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Abstract

The Stackelberg prediction game (SPG) has been
extensively used to model the interactions be-
tween the learner and data provider in the training
process of various machine learning algorithms.
Particularly, SPGs played prominent roles in cy-
bersecurity applications, such as intrusion detec-
tion, banking fraud detection, spam filtering, and
malware detection. Often formulated as NP-hard
bi-level optimization problems, it is generally
computationally intractable to find global solu-
tions to SPGs. As an interesting progress in this
area, a special class of SPGs with the least squares
loss (SPG-LS) have recently been shown polyno-
mially solvable by a bisection method. However,
in each iteration of this method, a semidefinite
program (SDP) needs to be solved. The resulted
high computational costs prevent its applications
for large-scale problems. In contrast, we propose
a novel approach that reformulates a SPG-LS as a
single SDP of a similar form and the same dimen-
sion as those solved in the bisection method. Our
SDP reformulation is, evidenced by our numeri-
cal experiments, orders of magnitude faster than
the existing bisection method. We further show
that the obtained SDP can be reduced to a second
order cone program (SOCP). This allows us to
provide real-time response to large-scale SPG-LS
problems. Numerical results on both synthetic
and real world datasets indicate that the proposed
SOCP method is up to 20,000+ times faster than
the state of the art.

1. Introduction
In the big data era, machine learning (ML) algorithms have
been extensively used to extract useful information from
data and found numerous applications in our daily life. In
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certain areas, such as cybersecurity, the nature of applica-
tions requires high robustness of ML algorithms against
adversarial attacks. A typical scenario would be the training
data that the ML algorithms or the learner relied on is de-
liberately altered by a malicious adversary. In this case, the
key assumption for the success of ML algorithms, i.e., the
stationarity of data or equivalently the independent and iden-
tically distributed (i.i.d.) assumption, fails to hold. To alle-
viate this difficulty, researchers have proposed various game
theoretic approaches (Brückner & Scheffer, 2011; Tong
et al., 2018; Vorobeychik & Kantarcioglu, 2018; Bishop
et al., 2020) to model the strategic interactions between the
learner and the attacker – in our case, the adversarial data
provider.

In practice, there are also many applications that the learner
and the data providers are not entirely antagonistic, where
the data providers often manipulate the data only for their
own interests. Introduced by Brückner & Scheffer (2011),
the SPG is used to model the interactions between the
learner and the data provider as a two-players non-zero-
sum sequential game for such cases. In the SPG, the learner
is regarded as the leader who makes the first move to com-
mit to a predictive model without knowing the strategy of
the data provider (or the follower). Then, the data provider,
based on the available information of the learner’s predictive
model, selects his costs-minimizing strategy to modify the
data against the learner. Under the rationality assumption
of both the learner and data provider, Brückner & Scheffer
(2011) introduced the notion of Stackelberg equilibrium as
the optimal strategy of the SPG and proposed to find it via
solving a corresponding bi-level optimization problem. Par-
ticularly, the bi-level optimization problem minimizes the
prediction loss from the learner’s perspective under the con-
straint that the data has been optimally modified from the
data provider’s perspective. Since then, SPGs have received
a lot of attention in the literature (Shokri et al., 2012; Zhou
& Kantarcioglu, 2016; Wahab et al., 2016; Papernot et al.,
2018; Naveiro & Insua, 2019; Zhou et al., 2019). Unfortu-
nately, bi-level optimization problems are generally NP-hard
(Jeroslow, 1985) and their optimal solutions are intrinsically
difficult to obtain, which severely limit the applicability of
SPGs in real world use cases.

Recently, Bishop et al. (2020) made the first step to glob-
ally solve a special subclass of SPGs. Specifically, they
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restricted their interests on SPGs with least squares loss
(SPG-LS) (i.e., all the loss functions for the learner and data
providers are the least squares). They further reformulated
the SPG-LS into a quadratically constrained quadratic frac-
tional program that can be solved via a bisection method.
In each iteration of their bisection method, a nonconvex
quadratically constrained quadratic program (QCQP) needs
to be exactly solved. Fortunately, by using the celebrated
S-lemma (Yakubovich, 1971; Pólik & Terlaky, 2007; Xia
et al., 2016), the optimal solutions to the nonconvex QCQPs
can be obtained via solving their semidefinite programming
(SDP) relaxations (Vandenberghe & Boyd, 1996). However,
the number of bisection searches is often of several tens
in practice. This, together with heavy computational costs
of solving each SDP, makes the bisection method far less
attractive especially for large-scale problems. Moreover, the
requirement for exactly solving each SDP is too strong for
large-scale problems, even armed with powerful academic
and commercial solvers. Theoretically speaking, given the
accumulation of these inaccuracy, the convergence of the
bisection method with inexact SDPs’ solutions remains un-
known. More importantly, this accumulated inexactness
may finally result unstable algorithmic performances, which
prevents its applications in the area of security.

In this paper, we aim to resolve the above mentioned scal-
ability and stability issues of the bisection method for the
SPG-LS. For this purpose, we start by re-examining the
quadratic fractional program (QFP) considered in Bishop
et al. (2020). By using the S-lemma in a slightly different
way, we show that the QFP can be directly reformulated
into an SDP of almost the same problem size as the ones in
the bisection method. Furthermore, we prove that there al-
ways exists an optimal solution for our SDP and an optimal
solution to the SPG-LS can be recovered from the optimal
solution of our SDP. It thus implies that the bisection steps
are unnecessary, i.e., to solve the SPG-LS, one only needs
to solve a single SDP. This novel reformulation outperforms
the bisection method by a significant margin as the latter
involves solving a series of SDPs with similar problem sizes.
Surprisingly, we can take a step further in accelerating our
method. By carefully investigating the intrinsic structures of
the proposed SDP, we show our single SDP reformulation
can be further reduced into a second order cone program
(SOCP) (Alizadeh & Goldfarb, 2003), which can be solved
much more efficiently than SDPs in general. More specifi-
cally, we apply two congruence transformation for the linear
matrix inequality (LMI) in our SDP. The second congru-
ence in fact explores a simultaneous diagonalizabiliy of
submatrices for the three matrices in the LMI after the first
congruence transformation. Then by using a generalized
Schur complement, we demonstrate that our SDP can be
further reformulated as an SOCP with a much smaller size.
The main cost in our reformulation is a spectral decomposi-

tion for the data matrix that is cheap even for large instances.
Moreover, solving our SOCP reformulation is even cheaper
than one spectral decomposition. Hence our SOCP method
is much faster than our single SDP method.

We summarise our contributions as follows:

• We derive a single SDP reformulation for the SPG-LS,
while the state of the art needs to solve dozens of SDPs
with similar problems sizes.

• We further derive an SOCP reformulation with a much
smaller dimension than our single SDP.

• We propose two efficient ways to recover an optimal
solution for the SPG-LS either from a rank-1 decom-
position of the dual solution of our single SDP or by
solving a linear system with an additional equation.

• We show that our methods significantly improve the
state of the art by numerical experiments on both syn-
thetic and real data sets.

2. Preliminaries
In this section, we formalize the SPG-LS problem by adapt-
ing the same setting as in Bishop et al. (2020). A brief
review of Bishop et al.’s bisection method will also be pro-
vided.

Similar as in Bishop et al. (2020), we assume that the learner
has access to a sample S = {(xi, yi, zi)}mi=1 with each
xi ∈ Rn been the input example, yi and zi been the output
labels of interests to the learner and the data provider, re-
spectively. The samples are assumed to be realizations of
(x, y, z) following some fixed but unknown distribution D.
The learner then aims to train a linear predictor w ∈ Rn
based on S, i.e., to predict correctly label y when supplied
with x. In the SPG-LS, being aware of the learner’s predic-
tor w, the goal of the adversarial data provider is to fool the
learner to predict the label z by modifying the input data x
to x̂ while maintaining low manipulation costs. Here, we
follow Bishop et al. (2020) to model the modifying costs
from x to x̂ as γ‖x− x̂‖2 with some positive parameter γ.

To find the Stackelberg equilibrium of the above SPG-LS,
we formulate in the following the corresponding bi-level
optimization problem. Given the disclosed predictor w ∈
Rn and the training set S, the data provider described above
aims to solve the following optimization problems:

x∗i = argmin
x̂i

‖wT x̂i − zi‖2 + γ‖xi − x̂i‖22 i ∈ [m].

Then, one can obtain a Stackelberg equilibrium through the
classic backward induction procedure (Brückner & Scheffer,
2011). With the modified data {x∗i }mi=1, the learner has to
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solve the following optimization problem:

w∗ ∈ argmin
w

m∑
i=1

‖wTx∗i − yi‖2.

The predictor w∗ and the optimal modified data sets
{x∗i }mi=1 of the data provider are by definition a Stackelberg
equilibrium (Brückner & Scheffer, 2011). To obtain this,
we arrive at the following bi-level optimization problem:

min
w

‖X∗w − y‖2

s.t. X∗ = argmin
X̂

‖X̂w − z‖2 + γ‖X̂ −X‖2F ,

(1)
where the i-th row of X ∈ Rm×n is just the input example
xi and the i-th entries of y, z ∈ Rm are labels yi and zi,
respectively.

In their work, Bishop et al. (2020) considered the following
reformulation. They started by replacing the lower differ-
entiable and strongly convex optimization problem by its
optimality condition, i.e.,

X∗ =
(
zwT + γX

) (
wwT + γI

)−1
.

Then, the Sherman-Morrison formula (Sherman & Morrison,
1950) further implies

X∗w =

1
γ zw

Tw +Xw

1 + 1
γw

Tw
.

Substituting the above formula to problem (1), we obtain
the following fractional program:

min
w

∥∥∥ 1
γ zw

Tw +Xw − y − 1
γw

Twy
∥∥∥2

(1 + 1
γw

Tw)2
. (2)

2.1. A Bisection Method for Solving (2)

Here, we briefly review the bisection method developed in
Bishop et al. (2020) for solving the fractional program (2).

By introducing an artificial variable α and an additional
constraint α = wTw, Bishop et al. (2020) first reformulated
(2) as the following QFP:

min
w,α

‖αγ z +Xw − y − α
γ y‖

2

(1 + α
γ )2

s.t. α = wTw.

(3)

Then, they adopted a bisection search for q∗ such that
F (q∗) = 0, where F is the optimal value function of the
following Dinkelbach problem associated with (3), for all
q ∈ R,

F (q) := min
w,α

‖α
γ
z +Xw − y − α

γ
y‖2 − q(1 +

α

γ
)2

s.t α = wTw.
(4)

The correctness of their algorithm is due to the following
well known result for fractional programming.

Lemma 2.1 (Theorem 1 of Dinkelbach (1967)) Assume
that for all q ∈ R, problem (4) has nonempty optimal
solution set. Then, the equation F (q) = 0 has a unique
solution. Furthermore, (w∗, α∗) is a solution to the QFP
(3) if and only if w∗Tw∗ = α∗ and F (q∗) = 0 where
q∗ = ‖α

∗

γ z +Xw∗ − y − α∗

γ y‖2/(1 + α∗/γ)2.

As F (q) is a concave monotonically decreasing continuous
function (Dinkelbach, 1967), the bisection algorithm is well-
defined. Bishop et al. (2020) further showed that initial
lower and upper bounds q1 and q2 for q∗ satisfying F (q1) ≥
0 and F (q2) ≤ 0 are also easy to obtain.

In each iteration of the bisection method, given q, one needs
to compute F (q), i.e., the nonconvex optimization problem
(4) needs to be solved. To this purpose, Bishop et al. (2020)
applied the S-lemma with equality (Xia et al., 2016) to trans-
form the QCQP (4) into an SDP problem whose optimal
objective is exactly F (q). More specifically, define matrices

Â =

 XTX 1
γX

T (z−y) −XTy
1
γ (z−y)

TX 1
γ2
‖z−y‖2 − 1

γ (z−y)
Ty

−yTX − 1
γ y

T (z−y) yTy

 ,

B̂ =

(
0n

1
γ2

1
γ

1
γ 1

)
and Ĉ =

(
In

0 − 1
2

− 1
2 0

)
.

Given q ∈ R, problem (4) admits the same objective value
with the following SDP

max
τ,λ

τ s.t. Â− qB̂ + λĈ − τE � 0, (5)

where E = Diag (0n+1, 1) ∈ R(n+2)×(n+2) is the diagonal
matrix with first n+1 diagonal entries being zero and the last
entry being one. Then, the SDP (5) is solved by advanced
interior point methods (IPM).

Theoretically, Bishop et al. (2020) showed that under the
assumption that each involved SDP is solved exactly, the
bisection method needs log2(2yTy/ε) steps to obtain an
ε-optimal estimation of q∗ with given tolerance ε > 0. Note
that in practice, yTy can be quite large and ε may be re-
quired to be small. Thus, the bisection method may need to
solve a significant numbers of SDPs even in the moderate-
scale setting, e.g., the numbers of samples m and features
n are several thousands. Since the amount of work per
iteration of IPM for solving (5) is O(n3) (Nesterov & Ne-
mirovskii, 1993; Todd, 2001), the total computational costs
of the bisection method can be prohibitive. Moreover, there
in fact exists no optimization solver which can return exact
solutions to these SDPs. Hence, the convergence theory of
the bisection method may break down and its stability may
be implicitly affected due to the accumulation of optimiza-
tion errors in each iteration. These issues on scalability and
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stability of the bisection method motivate our study in this
paper.

3. Single SDP Reformulation
In this section, we present a novel result that shows an
optimal solution to (2), or the Stackelberg equilibrium of
the SPG-LS, can be obtained by just solving a single SDP
with a similar size as the SDP (5). To begin, let us consider
the following equivalent formulation of (2):

min
w, α

‖αz +Xw − y − αy‖2

(1 + α)
2 s.t. wTw

γ = α,

(6)
which is slightly different from (3) in a scaling of α. Now
let us recall the following S-lemma with equality, which is
the main tool in showing the equivalence of (4) and (5) in
Bishop et al. (2020).

Lemma 3.1 (Theorem 3 in Xia et al. (2016)) Let f(x) =
xTQ1x + 2pT1 x + q1 and h(x) = xTQ2x + 2pT2 x + q2,
where Q1, Q2 ∈ Rn×n are symmetric matrices, p1,p2 ∈
Rn and q1, q2 ∈ R. If function h takes both positive and
negative values and Q2 6= 0, then following two statements
are equivalent:

1. There is no x ∈ Rn such that f(x) < 0, h(x) = 0.

2. There exists a λ ∈ R such that f(x) + λh(x) ≥ 0.

We also need the following result that is well known in
quadratic programming.

Lemma 3.2 (Theorem 2.43 in Beck (2014)) Let Q ∈
Rn×n be a symmetric matrix, p ∈ Rn and q ∈ R. Then the
following two statements are equivalent:

1. (xT , 1)

(
Q p
pT q

)(
x
1

)
≥ 0 for all x ∈ Rn.

2.
(
Q p
pT q

)
� 0.

From now on, let us define

A =

(
XTX XT (z−y) −XTy

(z−y)TX ‖z−y‖2 −(z−y)Ty
−yTX −yT (z−y) yTy

)
,

B =
(

0n
1 1
1 1

)
and C =

(
In
γ

0 − 1
2

− 1
2 0

)
.

(7)

With the above facts, we are now ready to present our main
result of this section that (2) can be equivalently reformu-
lated as a single SDP, where our SDP reformulation follows
a similar idea in equations (1.12-1.14) in (Nguyen et al.,
2014).

Theorem 3.3 Problem (2) is equivalent to the following
SDP

supµ,λ µ
s.t. A− µB + λC � 0.

(8)

Proof. Consider the equivalent formulation (6). Let
f(w, α) = ‖αz +Xw − y − αy‖2, p(w, α) = wTw

γ −α
and denote by vfrac the optimal value of (6). Recall the
definitions of A,B, and C in (7). Then, we conduct the
reformulation in the following manner:

vfrac = inf
w,α

{
f(w, α)

(1 + α)2
: p(w, α) = 0

}
= sup

µ

{
µ :
{(w, α) | f(w, α)− µ(1 + α)2 < 0,
p(w, α) = 0} = ∅

}
= sup

µ

{
µ :
∃λ ∈ R s.t.f(w, α)− µ(1 + α)2

+λp(w, α) ≥ 0, ∀w ∈ Rn, α ∈ R

}
(9)

= sup
µ,λ

{
µ :

( wT α 1 ) (A− µB + λC)
(

w
α
1

)
≥ 0,

∀w ∈ Rn, α ∈ R

}
= sup

µ,λ
{µ : A− µB + λC � 0} , (10)

where (9) is due to the S-lemma with equality in Lemma 3.1
and (10) is due to Lemma 3.2. �

We briefly remark that there exists an optimal solution for
the SDP (8) and it can be used to recover an optimal solution
to (2). In fact, we can recover an optimal solution to (2) by
either doing a rank-1 decomposition for the dual solution
of SDP (8), thanks to Sturm & Zhang (2003), or solving
a linear system with an additional equation as in step 8 in
Algorithm 11. More details are given in Appendix.

Up to now, we have shown that to obtain a global optimal
solution to the nonconvex fractional program (2), only a
single SDP needs to be solved. A crucial observation is
that our single SDP (8) has a similar form and the same
dimension of the matrices with (5), the subproblem in each
iteration of the bisection method. We remark the main
differences: (i) the bisection parameter q is the variable µ
in our formulation; (ii) our formulation does not involve
a τ which is used for generating new half interval in the
bisection method. From the similar forms of two SDPs,
we can expect that solving the SDPs (8) and (5) needs a
similar CPU time. However, the bisection method needs to
solve a series of SDPs. Indeed, for each test instance in our
numerical experiments, the bisection method needs to solve
about 30 SDPs. In other words, our single SDP method is
a more efficient way to obtain q∗ (or equivalently, µ in (8))
such that F (q∗) = 0, which closely relates to an optimal

1See the discussions after Theorem 4.1.
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solution of problem (3) (or equivalently, problem (2)) in
view of Lemma 2.12, than the bisection method.

4. SOCP Reformulation
Though our single SDP approach introduced in the previ-
ous section for finding Stackelberg equilibrium of SPG-LS
has already been much faster than the bisection method,
the fact that solving a large-scale SDP requires extensive
computations motivates us to make a step further of seek-
ing more reductions. For this purpose, in this section, by
using a simultaneous diagonalizability of submatrices in
the linear matrix inequality (LMI) constraint in (8), we can
further reformulate SDP (8) as an SOCP that can be solved
much more efficiently. We briefly describe our main idea in
Algorithm 1.

Algorithm 1 SOCP method for solving (2)
1: Input: matrices A,B,C in (7)
2: set V1 as in (11)
3: set Ā, B̄, C̄ as in (14), (12), (13)
4: do spectral decomposition to matrix Ā11 in (14) with
Ā11 = HDHT

5: set V2 as in (15)
6: obtain the matrices Ã = V2ĀV2, B̃ = V2B̄V2, C̃ =
V2C̄V2 in forms (16) and (17) with diagonal n + 1th
order leading principal submatrices

7: solve the SOCP problem (20) to obtain optimal µ∗, λ∗

8: obtain w∗ by finding a solution of the following linear
system

(A− µ∗B + λ∗C)
(

w
α
1

)
= 0

satisfying 1
γw

Tw = α

The motivation of our reformulation comes from simple
observations on matrices A, B and C. The first key obser-
vation is that B and C can be simultaneously diagonalized
by congruence. Indeed, letting

V1 =

(
In 0 0
0 1√

γ 1

0 − 1√
γ 1

)
, (11)

we have from (7)

B̄ := V T1 BV1 =

(
0n+1

4

)
, (12)

and

C̄ := V T1 CV1 =

( 1
γ In+1

−1

)
. (13)

2In fact, we use Lemma 2.1 slightly different from its original
statement with a scaling of γ here and in the discussions after
Theorem 4.1.

For convenience, let

Ā := V T1 AV1 =

(
Ā11 Ā12

ĀT12 Ā22

)
. (14)

The second key observation is that the n+ 1th order leading
principal submatrices of A,B and C can be simultaneously
diagonlizable by congruence. To see this, applying spec-
tral decomposition to the real symmetric matrix Ā11 yields
Ā11 = HDHT , whereH is an (n+1)×(n+1) orthogonal
matrix andD = Diag (d) is a diagonal matrix with di being
its ith diagonal entry. Define

V2 =

(
H 0
0 1

)
. (15)

Now we have

Ã := V T2 ĀV2 =

(
D b
bT c

)
, (16)

where b ∈ Rn+1 and c ∈ R. Since HTH = I , we also
have

B̃ := V T2 B̄V2 = B̄ and C̃ = V T2 C̄V2 = C̄. (17)

As V1 and V2 are both invertible matrices, the LMI con-
straint in (8) is equivalent to

Ã− µB̃ + λC̃ � 0. (18)

From the generalized Schur complement (Zhang, 2006), the
LMI (18) is equivalent to

D + λ
γ In+1 � 0,

b ∈ Range(D + λ
γ In+1),

c− 4µ− λ− bT (D + λ
γ In+1)†b � 0,

(19)

where (M)† denotes the Moore-Penrose pseudoinverse of
matrix M . As D is a diagonal matrix, by defining 0

0 = 0,
(19) is further equivalent to

di + λ
γ ≥ 0, and bi = 0 if di + λ

γ = 0, i ∈ [n+ 1],

c− 4µ− λ−
∑n+1
i=1

b2i
di+λ/γ

≥ 0.

These constraints can be further rewritten as

di + λ
γ ≥ 0, i ∈ [n+ 1],

c− 4µ− λ−
∑n+1
i=1 si ≥ 0,

si(di + λ
γ ) ≥ b2i , i ∈ [n+ 1].

For i ∈ [n+ 1], each constraint si(di + λ
γ ) ≥ b2i can be ex-

pressed as a rotated second order cone constraint (Alizadeh
& Goldfarb, 2003), which is equivalent to the second order
cone constraint√√√√b2i +

(
si+di−

λ
γ

2

)2

≤
si + di + λ

γ

2
.

Consequently, we have the following theorem.
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Theorem 4.1 With the same notation in this section, prob-
lem (8) is equivalent to the following SOCP problem

supµ,λ,s µ

s.t. di + λ
γ ≥ 0, i ∈ [n+ 1],

c− 4µ− λ−
∑n+1
i=1 si ≥ 0,

si(di + λ
γ ) ≥ b2i , i ∈ [n+ 1].

(20)

Note that based on our construction, i.e., the congruence
transformations to the matrices in the LMI constraint in
(8), any optimal solution (µ∗, λ∗) to (20) is still optimal to
(8). We claim that an optimal solution w∗ to (2) can be
recovered by solving the linear system with an additional
equation in step 8 in Algorithm 1. Indeed, Lemma 2.1,
the strong duality theory of SDPs and the S-lemma with
equality guarantee the existence of a rank-1 solution to the
SDP relaxation of

min
w,α

‖αz +Xw − y − αy‖2 − µ∗(1 +
α

γ
)2

s.t
1

γ
wTw = α,

and the solution solves the following KKT system of the
corresponding SDP relaxation

〈C,W 〉 = 0,
Wn+2,n+2 = 1,
W � 0,
〈A− µ∗B + λ∗C,W 〉 = 0.

By setting W =
(

w
α
1

)
( wT α 1 ), the above facts are equiv-

alent to

(A− µ∗B + λ∗C)
(

w
α
1

)
= 0,

1

γ
wTw = α,

due to A− µ∗B + λ∗C � 0. One may think that the above
equations are difficult to solve. In fact, the linear system
usually only has a unique solution and it suffices to solve the
linear system solely. A sufficient condition to guarantee this
is that the matrix (A−µ∗B+λ∗C) is of rank n+1, which is
exactly the case in all our numerical tests. More discussions
on the solution recovering are given in Appendix.

In general, SOCPs can be solved much faster than SDPs.
For our problem, it can be seen that IPMs for solving SOCP
(20) takes O(n) costs per iteration (Alizadeh & Goldfarb,
2003; Andersen et al., 2003; Tütüncü et al., 2003) which is
of orders magnitudes faster than the case O(n3) in solving
SDP (8) using interior point methods. The high efficiency
of our SOCP approach is also evidenced by our numerical
tests.

5. Experiment Results
In this section, we conduct numerical experiments on both
synthetic and real world datasets to verify the superior per-
formance of our proposed algorithms in terms of both the

computational time and the learning accuracy. We apply the
powerful commercial solver MOSEK (MOSEK, 2021) to
solve all the SDPs and SOCPs in the bisection method and
ours.

All simulations are implemented using MATLAB R2019a
on a PC running Windows 10 Intel(R) Xeon(R) E5-2650
v4 CPU (2.2GHz) and 64GB RAM. We report the results
of two real datasets and three synthetic datasets and defer
other results to the supplementary material.3

5.1. Real World Dataset

We first demonstrate the accuracy and efficiency of our
proposed methods on two real datasets. We compare the
average mean squared error (MSE) as well as the wall-
clock time of our SDP and SOCP approaches with those
of the bisection method in Bishop et al. (2020), the ridge
regression and a nonlinear programming reformulation of
the SPG-LS in Brückner & Scheffer (2011). Similar as in
Bishop et al. (2020), to evaluate the learning accuracy of
the algorithms, we perform 10-fold cross-validation and
compare their average MSE for 40 different values of the
parameter γ ∈ [1 × 10−3, 0.75] in (2). For each γ, a grid
search on 9 logarithmically spaced points [1× 10−5, 1000]
is used to compute the best regularization parameter for the
ridge regression. We also compare the running time of all
the methods at γ = 0.5, averaged over 10 trials to further
illustrate the efficiency of our methods. For the testing
purpose, we first apply min-max normalization to the raw
data X and scale the labels y, z to y = y/(β‖y‖∞) and
z = z/(β‖y‖∞), respectively. These labels will be scaled
back to compute the average MSE. It is worth noting that the
constant β can be adjusted with respect to different datasets.

5.1.1. WINE DATASET

We first test our methods on the red wine dataset (Cortez
et al., 2009), which contains 1599 instances each with 11
features. The response is a physiochemical measurement
ranged from 0 to 10, where higher score means better quality.
We use the same setting as in Bishop et al. (2020). The wine
provider manipulates the data to achieve a higher score if
the original label is smaller than some threshold t. The wine
provider sets his target label z as follows,

zi = max{yi, t}.

We consider two different providersAmodest with tmodest =
6 and Asevere with tsevere = 8.

Our numerical results are reported in Figure 1. From Fig-
ures 1(a) and 1(b), we see that our single SDP method, our
SOCP method and the bisection method achieved the best

3Our code is available at https://github.com/
JialiWang12/SPGLS.

https://github.com/JialiWang12/SPGLS
https://github.com/JialiWang12/SPGLS
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Figure 1. Performance comparison between different algorithms on the red wine dataset. The left two plots correspond to MSE result
generated by Amodest and Asevere, whilst the right two plots correspond to wall-clock time comparison generated by Amodest and
Asevere.
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Figure 2. Performance comparison between different algorithms on the blog dataset. The left two plots correspond to MSE result generated
by Amodest and Asevere, whilst the right two plots correspond to wall-clock time comparison generated by Amodest and Asevere.

performance in average MSE. This is no surprise as the three
methods are guaranteed to solve the SPG-LS globally. Fig-
ures 1(c) and 1(d) indicate that both single SDP and SOCP
are much faster than all the other three methods. Since the
dimension of SDP is rather small, our SDP method took a
similar time with our SOCP method.

5.1.2. BLOG DATASET

We next compare our algorithms on the blogfeedback
dataset4 from the UCI data repository (Dua & Graff, 2019).
It consists of 52397 data processed from raw feedback-
materials collected from the Internet. Each one conveys the
information of a certain session, described by 281 features.
The response is the number of comments. The task for the
learner, in this case, is to predict the the future comment
numbers in a regression manner.

As before, we assume that the label zi = max{yi + δ, 0}
is modified by the data provider in order to trigger a biased
result. For example, consider an option guider who aims
to manipulate the public expectation of a certain blog news.
He is then motivated to temper the announced comment
number. We assume there are two types of data providers,
Amodest with δ = −5 and Asevere with δ = −10. All the
other hyperparameters are the same with the wine dataset.

For this dataset, we do not compare the method in Brückner
& Scheffer (2011) for time consideration. Hence we only

4https://archive.ics.uci.edu/ml/datasets/BlogFeedback

present the comparisons of the other four methods in Figure
2. Similarly, Figures 2(a) and 2(b) demonstrate that our two
methods achieved the best average MSE. Figures 2(c) and
2(d) indicate that both the single SDP and SOCP methods
are much faster than the bisection method, and the SOCP
approach surpasses the single SDP approach. In fact, our
SOCP method takes only about 1/50 time of our single SDP
method, while our single SDP method takes only about 1/20
time of the bisection method. That is, our SOCP method is
1000 times more efficient than the bisection method on this
dataset.

5.2. Synthetic Dataset

To further demonstrate the efficacy of our proposed ap-
proaches in large-scale problems, we perform synthetic
experiments with a high feature dimension. The func-
tion make regression in scikit-learn (Pedregosa et al.,
2011) is used to build artificial datasets of controlled size
and complexity. In particular, we specify the noise as 0.1,
which is the standard deviation of the Gaussian noise ap-
plied to the output y, and all other arguments are set as
default. Our experiment focuses on the comparison of three
different methods including the bisection method, the single
SDP and SOCP methods. Similar as in Bishop et al. (2020),
the fake input label zi is set as

zi = max{yi, y0.25},

where y0.25 represents the lower quartile (25th percentile)
of output y. More specifically, if the true label is greater
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than or equal to the threshold y0.25, then the label would not
be modified. Otherwise, the label would be set as y0.25. In
all tests, the parameter γ is set as 0.01. More results with
γ = 0.1 can be found in the Appendix.

Table 1. Time (seconds) comparison on synthetic data: m = 2n

m n bisect sSDP SOCP ratio1 ratio2 eig

200 100 4.356 0.111 0.043 101 3 0.001
1000 500 167.732 3.997 0.099 1702 41 0.020
2000 1000 988.675 45.984 0.178 5559 259 0.085
4000 2000 7877.041 438.487 0.536 14694 818 0.441
8000 4000 - 3127.316 1.478 - 2116 3.349

12000 6000 - - 3.079 - - 11.245

Table 2. Time (seconds) comparison on synthetic data: m = n

m n bisect sSDP SOCP ratio1 ratio2 eig

100 100 4.342 0.107 0.040 108 3 0.001
500 500 158.304 4.142 0.072 2197 57 0.018

1000 1000 990.151 21.781 0.225 4408 97 0.085
2000 2000 7667.927 201.411 0.586 13094 344 0.442
4000 4000 - 2142.952 2.485 - 862 3.264
6000 6000 - - 2.876 - - 11.117

Table 3. Time (seconds) comparison on synthetic data: m = 0.5n

m n bisect sSDP SOCP ratio1 ratio2 eig

50 100 4.146 0.105 0.047 87 2 0.001
250 500 156.018 4.471 0.078 2004 57 0.021
500 1000 956.343 69.267 0.189 5047 366 0.080

1000 2000 7495.735 177.999 0.371 20217 480 0.405
2000 4000 - 1485.843 1.229 - 1209 3.144
3000 6000 - 8769.430 2.616 - 3352 10.436

Tables 1, 2 and 3 summarise the comparison of wall-clock
time on different scales with m = pn, p ∈ {0.5, 1, 2}. In
these tables, “bisect” represents the bisection method in
Bishop et al. (2020), “sSDP” represents our single SDP
method, “SOCP” represents our SOCP method, “ratio1”
represents the ratio of times of the bisection method and our
SOCP method, and “ratio2” represents the ratio of times of
our single SDP method and our SOCP method. The last
column “eig” recorded the spectral decomposition time of
matrix Ā11 in (14). In the test, the algorithm would not be
run in larger dimension case (denoted by “-”), if its wall-
clock time at current dimension exceeds 1800 seconds.

From the three tables, we can find that our single SDP
method is consistently faster than the bisection method. The
ratios in the table also demonstrate the high efficiency of
our SOCP method, which can be up to 20,000+ times faster
than the bisection method for case (m,n) = (1000, 2000).
Our SOCP method is also significantly faster than our sin-
gle SDP method. For example, our SOCP method took
about 3 seconds for all cases with n = 6000, while our
single SDP method took at least 8,000 seconds for the case
(m,n) = (3000, 6000). We also remark that the perfor-
mance gap grows considerably with the problem size since
both the ratios increase as the dimension increases. Finally,
we mention that, compared to the time of our single SDP

method, the time of spectral decomposition in formulating
our SOCP is rather small, which is about 11 seconds for
n = 6000.

6. Conclusion
In this paper, we study the computation for Stackelberg
equilibrium of SPG-LSs. Hidden convexity in the fractional
programming formulation (2) of the SPG-LS is deeply ex-
plored. Then, we are able to reformulate the SPG-LS as a
single SDP, based on the S-lemma with equality. By using
simultaneous diagonalizability of its submatrices in the con-
straint, we further reformulate our SDP into an SOCP. We
also demonstrate the optimal solution to the SPG-LS can be
recovered easily from solving our obtained SDP or SOCP.
Numerical comparisons between our single SDP and SOCP
approaches with the state of the art demonstrate the high
efficiency as well as learning accuracy of our methods for
handling large-scale SPG-LSs. We believe that our work
opens up a new way for the applicability of SPG-LSs in
large-scale real scenarios.
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