R3  73.21(0.00) 789.96 (0.22) 2153.75 (0.64)  3323.99 (1.00)
Walker2d-v2 R17 RS 249.50 (0.00) 1704.23 (0.39) 3467.96 (0.85) 4018.19 (1.00)

2.2. Experiment Setting with Atari

A 3-layer conventional neural network in DQN is used in the policy network, with last 4 stacked frames as input. Notice
that in our setting, we treat the end of the game instead of losing agent’s life as the termination of an episode in Atari. To
accelerate the training process, we adopt 8 CPU workers to sample demonstrations to fill in rollouts parallelly and a GPU
server is responsible for updating 7y and D,, with batched demonstrations provided by rollouts. The batch size of training is
set to 1024. The discount rate + is set to 0.99. The learning rate of value function and discriminator is set to 2.5 x 10~* and
1 x 1073, B is set to 2 in Atari tasks. GAIL shares the same setting and hyper-parameters with weighted GAIL.



