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Abstract

Choosing the right parameters for optimization
algorithms is often the key to their success in
practice. Solving this problem using a learning-to-
learn approach—using meta-gradient descent on
a meta-objective based on the trajectory that the
optimizer generates—was recently shown to be ef-
fective. However, the meta-optimization problem
is difficult. In particular, the meta-gradient can
often explode/vanish, and the learned optimizer
may not have good generalization performance if
the meta-objective is not chosen carefully. In this
paper we give meta-optimization guarantees for
the learning-to-learn approach on a simple prob-
lem of tuning the step size for quadratic loss. Our
results show that the naı̈ve objective suffers from
meta-gradient explosion/vanishing problem. Al-
though there is a way to design the meta-objective
so that the meta-gradient remains polynomially
bounded, computing the meta-gradient directly
using backpropagation leads to numerical issues.
We also characterize when it is necessary to com-
pute the meta-objective on a separate validation
set to ensure the generalization performance of the
learned optimizer. Finally, we verify our results
empirically and show that a similar phenomenon
appears even for more complicated learned opti-
mizers parametrized by neural networks.

1. Introduction
Choosing the right optimization algorithm and related hyper-
parameters is important for training a deep neural net-
work. Even for simple algorithms like gradient descent and
stochastic gradient descent, choosing a good step size can
be important to the convergence speed and generalization
performance. Empirically, the parameters are often chosen
based on past experiences or grid search. Recently, Maclau-
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rin et al. (2015) considered the idea of tuning these parame-
ters by optimization—that is, consider a meta-optimization
problem where the goal is to find the best parameters for
an optimizer. A series of works (e.g., Andrychowicz et al.
(2016); Wichrowska et al. (2017)) extended such ideas and
parametrized the set of optimizers by neural networks.

Although this approach has shown empirical success, there
are very few theoretical guarantees for learned optimiz-
ers. Gupta & Roughgarden (2017) gave sample complexity
bounds for tuning the step size, but they did not address how
one can find the learned optimizer efficiently. In practice,
the meta-optimization problem is often solved by meta-
gradient descent—define a meta-objective function based
on the trajectory that the optimizer generates, and then com-
pute the meta-gradient using back-propagation (Franceschi
et al., 2017). The optimization for meta-parameters is usu-
ally a nonconvex problem, therefore it is unclear why simple
meta-gradient descent would find an optimal solution.

In this paper we consider using learning-to-learn approach
to tune the step size of standard gradient descent/stochastic
gradient descent algorithm. Even in this simple setting,
many of the challenges still remain and we can get better
learned optimizers by choosing the right meta-objective
function. Though our results are proved only in the simple
setting, we empirically verify the results using complicated
learned optimizers with neural network parametrizations.

1.1. Our Results

In this paper we focus on two basic questions on learning-
to-learn for gradient descent optimizer. First, will the meta-
gradient explode/vanish and is there a way to fix the prob-
lem? Second, how could we guarantee that the learned
optimizer has good generalization properties?

Our first result shows that meta-gradient can explode/vanish
even for tuning the step size for gradient descent on a simple
quadratic objective. In this setting, we show that there
is a unique local and global minimizer for the step size,
and we also give a simple way to get rid of the gradient
explosion/vanishing problem.

Theorem 1 (Informal version of Theorem 3 and Theorem 4).
For tuning the step size of gradient descent on a quadratic
objective, if the meta-objective is the loss of the last iteration,
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then the meta-gradient will explode/vanish. If the meta-
objective is the log of the loss of the last iteration, then
the meta-gradient is polynomially bounded. Further, doing
meta-gradient descent with a meta step size of 1/

√
k (where

k is the number of meta-gradient steps) provably converges
to the optimal step size for the inner-optimizer.

Surprisingly, even though taking the log of the objective
solves the meta-gradient explosion/vanishing problem, one
cannot simply implement such an algorithm using back-
propagation (which is standard in auto-differentiation tools
such as those used in TensorFlow (Abadi et al., 2016)). The
reason is that even though the meta-gradient is polynomi-
ally bounded, back-propagation algorithm will compute the
meta-gradient as the ratio of two exponentially large/small
numbers, which causes numerical issues. Detailed discus-
sion for the first result appears in Section 3.

Our second result shows that defining meta-objective on
the same training set (later referred to as the “train-by-train”
approach) could lead to overfitting; while defining meta-
objective on a separate validation set (“train-by-validation”,
see Metz et al. (2019)) can solve this issue. We consider
a simple least squares setting where y = 〈w∗, x〉 + ξ and
ξ ∼ N (0, σ2). We show that when the number of samples
is small and the noise is large, it is important to use train-
by-validation; while when the number of samples is much
larger train-by-train can also learn a good optimizer.
Theorem 2 (Informal version of Theorem 5 and Theorem 6).
For a least squares problem in d dimensions, if the number
of samples n is a constant fraction of d (e.g., d/2), and the
samples have large noise, then the train-by-train approach
performs much worse than train-by-validation. On the other
hand, when the number of samples n is large, train-by-train
can get close to error dσ2/n, which is optimal.

We discuss the details in Section 4. In Section 5 we show
that such observations also hold empirically for more com-
plicated learned optimizers—an optimizer parametrized by
a neural network.

1.2. Related Work

Learned optimizer The idea of learning an optimizer has
appeared in early works decades ago (Bengio et al., 1990;
1992; Hochreiter et al., 2001). Recently, with the rise of
deep learning, researchers started to consider more complex
optimizers on more challenging tasks. One line of research
views the optimizer as a policy and apply reinforcement
learning techniques to train it (Li & Malik, 2016; 2017;
Bello et al., 2017). The other line of papers use gradient
descent on the meta-objective to update the optimizer pa-
rameters (Maclaurin et al., 2015; Andrychowicz et al., 2016;
Lv et al., 2017; Wichrowska et al., 2017; Metz et al., 2019).

Mostly relevant to our work, Metz et al. (2019) highlighted

several challenges in the meta-optimization for learning-
to-learn approach. First, they observed the meta-gradient
exploding/vanishing issue and proposed to use a gradient es-
timator for a variational meta-objective. They also observed
that train-by-train approach can overfit the training tasks
while train-by-validation generalizes well.

Data-driven algorithm design In data-driven algorithm
design, we aim to find an algorithm that works well on
a particular distribution of tasks. Gupta & Roughgarden
(2017) first modeled this algorithm-selection process as a
statistical learning problem. In particular, they analyzed the
sample complexity of choosing the step size for gradient
descent. But they didn’t consider the meta-optimization
problem. They also restricted the step size into a small
range so that gradient descent is guaranteed to converge on
every task. We don’t have such a restriction and allow the
meta-learning to choose a more aggressive step size.

Following the work by Gupta & Roughgarden (2017), data-
driven algorithms have been studied in many problems, in-
cluding partitioning and clustering (Balcan et al., 2016a),
tree search (Balcan et al., 2018a), pruning (Alabi et al., 2019)
and machanism design (Morgenstern & Roughgarden, 2015;
2016; Balcan et al., 2016b; 2018b).

Step size schedule for GD/SGD Shamir & Zhang (2013)
showed that SGD with polynomial step size scheduling can
almost match the minimax rate in convex non-smooth set-
tings, which was later tightened by Harvey et al. (2018) for
standard step size scheduling. Assuming that the number
of training steps is known to the algorithm, the information-
theoretically optimal bound in convex non-smooth setting
was later achieved by Jain et al. (2019) which used another
step size schedule, and Ge et al. (2019) showed that expo-
nentially decaying step size scheduling can achieve near
optimal rate for least squares regression.

A closely related paper that appeared later than our work
also studied the comparison between train-by-train and train-
by-validation (Bai et al., 2020). They considered a very
different meta-learning problem, where the goal is to find the
best common initialization for adapting to a linear predictor
on each task. They proved train-by-train can work better
than train-by-validation in the noiseless setting.

2. Preliminaries
In this section, we first introduce some notations, then for-
mulate the learning-to-learn framework.

2.1. Notations

For any integer n, we use [n] to denote {1, 2, · · · , n}. We
use ‖·‖ to denote the `2 norm for a vector and the spectral
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norm for a matrix. We use 〈·, ·〉 to denote the inner product
of two vectors. For a symmetric matrix A ∈ Rd×d, we
denote its eigenvalues as λ1(A) ≥ · · · ≥ λd(A). We denote
the d-dimensional identity matrix as Id or simply as I when
the dimension is clear. We use O(·),Ω(·),Θ(·) to hide
constant factor dependencies. We use poly(·) to represent a
polynomial on the relevant parameters with constant degree.

2.2. Learning-to-learn Framework

We consider the learning-to-learn approach applied to train-
ing a distribution of learning tasks. Each task is specified by
a tuple (D, Strain, Svalid, `). Here D is a distribution of sam-
ples in X×Y , where X is the domain for the sample and Y
is the domain for the label/value. The sets Strain and Svalid are
samples generated independently from D, which serve as
the training and validation set (the validation set is optional).
The learning task looks to find a parameter w ∈ W that
minimizes the loss function `(w, x, y) : W ×X × Y → R,
which gives the loss of the parameter w for sample (x, y).
The training loss for this task is

f̂(w) :=
1

|Strain|
∑

(x,y)∈Strain

`(w, x, y),

while the population loss is f(w) := E(x,y)∼D[`(w, x, y)].

The goal of inner-optimization is to minimize the pop-
ulation loss f(w). For the learned optimizer, we con-
sider it as an update rule u(·) on weight w. The up-
date rule is a parameterized function that maps the weight
at step τ and its history to the step τ + 1 : wτ+1 =
u(wτ ,∇f̂(wτ ),∇f̂(wτ−1), · · · ; θ). In most parts of this
paper, we consider the update rule u as gradient descent
mapping with step size as the trainable parameter (here
θ = η which is the step size for gradient descent). That
is, u(w; η) = w − η∇f̂(w) for gradient descent and
u(w; η) = w − η∇w`(w, x, y) for stochastic gradient de-
scent where (x, y) is a sample randomly chosen from the
training set Strain.

In the outer (meta) level, we consider a distribution T of
tasks. For each task P ∼ T , we can define a meta-loss
function ∆(θ, P ). The meta-loss function measures the
performance of the optimizer on this learning task. The
meta-objective, for example, can be chosen as the target
training loss f̂ at the last iteration (train-by-train), or the
loss on the validation set (train-by-validation).

The training loss for the meta-level is the average of the
meta-loss across m different specific tasks P1, P2, ..., Pm,
that is,

F̂ (θ) =
1

m

m∑
i=1

∆(θ, Pk).

The population loss for the meta-level is the expectation over
all the possible specific tasks F (θ) = EP∼T [∆(θ, P )].

In order to train an optimizer by gradient descent, we need to
compute the gradient of meta-objective F̂ in terms of meta
parameters θ. The meta parameter is updated once after
applying the optimizer on the inner objective t times to gen-
erate the trajectoryw0, w1, ..., wt. The meta-gradient is then
computed by unrolling the optimization process and back-
propagating through the t applications of the optimizer.

3. Alleviating Gradient Explosion/Vanishing
Problems

First we consider the meta-gradient explosion/vanishing
problem. More precisely, we say the meta-gradient ex-
plodes/vanishes if it is exponentially large/small with re-
spect to the number of steps t of the inner-optimizer.

In this section, we consider a simple instance of the learning-
to-learn approach, where the distribution T only contains
a single task P , and the task also just defines a single loss
function f 1. Therefore, in this section F̂ (η) = F (η) =
∆(η, P ). We will simplify notation and only use F̂ (η).

The inner task P is a simple quadratic problem, where
the starting point is fixed at w0 with unit norm, and the
loss function is f(w) = 1

2w
>Hw for some fixed positive

definite matrix H ∈ Rd×d.

Let {wτ,η}tτ=0 be the GD sequence running on f(w) start-
ing fromw0 with step size η.We consider two ways of defin-
ing meta-objective: using the loss of the last point directly
or using the log of this value. We first show that although
choosing F̂ (η) = f(wt,η) does not have any bad local opti-
mal solution, it has the meta-gradient explosion/vanishing
problem. We use F̂ ′(η) to denote the derivative of F̂ in η.

In the analysis, we use eigen-decomposition to transform
H into a diagonal matrix. We introduce related nota-
tions here: suppose the eigenvalue decomposition of H is∑d
i=1 λiuiu

>
i . We denote L := λ1(H) and α := λd(H) as

the largest and smallest eigenvalues of H . For each i ∈ [d],
let ci be 〈w0, ui〉 and let cmin be min(|c1|, |cd|).We assume
cmin > 0 and L > α for simplicity2.
Theorem 3. Let the meta-objective be F̂ (η) = f(wt,η), we
know F̂ (η) is a strictly convex function in η with an unique
minimizer. However, for any step size 0 < η < 2/L,

|F̂ ′(η)| ≤ tL2 max(|1− ηα|2t−1, |1− ηL|2t−1);

for any step size η > 2/L,

|F̂ ′(η)| ≥ c21L2t(ηL− 1)2t−1 − L2t.

1In the notation of Section 2, one can think that D contains a
single point (0, 0) and the loss function f(w) = `(w, 0, 0).

2If w0 is uniformly sampled from the unit sphere, with high
probability cmin is at least Ω(1/

√
d); if H is XX> with X ∈

Rd×2d as a random Gaussian matrix, with constant probability,
both α and L− α are at least Ω(d).
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Note that in Theorem 3, when 0 < η < 2/L, |F̂ ′(η)| is
exponentially small because |1− ηα|, |1− ηL| < 1 ; when
η > 2/L, |F̂ ′(η)| is exponentially large because ηL− 1 >
1. The strict convexity of F̂ (η) is proved by showing the
second order derivative of F̂ (η) is positive; the upper and
lower bounds of F̂ ′(η) follows from direct calculation.

Intuitively, gradient explosion/vanishing happens because
the meta-objective becomes too small or too large. A
natural idea to fix the problem is to take the log of the
meta-objective to reduce its range. If we choose F̂ (η) =
1
t log f(wt,η), we have

Theorem 4. Let the meta-objective be F̂ (η) =
1
t log f(wt,η). We know F̂ (η) has a unique minimizer η∗

and F̂ ′(η) = O
(

L3

c2minα(L−α)

)
for all η ≥ 0. Let {ηk} be

the GD sequence running on F̂ with meta step size µk =
1/
√
k. Suppose the starting step size η0 ≤ M. Given any

1/L > ε > 0, there exists k′ = M6

ε2 poly( 1
cmin

, L, 1
α ,

1
L−α )

such that for all k ≥ k′, |ηk − η∗| ≤ ε.

For convenience, in the above algorithmic result, we reset
η to zero once η goes negative (this corresponds to doing
a projected gradient descent on η under constraint η ≥ 0).
We give a proof sketch of Theorem 4 in Section 3.1.

Surprisingly, even though we showed that the meta-gradient
is well-behaved, it cannot be effectively computed by doing
back-propagation due to numerical issues. More precisely:

Corollary 1. If we choose the meta-objective as F̂ (η) =
1
t log f(wt,η), when computing the meta-gradient using
back-propagation, there are intermediate results that are
exponentially large/small in number of inner-steps t.

If we use back-propagation to compute F̂ ′(η), we need
to separately compute the numerator and denominator in
Eqn. (1), which are exponentially large or small as we
showed in Theorem 3. Indeed, in Section 5 we empirically
verify that standard auto-differentiation tools can fail in this
setting. In contrast, the meta training succeeds if we use
the formula derived in Section 3.1 (Eqn. (2)). This suggests
that one should be more careful about using standard back-
propagation in the learning-to-learn approach. The proofs
of the results in this section are deferred into Appendix A.

3.1. Proof Sketch of Theorem 4

Throughout the proof, we work in the eigenspace of H
which reduces the problem to having a diagonal matrix H .
The proof goes in three steps:

• Claim 1 shows that the meta-objective F̂ has a unique
minimizer η∗ and the minus meta-gradient always
points to the minimizer.

• Claim 2 shows meta-gradient F̂ ′(η) never explodes.

• Claim 3 shows meta-gradient is large when η is far
from η∗.

Claim 1. The meta-objective F̂ has only one stationary
point that is also its unique minimizer η∗. For any η ∈
[0, η∗), F̂ ′(η) < 0 and for any η ∈ (η∗,∞), F̂ ′(η) > 0.

The lemma follows from a direct calculation F̂ ′(η):

F̂ ′(η) =
−2
∑d
i=1 c

2
iλ

2
i (1− ηλi)2t−1∑d

i=1 c
2
iλi(1− ηλi)2t

. (1)

Claim 1 is proved by noticing that the denominator in F̂ ′(η)
is always positive and the numerator is strictly increasing in
η. Next, we show the meta derivative is polynomially upper
bounded.

Claim 2. For any η ∈ [0,∞), we have |F̂ ′(η)| ≤
4L3

c2minα(L−α)
.

To prove this claim we observe that the numerator and
denominator are both polynomially bounded once we di-
vide them by a common factor, which is (1− ηα)2t when
η ∈ [0, 2

α+L ]. More precisely we have when η ∈ [0, 2
α+L ]

∣∣∣F̂ ′(η)
∣∣∣ = 2

∣∣∣∑d
i=1

c2iλ
2
i

1−ηα ( 1−ηλi
1−ηα )2t−1

∣∣∣
c2dα+

∑d−1
i=1 c

2
iλi(

1−ηλi
1−ηα )2t

≤
2
∑d
i=1 c

2
iλ

2
i

c2dα(1− ηα)
.

(2)
This leads to the claimed bounds based on our assumptions.
The case when η is large is similar. Finally, we show the
meta-gradient is lower bounded if η is away from η∗ and is
not too large. The proof follows from a similar calculation
as above.

Claim 3. Given M̂ ≥ 2/α and 1/L > ε > 0, for
any η ∈ [0, η∗ − ε] ∪ [η∗ + ε, M̂ ], we have |F ′(η)| ≥
2εc2min min

(
α3

L ,
1
M̂2

)
.

With the above three claims, we are ready to sketch the
proof of Theorem 4. Due to Claim 1, we know the minus
meta-gradient always points to the minimizer η∗. This alone
is not sufficient to prove the convergence result because the
iterates might significantly overshoot the minimizer if |F̂ ′|
is too large or the iterates might converge very slowly if |F̂ ′|
is too small. Fortunately, these two problematic cases can
be excluded by Claim 2 and Claim 3.

4. Generalization for Trained Optimizer
Next we consider the generalization ability of simple trained
optimizers. In this section we consider a simple family of
least squares problems. Let T be a distribution of tasks
where every task (D(w∗), Strain, Svalid, `) is determined by
a parameter w∗ ∈ Rd that is sampled uniformly at random
from the unit sphere. For each individual task, (x, y) ∼
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D(w∗) is generated by first choosing x ∼ N (0, Id) and
then computing y = 〈w∗, x〉+ ξ where ξ ∼ N (0, σ2) with
σ ≥ 1. The loss function `(w, x, y) is just the squared loss
`(w, x, y) = 1

2 (y − 〈w, x〉)2. That is, the tasks are just
standard least-squares problems with ground-truth equal to
w∗ and noise level σ2.

We consider two different ways to define the meta-objective.

Train-by-train: In the train-by-train setting, the training
set Strain contains n independent samples, and the meta-
loss function is chosen to be the training loss. That is, in
each task P , we first choose w∗ uniformly at random, then
generate (x1, y1), ..., (xn, yn) as the training set Strain. The
meta-loss function ∆TbT (n)(η, P ) is defined to be

∆TbT (n)(η, P ) =
1

2n

n∑
i=1

(yi − 〈wt,η, xi〉)2.

Here wt,η is the result of running t iterations of gradient
descent starting from point 0 with step size η. Note we
truncate a sequence and declare the meta loss is high once
the weight norm exceeds certain threshold3. We can safely
do this because we assume the ground truth weight w∗ has
unit norm, so if the weight norm is too high, it means the
inner training has diverged and the step size is too large.

As before, the empirical meta-objective in train-by-train
setting is the average of the meta-loss across m different
specific tasks P1, P2, ..., Pm, that is,

F̂TbT (n)(η) =
1

m

m∑
k=1

∆TbT (n)(η, Pk). (3)

Train-by-validation: In the train-by-validation setting,
the specific tasks are generated by sampling n1 training
samples and n2 validation samples for each task, and the
meta-loss function is the validation loss. That is, in each spe-
cific task P , we first choose w∗ uniformly at random, then
generate (x1, y1), ..., (xn1

, yn1
) as the training set Strain and

(x′1, y
′
1), ..., (x′n2

, y′n2
) as the validation set Svalid. The meta-

loss function ∆TbV (n1,n2)(η, P ) is defined to be

∆TbV (n1,n2)(η, P ) =
1

2n2

n2∑
i=1

(y′i − 〈wt,η, x′i〉)2.

Here again wt,η is the result of running t iterations of the
gradient descent on the training set starting from point 0,
and we use the same truncation as before. The empirical

3Specifically, if at the τ -th step ‖wτ,η‖ ≥ 40σ, we freeze the
training on this task and set wτ ′,η = 40σu for all τ ≤ τ ′ ≤ t, for
some arbitrary vector u with unit norm. Setting the weight to a
large vector is just one way to declare the loss is high.

meta-objective is defined as

F̂TbV (n1,n2)(η) =
1

m

m∑
k=1

∆TbV (n1,n2)(η, Pk), (4)

where each Pk is independently sampled according to the
described procedure.

We first show that when the number of samples is small (in
particular n < d) and the noise is a large enough constant,
train-by-train can be much worse than train-by-validation,
even when n1 + n2 = n (the total number of samples used
in train-by-validation is the same as in train-by-train)
Theorem 5. Let F̂TbT (n)(η) and F̂TbV (n1,n2)(η) be as de-
fined in Equation (3) and Equation (4) respectively. Assume
n, n1, n2 ∈ [d/4, 3d/4]. Assume noise level σ is a large con-
stant c1. Assume unroll length t ≥ c2, number of training
tasks m ≥ c3 log(mt) and dimension d ≥ c4 log(mt) for
certain constants c2, c3, c4. With probability at least 0.99 in
the sampling of training tasks, we have

η∗train = Θ(1) and E
∥∥wt,η∗train

− w∗
∥∥2

= Ω(1)σ2,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η);

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg minη≥0 F̂TbV (n1,n2)(η). In both equa-
tions the expectation is taken over new tasks.

In Theorem 5, wt,η∗train
and wt,η∗valid

are the results obtained on
the new task and w∗ is the ground truth of the new task. If σ
is a large enough constant, we know E

∥∥wt,η∗train
− w∗

∥∥2
is

larger than E
∥∥wt,η∗valid

− w∗
∥∥2

by some constant. The prob-
ability 0.99 is an arbitrary number, which can be replaced
by any constant smaller than 1.

Note that in this case, the number of samples n is smaller
than d, so the least square problem is under-determined and
the optimal training loss would go to 0 (there is always a way
to simultaneously satisfy all n equations). This is exactly
what train-by-train would do—it will choose a large con-
stant learning rate which guarantees the optimizer converges
exponentially to the empirical risk minimizer (ERM)4. How-
ever, when the noise is large making the training loss go
to 0 will overfit to the noise and hurt the generalization
performance. In contrast, train-by-validation will choose a
smaller learning rate which allows it to leverage the signal
in the training samples without overfitting to noise.

We separately give a proof sketch for the train-by-train set-
ting and train-by-validation setting in Section 4.1 and Sec-
tion 4.2, respectively. The detailed proof of Theorem 5 is

4In an under-determined problem, there are actually multiple
ERM solutions. Here, we focus on the unique ERM solution in the
span of training data. This is also the solution that GD converges
to when the initialization is 0.
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deferred to Appendix B. We also prove similar results for
SGD in Appendix D

We emphasize that neural networks are often over-
parameterized, which corresponds to the case when d > n.
Therefore in order to train neural networks, it is usually bet-
ter to use train-by-validation. On the other hand, we show
when the number of samples is large (n� d), train-by-train
can also perform well.
Theorem 6. Let F̂TbT (n)(η) be as defined in Equation (3).
Assume noise level is a constant c1. Given any 1 > ε > 0,
assume training set size n ≥ cd

ε2 log(nmεd ), unroll length t ≥
c2 log( nεd ), number of training tasks m ≥ c3n

2

ε4d2 log( tnmεd )
and dimension d ≥ c4 for certain constants c, c2, c3, c4.
With probability at least 0.99 in the sampling of training
tasks, we have

E
∥∥wt,η∗train

− w∗
∥∥2 ≤ (1 + ε)

dσ2

n
,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η), where the expecta-
tion is taken over new tasks.

Therefore if the learning-to-learn approach is applied to a tra-
ditional optimization problem that is not over-parameterized,
train-by-train can work well. In this case, the empirical risk
minimizer (ERM) already has good generalization perfor-
mance, and train-by-train optimizes the convergence to-
wards the ERM. We defer the proof of Theorem 6 into
Appendix C.

4.1. Proof Sketch for Train-by-train

In this section, we will give a proof sketch for the first half
of Theorem 5 (train-by-train with small number of samples).
At the end of this section, we will briefly discuss the proof
of Theorem 6 (train-by-train with large number of samples).
For convenience, we denote F̂TbT as the empirical meta-
objective and FTbT as the population meta-objective. We
implicit assume the conditions in Theorem 5 hold in the
following lemmas.

Our meta-optimization problem works on a distribution of
tasks. Since different tasks can have different smoothness
condition, it’s possible that under the same step size, the in-
ner training converges on some tasks, but diverges on others.
One way to avoid this issue is to restrict the step size into
a small range under which the inner training converges on
all tasks (Gupta & Roughgarden, 2017). But this is too con-
servative and may lead to suboptimal step size. Instead, we
allow any positive step size and truncate the inner training if
the weight norm goes too large. This approach resolves the
diverging issues and also allow the meta-learning algorithm
to choose a more aggressive step size. As we explain later,
this brings some technical challenges into our proof.

In order to prove E
∥∥wt,η∗train

− w∗
∥∥2

is large, we only

need to show the population meta-objective FTbT (η∗train)
is small. This is because FTbT (η∗train) measures the distance
between wt,η∗train

and the ERM solution while ERM solution
is far from w∗. Since η∗train minimizes the empirical meta-
objective, we know F̂TbT (η∗train) is small. Thus we only
need to show FTbT and F̂TbT are similar. This is easy to
prove for small step sizes when the inner training always
converges, but is difficult when the inner training can di-
verge and gets truncated. To address this problem we break
the step size into three intervals separated by 1/L and η̃
(L is a large constant that bounds the smoothness on all
tasks). Intuitively, when η ≤ 1/L almost all inner training
converges and larger step size leads to faster convergence
and smaller F̂TbT ; on the other hand, when η > η̃, we show
F̂TbT (η) is always large so the minimizer of F̂TbT cannot
be in this region. Therefore, the optimal step size must be
in [1/L, η̃]. We only need to prove in the interval [1/L, η̃]
the empirical meta-objective F̂TbT is close to the population
meta-objective FTbT . This proof is still nontrivial since
the inner training can still diverge on a small fraction of
sampled tasks.

We first show that for η ∈ [0, 1/L], the empirical meta-
objective F̂TbT strictly decreases as η increases and F̂TbT
is exponentially small in t at step size 1/L.

Lemma 1. With probability at least 1 − m exp(−Ω(d)),
F̂TbT (η) is monotonically decreasing in [0, 1/L] and
F̂TbT (1/L) ≤ 2L2σ2

(
1− 1

L2

)t
.

Next we show that the minimizer cannot be larger than
η̃ for suitably chosen η̃ (see the precise definition in the
appendix). Intuitively, this is because when η is too large
the inner-optimizer would diverge on a significant fraction
of the sampled tasks.

Lemma 2. With probability at least 1 − exp(−Ω(m)),

F̂TbT (η) ≥ σ2

10L8 for all η > η̃.

By Lemma 1 and Lemma 2, we know when t is large enough,
the optimal step size η∗train must lie in [1/L, η̃]. We can also
show 1/L < η̃ < 3/L, so η∗train is a constant. To relate the
empirical loss at η∗train to the population loss, we prove the
following uniform convergence result when η ∈ [1/L, η̃].

Lemma 3. With probability at least 1−m exp(−Ω(d))−
O(t + m) exp(−Ω(m)), |FTbT (η) − F̂TbT (η)| ≤ σ2

L3 , for
all η ∈ [1/L, η̃].

The proof of this Lemma involves constructing special ε-
nets for FTbT and F̂TbT and showing that for each fixed η,
|FTbT (η)− F̂TbT (η)| is small with high probability using
concentration inequalities.

Combining the above lemmas, we know the population
meta-objective FTbT is small at η∗train, which means wt,η∗train

is close to the ERM solution. Since the ERM solution
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overfits to the noise in the training samples, we know
E
∥∥wt,η∗train

− w∗
∥∥ has to be large.

Train-by-train with large number of samples: The
proof of Theorem 6 follows the same strategy as above.
We prove that under the optimal step size η∗train, wt,η∗train

con-
verges to the ERM solution. But with more samples, the
ERM solution wERM becomes closer to the ground truth w∗.
More precisely, we can prove E ‖wERM − w∗‖2 is roughly
dσ2

n , which leads to the bound in Theorem 6.

4.2. Proof Sketch for Train-by-Validation

In this section, we give a proof sketch for the second half
of Theorem 5. We denote F̂TbV as the empirical meta-
objective and FTbV as the population meta-objective.

The overall proof strategy is similar as before: we will show
the empirical meta-objective is high when the step size is
beyond certain threshold, and only prove generalization
result for step sizes below this threshold. Under the train-
by-validation meta-objective, the optimal step size η∗valid is
in order Θ(1/t). So we will choose a smaller threshold step
size to be 1/L.

When η < 1/L, we show that the learned signal is linear in
ηt while the fitted noise is quadratic in ηt. So there exists
certain step size in the order Θ(1/t) such that our model
can leverage the signal in the training set without overfitting
the noise. More precisely, we prove the following lemma.
Lemma 4. There exist η1, η2, η3 = Θ(1/t) with η1 < η2 <
η3 such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C +

σ2

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

We then show whenever η is large, either the gradient de-
scent diverges and the sequence gets truncated or it con-
verges and overfits the noise. In both cases, the meta-
objective must be high.
Lemma 5. With probability at least 1 − exp(−Ω(m)),
F̂TbV (η) ≥ C ′σ2 + 1

2σ
2, for all η ≥ 1/L, where C ′ is

a positive constant independent with σ.

To relate the behavior of FTbV to the behavior of F̂TbV ,
we prove the following uniform convergence result for step
sizes in [0, 1/L]. The proof is similar as in Lemma 3.
Lemma 6. With probability at least 1 −
O(1/ε) exp(−Ω(ε2m)), |F̂TbV (η) − FTbV (η)| ≤ ε,
for all η ∈ [0, 1/L].

By choosing a small enough ε in Lemma 6, we ensure that
the behavior of F̂TbV is similar as that of FTbV in Lemma 4.

0 100 200 300

Meta steps

0

0.2

0.4

Ours

Tensorflow

Figure 1. Meta training trajectory for η (t = 80, η0 = 0.1).

Combing with Lemma 5, we know η∗valid = Θ(1/t) and
FTbV (η∗valid) ≤ 1

2 ‖w
∗‖2 + 1

2σ
2−Ω(1). This concludes our

proof since FTbV (η) = 1
2E ‖wt,η − w

∗‖2 + 1
2σ

2.

5. Experiments
In this section, we give experiment results on both synthetic
data and realistic data to verify our theory.5

Optimizing step size for quadratic objective We first
validate the results in Section 3. We fixed a 20-dimensional
quadratic objective as the inner problem and vary the num-
ber of inner steps t and initial value η0. We compute the
meta-gradient directly using the formula in Eqn. (2). In this
way, we avoid the computation of exponentially small/large
intermediate terms. We use the algorithm suggested in Theo-
rem 4, except we choose the meta-step size to be 1/(100

√
k)

as the constants in the theorem were not optimized.

An example training curve of η for t = 80 and η0 = 0.1 is
shown in Figure 1, and we can see that η converges quickly
within 300 steps. Similar convergence also holds for larger
t or larger initial η0. In contrast, we also implemented the
meta-training with Tensorflow, where the code was adapted
from the previous work of Wichrowska et al. (2017). Ex-
periments show that in many settings (especially with large
t and large η0) the implementation does not converge. In
Figure 1, under the TensorFlow implementation, the step
size is stuck at the initial value throughout the meta training
because the meta-gradient explodes and gives NaN value.
More details can be found in Appendix F.

Train-by-train vs. train-by-validation, synthetic data
Here we validate our theoretical results in Section 4 us-
ing the least-squares model defined there. We fix the input
dimension d to be 1000.

In the first experiment, we fix the size of the data (n = 500
for train-by-train, n1 = n2 = 250 for train-by-validation).

5Our code is available at https://github.com/Kolin96/learning-
to-learn.

 https://github.com/Kolin96/learning-to-learn
 https://github.com/Kolin96/learning-to-learn
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Under different noise levels, we find the optimal η∗ by a
grid search on its meta-objective for train-by-train and train-
by-validation settings respectively. We then use the optimal
η∗ found in each of these two settings to test on 10 new least-
squares problem. The mean RMSE, as well as its range over
the 10 test cases, are shown in Figure 2. We can see that for
all of these cases, the train-by-train model overfits easily,
while the train-by-validation model performs much better
and does not overfit. Also, when the noise becomes larger,
the difference between these two settings becomes more
significant.
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Figure 2. Training and testing RMSE for different σ values (500
samples)

In the next experiment, we fix σ = 1 and change the sample
size. For train-by-validation, we always split the samples
evenly into training and validation set. From Figure 3, we
can see that the gap between these two settings is decreasing
as we use more data, as expected by Theorem 6.
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Figure 3. Training and testing RMSE for different samples sizes
(σ = 1)

Train-by-train vs. train-by-validation, MLP optimizer
on MNIST Here we consider the more interesting case of
a multi-layer perceptron (MLP) optimizer on MNIST data
set. We use the same MLP optimizer as in Metz et al. (2019),
and details of this optimizer is discussed in Appendix F.
As the inner problem, we use a two-layer fully-connected
network of 100 and 20 hidden units with ReLU activations.
The inner objective is the classic 10-class cross entropy loss,
and we use mini-batches of 32 samples at inner training. In
all the following experiments, we use SGD as a baseline
with step size tuned by grid search against validation loss.
For each optimizer, we run 5 independent tests and collect
training accuracy and test accuracy for evaluation. The plots

show the mean of the 5 tests6.
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(a) 1000 samples, no noise

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

te
s
t)

SGD

TbT1000

TbV1000+1000

TbT2000

(b) 1000 samples, 20% noise
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Figure 4. The test accuracy of different optimizers in various set-
tings. Comparison between (a) and (b) shows that the advantage of
train-by-validation over train-by-train increases when the samples
have more noise; comparison between (a) and (c) shows that when
the number of samples increases, train-by-train gets comparable
performance as train-by-validation.

In Figure 4, we show the test accuracy for different opti-
mizers for different sample size and noise level. In this
figure, “TbTx” represents train-by-train approach with x
training samples; “TbVx+y” represents train-by-validation
approach with x training samples and y validation samples.
In Figure 4(a) the optimizer is applied to 1000 randomly
sub-sampled data (split between training and validation for

6We didn’t show the measure of the spread because the results
of these 5 tests are so close to each other, such that the range or
standard deviation marks will not be readable in the plots.
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train-by-validation); in Figure 4(b) we use the same amount
of data, except we add 20% label noise; in Figure 4(c) we
use the whole MNIST dataset without label noise. Compar-
ing Figure 4(a) and (b), we see that when the noise is large
train-by-validation significantly outperforms train-by-train.
Figure 5 gives the training accuracy in the same setting as
Figure 4(b), which clearly shows that train-by-validation can
avoid overfitting to noisy labels. Comparing Figure 4(a) and
(c), we see that when the number of samples is large enough
there is no significant difference between train-by-train and
train-by-validation.
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Figure 5. Training accuracy for 1000 samples and 20% noise (same
setting as in Figure 4(b))

6. Conclusions
In this paper, we have proved optimization and generaliza-
tion guarantees for tuning the step size for quadratic loss.
From the optimization perspective, we considered a simple
task whose objective is a quadratic function. We proved that
the meta-gradient can explode/vanish if the meta-objective
is simply the loss of the last iteration; we then showed
that the log-transformed meta-objective has polynomially
bounded meta-gradient and can be successfully optimized.
To study the generalization issues, we considered the least
squares problem—when the number of samples is small
and the noise is large, train-by-validation approach gener-
alizes better than train-by-train; while when the number of
samples is large, train-by-train can also work well.

Although our theoretical results are proved for quadratic
loss, this simple setting already yields interesting phe-
nomenons and requires non-trivial techniques to analyze.
We have also verified our theoretical results on an optimizer
parameterized by neural networks and on MNIST dataset.
There are still many open problems, including extending
similar analysis to more complicated optimizers, or general-
izing the idea to prevent numerical issues to neural network
optimizers. We hope our work can lead to more theoretical
understanding of the learning-to-learn approach.
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