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A. Proof of Theorem 1

Proof. The proof of Theorem 1 relies on two observations. The first observation starts with the integral equation we solve:

P (y | aC , f(aN )) =

Z
h(y, aC , aX )P (aX | aC , f(aN )) daX (20)

=

Z Z
h(y, aC , aX )P (aX |u)P (u | aC , f(aN )) daX du. (21)

The first equality is due to Eq. 3. The second equality is due to the conditional independence implied by Figure 1a:
AX ? AC , f(aN ) |U.

The second observation relies on the null proxy:

P (y | aC , f(aN )) =

Z
P (y |u, aC , f(aN ))P (u | aC , f(aN )) du (22)

=

Z
P (y |u, aC)P (u | aC , f(aN )) du. (23)

The first equality is due to the definition of conditional probability. The second equality is due to the second part of
Assumption 1, which implies Y ? f(aN ) |U,AC . The reason is that

P (y |u, aC , f(aN )) =

Z
P (y |u, aC , aX , f(aN ))P (aX |u, aC , f(aN )) daX (24)

=

Z
P (y |u, aC , aX )P (aX |u, aC) daX (25)

=P (y |u, aC). (26)

In fact, it is sufficient to assume Y ? f(aN ) |U,AC instead of Y ? f(aN ) |U,AC , AX in Theorem 1. However, the latter
is easier to check and interpret.

Comparing Eq. 21 and Eq. 23 gives
Z 

P (y |u, aC)�
Z

h(y, aC , aX )P (aX |u) daX
�
⇥ P (u | aC , f(aN )) du = 0, (27)

which, by the completeness condition in Assumption 1.2, implies

P (y |u, aC) =
Z

h(y, aC , aX )P (aX |u) daX . (28)

Eq. 28 leads to identification:

P (y | do(aC)) =
Z Z

h(y, aC , aX )P (aX |u) daXP (u) du (29)

=

Z
h(y, aC , aX )P (aX ) daX . (30)

Consider the special case of a single treatment as in Figure 1b. Let aC = {A1}, aX = {X}, aN = N , and f(aN ) = N .
The above proof reduces to the identification proof for proxy variables (Theorem 1 of Miao et al. (2018)).

B. Examples of Assumption 1

As an example, if the structural equation writes

Y = g(A1 +A2, A3, . . . , Am, U, ✏),
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where ✏ ? U,A1, . . . , Am, then Assumption 1.1 is satisfied if A1 and A2 are identically Gaussian: AN = (A1, A2) and
f(AN ) = A1 �A2 satisfies

A1 �A2 ? Y |U,A3, . . . , Am.

If A1 and A2 are both Gaussian but not identically distributed, then f(AN ) = ↵1A1 � ↵2A2 would satisfy

↵1A1 � ↵2A2 ? Y |U,A3, . . . , Am,

for some constant ↵1 and ↵2.

Similarly, if the structural equation writes

Y = g(A1 ⇥A2, A3, . . . , Am, U, ✏),

where ✏ ? U,A1, . . . , Am, then Assumption 1.1 is satisfied if A1 and A2 are identically log-normal: AN = (A1, A2) and
f(AN ) = A1/A2 satisfies

A1/A2 ? Y |U,A3, . . . , Am.

As a final example, if the structural equation writes

Y = g(A1&&A2, A3, . . . , Am, U, ✏),

where ✏ ? U,A1, . . . , Am and A1, A2 are both binary, then Assumption 1.1 is satisfied: AN = (A1, A2) and f(AN ) =
A1 XOR A2 satisfies

A1 XOR A2 ? Y |U,A3, . . . , Am.

C. Proof of Theorem 2

Proof. Assumption 2.2 guarantees the existence of some function ĥ such that

P̂ (y | aC , ẑ) =
Z

ĥ(y, aC , aX )P̂ (aX | ẑ) daX (31)

under weak regularity conditions. (We will discuss the reason in Appendix D.)

We first claim that ĥ(y, aC , aX ) solves

P (y | aC , f(aN )) =

Z
ĥ(y, aC , aX )P (aX | aC , f(aN )) daX . (32)

Given this claim (Eq. 77), we have

P̂ (y | do(aC))

=

Z
P̂ (y | ẑ, aC)P̂ (ẑ) dẑ

=

Z
ĥ(y, aC , aX )P̂ (aX | ẑ) daX P̂ (ẑ) dẑ

=

Z
ĥ(y, aC , aX )P (aX ) daX

=P (y | do(aC)),

which proves the theorem. The first equality is due to Eq. 6; the second is due to Eq. 77; the third is due to the deconfounder
estimate being consistent with the observed data distribution by construction; the fourth is due to the above claim (Eq. 77)
and Theorem 1.

We next prove the claim (Eq. 77). Start with the right side of the equality.
Z

ĥ(y, aC , aX )P (aX | aC , f(aN )) daX
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=

Z Z
ĥ(y, aC , aX )P̂ (aX | ẑ)P̂ (ẑ | aC , f(aN )) daX dẑ

=

Z
P̂ (y | aC , ẑ)P̂ (ẑ | aC , f(aN )) dẑ

=P (y | aC , f(aN )),

which establishes the claim. The first equality is due to Eq. 4 and the deconfounder estimate being consistent with the
observed data; the second is due to Eq. 31; the third is due to Assumption 2.1, which implies

P̂ (y | aC , f(aN ), ẑ) = P̂ (y | aC , ẑ). (33)

Similar to Assumption 1.1, it is sufficient to assume Eq. 33 directly. However, Assumption 2.1 is easier to check and more
interpretable; it directly relates to the deconfounder outcome model.

D. Existence of solutions to the integral equations

Theorem 1 involves solving the integral equation

P (y | aC , f(aN )) =

Z
h(y, aC , aX )P (aX | aC , f(aN )) daX . (34)

When does a solution exist for Eq. 34? We appeal to Proposition 1 of Miao et al. (2018).

Proposition 7. (Proposition 1 of Miao et al. (2018)) Denote L2{F (t)} as the space of all square-integrable function of t
with respect to a c.d.f. F (t). A solution to integral equation

P (y | z, x) =
Z

h(w, x, y)P (w | z, x) dw (35)

exists if

1. the conditional distribution P (z |w, x) is complete in w for all x,

2.
R R

P (w | z, x)P (z |w, x) dw dz < +1,

3.
R
[P (y | z, x)]2P (z |x) dz < +1,

4.
P+1

n=1 | < P (y | z, x), x,n > |2 < +1,

where the inner product is < g, h >=
R
g(t)h(t) dF (t), and (�x,n,�x,n, x,n)1n=1 is a singular value decomposition of the

conditional expectation operator Kx : L2{F (w |x)} ! L2{F (z |x)},Kx(h) = E [h(w) | z, x] for h 2 L2{F (w |x)}.

Leveraging Proposition 7, we can establish sufficient conditions for existence of a solution to Eq. 34.

Corollary 8. A solution exist for the integral equation Eq. 34 if

1. the conditional distribution P (f(aN ) | aX , aC) is complete in aX for all aC ,

2.
R R

P (aX | f(aN ), aC)P (f(aN ) | aX , aC) daX df(aN ) < +1,

3.
R
[P (y | f(aN ), aC)]2P (f(aN ) | aC) df(aN ) < +1,

4.
P+1

n=1 | < P (y | f(aN ), aC), aC,n > |2 < +1,

where  aC,n is similarly defined as a component of the singular value decomposition.
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We remark that the first condition is precisely Theorem 1.3; others are weak regularity conditions.

By the same token, we can establish sufficient conditions for solution existence of Eq. 8, Eq. 14. The same argument also
applies to the integral equation involved in Theorem 6:

P̂ (y | aC , ẑ, usng
C , s = 1) =

Z
ĥ(y, aC , aX , usng

C )P̂ (aX | ẑ, usng
C , s = 1) daX . (36)

It is easy to show that the conditions described in the main text are sufficient to guarantee the existence of solutions under
weak regularity conditions. We omit the details here.

E. Proof of Lemma 3

The idea of the proof is to start with the structural equations of the expanded class of causal graphs Figure 2b. Then
posit the existence of a latent variable Z that renders all the treatments conditionally independent; Figure 2c features this
conditional independence structure. We will quantify the information (i.e. the �-algebra) of this latent variable Z; Z
contains the information of the union of multi-treatment confounders Umlt, multi-treatment null confounders Wmlt, and
some independent error. This result lets us establish

P (y |usng, umlt, wmlt, a1, . . . , am, s = 1) = P (y |usng, z, a1, . . . , am, s = 1). (37)

We start with a generic structural equation model for multiple treatments.

Wk = fWk(✏Wk), k = 1, . . . ,K,K � 0, (38)
Uj = fUj (✏Uj ), j = 1, . . . , J, J � 0, (39)
Vl = fVl(✏Vl), l = 1, . . . , L, L � 0, (40)
Ai = fAi(WSW

Ai
, USU

Ai
, ✏Ai), i = 1, . . . ,m,m � 2, (41)

Y = fy(A1, . . . , Am, U1, . . . , UK , V1, . . . VL, ✏Y ), (42)

where all the errors ✏Wk , ✏Uj , ✏Vl , ✏Ai , ✏Y are independent. Notation wise, we note that SW
Ai

⇢ {1, . . . ,K} is an index set; if
SW
A1

= {1, 3, 4}, then WSW
Ai

= (W1,W3,W4). The same notion applies to SU
Ai

⇢ {1, . . . , J}.

The notation in this structural equation model is consistent with the set up in Figure 2b. Wk’s are null confounders; Uj’s are
confounders; Vl’s are covariates. Moreover, USU

Ai
indicates the set of confounders that have an arrow to both Ai and Y .

WSW
Ai

indicates the set of null confounders that have an arrow to Ai; they do not have arrows to Y .

Relating to the single-treatment and multi-treatment notion, we have single-treatment null confounders as

W sng �
= {W1, . . . ,WK}/

[

i,j2{1,...,m}:i 6=j

(WSW
Ai

\WSW
Aj
). (43)

To parse the notation above, recall that WSW
Ai

is the set of null confounders that affects Ai.
S

i,j2{1,...,m}:i 6=j(WSW
Ai

\WSW
Aj

)

describes the set of null confounders that affect at least two of the Ai’s. Hence, W sng denotes the set of null confounders
that affect only one of the Ai’s, a.k.a. single-treatment null confounders.

Before proving Lemma 3, we first prove the following lemma that quantifies the information in Z (in Figure 2c).

Lemma 9. The random variable Z in Figure 2c “captures” all multi-treatment confounders, all multi-treatment null

confounders and some independent error:

�(Z) = �
⇣
{✏Z}

[
([i,j2{1,...,m}:i 6=j(WSW

Ai
\WSW

Aj
) [ (USU

Ai
\ USU

Aj
))
⌘
, (44)

= �
⇣
{✏Z}

[
Wmlt

[
Umlt

⌘
. (45)

where ✏Z ? (✏Y , V1, . . . , VL,[i,j2{1,...,m}:i 6=j(WSW
Ai

\WSW
Aj
) [ (USU

Ai
\ USU

Aj
), S).
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We can parse the notation in Lemma 9 in the same way as in Eq. 43: [i,j2{1,...,m}:i 6=j(WSW
Ai

\WSW
Aj

) denotes the set of all
multi-treatment confounders; [i,j2{1,...,m}:i 6=j(USU

Ai
\ USU

Aj
) denotes the set of all multi-treatment null confounders.

Proof. Without the loss of generality, we assume the compactness of representation in Eqs. 41 and 42. For any subset S
of the random variables S ⇢ {A1, . . . , Am, Y }, we assume the �-algebra �(

T
⌧ (S

W
S⌧
, SU

S⌧
, SV

S⌧
)) is the smallest �-algebra

that makes all the random variables in S jointly independent. The assumption is made for technical convenience. We simply
ensure the arrows from the W,U, V ’s to the Ai’s do exist. In other words, all the W,U, V ’s “whole-heartedly” contribute to
the Ai’s when they appear in Eq. 41. This assumption does not limit the class of causal graphs we study.

First we show that all multi-treatment confounders and all multi-treatment null confounders are measurable with respect to
the substitute confounder Z:

�

0

@
[

i,j2{1,...,m}:i 6=j

(WSW
Ai

\WSW
Aj
) [ (USU

Ai
\ USU

Aj
)

1

A ⇢ �(Z). (46)

Consider any pair of Ai and Aj . Figure 2c implies that

Ai ? Aj |Z, (47)

for i 6= j and i, j 2 {1, . . . ,M}. On the other hand, we have

Ai ? Aj |�
⇣
(WSW

Ai
\WSW

Aj
), (USU

Ai
\ USU

Aj
)
⌘
, (48)

by the independence of errors assumption. Therefore, by the compactness of representation assumption, �((WSW
Ai

\
WSW

Aj
), (USU

Ai
\ USU

Aj
)) is the smallest �-algebra that renders Ai independent of Aj . This implies

�
⇣
(WSW

Ai
\WSW

Aj
), (USU

Ai
\ USU

Aj
)
⌘
⇢ �(Z). (49)

The argument can be applied to any pair of i 6= j, i, j 2 {1, . . . ,M}, so we have

�

0

@
[

i,j2{1,...,m}:i 6=j

(WSW
Ai

\WSW
Aj
) [ (USU

Ai
\ USU

Aj
)

1

A ⇢ �(Z). (50)

Next Figure 2c implies

�(A1, . . . , AM ) 6⇢ �(Z), (51)

and

�(Y ) 6⇢ �(Z). (52)

Therefore, we have

�(Z) ⇢ �
⇣
{✏Z}

[
([i,j2{1,...,m}:i 6=j(WSW

Ai
\WSW

Aj
) [ (USU

Ai
\ USU

Aj
))
⌘
, (53)

where ✏Z is independent of all the other errors in the structural model, including those of A and Y .

The error ✏Z can have an empty �-algebra: for example, ✏Z is a constant. Therefore, the left side of Eq. 50 can be made
equal to the right side of Eq. 53. We have

�(Z) = �
⇣
{✏Z}

[
([i,j2{1,...,m}:i 6=j(WSW

Ai
\WSW

Aj
) [ (USU

Ai
\ USU

Aj
))
⌘

(54)

= �
⇣
{✏Z}

[
Wmlt

[
Umlt

⌘
. (55)

for some random variable ✏Z that is independent of all other random errors ✏’s.



A Proxy Variable View of Shared Confounding

As a direct consequence of Lemma 9, we have

P (y |usng, umlt, wmlt, a1, . . . , am, s = 1) = P (y |usng, z, a1, . . . , am, s = 1), (56)

due to the definition of conditional probabilities and ✏Z ? Y |S,U sng, Umlt,Wmlt, A1, . . . , Am. The latter is because ✏Z
is independent of all other errors.

F. Proof of Lemma 4

Proof. Denote U sng
C as the set of single-treatment confounders that affects AC .

The proof of Lemma 4 relies on two observations.

The first observation starts with the integral equation we solve:

P (y | aC , f(aN ), usng
C , s = 1) (57)

=

Z
h(y, aC , aX , usng

C )P (aX | aC , f(aN ), usng
C , s = 1) daX (58)

=

Z Z
h(y, aC , aX , usng

C )P (aX | z)P (z | aC , f(aN ), usng
C , s = 1) daX dz (59)

The first equality is due to Eq. 14. The second equality is due to Assumption 3.2.

The second observation relies on the null proxy:

P (y | aC , f(aN ), usng
C , s = 1) (60)

=

Z
P (y | z, aC , f(aN ), usng

C , s = 1)P (z | aC , f(aN ), usng
C , s = 1) dz (61)

=

Z
P (y | z, aC , usng

C , s = 1)P (z | aC , f(aN ), usng
C , s = 1) dz (62)

The first equality is due to the definition of conditional probability. The second equality is due to the second part of
Assumption 4; it implies Y ? f(aN ) |Z,U sng

C , AC , S = 1. The reason is that

P (y | z, aC , f(aN ), usng
C , s = 1) (63)

=

Z
P (y | z, aC , aX , f(aN ), usng

C , s = 1)P (aX | z, aC , f(aN ), usng
C , s = 1) daX (64)

=

Z
P (y | z, aC , aX , usng

C , s = 1)P (aX | z, aC , usng
C , s = 1) daX (65)

=P (y | z, aC , usng
C , s = 1). (66)

The second equality is again due to Assumption 3.2.

Comparing Eq. 59 and Eq. 62 gives
Z 

P (y | z, aC , usng
C , s = 1)�

Z
h(y, aC , aX , usng

C )P (aX | z) daX
�
⇥ P (z | aC , f(aN ), usng

C , s = 1) dz = 0, (67)

which implies

P (y | z, aC , usng
C , s = 1) =

Z
h(y, aC , aX , usng

C )P (aX | z) daX . (68)

This step is due to the completeness condition in Assumption 4.2.

Eq. 68 leads to identification:

P (y | do(aC)) (69)
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=P (y | z, aC , usng
C )P (z)P (usng

C ) dz dusng
C (70)

=P (y | z, aC , usng
C , s = 1)P (z)P (usng

C ) dz dusng
C (71)

=

Z Z Z
h(y, aC , aX , usng

C )P (aX | z) daXP (z)P (usng
C ) dz dusng

C (72)

=

Z Z
h(y, aC , aX , usng

C )P (aX )P (usng
C ) daX dusng

C . (73)

In particular, the second equality is due to Assumption 3.2.

G. Proof of Theorem 5

We first state the variant of Assumption 3 and Assumption 4 required by Theorem 5. We essentially replace Z with
(Umlt,Wmlt) in these assumptions.

Assumption 6. (Assumption 3’) The causal graph Figure 2b satisfies the following conditions:

1. All single-treatment confounders U sng
i ’s are observed.

2. The selection operator S satisfies

S ? (A, Y ) |Umlt,Wmlt, U sng. (74)

3. We observe the non-selection-biased distribution

P (a1, . . . , am, usng)

and the selection-biased distribution

P (y, usng, a1, . . . , am | s = 1).

Assumption 7. (Assumption 4’) There exists some function f and a set ; 6= N ⇢ {1, . . . ,m}\C such that

1. The outcome Y does not causally depend on f(aN ):

f(aN ) ? Y |AC , AX , Umlt,Wmlt, U sng, S = 1 (75)

where X = {1, . . . ,m}\(C [N ) 6= ;.

2. The conditional P (umlt, wmlt | aC , f(aN ), usng
C , s = 1) is complete in f(aN ) for almost all aC and usng

C , where U sng
C

is the single-treatment confounders affecting AC .

3. The conditional P (f(aN ) | aC , aX , usng
C , s = 1) is complete in aX for almost all aC and usng

C .

Under these assumptions, Theorem 5 is a direct consequence of Lemma 3 and Lemma 4. The reason is that Umlt,Wmlt, U sng

constitutes an admissible set to identify the intervention distributions P (y | do(aC)).

H. Proof of Theorem 6

We assume Assumption 6 and Assumption 7 as described in Appendix G.

Proof. Assumption 5.2 guarantees the existence of some function ĥ such that

P̂ (y | aC , ẑ, usng
C , s = 1) =

Z
ĥ(y, aC , aX , usng

C )P̂ (aX | ẑ, usng
C , s = 1) daX (76)

under weak regularity conditions. (We discuss the reason in Appendix D.)
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We first claim that ĥ(y, aC , aX , usng
C ) solves

P (y | aC , f(aN ), usng
C , s = 1) =

Z
ĥ(y, aC , aX , usng

C )P (aX | aC , f(aN ), usng
C , s = 1) daX . (77)

Given this claim (Eq. 77), we have

P̂ (y | do(aC))

=

Z Z
P̂ (y | ẑ, usng

C , aC , s = 1)P̂ (ẑ)P (usng
C ) dẑ dusng

C

=

Z Z Z
ĥ(y, aC , aX , usng

C )P̂ (aX | ẑ, usng
C , s = 1) daX P̂ (ẑ)P (usng

C ) dẑ dusng
C

=

Z Z Z
ĥ(y, aC , aX , usng

C )P̂ (aX | ẑ) daX P̂ (ẑ)P (usng
C ) dẑ dusng

C

=

Z Z
ĥ(y, aC , aX , usng

C )P (aX ) daXP (usng
C ) dusng

C

=P (y | do(aC)),

which proves the theorem. The first equality is due to Eq. 15; the second is due to Eq. 76; the third is due to Assumption 5
and U sng

C being the single-treatment confounders for AC; the fourth is due to marginalizing out Ẑ; the fifth is due to the
above claim (Eq. 77) and Theorem 5.

We next prove the claim (Eq. 77). Start with the right side of the equality.
Z

ĥ(y, aC , aX , usng
C )P (aX | aC , f(aN ), usng

C , s = 1) daX

=

Z Z
ĥ(y, aC , aX , usng

C )P̂ (aX | ẑ, usng
C , aC , s = 1)P̂ (ẑ | aC , f(aN ), usng

C , s = 1) daX dẑ

=

Z
P̂ (y | aC , ẑ, usng

C , s = 1)P̂ (ẑ | aC , f(aN ), usng
C , s = 1) dẑ

=

Z
P̂ (y | aC , f(aN ), ẑ, usng

C , s = 1)P̂ (ẑ | aC , f(aN ), usng
C , s = 1) dẑ

=P (y | aC , f(aN ), usng
C , s = 1),

which establishes the claim. The first equality is due to Eq. 15; the second is due to Eq. 76; the third equality is due to
Assumption 5.2, which implies

P̂ (y | aC , f(aN ), ẑ, usng
C , s = 1) = P̂ (y | aC , ẑ, usng

C , s = 1). (78)

The fourth equality is due to marginalizing out ẑ.

I. Constructing candidate f(aN )’s from the deconfounder outcome model

We illustrate how to construct candidate f(aN )’s in the deconfounder outcome model.

Consider a fitted linear outcome model

Y =
10X

i=1

↵Y AiAi + ↵Y ZẐ + ↵Y U 0U sng + ✏Y . (79)

where all the random variables are Gaussian.

It implies that there exists f1(A9, A10) = A9 + ↵9,10A10 that satisfies

f1(A9, A10) ? Y | Ẑ, U sng, A1, . . . , A8,
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where
↵9,10 = � ↵9Var(A9) + ↵10Cov(A9, A10)

↵9Cov(A9, A10) + ↵10Var(A10)
.

The reason is that f(A9, A10) ? (↵9A9 + ↵10A10). Hence f(aN ) = A9 + ↵9,10A10 satisfies Assumption 5.2.

J. Details of the simulation study

Figure 3a. We simulate n = 10, 000 data points from a linear Gaussian model and apply the deconfounder. For
�U = 0, 1, 2, 3, 4, 5,

Un⇥1 ⇠ N (0, I), (80)
✓1⇥3 ⇠ Unif(0, I), (81)
An⇥3 ⇠ N (U✓, I), (82)
�1⇥3 ⇠ Unif(0, I), (83)
�0 ⇠ Unif(0, 1), (84)

Y ⇠ N (�0 +A�> + �U · U, I). (85)

To apply the deconfounder, we perform maximum likelihood estimation of PPCA on A and then fit a linear model of Y
against both A and the PPCA factor.

As (1) the distributions of U , A, Y are all Gaussian, and (2) the Gaussianity of A leads to the existence of null proxy (as is
discussed in Appendix I, the completeness conditions in Assumption 1 are satisfied.

Figure 3b. We perform the same simulation as above except that Un⇥1 ⇠ Unif(0, I). In this case, the distributions of A
and Y no longer belong to the exponential family and violate the completeness conditions in Assumption 1.

Figures 3c and 3d. We perform the same pair of simulation as above except that we add an additional selection
step to U . After generating U from Un⇥1 ⇠ N (0, I), we select U w.p. proportional to N (U ; 0, 0.52)/N (U ; 0, I)
and Unif(U ; 0, 0.5)/Unif(U ; 0, I) respectively. The resulting U distribution is N (U ; 0, 0.52) and Unif(U ; 0, 0.5)
respectively.
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