A. Settings for reproduction
A.1. Image classification

We follow a common strategy described in Szegedy et al.
(2016) for data augmentation. For ResNet (He et al., 2016),
we adopt the implementation in tensorflow CNN bench-
mark'. For AA-ResNet, we modify the ResNet by aug-
menting 3x3 convolution with self-attention. The imple-
mentation is from the official repository of AA-ResNet?,
while we simply add the residual convolution module for
EA-AA-ResNet. Concretely, we apply attention augmenta-
tion to each residual block in the last three stages — when
the shapes of activation maps become 28x28, 14x14 and
7x7. We adopt the same setting as AA-ResNet, e.g. k = 2
and v = 0.2. We refer to (Bello et al., 2019) for more
details. We set « = 0.5 and 8 = 1.0 by default, except
for EA-AA-ResNet-152 and EA-AA-ResNet-101 where we
set « = 0.7. A hyper-parameter analysis for o and  in
EA-AA-ResNet-34 is shown in Figure 1. We can see that
the best result is achieved at « = 0.5 and 8 = 1.0, which
significantly outperforms the vanilla transformer (equivalent
toa=0and 5 = 0).

A.2. Natural language understanding

As introduced in (Devlin et al., 2019), BERT-Base and EA-
BERT-Base have 12 layers and 12 attention heads with hid-
den dimension 768. BERT-large and EA-BERT-large have
24 layers and 16 heads, while hidden dimension for each
intermediate layer is set as 1024. The hidden dimension of
the final fully-connected layer before softmax is set to be
2000. We download the official checkpoints of BERT-Base®
and BERT-Large*, and initialize the additional parameters
for EA-BERT-Base and EA-BERT-Large randomly.

We also conduct a set of experiments with RoBERTa-
Large (Liu et al., 2019) and T5-Base (Raffel et al., 2019).
We apply the idea of evolving attention to the network of
these models. RoOBERTa-Large has 24 layers with 16 atten-
tion heads. The total hidden size of all heads is 1024, and
the hidden dimension of the final fully-connected layer is
4096. We use NLP library implemented by the huggingface
team (Wolf et al., 2019) to implement the base version of
TS, which has 220 million parameter. We download the

1https://github.com/tensorflow/
benchmarks/tree/cnn_tf_vl.14_compatible

https://github.com/leader31001/
Attention-Augmented-Conv2d

Shttps://storage.googleapis.com/bert_
models/2018_10_18/uncased_L-12_H-768_A-12.
zip

*https://storage.googleapis.com/bert_
models/2018_10_18/uncased_L-24_H-1024_A-16.
zip
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Figure 1. Hyper-parameter analysis for EA-AA-ResNet-34

official pre-trained checkpoints for ROBERTa-Large® and
T5-Base® for fine-tuning.

We adopt the Adam optimizer (Kingma & Ba, 2014) with
epsilon le-8. The dropout rate is set as 0.1 empirically. We
use grid search to optimize the values of hyper-parameters
on the validation set. We search the learning rate in {1e-4,
le-5, 2e-5}, batch size in {8, 16}, training epochs in {2, 3,
5}, @in {0.1,0.2,0.4} and 8 in {0.1, 0.2, 0.4}. The specific
hyper-parameters for each task are listed in Table 1.

A.3. Machine Translation

We train the machine translation tasks using Adam opti-
mizer (Kingma & Ba, 2014) with §; = 0.9, 8> = 0.98 and
an inverse square root learning rate scheduling with linear
warmup. The learning rate is le-3 and the warmup step
is set to be 4000. Also, we use label smoothing € = 0.1.
we apply early stopping to the training procedure with a

Shttps://dl.fbaipublicfiles.com/fairseq/
models/roberta.large.tar.gz

6https://console.cloud.google.com/
storage/browser/t5-data/pretrained_models/
base/
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Model Task Training Epochs Batch Size Learning Rate Adam Epsilon Dropout Rate « 8
CoLA 3 8 2e-5 le-8 0.1 02 0.1
SST-2 5 8 le-5 le-8 0.1 0.1 0.1
MRPC 2 8 2e-5 le-8 0.1 0.1 02
STS-B 3 8 2e-5 le-8 0.1 02 02
BERT-Base QQP 3 16 2e-5 le-8 0.1 0.1 02
MNLI 3 16 2e-5 le-8 0.1 0.1 0.2
QNLI 3 16 2e-5 le-8 0.1 0.1 0.1
RTE 2 8 2e-5 le-8 0.1 02 0.1
CoLA 3 8 2e-5 le-8 0.1 0.1 0.2
SST-2 5 8 le-5 le-8 0.1 0.1 02
MRPC 2 8 le-5 le-8 0.1 0.1 0.1
STS-B 3 8 2e-5 le-8 0.1 0.1 02
BERT-Large QQP 3 16 le-5 le-8 0.1 0.1 0.1
MNLI 3 16 2e-5 le-8 0.1 02 02
QNLI 3 16 2e-5 le-8 0.1 02 02
RTE 3 16 le-4 le-8 0.1 0.1 02
CoLA 3 8 2e-5 le-8 0.1 02 0.1
SST-2 5 8 le-5 le-8 0.1 0.1 0.2
MRPC 3 16 le-5 le-8 0.1 0.1 02
STS-B 3 16 2e-5 le-8 0.1 04 02
RoBERTa-Large QQP 3 16 2e-5 le-8 0.1 0.1 0.1
MNLI 5 16 le-5 le-8 0.1 04 0.1
QNLI 5 16 le-5 le-8 0.1 04 02
RTE 2 8 le-4 le-8 0.1 02 04
CoLA 3 8 2e-5 le-8 0.1 02 02
SST-2 3 8 2e-5 le-8 0.1 0.1 02
MRPC 3 8 le-4 le-8 0.1 0.1 0.1
STS-B 3 16 2e-5 le-8 0.1 0.1 0.1
T5-Base QQP 3 16 2e-5 le-8 0.1 0.1 02
MNLI 5 16 le-5 le-8 0.1 0.1 0.1
QNLI 5 16 le-5 le-8 0.1 02 0.1
RTE 3 16 le-5 le-8 0.1 04 02

Table 1. Detailed hyper-parameter settings for GLUE benchmark.

patience of 5 epochs. In the evaluation phase, we average
the final 10 checkpoints and conduct beam search with size
5. We adopt absolute positional encoding according to the
original implementation (Vaswani et al., 2017). Other hyper-
parameters are optimized by grid search on the validation
set and reported in Table 2.

B. Analysis
B.1. Quality of Image Attention

We select the 16th, 17th and 18th attention layers in the AA-
ResNet-34 and EA-AA-ResNet34 networks for analysis.
The attention maps from these layers have a shape of 14 x
14x 8, where 14 is the image length after pooling and 8 is the
number of heads. Then, we send the attention maps directly
as inputs to another CNN model for classification, and the
original labels are used for training and evaluation. The goal
is to quantify the effectiveness of attention maps learned by

different models. If an attention map retains major structures
of the original object, the classification accuracy should be
higher. We adopt a 12-layer DenseNet (Huang et al., 2017)
for attention map classification, while the shape is pooled
to 7 x 7 and 4 x 4 after the 4th and 7th layers respectively.
The hidden dimension is set as 256 initially and doubled
after each pooling operation. The models are trained by 30
epochs with cosine learning rate decay started by 0.05 and
ended by 0.0001.

B.2. Interpretability

In the context of modern neural models, attention mecha-
nisms learn to assign soft weights to token representations,
thus one can extract highly weighted tokens as rationales.
In other words, if the self-attention mechanism generates
better attention scores, it will achieve better performance
on ERASER, a benchmark designed to evaluate the inter-
pretability of natural language understanding models. We



Model Task  Number of GPU Accumulative Steps Learning Rate Dropout Rate « B8
De-En 1 1 le-3 0.2 0.1 0.1
EA-Transformer-Lite ~ En-De 8 16 le-3 0.3 0.1 0.1
En-Fr 8 16 le-3 0.1 0.1 0.1
De-En 1 1 le-3 0.2 0.5 0.1
EA-Transformer-Base En-De 8 16 le-3 0.3 0.5 0.1
En-Fr 8 16 le-3 0.1 0.5 0.1

Table 2. Detailed hyper-parameter settings for machine translation.

Perf.t AUPRCT Comp.t Suff.|
Movie Reviews
BERT+LSTM - Attention 0.970 0417 0.129 0.097
BERT+LSTM - EA-Attention  0.970 0.435 0.142 0.084
BERT+LSTM - Lime 0.970 0.280 0.187 0.093
EA-BERT+LSTM -Lime 0.975 0.313 0.194 0.089
FEVER
BERT+LSTM - Attention 0.870 0.235 0.037 0.122
BERT+LSTM - EA-attention  0.870 0.238 0.078 0.097
BERT+LSTM - Lime 0.870 0.291 0.212 0.014
EA-BERT+LSTM -Lime 0.886 0.307 0.236 0.014
MultiRC
BERT+LSTM - Attention 0.655 0.244 0.036 0.052
BERT+LSTM - EA-Attention  0.655 0.251 0.054 0.041
BERT+LSTM - Lime 0.655 0.208 0.213 -0.079
EA-BERT+LSTM -Lime 0.674 0.221 0.241 -0.089
CoS-E
BERT+LSTM - Attention 0.487 0.606 0.080 0.217
BERT+LSTM - EA-Attention  0.487 0.610 0.113 0.189
BERT+LSTM - Lime 0.487 0.544 0.223 0.143
EA-BERT+LSTM -Lime 0.491 0.552 0.231 0.140
e-SNLI
BERT+LSTM - Attention 0.960 0.395 0.105 0.583
BERT+LSTM - EA-Attention  0.960 0.399 0.177 0.396
BERT+LSTM - Lime 0.960 0.513 0.437 0.389
EA-BERT+LSTM -Lime 0.969 0.534 0.445 0.368

Table 3. Comparison of different text representation models and
rationale generation methods on ERASER benchmark. “Perf.” is
accuracy (CoS-E) or F1 (others), AUPRC means Area Under the
Precision Recall Curve; “Comp.” and “Suff.” denote comprehen-
siveness and sufficiency metrics respectively..

list the experimental results on the ERASER benchmark
in Table 3. It should be noted that higher comprehensive-
ness scores and lower sufficiency scores are desired. First,
we consider a text representation model that passes tokens
through BERT and a bidirectional LSTM. Based on the
same text representation, we use different methods for ra-
tionale generation. Here, the models are the same, so the
downstream performance is equivalent. According to the
experimental results, the rationales generated using evolv-
ing attention are more accurate than the ones generated
by vanilla attention. Next, we replace vanilla BERT with
EA-BERT as the text representation model and utilize a
state-of-the-art rationale generation method, Lime (Ribeiro

et al., 2016). Experimental results show that EA-BERT im-
proves the performances of downstream tasks and generates
better rationales simultaneously.

C. Case Study

In order to get insight into the evolving attention mecha-
nism, we visualize exemplar attention maps for both text
and image inputs and find some interesting evidences.

C.1. Image attention

In Figure 2-5, we compare the attention maps of AA-
ResNet-34 and EA-AA-ResNet-34 for ImageNet classifica-
tion. Compared to AA-ResNet, our proposed convolution-
based evolving attention mechanism captures better global
information and at the same time emphasizes on the impor-
tant local information. Specifically, the residual connections
and convolutional inductive bias assist the self-attention
mechanism to depict a more clear outline. As shown by the
visualized examples, AA-ResNet fails to compute a explain-
able attention map for some layers. In contrast, with the
help of residual convolutions, EA-AA-ResNet successfully
identifies the objects in images in an evolving process.

C.2. Text Attention

We choose BERT-Base and EA-BERT-Base models for com-
parison on the CoLA dataset, a task of judging the gram-
matical correctness of a sentence. We select the sentence
“Mary tried John to go abroad.” for a case study. Obviously,
this sentence is grammatically wrong, and a model should
capture the error part “tried John to” in order to give the
correct answer.

In Figure 6, we visualize related attention maps for three
layers (#2, #11 and #12) in BERT-Base and EA-BERT-Base
models. The second layer is the first layer that utilizes
residual attention, and #11 and #12 are the last two lay-
ers. For each layer, we first show the attention maps from
vanilla BERT and EA-BERT in the first and second columns
respectively, then the convolution-based attention and self-
attention maps are visualized in the third and fourth column.
It should be noted that the second column is the linear fusion
result of the third column and the fourth column.



Consider layer #2, both BERT (Figure 6(a)) and EA-BERT
(Figure 6(b)) pay major attentions on the verb phrase “go
abroad”. As shown in Figure 6(b), EA-BERT puts addi-
tional stress on the relation between word “tried” and the
stop sign. This is reasonable because the stop sign is re-
sponsible of capturing sentence-level semantics and “tried”
is a key word leading to the grammatical error. As shown
in Figure 6(c), the attention on this part actually comes
from the convolution-based module, which is sometimes
complementary to the self-attention map.

In order to ensure that the information obtained by the con-
volution is beneficial, we visualize the last attention layer
(#12) which is the closest to the output (see Figure 6(i-
). In Figure 6(i), we can observe that BERT-Base still
focuses on verbs and stop signs in the very last layer of
transformer. The attention to the wrong phrase “tried John”
is still relatively weak, leading to a mis-classification result.
In contrast, the attention scores between “tried” and “John”
become obvious in EA-BERT (Figure 6(j)), largely owning
to the convolutional attention map illustrated in Figure 6(k).

We also visualize the attention maps of the #11 layer, which
serves as input to the #12 layer. To analysis the evolution of
attention maps, we compare the differences between Figure
6(f) and Figure 6(k), as the latter is the evolved attention
map taking the former as input. We find that the convo-
lutional module helps to reason about the important word
relations based on the previous attention maps. Specifically,
it weakens the attention scores of the correct parts and raises
higher scores for the wrong parts. As illustrated in Figure
6(k), the attention scores are significant in the upper left
corner of the matrix where the error occurs. In this way,
the error is fully captured in the final representation layer,
helping EA-BERT to generate a correct answer.
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Figure 2. Attention map visualization for an image classification example
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Figure 3. Attention map visualization for an image classification example
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Figure 4. Attention map visualization for an image classification example
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Figure 5. Attention map visualization for an image classification example
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Figure 6. Attention maps of layer #2, #11 and #12 for “Mary tried John to go abroad.”



